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Abstract We present a new, distributed method to compute approximate Nash equi-
libria in bimatrix games. In contrast to previous approaches that analyze the two
payoff matrices at the same time (for example, by solving a single LP that com-
bines the two players’ payoffs), our algorithm first solves two independent LPs, each
of which is derived from one of the two payoff matrices, and then computes an
approximate Nash equilibrium using only limited communication between the play-
ers. Our method gives improved bounds on the complexity of computing approximate
Nash equilibria in a number of different settings. Firstly, it gives a polynomial-time
algorithm for computing approximate well supported Nash equilibria (WSNE) that
always finds a 0.6528-WSNE, beating the previous best guarantee of 0.6608. Sec-
ondly, since our algorithm solves the two LPs separately, it can be applied to give an
improved bound in the limited communication setting, giving a randomized expected-
polynomial-time algorithm that uses poly-logarithmic communication and finds a
0.6528-WSNE, which beats the previous best known guarantee of 0.732. It can also
be applied to the case of approximate Nash equilibria, where we obtain a randomized
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expected-polynomial-time algorithm that uses poly-logarithmic communication and
always finds a 0.382-approximate Nash equilibrium, which improves the previous best
guarantee of 0.438. Finally, the method can also be applied in the query complexity
setting to give an algorithm that makes O(n log n) payoff queries and always finds a
0.6528-WSNE, which improves the previous best known guarantee of 2/3.

Keywords Approximate Nash equilibria · Bimatrix games · Communication
complexity · Query complexity

1 Introduction

The problem of finding equilibria in non-cooperative games is a central problem in
game theory. Nash’s seminal theorem proved that every finite normal-form game has
at least one Nash equilibrium [18], and this raises the natural question of whether
we can find one efficiently. After several years of extensive research, it was shown
that finding a Nash equilibrium is PPAD-complete [7] even for two-player bimatrix
games [3], which is considered to be strong evidence that there is no polynomial-time
algorithm for this problem.
Approximate Equilibria The fact that computing an exact Nash equilibrium of a
bimatrix game is unlikely to be tractable, has led to the study of approximate Nash
equilibria. There are two natural notions of approximate equilibrium, both of which
will be studied in this paper. An ε-approximate Nash equilibrium (ε-NE) is a pair of
strategies in which neither player can increase their expected payoff by more than ε by
unilaterally deviating from their assigned strategy. An ε-well-supported Nash equilib-
rium (ε-WSNE) is a pair of strategies in which both players only place probability on
strategies whose payoff is within ε of the best response payoff. Every ε-WSNE is an
ε-NE but the converse does not hold, so a WSNE is a more restrictive notion.

ApproximateNash equilibria are themorewell studied of the two concepts.A line of
work has studied the best guarantee that can be achieved in polynomial time [2,6,8].
The best algorithm known so far is the gradient descent method of Tsaknakis and
Spirakis [20] that finds a 0.3393-NE in polynomial time, and examples uponwhich the
algorithm finds no better than a 0.3385-NE have been found [12]. On the other hand,
progress on computing approximate-well-supported Nash equilibria has been less
forthcoming. The first correct algorithm was provided by Kontogiannis and Spirakis
[16] (which shall henceforth be referred to as theKSalgorithm),whogave apolynomial
time algorithm for finding a 2

3 -WSNE. This was later slightly improved by Fearnley
et al. [10] (whose algorithm we shall refer to as the FGSS-algorithm), who gave a new
polynomial-time algorithm that extends the KS algorithm and finds a 0.6608-WSNE;
prior to this work, this was the best known approximation guarantee for WSNEs. For
the special case of symmetric games, there is a polynomial-time algorithm for finding
a 1

2 + δ-WSNE [5].
Previously, it was considered a strong possibility that there is a PTAS for this prob-

lem (either for finding an ε-NE or ε-WSNE, since their complexity is polynomially
related). A very recent result of Rubinstein [19] sheds serious doubt on this possibility.
EndOfTheLine is the canonical problem that defines the complexity class PPAD. The
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“Exponential Time Hypothesis” (ETH) for EndOfTheLine says that any algorithm
that solves anEndOfTheLine instance with n-bit circuits, requires 2Ω̃(n) time. Rubin-
stein’s result says that, subject to the ETH for EndOfTheLine, there exists a constant,
but so far undetermined, ε∗, such that for ε < ε∗, every algorithm for finding an ε-NE
takes quasi-polynomial time, so the quasi-PTAS of Lipton et al. [17] is optimal.
Communication Complexity Approximate Nash equilibria can also be studied from
the communication complexity point of view, which captures the amount of commu-
nication the players need to find a good approximate Nash equilibrium. It models a
natural scenario where the two players each know their own payoff matrix, but do not
know their opponent’s payoff matrix. The players must then follow a communication
protocol that eventually produces strategies for both players. The goal is to design a
protocol that produces a sufficiently good ε-NE or ε-WSNE while also minimizing
the amount of communication between the two players.

Communication complexity of equilibria in games has been studied in previous
works [4,15]. The recent paper of Goldberg and Pastink [13] initiated the study of
communication complexity in the bimatrix game setting. There they showed Θ(n2)
communication is required to find an exact Nash equilibrium of an n × n bimatrix
game. Since these games have Θ(n2) payoffs in total, this implies that there is no
communication-efficient protocol for finding exact Nash equilibria in bimatrix games.
For approximate equilibria, they showed that one can find a 3

4 -NE without any com-
munication, and that in the no-communication setting, finding a 1

2 -NE is impossible.
Motivated by these positive and negative results, they focused on the most interesting
setting, which allows only a polylogarithmic (in n) number of bits to be exchanged
between the players. They showed that one can compute 0.438-NE and 0.732-WSNE
in this context. Recently Babichenko and Rubinstein [1] proved the first lower bounds
for the communication complexity of ε-NE. They proved that for bimatrix games there
is constant ε > 0 such that polynomial communication (in n) is needed in order to
compute an ε-NE. Furthermore, they showed that in N -player binary-action games
there exists a constant ε > 0 such that 2Ω(N ) communication is needed for computing
an ε-NE.
Query Complexity The payoff query model is motivated by practical applications of
game theory. It is often the case that we know that there is a game to be solved, but
we do not know what the payoffs are, and in order to discover the payoffs, we would
have to play the game. This may be costly, so it is natural to ask whether we can find
an equilibrium while minimizing the number of experiments that we must perform.

Payoff queries model this situation. In the payoff query model we are told the
structure of the game, i.e., the strategy space, but we are not told the payoffs. We
can then make payoff queries, where we propose a pure strategy profile, and we are
told the payoff of each player under that strategy profile. Our task is to compute an
equilibrium of the game while minimizing the number of payoff queries that we make.

The study of query complexity in bimatrix games was initiated by Fearnley et al.
[11], who gave a deterministic algorithm for finding a 1

2 -NE using 2n − 1 payoff
queries. A subsequent paper of Fearnley and Savani [9] showed a number of further
results. Firstly, they showed anΩ(n2) lower bound on the query complexity of finding
an ε-NE with ε < 1

2 , which combined with the result above, gives a complete view of
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the deterministic query complexity of approximate Nash equilibria in bimatrix games.

They then give a randomized algorithm that finds a ( 3−
√
5

2 + ε)-NE using O(
n·log n

ε2
)

queries, and a randomized algorithm that finds a ( 23 + ε)-WSNE using O(
n·log n

ε4
)

queries.
Our Contribution In this paper we introduce a distributed technique that allows us
to efficiently compute ε-NE and ε-WSNE using limited communication between the
players.

Traditional methods for computing WSNEs have used an LP based approach that,
when used on a bimatrix game (R,C), solves the zero-sum game (R − C,C − R).
The KS algorithm uses the fact that if there is no pure 2

3 -WSNE, then the solution
to this zero-sum game is a 2

3 -WSNE. The slight improvement of the FGSS-algorithm
[10] to 0.6608 was obtained by adding two further methods to the KS algorithm: if the
KS algorithm does not produce a 0.6608-WSNE, then either there is a 2× 2 matching
pennies sub-game that is 0.6608-WSNE or the strategies from the zero-sum game can
be improved by shifting the probabilities of both players within their supports in order
to produce a 0.6608-WSNE.

In this paper, we take a different approach. We first show that the bound of 2
3 can

be matched using a pair of distributed LPs. Given a bimatrix game (R,C), we solve
the two zero-sum games (R,− R) and (−C,C), and then give a simple procedure
that we call the base algorithm, which uses the solutions to these games to produce a
2
3 -WSNE of (R,C). Goldberg and Pastink [13] also considered this pair of LPs, but
their algorithm only produces a 0.732-WSNE. We then show that the base algorithm
can be improved by applying the probability-shifting andmatching-pennies ideas from
the FGSS-algorithm. That is, if the base algorithm fails to find a 0.6528-WSNE, then
a 0.6528-WSNE can be obtained either by shifting the probabilities of one of the two
players, or by identifying a 2×2 sub-game.This gives a polynomial-time algorithm that
computes a 0.6528-WSNE, which provides the best known approximation guarantees
for WSNEs.

It is worth pointing out that, while these techniques are thematically similar to the
ones used by the FGSS-algorithm, the actual implementation is significantly different.
The FGSS-algorithm attempts to improve the strategies by shifting probabilitieswithin
the supports of the strategies returned by the two player game,with the goal of reducing
the other player’s payoff. In our algorithm, we shift probabilities away from bad
strategies in order to improve that player’s payoff. This type of analysis is possible
because the base algorithm produces a strategy profile in which one of the two players
plays a pure strategy, which simplifies the analysis that we need to carry out. On
the other hand, the KS-algorithm can produce strategies in which both players play
many strategies, and so the analysis used for the FGSS-algorithm is necessarily more
complicated (Table 1).

Since our algorithm solves the twoLPs separately, it can be used to improve upon the
best known algorithms in the limited communication setting. This is because no com-
munication is required for the row player to solve (R,− R) and the column player
to solve (−C,C). The players can then carry out the rest of the algorithm using
only poly-logarithmic communication. Hence, we obtain a randomized expected-
polynomial-time algorithm that uses poly-logarithmic communication and finds a
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Table 1 Comparison of our approximation guarantees with the previous best-known guarantees

Complexity setting Payoffs Solution Previous best approximation This paper

Computational (polynomial) [0, 1] ε-WSNE 0.6608 [10] 0.6528

Query (n · log(n) queries) [0, 1] ε-WSNE 0.6667 [9] 0.6528 + ε

Communication (polylogarithmic) [0, 1] ε-WSNE 0.7321 [13] 0.6528 + ε

Communication (polylogarithmic) {0, 1} ε-WSNE 0.7321 [13] 0.5 + ε

Communication (polylogarithmic) [0, 1] ε-NE 0.4384 [13] 0.3820 + ε

0.6528-WSNE. Moreover, the base algorithm can be implemented as a communi-
cation efficient algorithm for finding a ( 12 + ε)-WSNE in a win-lose bimatrix game,
where all payoffs are either 0 or 1.

The algorithmcan also be used to beat the best knownbound in the query complexity
setting. It has already been shown by Goldberg and Roth [14] that an ε-NE of a zero-
sum game can be found by a randomized algorithm that uses O(

n log n
ε2

) payoff queries.
Since the rest of the steps used byour algorithmcan also be carried out usingO(n log n)

payoff queries, this gives us a query efficient algorithm for finding a 0.6528-WSNE.

We also show that the base algorithm can be adapted to find a 3−√
5

2 -NE in a bimatrix
game. Once again, this can be implemented in a communication efficient manner, and

so we obtain an algorithm that computes a ( 3−
√
5

2 + ε)-NE (i.e., 0.382-NE) using only
poly-logarithmic communication.

Finally, we provide a lower bound against the base algorithm that is essentially
tight, namely within 0.0034 of the theoretical upper bound.

2 Preliminaries

Bimatrix Games Throughout, we use [n] to denote the set {1, 2, . . . , n}. An n × n
bimatrix game is a pair (R,C) of two n×nmatrices: R gives payoffs for the row player
and C gives the payoffs for the column player. We make the standard assumption that
all payoffs lie in the range [0, 1]. For simplicity, as in [13], we assume that each payoff
has constant bit-length.1 A win-lose bimatrix game has all payoffs in {0, 1}.

Each player has n pure strategies. To play the game, both players simultaneously
select a pure strategy: the row player selects a row i ∈ [n], and the column player
selects a column j ∈ [n]. The row player then receives payoff Ri, j , and the column
player receives payoff Ci, j .

A mixed strategy is a probability distribution over [n]. We denote a mixed strategy
for the row player as a vector x of length n, such that xi is the probability that the row
player assigns to pure strategy i . A mixed strategy of the column player is a vector y of
length n, with the same interpretation. Given a mixed strategy x for either player, the
support of x is the set of pure strategies i with xi > 0. If x and y are mixed strategies

1 The statements of our results can easily be extended to the case where all payoffs can be represented
using b bits by including a factor b in all our communication complexity bounds.
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for the row and the column player, respectively, then we call (x, y) a mixed strategy
profile. The expected payoff for the row player under strategy profile (x, y) is given
by xT Ry and for the column player by xTCy. We denote the support of a strategy x
as supp(x), which gives the set of pure strategies i such that xi > 0.
Nash Equilibria Let y be a mixed strategy for the column player. The set of pure best
responses against y for the row player is the set of pure strategies that maximize the
payoff against y. More formally, a pure strategy i ∈ [n] is a best response against y if,
for all pure strategies i ′ ∈ [n] we have: ∑ j∈[n] y j · Ri, j ≥ ∑

j∈[n] y j · Ri ′, j . Column
player best responses are defined analogously.

A mixed strategy profile (x, y) is a mixed Nash equilibrium if every pure strategy
in supp(x) is a best response against y, and every pure strategy in supp(y) is a best
response against x. Nash [18] showed that all bimatrix games have a mixed Nash
equilibrium.
Approximate Equilibria There are two commonly studied notions of approximate
equilibrium, and we consider both of them in this paper. The first notion is of an ε-
approximate Nash equilibrium (ε-NE), which weakens the requirement that a player’s
expected payoff should be equal to their best response payoff. Formally, given a strat-
egy profile (x, y), we define the regret suffered by the row player to be the difference
between the best response payoff and actual payoff, i.e.,

max
i∈[n]

(
(R · y)i

) − xT · R · y.

The term R · y is a vector where the i th entry of the vector, (R · y)i , corresponds the
payoff the row player gets from playing his i th pure strategy when the column player
plays y. Hence, the maximum over this vector is the best response payoff for the row
player. The term xT · R · y encodes the expected payoff to the row player under the
strategy profile (x, y).

Regret for the column player is defined analogously. We have that (x, y) is an ε-NE
if and only if both players have regret less than or equal to ε.

The other notion is of an ε-approximate-well-supported equilibrium (ε-WSNE),
which weakens the requirement that players only place probability on best response
strategies. Given a strategy profile (x, y) and a pure strategy j ∈ [n], we say that j is
an ε-best-response for the row player if

max
i∈[n]

(
(R · y)i

) − (R · y) j ≤ ε.

An ε-WSNE requires that both players only place probability on ε-best-responses. In
an ε-WSNE both players place probability only on ε-best-responses. Formally, the
row player’s pure strategy regret under (x, y) is defined to be

max
i∈[n]

(
(R · y)i

) − min
i∈supp(x)

(
(R · y)i

)
.

Pure strategy regret for the column player is defined analogously. A strategy profile
(x, y) is an ε-WSNE if both players have pure strategy regret less than or equal to ε.
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Communication Complexity We consider the communication model for bimatrix
games introduced by Goldberg and Pastink [13]. In this model, both players know the
payoffs in their own payoff matrix, but do not know the payoffs in their opponent’s
matrix. The players then follow an algorithm that uses a number of communication
rounds, where in each round they exchange a single bit of information. Between
each communication round, the players are permitted to perform arbitrary randomized
computations (although it should be noted that, in this paper, the players will only
perform polynomial-time computations) using their payoff matrix, and the bits that
they have received so far. At the end of the algorithm, the row player outputs a mixed
strategy x, and the column player outputs a mixed strategy y. The goal is to produce
a strategy profile (x, y) that is an ε-NE or ε-WSNE for a sufficiently small ε while
limiting the number of communication rounds used by the algorithm. The algorithms
given in this paper will use at most O(log2 n) communication rounds. In order to
achieve this, we use the following result of Goldberg and Pastink [13].

Lemma 1 ([13])Given a mixed strategy x for the row-player and an ε > 0, there is a

randomized expected-polynomial-time algorithm that uses O(
log2 n

ε2
)-communication

to transmit a strategy xs to the column player where |supp(xs)| ∈ O(
log n
ε2

) and for
every strategy i ∈ [n] we have:

|(xT · R)i − (xTs · R)i | ≤ ε.

The algorithm uses the well-known sampling technique of Lipton, Markakis, and
Mehta to construct the strategy xs , so for this reason we will call the strategy xs the
sampled strategy from x. Since this strategy has a logarithmically sized support, it can
be transmitted by sending O(

log n
ε2

) strategy indexes, each of which can be represented
using log n bits. By symmetry, the algorithm can obviously also be used to transmit
approximations of column player strategies to the row player.
Query Complexity In the query complexity setting, the algorithm knows that the
players will play an n×n game (R,C), but it does not know any of the entries of R or
C . These payoffs are obtained using payoff queries in which the algorithm proposes
a pure strategy profile (i, j), and then it is told the value of Ri j and Ci j . After each
payoff query, the algorithm can make arbitrary computations (although, again, in this
paper the algorithms that we consider take polynomial time) in order to decide the
next pure strategy profile to query. After making a sequence of payoff queries, the
algorithm then outputs a mixed strategy profile (x, y). Again, the goal is to ensure that
this strategy profile is an ε-NE or ε-WSNE, while minimizing the number of queries
made overall.

There are two results that we will use for this setting. Goldberg and Roth [14] have
given a randomized algorithm that, with high probability, finds an ε-NE of a zero-
sum game using O(

n·log n
ε2

) payoff queries. Given a mixed strategy profile (x, y), an
ε-approximate payoff vector for the row player is a vector v such that, for all i ∈ [n]we
have |vi −(R ·y)i | ≤ ε. Approximate payoff vectors for the column player are defined
symmetrically. Fearnley and Savani [9] observed that there is a randomized algorithm
that when given the strategy profile (x, y), finds approximate payoff vectors for both
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players using O(
n·log n

ε2
) payoff queries and that succeeds with high probability. We

summarise these two results in the following lemma.

Lemma 2 ([9,14]) Given an n × n zero-sum bimatrix game, with probability at least

(1−n− 1
8 )(1− 2

n )2, we can compute an ε-Nash equilibrium (x, y), and ε-approximate

payoff vectors for both players under (x, y), using O(
n·log n

ε2
) payoff queries.

3 The Base Algorithm

In this section, we introduce the base algorithm, which provides a simple way to find a
2
3 -WSNE.We present this algorithm separately for three reasons. Firstly, the algorithm
is interesting in its own right, since it provides a relatively straightforward method for
finding a 2

3 -WSNE that is quite different from the technique used in the KS-algorithm.
Secondly, our algorithm for finding a 0.6528-WSNE will build on this algorithm and
replace its final step with two more involved procedures. Thirdly, at the end of this
section, we show how this algorithm can be adapted to provide a communication
efficient way to find a (0.5 + ε)-WSNE in win-lose games.

Algorithm 1

1. Solve the zero-sum games (R,− R) and (−C,C).
– Let (x∗, y∗) be a NE of (R,− R), and let (x̂, ŷ) be a NE of (−C,C).
– Let vr be the value secured by x∗ in (R,− R), and let vc be the value
secured by ŷ in (−C,C). Without loss of generality assume that vc ≤
vr .

2. If vr ≤ 2/3, then return (x̂, y∗).
3. If for all j ∈ [n] it holds that CT

j · x∗ ≤ 2/3, then return (x∗, y∗).
4. Otherwise:

– Let j∗ be a pure best response to x∗.
– Find a row i such that Rij∗ > 1/3 and Cij∗ > 1/3.
– Return (i, j∗).

We argue that this algorithm is correct. For that, we must prove that the row i used
in Step 4 actually exists.

Lemma 3 If Algorithm 1 reaches Step 4, then there exists a row i such that Rij∗ > 1/3
and Cij∗ > 1/3.

Proof Let i be a row sampled from x∗. Wewill show that there is a positive probability
that row i satisfies the desired properties.

We begin by showing that the probability that Pr(Rij∗ ≤ 1
3 ) < 0.5. Let the random

variable T = 1− Rij∗ , where i is chosen according to the probability distribution x∗.
Note that E[Rij∗ ] = (x∗R) j . Since vr > 2

3 , we claim that E[T ] < 1
3 . This follows

from the fact that x∗ is a min-max strategy for the row player, and thus it guarantees
a payoff more than 2/3 against any pure strategy of the column player.
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Thus, applying Markov’s inequality we obtain:

Pr

(

T ≥ 2

3

)

≤ E[T ]
2/3

< 0.5.

Since Pr(Rij∗ ≤ 1
3 ) = Pr(T ≥ 2

3 )we can therefore conclude that Pr(Rij∗ ≤ 1
3 ) < 0.5.

The exact same technique can be used to prove that Pr(Cij∗ ≤ 1
3 ) < 0.5, by using the

fact that CT
j∗ · x∗ > 2

3 .
We can now apply the union bound to argue that:

Pr

(

Rij∗ ≤ 1

3
or Cij∗ ≤ 1

3

)

< 1.

Hence, there is positive probability that row i satisfies Rij∗ > 1
3 and Cij∗ > 1

3 , so such
a row must exist. �	
We now argue that the algorithm always produces a 2

3 -WSNE. There are three possible
strategy profiles that can be returned by the algorithm, which we consider individually.

The algorithm returns in Step 2 Since vc ≤ vr by assumption, and since vr ≤ 2
3 ,

we have that (R ·y∗)i ≤ 2
3 for every row i , and ((x̂)T ·C) j ≤ 2

3 for every column j .
So, both players can have pure strategy regret at most 2

3 in (x̂, y∗), and thus this
profile is a 2

3 -WSNE.
The algorithm returns in Step 3Much like in the previous case, when the column
player plays y∗, the row player can have pure strategy regret at most 23 ; observe that
in this case the row player actually suffers zero regret since x∗ is a best response
against y∗. The requirement that CT

j x∗ ≤ 2
3 also ensures that the column player

has pure strategy regret at most 2
3 . Thus, we have that (x

∗, y∗) is a 2
3 -WSNE.

The algorithm returns in Step 4 Both players have payoff at least 1
3 under (i, j∗)

for the sole strategy in their respective supports. Hence, themaximumpure strategy
regret that can be suffered by a player is 1 − 1

3 = 2
3 .

Observe that the zero-sum games solved in Step 1 can be solved via linear program-
ming, and so the algorithm runs in polynomial time. Therefore, we have shown the
following.

Theorem 4 Algorithm 1 always produces a 2
3 -WSNE in polynomial time.

3.1 Win-Lose Games

The base algorithm can be adapted to provide a communication efficient method for
finding a (0.5+ ε)-WSNE in win-lose games. In brief, the algorithm can be modified
to find a 0.5-WSNE in a win-lose game by making Steps 2 and 3 check against the
threshold of 0.5. It can then be shown that if these steps fail, then there exists a pure
Nash equilibrium in column j∗. This can then be implemented as a communication
efficient protocol using the algorithm from Lemma 1.
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Formally, we will study the following simple modification of Algorithm 1.

Algorithm 2

1. Solve the zero-sum games (R,− R) and (−C,C).
– Let (x∗, y∗) be a NE of (R,− R), and let (x̂, ŷ) be a NE of (C,−C).
– Let vr be the value secured by x∗ in (R,− R), and let vc be the value
secured by ŷ in (−C,C). Without loss of generality assume that vc ≤
vr .

2. If vr ≤ 0.5, then return (x̂, y∗).
3. If for all j ∈ [n] it holds that CT

j · x∗ ≤ 0.5, then return (x∗, y∗).
4. Otherwise:

– Let j∗ be a pure best response to x∗.
– Find a row i such that Rij∗ = 1 and Ci j = 1.
– Return (i, j∗).

We will show that this algorithm always finds a 0.5-WSNE in a win-lose game.
Firstly, we show that the pure Nash equilibrium found in Step 4 always exists. The
following lemma is similar to Lemma 3, but exploits the fact that the game is win-lose
to obtain a stronger conclusion.

Lemma 5 If Algorithm 2 is applied to a win-lose game, and it reaches Step 4, then
there exists a row i ∈ supp(x∗) such that Rij∗ = 1 and Cij∗ = 1.

Proof Let i be a row sampled from x∗. Wewill show that there is a positive probability
that row i satisfies the desired properties.

We begin by showing that the probability that Pr(Rij∗ = 0) < 0.5. Let the random
variable T = 1 − Rij∗ . Since vr > 1

2 , we have that E[T ] < 0.5. Thus, applying
Markov’s inequality we obtain:

Pr(T ≥ 1) ≤ E[T ]
1

< 0.5.

Since Pr(Rij∗ = 0) = Pr(T ≥ 1) we can therefore conclude that Pr(Rij∗ = 0) < 0.5.
The exact same technique can be used to prove that Pr(Cij∗ = 0) < 0.5, by using the
fact that CT

j∗ · x∗ > 0.5.
We can now apply the union bound to argue that:

Pr(Rij∗ = 0 or Cij∗ = 0) < 1.

Hence, there is positive probability that row i satisfies Rij∗ > 0 and Cij∗ > 0, so such
a row must exist. The final step is to observe that, since the game is win-lose, we have
that Rij∗ > 0 implies Rij∗ = 1, and that Cij∗ > 0 implies Cij∗ = 1. �	

We now prove that the algorithm always finds a 0.5-WSNE. The reasoning is very
similar to the analysis of the base algorithm. The strategy profiles returned by Steps 2
and 3 are 0.5-WSNEs by the same reasoning that was given for the base algorithm.
Step 4 always returns a pure Nash equilibrium, which is a 0-WSNE.
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Communication Complexity We now show that Algorithm 2 can be implemented in
a communication efficient way.

The zero-sum games in Step 1 can be solved by the two players independently
without any communication. Then, the players exchange vr and vs using O(log n)

rounds of communication. If both vr and vs are smaller than 0.5, then the players use
the algorithm from Lemma 1 to communicate x̂s and y∗

s between themselves, using
the parameter ε

2 in place of ε. Since the payoffs under the sampled strategies are within
ε
2 of the originals, we have that all pure strategies have payoff less than or equal to
0.5 + ε under (x̂s, y∗

s ), so this strategy profile is a (0.5 + ε)-WSNE.
We will assume from now on that vr > vc. If the algorithm reaches Step 3, then the

row player uses the algorithm of Lemma 1 to communicate x∗
s to the column player.

The column player then computes a best response j∗s against x∗
s , and checks whether

the payoff of j∗s against x∗
s is less than or equal to 0.5+ ε. If so, then the players output

(x∗
s , j

∗
s ), which is a (0.5 + ε)-WSNE

Otherwise, we claim that there is a pure strategy i ∈ supp(x∗
s ) such that (i, j∗s ) is

a pure Nash equilibrium. This can be shown by observing that the expected payoff
of x∗

s against j∗s is at least 0.5 − ε, while the expected payoff of j∗s against x∗
s is at

least 0.5 + ε. Repeating the proof of Lemma 5 using these inequalities then shows
that the pure Nash equilibrium does indeed exist. Since supp(x∗

s ) has logarithmic size,
the row player can simply transmit to the column player all payoffs Rij∗s for which
i ∈ supp(x∗

s ), and the column player can then send back a row corresponding to a pure
Nash equilibrium.

In conclusion, we have shown the following theorem.

Theorem 6 For every win-lose game and ε > 0, there is a randomized expected-

polynomial-time algorithm that finds a (0.5+ ε)-WSNE with O
(
log2 n

ε2

)
communica-

tion.

4 An Algorithm for Finding a 0.6528-WSNE

In this section, we show howAlgorithm 1 can bemodified to produce a 0.6528-WSNE.
OutlineOur algorithm replaces Step 4 ofAlgorithm 1with amore involved procedure.
This procedure uses two techniques, that both find an ε-WSNEwith ε < 2

3 . Firstly, we
attempt to turn (x∗, j∗) into a WSNE by shifting probabilities. Observe that, since j∗
is a best response, the column player has a pure strategy regret of 0 in (x∗, j∗). On the
other hand, we have no guarantees about the row player since x∗ might place a small
amount of probability strategies with payoff strictly less than 1

3 . However, since x∗
achieves a high expected payoff (due to Step 2,) it cannot place too much probability
on these low payoff strategies. Thus, the idea is to shift the probability that x∗ assigns
to entries of j∗ with payoff less than or equal to 1

3 to entries with payoff strictly greater
than 1

3 , and thus ensure that the row player’s pure strategy regret is below 2
3 . Of course,

this procedure will increase the pure strategy regret of the column player, but if it is
also below 2

3 once all probability has been shifted, then we have found an ε-WSNE
with ε < 2

3 .
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If shifting probabilities fails to find an ε-WSNE with ε < 2
3 , then we show that

the game contains a matching pennies sub-game. More precisely, we show that there
exists a column j′, and rows b and s such that the 2× 2 sub-game induced by j∗, j′, b,
and s has the following form:

�
�
I

II

b

s

j∗ j′

≈ 1 0

0 ≈ 1

0 ≈ 1

≈ 1 0

Thus, if both players play uniformly over their respective pair of strategies, then j∗, j′,
b, and s with have payoff ≈ 0.5, and so this yields an ε-WSNE with ε < 2

3 .
The Algorithm We now formalize this approach, and show that it always finds an
ε-WSNE with ε < 2

3 . In order to quantify the precise ε that we obtain, we parametrise
the algorithm by a variable z, which we constrain to be in the range 0 ≤ z < 1

24 . With
the exception of the matching pennies step, all other steps of the algorithm will return
a ( 23 − z)-WSNE, while the matching pennies step will return a ( 12 + f (z))-WSNE
for some increasing function f . Optimizing the trade off between 2

3 − z and 1
2 + f (z)

then allows us to determine the quality of WSNE found by our algorithm.
The algorithm is displayed as Algorithm 3. Steps 1, 2, and 3 are versions of the

corresponding steps fromAlgorithm 1, which have been adapted to produce a ( 23 − z)-
WSNE. Step 4 implements the probability shifting procedure, while Step 5 finds a
matching pennies sub-game.

Observe that the probabilities used in xmp and ymp are only well defined when
z ≤ 1

24 , because we have that 1−15z
2−39z > 1 whenever z > 1

24 , which explains our
required upper bound on z.
The correctness of Step 5 This step of the algorithm relies on the existence of the
rows b and s, which is shown in the following lemma.

Lemma 7 Suppose that the following conditions hold:

1. x∗ has payoff at least 2
3 − z against j∗.

2. j∗ has payoff at least 2
3 − z against x∗.

3. x∗ has payoff at least 2
3 − z against j′.

4. Neither j∗ nor j′ contains a pure ( 23 − z)-WSNE (i, j) with i ∈ supp(x∗).

Then, both of the following are true:

– There exists a row b ∈ B such that Rbj∗ > 1 − 18z
1+3z and Cbj′ > 1 − 18z

1+3z .

– There exists a row s ∈ S such that Csj∗ > 1 − 27z
1+3z and Rsj′ > 1 − 27z

1+3z .

We defer the proof of this lemma to Sect. 4.1. Observe that the preconditions
are indeed true if the Algorithm reaches Step 5. The first and third conditions hold
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Algorithm 3

1. Solve the zero-sum games (R, − R) and (−C,C).
– Let (x∗, y∗) be a NE of (R, − R), and let (x̂, ŷ) be a NE of (C, −C).
– Let vr be the value secured by x∗ in (R, − R), and let vc be the value secured by ŷ in

(−C,C). Without loss of generality assume that vc ≤ vr .

2. If vr ≤ 2/3 − z, then return (x̂, y∗).

3. If for all j ∈ [n] it holds that CT
j x∗ ≤ 2/3 − z, then return (x∗, y∗).

4. Otherwise:
– Let j∗ be a pure best response against x∗. Define:

S := {i ∈ supp(x∗) : Rij∗ < 1/3 + z}
B := supp(x∗) \ S

– Define the strategy xB as follows. For each i ∈ [n] we have:

(xB)i =
{

1
Pr(B)

· x∗
i if i ∈ B

0 otherwise.

– If (xB
T · C)j∗ ≥ 1

3 + z, then return (xB, j∗).

5. Otherwise:
– Let j′ be a pure best response against xB.
– If there exists an i ∈ supp(x∗) such that (i, j∗) or (i, j′) is a pure ( 23 − z)-WSNE, then

return it.
– Find a row b ∈ B such that Rbj∗ > 1 − 18z

1+3z and Cbj′ > 1 − 18z
1+3z .

– Find a row s ∈ S such that Csj∗ > 1 − 27z
1+3z and Rsj′ > 1 − 27z

1+3z .
– Define the row player strategy xmp and the column player strategy ymp as follows. For

each i ∈ [n] we have:

xmpi =

⎧
⎪⎨

⎪⎩

1−24z
2−39z if i = b,
1−15z
2−39z if i = s,

0 otherwise.

ympi =

⎧
⎪⎨

⎪⎩

1−24z
2−39z if i = j∗,
1−15z
2−39z if i = j′,
0 otherwise.

– Return (xmp, ymp).

because, due to Step 2, we know that x∗ is a min-max strategy that secures payoff at
least vr > 2

3 − z. The second condition holds because Step 3 ensures that the column
player’s best response payoff is at least 2

3 − z. The fourth condition holds because
Step 5 explicitly checks for these pure strategy profiles.
Quality of Approximation We now analyse the quality of WSNE our algorithm
produces. Steps 2, 3, 4, and 5 each return a strategy profile. Observe that Steps 2
and 3 are the same as the respective steps in the base algorithm, but with the threshold
changed from 2

3 to 2
3 − z. Hence, we can use the same reasoning as we gave for the

base algorithm to argue that these steps return ( 23 − z)-WSNE. We now consider the
other two steps.

The algorithm returns in Step 4By definition all rows r ∈ B satisfy Rij∗ ≥ 1
3+z,

so since supp(xB) ⊆ B, the pure strategy regret of the row player can be at most
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1 − ( 13 + z) = 2
3 − z. For the same reason, since (xB

T · C)j∗ ≥ 1
3 + z holds, the

pure strategy regret of the column player can also be at 2
3 − z. Thus, the profile

(xB, j∗) is a ( 23 − z)-WSNE.
The algorithm returns in Step 5 Since Rbj∗ > 1 − 18z

1+3z , the payoff of b when
the column player plays ymp is at least:

1 − 24z

2 − 39z
·
(

1 − 18z

1 + 3z

)

= 1 − 39z + 360z2

2 − 33z − 117z2

Similarly, since Rsj′ > 1 − 27z
1+3z , the payoff of s when the column player plays

ymp is at least:

1 − 15z

2 − 39z
·
(

1 − 27z

1 + 3z

)

= 1 − 39z + 360z2

2 − 33z − 117z2

In the sameway, one can show that the payoffs of j∗ and j′ are also 1−39z+360z2

2−33z−117z2
when

the row player plays xmp. Thus, we have that (xmp, ymp) is a (1 − 1−39z+360z2

2−33z−117z2
)-

WSNE.

To find the optimal value for z, we need to find the largest value of z for which the
following inequality holds.

1 − 1 − 39z + 360z2

2 − 33z − 117z2
≤ 2

3
− z.

Setting the inequality to an equality and rearranging gives us a cubic polynomial
equation: 117 z3+432 z2 −30 z+ 1

3 = 0. Since the discriminant of this polynomial is
positive, this polynomial has three real roots, which can be found via the trigonometric
method. Only one of these roots lies in the range 0 ≤ z < 1

24 , which is the following:

z = 1

117

√
3

(√
2434

√
3 cos

(
1

3
arctan

(
39

240073

√
9749

√
3

))

− 3
√
2434 sin

(
1

3
arctan

(
39

240073

√
9749

√
3

))

− 48
√
3

)

.

Thus, we get z ≈ 0.013906376, and we have found an algorithm that always produces
a 0.6528-WSNE. So we have the following theorem.

Theorem 8 There is a polynomial time algorithm that, given a bimatrix game, finds
a 0.6528-WSNE.
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4.1 Proof of Lemma 7

In this section we assume that Steps 1 through 4 of our algorithm did not return a
( 23 − z)-WSNE, and that neither j∗ nor j′ contained a pure ( 23 − z)-WSNE. We show
that, under these assumptions, the rows b and s required by Step 5 do indeed exist.
Probability BoundsWe begin by proving bounds on the amount of probability that x∗
can place on S and B. The following lemma uses the fact that x∗ secures an expected
payoff of at least 2

3 − z to give an upper bound on the amount of probability that x∗
can place on S. To simplify notation, we use Pr(B) to denote the probability assigned
by x∗ to the rows in B, and we use Pr(S) to denote the probability assigned by x∗ to
the rows in S.

Lemma 9 Pr(S) ≤ 1+3z
2−3z .

Proof We will prove our claim using Markov’s inequality. Consider the random vari-
able T = 1− Rij∗ where i is sampled from x∗. Since by our assumption the expected
payoff of the row player is greater than 2/3 − z we get that E(T ) ≤ 1/3 + z. If we
apply Markov’s inequality we get

Pr

(

T ≥ 2

3
− z

)

≤ E(T )
2
3 − z

≤ 1 + 3z

2 − 3z

which is the claimed result. �	
Next we show an upper bound on Pr(B). Here we use the fact that j∗ does not

contain a ( 23 − z)-WSNE to argue that all column player payoffs in B are smaller than
1
3 + z. Since we know that the payoff of j∗ against x∗ is at least 2

3 − z, this can be used
to prove a upper bound on the amount of probability that x∗ assigns to B.

Lemma 10 Pr(B) ≤ 1+3z
2−3z .

Proof Since there is no i ∈ supp(x∗) such that (i, j∗) is a pure ( 23 − z)-WSNE, and
since each row i ∈ B satisfies Rij∗ ≥ 1

3 + z, we must have that Cij∗ < 1
3 + z for every

i ∈ B. By assumption we know that CT
j∗x∗ > 2/3 − z. So, we have the following

inequality:
2

3
− z < Pr(B) ·

(
1

3
+ z

)

+ (
1 − Pr(B)

) · 1.

Solving this inequality for Pr(B) gives the desired result. �	
Payoff Inequalities for j∗ We now show properties about the average payoff obtained
from the rows in B and S. Recall that xB was defined in Step 4 of our algorithm, and
that it denotes the normalization of the probability mass assigned by x∗ to rows in B.
The following lemma shows that the expected payoff to the row player in the strategy
profile (xB, j∗) is close to 1.

Lemma 11 We have (xB
T · R)j∗ > 1−6z

1+3z .
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Proof By definition we have that:

(xB
T · R)j∗ = 1

Pr(B)
·
∑

i∈B
x∗
i · Rij∗ . (1)

We begin by deriving a lower bound for
∑

i∈B x∗
i · Rij∗ . Using the fact that x∗ secures

an expected payoff of at least 2/3 − z against j∗ and then applying the bound from
Lemma 9 gives:

2

3
− z <

∑

i∈B
x∗
i · Rij∗ +

(
1

3
+ z

)

· Pr(S)

≤
∑

i∈B
x∗
i · Rij∗ +

(
1

3
+ z

)

· 1 + 3z

2 − 3z
.

Hence we can conclude that:

∑

i∈B
x∗
i · Rij∗ >

2

3
− z − 1

3
· (1 + 3z)2

2 − 3z

= 1 − 6z

2 − 3z
.

Substituting this into Eq. (1), along with the upper bound on Pr(B) from Lemma 10,
allows us to conclude that:

(xB
T · R)j∗ ≥ 2 − 3z

1 + 3z
·
∑

i∈B
x∗
i · Rij∗

>
2 − 3z

1 + 3z
· 1 − 6z

2 − 3z

= 1 − 6z

1 + 3z
.

�	
Next we would like to show a similar bound on the expected payoff to the column

player of the rows in S. Todo this,wedefinexS to be the normalisationof the probability
mass that x∗ assigns to the rows in S. More formally, for each i ∈ [n], we define:

(xS)i =
{

1
Pr(S)

· x∗
i if i ∈ S

0 otherwise.

The next lemma shows that the expected payoff to the column player in the profile
(xS, j∗) is close to 1.

Lemma 12 We have (xS
T · C)j∗ > 1−6z

1+3z .

123



Algorithmica (2019) 81:1205–1231 1221

Proof By definition we have that:

(xS
T · C)j∗ = 1

Pr(S)
·
∑

i∈S
x∗
i · Cij∗ . (2)

We begin by deriving a lower bound for
∑

i∈S x∗
i ·Cij∗ . By assumption, we know that

CT
j∗x∗ > 2/3 − z. Moreover, since j∗ does not contain a ( 23 − z)-WSNE we have that

all rows i in B satisfy Cij∗ ≤ 1/3+ z. If we combine these facts that with Lemma 10
we obtain:

2

3
− z <

∑

i∈S
x∗
i · Cij∗ +

(
1

3
+ z

)

· Pr(B)

≤
∑

i∈S
x∗
i · Cij∗ +

(
1

3
+ z

)

· 1 + 3z

2 − 3z
.

Hence we can conclude that:

∑

i∈S
x∗
i · Cij∗ >

2

3
− z − 1

3
· (1 + 3z)2

2 − 3z

= 1 − 6z

2 − 3z
.

Substituting this into Eq. (2), along with the upper bound on Pr(S) from Lemma 10,
allows us to conclude that:

(xB
T · R)j∗ ≥ 2 − 3z

1 + 3z
·
∑

i∈B
x∗
i · Rij∗

>
2 − 3z

1 + 3z
· 1 − 6z

2 − 3z

= 1 − 6z

1 + 3z
.

�	
Payoff Inequalities for j′ We now want to prove similar inequalities for the column
j′. The next lemma shows that the expected payoff for the column player in the profile
(xB, j′) is close to 1. This is achieved by first showing a lower bound on the payoff
to the column player in the profile (xB, j∗), and then using the fact that j∗ is not a
( 23 − z)-best-response against xB, and that j′ is a best response against xB.

Lemma 13 We have (xB
T · C)j′ > 1−6z

1+3z .

Proof We first establish a lower bound on (xB
T · C)j∗ . By assumption, we know that

CT
j∗x∗ > 2/3− z. Using this fact, along with the bounds from Lemmas 9 and 10 gives:

2

3
− z < Pr(B) · (xB

T · C)j∗ + Pr(S) · 1

123



1222 Algorithmica (2019) 81:1205–1231

≤ 1 + 3z

2 − 3z
· (xB

T · C)j∗ + 1 + 3z

2 − 3z
.

Solving this inequality for (xB
T · C)j∗ yields:

(xB
T · C)j∗ >

1

3
· 1 − 21z + 9z2

1 + 3z
.

Now we can prove the lower bound on (xB
T · C)j′ . Since j∗ is not a ( 23 − z)-best-

response against xB, and since j′ is a best response against xB we obtain:

(xB
T · C)j′ > (xB

T · C)j∗ + 2

3
− z

(xB
T · C)j′ >

1

3
· 1 − 21z + 9z2

1 + 3z
+ 2

3
− z

= 1 − 6z

1 + 3z
.

�	
The only remaining inequality that we require is a lower bound on the expected

payoff to the row player in the profile (xS, j′). However, before we can do this, we
must first prove an upper bound on the expected payoff to the row player in (xB, j′),
which we do in the following lemma. Here we first prove that most of the probability
mass of xB is placed on rows i in which Cij′ > 1

3 + z, which when combined with the
fact that there is no i ∈ supp(x∗) such that (i, j′) is a pure ( 23 − z)-WSNE, is sufficient
to provide an upper bound.

Lemma 14 We have (xB
T · R)j′ < 1

3 · 1+33z+9z2
1+3z .

Proof Webegin byproving an upper boundon the amount of probabilitymass assigned
by xB to rows i with Cij′ < 1

3 + z. Let T = 1 − Cij′ be a random variable where the
row i is sampled according to xB. Lemma 13 implies that:

E[T ] < 1 − 1 − 6z

1 + 3z
= 9z

1 + 3z
.

Observe that Pr(T ≥ 1 − ( 13 + z)) = Pr(T ≥ 2
3 − z) is equal to the amount of

probability that xB assigns to rows i with Cij′ < 1
3 + z. Applying Markov’s inequality

then establishes our bound.

Pr

(

T ≥ 2

3
− z

)

≤
9z

1+3z
2
3 − z

.

So, if p = 9z
(1+3z)(2/3−z) then we know that at least 1 − p probability is assigned

by xB to rows i such that Cij′ ≥ 1
3 + z. Since we have assumed that there is no
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i ∈ supp(x∗) such that (i, j′) is a pure ( 23 − z)-WSNE, we know that any such row i
must satisfy Rij′ < 1

3 + z. Hence, we obtain the following bound:

(xB
T · R)j′ < (1 − p) ·

(
1

3
+ z

)

+ p

= 1

3
· 1 + 33z + 9z2

1 + 3z
.

�	
Finally, we show that the expected payoff to the row player in the profile (xS, j′) is

close to 1. Here we use the fact that x∗ is a min-max strategy along with the bound
from Lemma 14 to prove our lower bound.

Lemma 15 We have (xS
T · R)j′ > 1−15z

1+3z .

Proof Since x∗ is a min-max strategy that secures a value strictly larger than 2
3 − z,

we have:
2

3
− z < Pr(B) · (xB

T · R)j′ + Pr(S) · (xS
T · R)j′ .

Substituting the bounds from Lemmas 9, 10, and 14 then gives:

2

3
− z <

1 + 3z

2 − 3z
· 1
3

· 1 + 33z + 9z2

1 + 3z
+ 1 + 3z

2 − 3z
· (xS

T · R)j′ .

Solving for (xS
T · R)j′ then yields the desired result. �	

Finding rows b and u So far, we have shown that the expected payoff to the row
player in (xB, j∗) is close to 1, and that the expected payoff to the column player in
(xB, j′) is close to 1. We now show that there exists a row b ∈ B such that Rbj∗ is close
to 1, and Cbj′ is close to 1, and that there exists a row s ∈ S in which Csj∗ and Rsj′
are both close to 1. The following lemma uses Markov’s inequality to show a pair of
probability bounds that will be critical in showing the existence of b.

Lemma 16 We have:

– xB assigns strictly more than 0.5 probability to rows i with Rij∗ > 1 − 18z
1+3z .

– xB assigns strictly more than 0.5 probability to rows i with Cij′ > 1 − 18z
1+3z .

Proof We begin with the first case. Consider the random variable T = 1− Rij∗ where
i is sampled from xB. By Lemma 11, we have that:

E[T ] < 1 − 1 − 6z

1 + 3z
= 9z

1 + 3z
.

We have that T ≥ 18z
1+3z whenever Rij∗ ≤ 1 − 18z

1+3z , so we can apply Markov’s
inequality to obtain:

Pr

(

T ≥ 18z

1 + 3z

)

<

9z
1+3z
18z
1+3z

= 0.5.
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The proof of the second case is identical to the proof given above, but uses the
(identical) bound from Lemma 13. �	

The next lemma uses the same techniques to prove a pair of probability bounds that
will be used to prove the existence of s.

Lemma 17 We have:

– xS assigns strictly more than 1
3 probability to rows i with Cij∗ > 1 − 27z

1+3z .

– xS assigns strictly more than 2
3 probability to rows i with Rij′ > 1 − 27z

1+3z .

Proof We begin with the first claim. Consider the random variable T = 1 − Cij∗
where i is sampled from xS. By Lemma 12, we have that:

E[T ] < 1 − 1 − 6z

1 + 3z
= 9z

1 + 3z
.

We have that T ≥ 27z
1+3z whenever Cij∗ ≤ 1 − 27z

1+3z , so we can apply Markov’s
inequality to obtain:

Pr

(

T ≥ 27z

1 + 3z

)

<

9z
1+3z
27z
1+3z

= 1

3
.

We now move on to the second claim. Consider the random variable T = 1− Rij∗
where i is sampled from xB. By Lemma 15, we have that:

E[T ] < 1 − 1 − 15z

1 + 3z
= 18z

1 + 3z
.

We have that T ≥ 27z
1+3z whenever Rij∗ ≤ 1 − 27z

1+3z , so we can apply Markov’s
inequality to obtain:

Pr

(

T ≥ 27z

1 + 3z

)

<

18z
1+3z
27z
1+3z

= 2

3
.

�	
Finally, we can formally prove the existence of b and s, which completes the proof

of correctness for our algorithm.

Proof of Lemma 7 Webegin by proving the first claim. If we sample a row b randomly
from xB, then Lemma 16 implies that probability that Rbj∗ ≤ 1− 18z

1+3z is strictly less

than 0.5 and that the probability that Cbj′ ≤ 1 − 18z
1+3z is strictly less than 0.5. Hence,

by the union bound, the probability that at least one of these events occurs is strictly
less than 1. So, there is a positive probability that neither of the events occurs, which
implies that there exists at least one row b that satisfies the desired properties.

The second claim is proved using exactly the same technique, but using the bounds
from Lemma 17, again observing that the probability that a randomly sampled row
from xS satisfies the desired properties with positive probability. �	
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5 Communication Complexity

We claim that Algorithm 3 can be adapted for the limited communication setting. We
make the followingmodification to our algorithm.After computing x∗, y∗, x̂, and ŷ, we
then use Lemma 1 to construct and communicate the sampled strategies x∗

s , y∗
s , x̂s, and

ŷs . These strategies are communicated between the two players using 4 · (log n)2 bits
of communication, and the players also exchange vr = (x∗

s )
T · Ry∗

s and vc = x̂Ts C ŷs
using log n rounds of communication. The algorithm then continues as before, except
the sampled strategies are used in place of their non-sampled counterparts. Finally, in
Steps 2 and 3, we test against the threshold 2

3 − z + ε instead of 2
3 − z.

Observe that, when sampled strategies are used, all steps of the algorithm can be
carried out in at most (log n)2 communication. In particular, to implement Step 4, the
column player can communicate j∗ to the row player, and then the row player can
communicate Rij∗ for all rows i ∈ supp(x∗

s ) using (log n)2 bits of communication,
which allows the column player to determine j′. Once j′ has been determined, there
are only 2 · log n payoffs in each matrix that are relevant to the algorithm (the payoffs
in rows i ∈ supp(x∗

s ) in columns j∗ and j′,) and so the two players can communicate
all of these payoffs to each other, and then no further communication is necessary.

Now, we must argue that this modified algorithm is correct. Firstly, we argue that
if the modified algorithm reaches Step 5, then the rows b and s exist. To do this, we
observe that the required preconditions of Lemma 7 are satisfied by x∗

s , j
∗, and j′.

Condition 2 holds because the modified Step 3 ensures that the column player’s best
response payoff is at least 2

3 − z + ε > 2
3 − z, while Condition 4 is ensured by the

explicit check in Step 5. For Conditions 1 and 3, we use the fact that (x∗, y∗) is an
ε-Nash equilibrium of the zero-sum game (R,− R). The following lemma shows that
any approximate Nash equilibrium of a zero-sum game behaves like an approximate
min-max strategy.

Lemma 18 If (x, y) is an ε-NE of a zero-sum game (M,− M), then for every strategy
y′ we have:

xT · M · y′ ≥ xT · M · y − ε.

Proof Let v = xT · M · y be the payoff to the row player under (x, y). Suppose, for
the sake of contradiction, that there exists a column player strategy y′ such that:

xT · M · y′ < v − ε.

Since the game is zero-sum, this implies that the column player’s payoff under (x, y′)
is strictly larger than−v + ε, which then directly implies that the best response payoff
for the column player against x is strictly larger than −v + ε. However, since the
column player’s expected payoff under (x, y) is −v, this then implies that (x, y) is not
an ε-NE, which provides our contradiction. �	

Since Step 2 implies that the row player’s payoff in (x∗, y∗) is at least 2
3 − z + ε,

Lemma 18 implies that x∗ secures a payoff of 2
3 −z nomatter what strategy the column

player plays, which then implies that Conditions 1 and 3 of Lemma 7 hold.
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Finally, we argue that the algorithm finds a (0.6528 + ε). The modified Steps 2
and 3 now return a ( 23 − z + ε)-WSNE, whereas the approximation guarantees of the
other steps are unchanged. Thus, we our original analysis gives the following theorem.

Theorem 19 For every ε > 0, there is a randomized expected-polynomial-time algo-

rithm that uses O
(
log2 n

ε2

)
communication and finds a (0.6528 + ε)-WSNE.

6 Query Complexity

Wenow show that Algorithm 3 can be implemented in a payoff-query efficientmanner.
Let ε > 0 be a positive constant. We now outline the changes needed in the algorithm.

– InStep1weuse the algorithmofLemma2 tofind ε
2 -NEsof (R,− R), and (C,−C).

We denote the mixed strategies found as (x∗
a, y∗

a) and (x̂a, ŷa), respectively, and
we use these strategies in place of their original counterparts throughout the rest
of the algorithm. We also compute ε

2 -approximate payoff vectors for each of these
strategies, and use them whenever we need to know the payoff of a particular
strategy under one of these strategies. In particular, we set vr to be the payoff of x∗

a
according to the approximate payoff vector of y∗

a , and we set vc to be the payoff
of ŷa according to the approximate payoff vector for x̂a .

– In Steps 2 and 3 we test against the threshold of 2
3 − z + ε rather than 2

3 − z.
– In Step 4 we select j∗ to be the column that is maximal in the approximate payoff
vector against x∗

a . We then spend n payoff queries to query every row in column
j∗, which allow us to proceed with the rest of this step as before.

– In Step 5 we use the algorithm of Lemma 2 to find an approximate payoff vector v

for the column player against xB. We then select j′ to be a column that maximizes
v, and then spend n payoff queries to query every row in j∗, which allows us to
proceed with the rest of this step as before.

Observe that the query complexity of the algorithm is O(
n·log n

ε2
), where the dom-

inating term arises due to the use of the algorithm from Lemma 2 to approximate
solutions to the zero-sum games.

We now argue that this modified algorithm produces a (0.6528+ε)-WSNE. Firstly,
we need to reestablish the existence of the rows b and s used in Step 5. To do this, we
observe that the preconditions of Lemma 7 hold for x∗

a . We start with Conditions 1
and 3. Note that the payoff for the row player under (x∗

a, y∗
a) is at least vr − ε

2 (since vr

was estimatedwith approximate payoff vectors,) and Step 2 ensures that vr > 2
3−z+ε.

Hence, we can apply Lemma 18 to argue that x∗
a secures payoff at least

2
3 − z against

every strategy of the column player, which proves that Conditions 1 and 3 hold.
Condition 2 holds because the check in Step 3, ensures that the approximate payoff of
j∗ against x∗ is at least 2

3 − z + ε, and therefore the actual payoff of of j∗ against x∗
is at least 2

3 − z + ε
2 . Finally, Condition 4 holds because pure strategy profiles of this

form are explicitly checked for in Step 5.
Steps 2 and 3 in the modified algorithm return a ( 23 − z + ε)-WSNE, while the

other steps provided the same approximation guarantee as the original algorithm. So,
we can reuse the analysis for the original algorithm to prove the following theorem.
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Theorem 20 There is a randomized algorithm that, with high probability, finds a
(0.6528 + ε)-WSNE using O(

n·log n
ε2

) payoff queries.

7 A communication-efficient algorithm for finding a (0.382 + ε)-NE

We study the following algorithm.

Algorithm 4

1. Solve the zero-sum games (R,− R) and (−C,C).
– Let (x∗, y∗) be a NE of (R,− R), and let (x̂, ŷ) be a NE of (C,−C).
– Let vr be the value secured by x∗ in (R,− R), and let vc be the value
secured by ŷ in (−C,C). Without loss of generality assume that vc ≤
vr .

– If vr ≤ 3−√
5

2 , return (x̂, y∗).
2. Otherwise:

– Let j be a best response for the column player against x∗.
– Let r be a best response for the row player against j .
– Define the strategy profile x′ = 1

2−vr
· x∗ + 1−vr

2−vr
· r .

– Return (x′, j).

We show that this algorithm always produces a 3−√
5

2 -NE. We start by considering
the strategy profile returned by Step 1. The maximum payoff that the row player can
achieve against y∗ is vr , so the row player’s regret can be at most vr . Similarly, the
maximum payoff that the column layer can achieve against x̂ is vc ≤ vr , so the column
player’s regret can be at most vr . Step 1 only returns a strategy profile in the case where

vr ≤ 3−√
5

2 , so this step always produces a 3−√
5

2 -NE.
To analyse the quality of approximate equilibrium found by Step 2, we use the

following Lemma.

Lemma 21 The strategy profile (x′, j) is a 1−vr
2−vr

-NE.

Proof We start by analysing the regret of the row player. By definition, row r is a best
response against column j . So, the regret of the row player can be expressed as:

Rr j − (x′ · R) j = Rr j − 1

2 − vr
· ((x∗)T · R) j − 1 − vr

2 − vr
· Rr j

≤ 1

2 − vr
· Rr j − 1

2 − vr
· vr

≤ 1

2 − vr
· 1 − 1

2 − vr
· vr

= 1 − vr

2 − vr
,

where in the first inequality we use the fact that x∗ is a min-max strategy that secures
payoff at least vr , and the second inequality uses the fact that Rr j ≤ 1.
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We now analyse the regret of the column player. Let c be a best response for the
column player against x′. The regret of the column player can be expressed as:

((x′)T · C)c − ((x′)T · C) j

= 1

2 − vr
· ((x∗)T · C)c + 1 − vr

2 − vr
· Crc − 1

2 − vr
· ((x∗)T · C)x∗ j − 1 − vr

2 − vr
· Cr j

≤ 1 − vr

2 − vr
· Crc − 1 − vr

2 − vr
· Cr j

≤ 1 − vr

2 − vr
.

The first inequality holds since j is a best response against x∗ , and therefore ((x∗)T ·
C)c ≤ (x∗)T ·C) j , and the second inequality holds since Crc ≤ 1 and Cr j ≥ 0. Thus,
we have shown that both players have regret at most 1−vr

2−vr
under (x′, j), and therefore

(x′, j) is a 1−vr
2−vr

-NE. �	

Step 2 is only triggered in the casewhere vr > 3−√
5

2 , andwehave that 1−vr
2−vr

= 3−√
5

2

when vr = 3−√
5

2 . Since 1−vr
2−vr

decreases as vr increases, we therefore have that Step 2

always produces a 3−√
5

2 -NE.This completes the proof of correctness for the algorithm.
Communication Complexity We now argue that, for every ε > 0 the algorithm can

be used to find a
(
3−√

5
2 + ε

)
-NE using O

(
log2 n

ε2

)
rounds of communication.

We begin by considering Step 1. Obviously, the zero-sum games can be solved by
the twoplayers independentlywithout any communication. Then, the players exchange
vr and vc using O(log n) rounds of communication. If both vr and vc are smaller than
3−√

5
2 , then the algorithm from Lemma 1 is applied to communicate x̂s to the row

player, and y∗
s to the column player. Since the payoffs under the sampled strategies

are within ε of the originals, we have that (x̂s, y∗
s ) is a

(
3−√

5
2 + ε

)
-NE.

If the algorithm reaches Step 2, then the row player uses the algorithm of Lemma 1
to communicate x∗

s to the column player. The column player then computes a best
response js against x∗

s , and uses log n communication rounds to transmit it to the row
player. The row player then computes a best response rs against js , then computes:
x′
s = 1

2−vr
· x∗

s + 1−vr
2−vr

· r , and the players output (x′
s, js). To see that this produces

a
(
3−√

5
2 + ε

)
-NE, observe that x∗

s secures a payoff of at least vr − ε for the row

player, and repeating the proof of Lemma 21 with this weaker inequality gives that

this strategy profile is a
(
1−vr
2−vr

+ ε
)
-NE.

Therefore, we have shown the following theorem.

Theorem 22 For every ε > 0, there is a randomized expected-polynomial-time algo-

rithm that uses O
(
log2 n

ε2

)
communication and finds a

(
3−√

5
2 + ε

)
-NE.
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8 Lower Bounds

Lower Bound Against Algorithm 3 We start by showing a tight lower bound against
the base algorithm (Algorithm 1). Consider the following game, which we will denote
as (R,C).

�
��
I

II

t

b

l r

0 1

1 0.9

2
3 0.9

0 2
3

In the game (R,− R), the unique Nash equilibrium is (b, l), which can be found
by iterated elimination of dominated strategies. Similarly, in the game (−C,C), the
unique Nash equilibrium is (b, r), which can again be found by elimination of domi-
nated strategies. Note, however, that the game itself does not contain any dominated
strategies. Hence, we have vR = vC = 2

3 , so Step 2 is triggered, and the resulting
strategy profile is (b, l). Under this strategy profile, the column player receives pay-
off 0, while the best response payoff to the column player is 2

3 , so this is a 2
3 -WSNE

and no better.
This lower bound can be modified to work against Algorithm 3 changing both 2

3
payoffs to 0.6528. Then, by the same reasoning given above, Step 2 is triggered, and
the algorithm returns a 0.6528-WSNE.
Lower Bounds Against a Better Implementation The lower bound given above
exploits the fact that, as specified, our algorithm will return a 0.6528-WSNE as soon
as it finds one. In fact, given the game above, the algorithm will return in Step 2, and
the vast majority of the algorithm will never run.

Amore thoughtful implementation of the algorithmwould be to run all of the steps,
and then return the best WSNE found during this process. In particular:

– Step 2 should check the quality of WSNE provided by (x̂, y∗).
– Step 3 should check the quality of WSNE provided by (x∗, y∗) and (x̂, ŷ).
– If Pr(B) > 0, then Step 4 should check the quality of the WSNE provided by

(xB, j∗).
– If Pr(B) > 0, then Step 5 should:

– find the best pureWSNE that can be found in the support of xB and the column
j∗.

– determine if there are two rows b and s that satisfy the payoff constraints listed
in Step 5, and if so, find the quality of the WSNE provided by the specified
strategy profile.

The algorithm should then return the best WSNE found by one of these steps. Note
that Steps 4 and 5 cannot be applied to all games, since their precondition is only
guaranteed to hold in games where the previous steps failed to find a good WSNE.
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A recent paper of Fearnley, Igwe, and Savani successfully applied genetic algo-
rithms to find lower bounds against algorithms that compute approximate Nash
equilibria [12]. Using the same approach, along with some hand tweaking of the
output, we found the following game.

R =
⎡

⎣
0.35056 0.99 1

0 0 0
1 0.25 0.3

⎤

⎦ C =
⎡

⎣
1 0 0.3
0 0 0
0.3 0 1

⎤

⎦

In this game:

– The row player can secure payoff 0.64944 in (R,− R), and we have that x∗ =
(0.53979, 0, 0.46021)T and y∗ = (0.53259, 0.46741, 0).

– The column player can secure payoff 0 in (−C,C). Note that the column player
can actually play any strategy to secure this payoff, but the row player must play
the middle row. We will focus on the case where ŷ plays the middle column, and
x̂ plays the middle row.

It can be verified that under these strategy profiles, all steps of the algorithm produce
no better than a 0.64944-WSNE. We remark that this lower bound is within 0.0034 of
the theoretical upper bound.

9 Conclusion

In this paper, we have developed a new technique for computing approximate Nash
equilibria, and approximate well-supported Nash equilibria. This new technique has
allowed us to improve upon the best known results in multiple settings. For well-
supported Nash equilibria, we have presented a polynomial-time algorithm for finding
a 0.6528-WSNE, andwe have shown how to implement it in a communication efficient
manner, and a query efficient manner, improving upon the best known results in those
settings. For approximate Nash equilibria, our techniques obtain a 0.382-NE, and
again we showed how this can be carried out in a communication efficient manner,
improving the best known results in that setting.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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