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Abstract The Univariate Marginal Distribution Algorithm (UMDA) is a randomized
search heuristic that builds a stochastic model of the underlying optimization problem
by repeatedly sampling λ solutions and adjusting the model according to the best μ

samples. We present a running time analysis of the UMDA on the classical OneMax
benchmark function for wide ranges of the parameters μ and λ. If μ ≥ c log n for
some constant c > 0 and λ = (1+ Θ(1))μ, we obtain a general bound O(μn) on the
expected running time. This bound crucially assumes that all marginal probabilities
of the algorithm are confined to the interval [1/n, 1 − 1/n]. If μ ≥ c′√n log n for a
constant c′ > 0 and λ = (1+ Θ(1))μ, the behavior of the algorithm changes and the
bound on the expected running time becomes O(μ

√
n), which typically holds even

if the borders on the marginal probabilities are omitted. The results supplement the
recently derived lower bound Ω(μ

√
n + n log n) by Krejca and Witt (Proceedings of

FOGA 2017, ACM Press, New York, pp 65–79, 2017) and turn out to be tight for the
two very different choices μ = c log n and μ = c′√n log n. They also improve the
previously best known upper bound O(n log n log log n) by Dang and Lehre (Proceed-
ings of GECCO ’15, ACM Press, New York, pp 513–518, 2015) that was established
for μ = c log n and λ = (1 + Θ(1))μ.
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1 Introduction

Estimation-of-distribution algorithms (EDAs, [15]) are randomized search heuristics
that have emerged as a popular alternative to classical evolutionary algorithms like
Genetic Algorithms. In contrast to the classical approaches, EDAs do not store explicit
populations of search points but develop a probabilistic model of the fitness function
to be optimized. Roughly, this model is built by sampling a number of search points
from the current model and updating it based on the structure of the best samples.

Although many different variants of EDAs (cf. [11]) and many different domains
are possible, theoretical analysis of EDAs in discrete search spaces often considers
running time analysis over {0, 1}n . The simplest of these EDAs have no mechanism
to learn correlations between bits. Instead, they store a Poisson binomial distribution,
i. e., a probability vector p of n independent probabilities, each component pi denoting
the probability that a sampled bit string will have a 1 at position i .

The first theoretical analysis in this setting was conducted by Droste [7], who ana-
lyzed the compact Genetic Algorithm (cGA), an EDA that only samples two solutions
in each iteration, on linear functions. Papers considering other EDAs [2–5] followed.
Also iteration-best Ant Colony Optimization (ACO), historically classified as a differ-
ent type of search heuristic, can be considered as an EDA and analyzed in the same
framework [21].

Recently, the interest in the theoretical running time analysis of EDAs has
increased [6,8,9,14,26]. Most of these works derive bounds for a specific EDA on
the popular OneMax function, which counts the number of 1s in a bit string and is
considered to be one of the easiest functions with a unique optimum [25,27]. In this
paper, we follow up on recentwork on theUnivariateMarginalDistribution Algorithm
(UMDA [20]) on OneMax.

The UMDA is an EDA that samples λ solutions in each iteration, selects μ < λ

best solutions, and then sets the probability pi (hereinafter called frequency) to the
relative occurrence of 1s among these μ individuals. The algorithm has already been
analyzed some years ago for several artificially designed example functions [2–5].
However, none these papers considered the most fundamental benchmark function in
theory, the OneMax function. In fact, the running time analysis of the UMDA on the
simpleOneMax function has turned out to be rather challenging; the first such result,
showing the upper bound O(n log n log log n) on its expected running time for certain
settings of μ and λ, was not published until 2015 [6].

In a recent related study, Wu et al. [29] present the first running time analysis of
the cross-entropy method (CE), which is a generalization of the UMDA and analyze
it on OneMax and another benchmark function. Using μ = n1+ε log n for some
constant ε > 0 and λ = ω(μ), they obtain that the running time of CE on OneMax is
O(λn1/2+ε/3/ρ)with overwhelming probability, where ρ is a parameter of CE.Hence,
ifρ = Ω(1), including the special caseρ = 1whereCEcollapses toUMDA, a running
time bound of O(n3/2+(4/3)ε log n) holds, i. e., slightly above n3/2. Technically, Wu et
al. use concentration bounds such as Chernoff bounds to bound the effect of so-called
genetic drift, which is also considered in the present paper, aswell as anti-concentration
results, in particular for the Poisson binomial distribution, to obtain their statements.
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All bounds can hold with high probability only since CE is formulated without so-
called borders on the frequencies.

Very recently, these upper bounds were supplemented by a general lower bound of
the kind Ω(μ

√
n + n log n) [14], proving that the UMDA cannot be more efficient

than simple evolutionary algorithms on this function, at least if λ = (1 + Θ(1))μ.
As the upper bounds due to [6] and the recent lower bounds were apart by a factor of
Θ(log log n), it was an open problem to determine the asymptotically best possible
running time of the UMDA on OneMax.

In this paper, we close this gap and show that the UMDA can optimize OneMax
in expected time O(n log n) for two very different, carefully chosen values of μ,
always assuming that λ = (1+ Θ(1))μ. In fact, we obtain two general upper bounds
depending on μ. If μ ≥ c

√
n log n, where c is a sufficiently large constant, the first

upper bound is O(μ
√
n). This bound exploits that all pi move more or less steadily

to the largest possible value and that with high probability there are no frequencies
that ever drop below 1/4. Around μ = Θ(

√
n log n), there is a phase transition in the

behavior of the algorithm.With smallerμ, the stochastic movement of the frequencies
is more chaotic and many frequencies will hit the lowest possible value during the
optimization. Still, the expected optimization time is O(μn) for μ ≥ c′ log n and
a sufficiently large constant c′ > 0 if all frequencies are confined to the interval
[1/n, 1 − 1/n], as typically done in EDAs. If frequencies are allowed to drop to 0,
the algorithm will typically have infinite optimization time below the phase transition
point μ ∼ √

n log n, whereas it typically will be efficient above.
Interestingly, Dang and Lehre [6] used μ = Θ(ln n), i. e., a value below the phase

transition to obtain their O(n log n log log n) bound. This region turns out to be harder
to analyze than the region above the phase transition, at least with our techniques.
However, our proof also follows an approach being widely different from [6]. There
the so-called level based theorem, a very general upper bound technique, is applied
to track the stochastic behavior of the best-so-far OneMax-value. While this gives a
rather short and elegant proof of the upper bound O(n log n log log n), the generality of
the technique does not givemuch insight into how the probabilities pi of the individuals
bits develop over time. We think that it is crucial to understand the working principles
of the algorithm thoroughly and present a detailed analysis of the stochastic process
at bit level, as also done in many other running time analyses of EDAs [8,9,14,26].

This paper is structured as follows: in Sect. 2, we introduce the setting we are going
to analyze and summarize some tools from probability theory that are used throughout
the paper. In particular, a new negative drift theorem is presented. It generalizes previ-
ous formulations by making milder assumptions on steps in the direction of the drift
than on steps against the drift. In this section, we also give a detailed analysis of the
update rule of the UMDA, which results in a bias of the frequencies pi towards higher
values. These techniques are presented for the OneMax-case, but contain some gen-
eral insights that may be useful in analyses of different fitness functions. In Sect. 3, we
prove the upper bound for the case of μ above the phase transition pointΘ(

√
n log n).

The case ofμ below this point is dealt with in Sect. 4.We finishwith some conclusions.
The “Appendix” gives a self-contained proof of the new drift theorem.
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Independent, related work Very recently, Lehre and Nguyen [16] independently
obtained the upper bound O(λn) for c log n ≤ μ = O(

√
n) and λ = Ω(μ) using

a refined application of the so-called level-based method. Our approach also covers
larger μ (but requires λ = μ(1 + Θ(1))) and is technically different.

2 Preliminaries

We consider the so-called Univariate Marginal Distribution Algorithm (UMDA [20])
in Algorithm 1 that maximizes the pseudo-Boolean function f . Throughout this paper,
we have f := OneMax, where, for all x = (x1, . . . , xn) ∈ {0, 1}n ,

OneMax(x) =
n∑

i=1

xi .

Note that the unique maximum is the all-ones bit string. However, a more general
version can be defined by choosing an arbitrary optimum a ∈ {0, 1}n and defining, for
all x ∈ {0, 1}n ,OneMaxa(x) = n − dH(x, a), where dH(x, a) denotes the Hamming
distance of the bit strings x and a. Note that OneMax1n is equivalent to the original
definition of OneMax. Our analyses hold true for any function OneMaxa , with a ∈
{0, 1}n , due to symmetry of the UMDA’s update rule.

Algorithm 1: Univariate Marginal Distribution Algorithm (UMDA); algorithm
UMDA∗ is obtained if the line indexed

[
R
]
is omitted.

t ← 0, pt,1 ← pt,2 ← · · · ← pt,n ← 1
2 ;

while termination criterion not met do
Pt ← ∅;
for j ∈ {1, . . . , λ} do

for i ∈ {1, . . . , n} do
x( j)
t,i ← 1 with prob. pt,i and x( j)

t,i ← 0 with prob. 1 − pt,i ;

Pt ← Pt ∪ {x( j)
t };

Sort individuals in P descending by fitness (such that f (x(1)
t ) ≥ · · · ≥ f (x(μ)

t )), breaking ties
uniformly at random;
for i ∈ {1, . . . , n} do

pt+1,i ←
∑μ

j=1 x
( j)
t,i

μ ;
[
R
]
Restrict pt+1,i to be within [ 1n , 1 − 1

n ];
t ← t + 1;

We call bit strings individuals and their respective OneMax-values fitness.
The UMDA does not store an explicit population but does so implicitly, as usual in

EDAs. For each of the n different bit positions, it stores a rational number pi , which
we call frequency, determining how likely it is that a hypothetical individual would
have a 1 at this position. In other words, the UMDA stores a probability distribution
over {0, 1}n . The starting distribution samples according to the uniform distribution,
i. e., pi = 1/2 for i ∈ {1, . . . , n}.
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In each so-called generation t , the UMDA samples λ individuals such that each
individual has a 1 at position i , where i ∈ {1, . . . , n}with probability pt,i , independent
of all the other frequencies. Thus, the number of 1s is sampled according to a Poisson
binomial distribution with probability vector pt = (pt,i )i∈{1,...,n}.

After sampling λ individuals, μ of them with highest fitness are chosen, breaking
ties uniformly at random (so-called selection). Then, for each position, the respective
frequency is set to the relative occurrence of 1s in this position. That is, if the chosenμ

best individuals have x 1s at position i among them, the frequency pi will be updated
to x/μ for the next iteration. Note that such an update allows large jumps like, e. g.,
from (μ − 1)/μ to 1/μ.

If a frequency is either 0 or 1, it cannot change anymore since then all values at this
position will be either 0 or 1. To prevent the UMDA from getting stuck in this way, we
narrow the interval of possible frequencies down to [1/n, 1 − 1/n] and call 1/n and
1− 1/n the borders for the frequencies. Hence, there is always a chance of sampling
0s and 1s for each position. This is a common approach used by other EDAs as well,
such as the cGA or ACO algorithms (cf. the references given in the introduction). We
also consider a variant of the UMDA called UMDA∗ where the borders are not used.
That algorithm will typically not have finite expected running time; however, it might
still be efficient with high probability if it is sufficiently unlikely that frequencies get
stuck at bad values.

Overall, we are interested in upper bounds on the UMDA’s expected number of
function evaluations on OneMax until the optimum is sampled; this number is typ-
ically called running time or optimization time. Note that this equals λ times the
expected number of generations until the optimum is sampled.

In all of our analyses, we assume that λ = (1 + β)μ for some arbitrary constant
β > 0 and use μ and λ interchangeably in asymptotic notation. Of course, we could
also choose λ = ω(μ) but then each generation would be more expensive. Choosing
λ = Θ(μ) lets us basically focus on the minimal number of function evaluations per
generation, as μ of them are at least needed to make an update.

2.1 Useful Tools from Probability Theory

We will see that the number of 1s sampled by the UMDA at a certain position is
binomially distributed with the frequency as success probability. In our analyses,
we will therefore often have to bound the tail of binomial and related distributions.
To this end, many classical techniques such as Chernoff-Hoeffding bounds exist. The
following version, which includes the knowledge of the variance, is particularly handy
to use.

Lemma 1 [18] If X1, . . . , Xn are independent, and Xi−E(Xi ) ≤ b for i ∈ {1, . . . , n},
then for X := X1 + · · · + Xn and any d ≥ 0 it holds that

Pr(X − E(X) ≥ d) ≤ e
− d2

2σ2(1+δ/3) ,

where σ 2 := Var(X) and δ := bd/σ 2.
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Fig. 1 Illustration of Lemma 2

The following lemma describes a result regarding the Poisson binomial distribution
which we find very intuitive. However, as we did not find a sufficiently related result
in the literature, we give a self-contained proof here. Roughly, the lemma considers
a chunk of the distribution around the expected value whose joint probability is a
constant less than 1 and then argues that every point in the chunk has a probability
that is at least inversely proportional to the variance. See Fig. 1 for an illustration.

Lemma 2 Let X1, . . . , Xn be independent Poisson trials. Denote pi = Pr(Xi = 1)
for i ∈ {1, . . . , n}, X := ∑n

i=1 Xi , μ := E(X) = ∑n
i=1 pi and σ 2 := Var(X) =∑n

i=1 pi (1 − pi ). Given two constants �, u ∈ (0, 1) such that � + u < 1, let k� :=
min{i | Pr(X ≤ i) ≥ �} and ku := max{i | Pr(X ≥ i) ≥ u}. Then it holds that
Pr(X = k) = Ω(min{1, 1/σ }) for all k ∈ {k�, . . . , ku}, where the Ω-notation is with
respect to n.

Proof To begin with, we note that k� ≤ ku . This holds since by assumption Pr(X <

k�) < � and Pr(X > ku) < u, hence Pr(k� ≤ X ≤ ku) ≥ 1 − � − u > 0, using
� + u < 1. If k� > ku happened, we would obtain a contradiction.

We first handle the case σ = o(1) separately. This implies Pr(X −E(X) ≥ 1/2) =
o(1) and analogously Pr(X − E(X) ≤ −1/2) = o(1). Namely, if we had Pr(X −
E(X) ≥ 1/2) = Ω(1), then E((X − E(X))2) = Ω(1), contradicting the assumption
σ = o(1); analogously for the other inequality.

Let [E(X)] be the integer closest to E(X), which is unique since, as argued in the
previous paragraph, E(X) − [E(X)] = 1/2 would contradict σ = o(1). We assume
[E(X)] = �E(X) and note that the case [E(X)] = �E(X)� is analogous. From
the previous paragraph, we now obtain that Pr(X ≤ �E(X)�) = o(1) and therefore
Pr(X ≥ �E(X)) = 1 − o(1). Moreover, again using σ = o(1), we also obtain
Pr(X ≥ �E(X) + 1) = o(1). Since � and u are positive constants less than 1, it
immediately follows that k� = ku = [E(X)] and Pr(X = k�) = 1 − o(1) = Ω(1).

In the following, we assume σ = Ω(1). We use that k� ≤ �E(X)� or ku ≥ �E(X)
(or both) must hold; otherwise, since �E(X) ≤ �E(X)� + 1, we would contradict
the fact k� ≤ ku . Hereinafter we consider the case k� ≤ �E(X)� and note that other
case is symmetrical. We start by proving Pr(X = k�) = Ω(1). To this end, we
recall the unimodality of the Poisson binomial distribution function, more precisely
Pr(X = i) ≤ Pr(X = i + 1) for i ≤ �E(X)� − 1 and Pr(X = i) ≥ Pr(X = i + 1) for
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i ≥ �E(X) [24]. Hence, denoting α := Pr(X = k�), we have Pr(X = i) ≤ α for all
i ≤ k�. It follows that Pr(X ≤ k� − �/(2α)) ≥ �/2 = Ω(1) since Pr(X ≤ k�) ≥ � by
definition. We remark (but do not use) that this also implies a lower bound on k�.

If α = o(1/σ) held, the fact that Pr(X ≤ k� − �/(2α)) = Ω(1) would imply√
Var(X) = Ω(1/α) = ω(σ), contradicting our assumption

√
Var(X) = σ . Hence,

Pr(X = k�) = Ω(1/σ). Again using the monotonicity of the Poisson binomial distri-
bution, we have Pr(X = i) = Ω(1/σ) for all i ∈ {k�, . . . , �E(X)�}. If ku ≤ �E(X)�,
this already proves Pr(X = i) = Ω(1/σ) for all i ∈ {k�, . . . , ku} and nothing is left
to show. Otherwise the bound follows for the remaining i ∈ {�E(X), . . . , ku} by a
symmetrical argument, more precisely by first showing that Pr(X = ku) = Ω(1/σ)

and then using that Pr(X = i) ≥ Pr(X = i + 1) for i ≥ �E(X). ��
Asmentioned, we will study how the frequencies associated with single bits evolve

over time. To analyze the underlying stochastic process, the following theorem will
be used. It generalizes the so-called simplified drift theorem with scaling from [22].
The crucial relaxation is that the original version demanded an exponential decay
w. r. t. jumps in both directions, more precisely the second condition below was on
Pr(|Xt+1 − Xt | ≥ jr). We now only have sharp demands on jumps in the undesired
direction while there is a milder assumption (included in the first item) on jumps in the
desired direction. Roughly speaking, if constants in the statements do not matter, the
previous version of the drift theorem is implied by the current one as long as r = O(1).

The theorem uses the notation E(X | Ft ; A) for filtrations Ft and events A to
denote the expected value E(X | Ft ) in the conditional probability space on event A.
If A is not a null event, then E(X | Ft ; A) ≥ ε is equivalent to E(X − ε; A | Ft ) ≥ 0,
where the notation “; A” just denotes the multiplication with 1{A}; in fact the notation
E(X; A | Ft ) is often used in the literature, e. g., by Hajek [10]. Additionally X � Y
denotes that X is stochastically at most as large as Y . The proof of the theorem is given
in the “Appendix”.

Theorem 3 (Generalizing [22]) Let Xt , t ≥ 0, be real-valued random variables
describing a stochastic process over some state space, adapted to a filtration Ft .
Suppose there exist an interval [a, b] ⊆ R and, possibly depending on � := b − a,
a drift bound ε := ε(�) > 0, a typical forward jump factor κ := κ(�) > 0, a scal-
ing factor r := r(�) > 0 as well as a sequence of functions Δt := Δt (Xt+1 − Xt )

satisfying Δt � Xt+1 − Xt such that for all t ≥ 0 the following three conditions hold:

1. E(Δt · 1{Δt ≤ κε} | Ft ; a < Xt < b) ≥ ε,
2. Pr(Δt ≤ − jr | Ft ; a < Xt ) ≤ e− j for all j ∈ N,
3. λ� ≥ 2 ln(4/(λε)), where λ := min{1/(2r), ε/(17r2), 1/(κε)}.
Then for T ∗ := min{t ≥ 0 | Xt ≤ a} it holds that Pr(T ∗ ≤ eλ�/4 | F0 ; X0 ≥ b) =
O(e−λ�/4).

To derive upper bounds on hitting times for an optimal state, drift analysis is used, in
particular in scenarios where the drift towards the optimum is not state-homogeneous.
Such a drift is called variable in the literature. A clean form of a variable drift theorem,
generalizing previous formulations from [12] and [19], was presented in [23]. The
following formulation has been proposed in [17].
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Theorem 4 (Variable drift, upper bound) Let (Xt )t∈N0 , be a stochastic process,
adapted to a filtration Ft , over some state space S ⊆ {0} ∪ [xmin, xmax], where
xmin > 0. Let h(x) : [xmin, xmax] → R+ be a monotone increasing function such that
1/h(x) is integrable on [xmin, xmax] and E(Xt − Xt+1 | Ft ) ≥ h(Xt ) if Xt ≥ xmin.
Then it holds for the first hitting time T := min{t | Xt = 0} that

E(T | F0) ≤ xmin

h(xmin)
+

∫ X0

xmin

1

h(x)
dx .

Finally, we need the following lemma in our analysis of the impact of the so-called
2nd-class individuals in Sect. 2.2. Its statement is very specific and tailored to our
applications. Roughly, the intuition is to show that E(min{C, X}) is not much less
than min{C,E(X)} for X ∼ Bin(D, p) and D ≥ C . Here and in the following, we
write Bin(a, b) to denote the binomial distribution with parameters a and b.

Lemma 5 Let X ∼ Bin(D, p). Let C ∈ {1, . . . , D}. Then

E(min{C, X}) ≥ Cp + 1

4
p(1 − p)min{C, D − C}.

Proof We start by deriving a general lower bound on the expected value of min{C, X}.
The idea is to decompose the random variable X , which is a sum of D independent
trials, into the the first C and the remaining D − C trials. Let Y ∼ Bin(C, p) and
Z ∼ Bin(D − C, p). Hence, X = Y + Z and, since Z is independent of Y , we have
min{C, X} = min{C,Y } + min{C − Y, Z} = Y + min{C − Y, Z}. We also note that
E(Y ) = Cp and E(Z) = (D − C)p.

Assume that for some k < C and some p∗ > 0, we know that Pr(Y ≤ k) ≥ p∗.
Then by the law of total probability

E(min{C, X}) ≥ (
E(Y | Y ≤ k) + E(min{C − k, Z})) Pr(Y ≤ k)

+ E(Y | Y > k)Pr(Y > k)

= E(Y ) + E(min{C − k, Z})Pr(Y ≤ k)

≥ E(Y ) + p∗ · E(min{C − k, Z})). (1)

In the following, we will distinguish between two cases with respect to p, in which
appropriately chosen pairs (k, p∗) imply the lemma.

Case 1 p ≤ 1 − 2/C . Hence C(1 − p) ≥ 2, which implies �C(1 − p)/2� ≥ 1.
Therefore, �E(Y ) ≤ E(Y ) + 1 ≤ Cp + �C(1 − p)/2�. We apply the bound Pr(Y ≤
�E(Y )) ≥ 1/2, which is equivalent to the well-known bound Pr(A ≥ �E(A)�) ≥ 1/2
that holds for all binomially distributed random variables A [13]. Hence,

Pr(Y ≤ Cp + �C(1 − p)/2�) ≥ 1

2
.
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Using (1) with p∗ := 1/2 and k := Cp + �C(1 − p)/2� we conclude

E(min{C, X}) ≥ Cp + 1

2
· E(min{C(1 − p) − �C(1 − p)/2�, Z})

= Cp + 1

2
· E(min{�C(1 − p)/2,Bin(D − C, p)})

≥ Cp + 1

2
· E(Bin(min{�C(1 − p)/2, D − C}, p))

= Cp + 1

2
pmin{�C(1 − p)/2, D − C}

≥ Cp + 1

2
pmin{C(1 − p)/2, (D − C)(1 − p)/2}

= Cp + 1

4
p(1 − p)min{C, D − C},

where the second inequality exploits that Bin(A, p) is stochastically larger than
Bin(B, p) for all B ≤ A, and clearly Bin(B, p) ≤ B. The third inequality uses
that (1 − p)/2 ≤ 1 and the final equality exploits that 1 − p is non-negative. Hence,
the lemma holds in this case.

Case 2 p > 1 − 2/C . The aim is to show that Pr(Y ≤ C − 1) ≥ C(1 − p)/3. In
the subcase that C ≤ 3, we clearly have Pr(Y ≤ C − 1) ≥ 1 − p ≥ C(1 − p)/3.
If C ≥ 4, we work with q := 1 − p ≤ 2/C ≤ 2 and note that Pr(Y ≤ C − 1) =
1 − pC = 1 − (1 − q)C . Now,

1 − (1 − q)C ≥ 1 − e−qC ≥ 1 −
(
1 − qC

3

)
= qC

3
= C(1 − p)

3
,

where the first inequality uses ex ≥ 1+ x for x ∈ R and the second e−x ≤ 1− x
3 for

x ≤ 2. Hence, Pr(Y ≤ C − 1) ≥ C(1 − p)/3 for all C ∈ {1, . . . , D}. Using (1) with
k = C − 1 and p∗ := C(1−p)

3 and proceeding similarly to Case 1, we obtain

E(min{C, X}) ≥ Cp + C(1 − p)

3
· E(min{1, Z})

≥ Cp + C(1 − p)

3
E(Bin(min{1, D − C}, p))

= Cp + C(1 − p)

3
pmin{1, D − C}

= Cp + p(1 − p)

3
min{C,C(D − C)}

≥ Cp + p(1 − p)

3
min{C, D − C},

where the last inequality used that C ≥ 1 and the previous equality used that C is
non-negative. This concludes Case 2 and proves the lemma. ��
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2.2 On the Stochastic Behavior of Frequencies

To bound the expected running time of UMDA andUMDA∗, it is crucial to understand
how the n frequencies associated with the bits evolve over time. The symmetry of the
fitness function OneMax implies that each frequency evolves in the same way, but
not necessarily independently of the others. Intuitively, many frequencies should be
close to their upper border for making it sufficiently likely to sample the optimum,
i. e., the all-1s string.

To understand the stochastic process on a frequency, it is useful to consider the
UMDA without selection for a moment. More precisely, assume that each of the
λ offspring has the same probability of being selected as one of the μ individuals
determining the frequency update. Then the frequency describes a random walk that
is amartingale, i. e., in expectation it does not change.WithOneMax, individuals with
higher values are more likely to be among the μ updating individuals. However, since
only the accumulated number of 1-bits per individual matters for selection, a single
frequency may still decrease even if the step leads to an increase of the best-so-far
seen OneMax value. We will spell out the bias due to selection in the remainder of
this section.

In the following, we consider an arbitrary but fixed bit position j and denote by
pt := pt, j its frequency at time t . Moreover, let Xt , where 0 ≤ Xt ≤ μ, be the
number of ones at position j among the μ offspring selected to compute pt . Then
pt = cap1−1/n

1/n (Xt/μ), where caph� (a) := max{min{a, h}, l} caps frequencies at their
borders.

2.2.1 Ranking, 1st-Class Individuals, 2nd-Class Individuals and Candidates

Consider the fitness of all individuals sampled during one generation of the UMDA
w. r. t. n − 1 bits, i. e., all bits but bit j . Assume that the individuals are sorted in levels
decreasingly by their fitness; each individual having a unique rank, where ties are
broken arbitrarily. Level n − 1 is called the topmost, and level 0 the lowermost. Let
w+ be the level of the individual with rank μ, and let w− be the level of the individual
with rank μ + 1. Since bit j has not been considered so far, its OneMax-value can
potentially increase each individual’s level by 1. Now assume that w+ = w− + 1.
Then, individuals from level w− can end up with the same fitness as individuals from
level w+, once bit j has been sampled. Thus, individuals from level w+ were still
prone to selection.

Among the μ individuals chosen during selection, we distinguish between two
different types: 1st-class and 2nd-class individuals. 1st-class individuals are those
which have so many 1s at the n − 1 other bits such that they had to be chosen during
selection no matter which value bit j has. The remaining of the μ selected individuals
are the 2nd-class individuals; they had to compete with other individuals for selection.
Therefore, their bit value at position j is biased towards 1 compared to 1st-class
individuals. Note that 2nd-class individuals can only exist if w+ ≤ w− + 1, since in
this case, individuals from level w− can still be as good as individuals from level w+
after sampling bit j .
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Given Xt , let C∗
t+1 denote the number of 2nd-class individuals in generation t + 1.

Note that the total number of 1s at position j in the 1st-class individuals during
generation t + 1 follows a binomial distribution with success probability pt = Xt/μ,
assuming Xt/μ is within the interval [1/n, 1−1/n]. Since we haveμ−C∗

t+1 1st-class
individuals, the distribution of the number of 1s in these follows Bin(μ−C∗

t+1, Xt/μ).
We proceed by analyzing the number of 2nd-class individuals and how they bias

the number of 1s, leading to the Lemmas 6–9 below. The underlying idea is that both
the number of 2nd-class individuals is sufficiently large and that at the same time,
these 2nd-class individuals were selected from an even larger set to allow many 1s
to be gained at the considered position j . This requires a careful analysis of the level
where the rank-μ individual ends up.

For i ∈ {0, . . . , n − 1}, let Ci denote the cardinality of level i , i. e., the number
of individuals in level i during an arbitrary generation of the UMDA, and let C≥i =∑n−1

a=i Ca . Let M denote the index of the first level from the top such that the number
of sampled individuals is greater than μ when including the following level, i.e.,

M := max{i | C≥i−1 > μ}.

Note that M can never be 0, and only if M = n − 1, CM can be greater than μ.
Due to the definition of M , if M �= n − 1, level M − 1 contains the individual of rank
μ+1, so level M −1 contains the cut where the best μ out of λ offspring are selected.
Individuals in levels at least M + 1 are definitely 1st-class individuals since they still
will have rank at least μ even if the bit j sampled last turns out to be 0. 2nd-class
individuals, if any, have to come from levels M , M − 1 and M − 2 (still in terms of
the ranking before sampling bit j). Individuals from level M may still be selected (but
may also not) for the μ updating individuals even if bit j turns out as 0. Individuals
from level M −2 have to sample a 1 at bit j to be able to compete with the individuals
from levels M and M − 1; still it is not sure that they will end up in the μ updating
individuals.

To obtain a pessimistic bound on the bias introduced by 2nd-class individuals, we
concentrate on level M − 1. Note that all individuals from level M − 1 sampling bit j
as 1 will certainly be selected unless the μ − C≥M remaining slots for the μ best are
filled up. We call the individuals from level M − 1 2nd-class candidates and denote
their number by D∗

t+1 := CM−1. By definition, D∗
t+1 = C≥M−1 − C≥M . We also

introduce the notation C∗∗
t+1 := μ − C≥M and note that C∗

t+1 ≥ C∗∗
t+1 since 2nd-class

individuals also may come from levels M and M − 2, in addition to level M − 1. Our
definition of D∗

t+1 only covers the candidates for 2nd-class individuals that come from
level M − 1; so the candidates from levels M − 2 and M are not part of our notation.

In the following, we often drop the index t + 1 from C∗
t+1, C

∗∗
t+1, and D∗

t+1 if there
is no risk of confusion.

2.2.2 Illustration

Figure 2 illustrates the concepts we have introduced so far. On the left-hand side,
λ = 14 individuals are ranked with respect to their OneMax-value, ignoring bit j .
Level M is the last level from the top such that at most μ individuals are sampled in
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Fig. 2 Illustration of the ranking of the individuals after sampling n−1 bits for λ = 14 andμ = 7. Finally,
C∗∗ = 2 individuals out of D∗ = 6 from level M − 1 will definitely be selected. Some individuals from
levels M and M − 2 may also be 2nd-class, in which case C∗ > C∗∗ holds

level M or above. The individuals from level M+1 and above will be selected for sure
even if bit j turns out as 0 and are therefore 1st-class individuals. Level M−1 contains
the individual of rank μ and possibly further individuals. In general, if there are D∗
individuals in level M − 1 and C≥M in higher levels, then these D∗ individuals are
the 2nd-class candidates. After finally bit j has been sampled, selection will take the
bestC∗∗ = μ−C≥M out of these D∗ candidates. They become 2nd-class individuals.
Recall that C∗ ≥ C∗∗ as the latter lacks possible 2nd-class individuals from levels
M − 2 and M .

In the following, the crucial idea is to show that D∗ is expected to be larger than
C∗∗. That is, we expect to have more 2nd-class candidates (in level M − 1) than can
actually be selected as 2nd-class individuals. This is dealt with in Lemma 6 below.
Roughly speaking, it shows that the number of 2nd-class individuals is stochastically
as least as large as if it was sampled from a binomial distribution with parameters
Θ(μ) and Θ(1/σt ), where σ 2

t := ∑n
i=1 pt,i (1− pt,i ) is the sampling variance of the

UMDA. This result can be interpreted as follows. It is well known that the Poisson
binomial distribution with vector pt has a mode of O(1/σt ) [1]. Hence, if we just look
at the number of individuals that has a certain number k of 1s at some position, then this
is determined by a binomial distribution with parameters λ and O(1/σt ). Lemmas 6
and Lemma 7 together show that essentially the same holds even if we consider the
individuals fromC∗, i. e., specific individuals from levelM−1, each of which is drawn
from the complicated conditional distribution induced by the definition of level M .
Also, it establishes a similar probabilistic bound for D∗ −C∗∗, the difference between
the number of 2nd-class individuals from level M − 1 and the number of 2nd-class
candidates, since this difference is responsible for the selection bias. By definition, it
always holds that D∗ − C∗∗ ≥ 1.
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For our analysis, knowledge of the sheer number of 2nd-class individuals and can-
didates is not yet sufficient. Therefore, afterwards Lemma 8 deals with the number of
1s sampled in the 2nd-class individuals and candidates. This result is then finally used
to obtain Lemma 9, which quantifies the bias due to selecting 2nd-class individuals in
a drift statement. More precisely, the expected value of Xt+1, the number of 1s at posi-
tion j in the μ selected individuals at time t +1, is bounded from below depending on
Xt . This statement is also formulated with respect to the expected success probabilities
E(pt+1 | pt ) in the lemma.

We are now ready to state the first of the above-mentioned four lemmas. It shows that
the number of 2nd-class individuals from level M − 1 follows a binomial distribution
Bin(μ, q), the second parameter ofwhichwill be analyzed in the subsequent Lemma7.
In addition, the lemma establishes a similar result for D∗

t+1 − C∗∗
t+1, the overhang in

2nd-class candidates w. r. t. the number of 2nd-class individuals that can come from
level M − 1. Again Lemma 7 will analyze the second parameter of the respective
distribution.

Lemma 6 For all t ≥ 0,

1. C∗
t+1 � C∗∗

t+1 and C
∗∗
t+1 ∼ Bin(μ, q) for some random q ≤ 1.

2. D∗
t+1 − C∗∗

t+1 ∼ 1 + Bin(λ − μ − 1, q ′) for some random q ′ ≤ 1.

Proof We first prove the first statement in a detailed manner and then show that the
second one can be proven similarly. Hence, we now concentrate on the distribution of
C∗∗ = C∗∗

t+1 = μ−C≥M , which, as outlined above, is a lower bound on C∗
t+1. To this

end, we carefully investigate and then reformulate the stochastic process generating
the λ individuals (before selection), restricted to n−1 bits. Each individual is sampled
by a Poisson binomial distribution for a vector of probabilities p′

t = (p′
t,1, . . . , p

′
t,n−1)

obtained from the frequency vector of the UMDA by leaving the entry belonging to
bit j out (i. e., p′

t = (pt,1, . . . , pt, j−1, pt, j+1, . . . , pt,n)). Counting its number of 1s,
each of the λ individuals then falls into some level i , where 0 ≤ i ≤ n − 1, with
some probability qi depending on the vector p′

t . Since the individuals are created
independently, the number of individuals in level i is binomially distributed with
parameters λ and qi .

Next, we take an alternative view on the process of putting individuals into levels,
using the principle of deferred decisions. We imagine that the process first samples
all individuals in level 0 (through λ trials, all of which either hit the level or not), then
(using the trials which did not hit level 0) all individuals in level 1,…, up to level n−1.

The number of individuals C0 in level 0 is still binomially distributed with param-
eters λ and q0. However, after all individuals in level 0 have been sampled, the
distribution changes. We have λ − C0 trials left, each of which can hit one of the
levels 1 to n−1. In particular, such a trial will hit level 1 with probability q1/(1−q0),
by the definition of conditional probability since level 0 is excluded. This holds inde-
pendently for all of the λ − C0 trials so that C1 follows a binomial distribution with
parameters λ − C0 and q1/(1 − q0). Inductively, also all Ci for i > 1 are binomially
distributed; e. g., Cn−1 is distributed with parameters λ−Cn−2 −· · ·−C0 and 1. Note
that this model of the sampling process can also be applied for any other permutation
of the levels; we will make use of this fact.
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Recall that our aim is to analyze C∗∗. Formally, by applying the law of total prob-
ability, its distribution looks as follows for k ∈ {0, . . . , λ}:

Pr(C∗∗ ≥ k) =
n−1∑

i=1

Pr(M = i) · Pr(μ − C≥i ≥ k | M = i) . (2)

To prove the first item of the lemma, it is now sufficient to bound Pr(μ − C≥i ≥
k | M = i) by the distribution function belonging to a binomial distribution for all
i ∈ {1, . . . , n − 1} (recalling that M = 0 is impossible).

We reformulate the underlying event appropriately. Here we note that

{μ − C≥i ≥ k} ∩ {M = i}

is equivalent to

{C≤i−1 ≥ λ − μ + k} ∩ {M = i},

where C≤i = ∑i
j=0 C j , and, using the definition of M , this is also equivalent to

{C≤i−1 ≥ λ − μ + k} ∩ {C≤i−2 < λ − μ}.

We now use the above-mentioned view on the stochastic process and assume that
levels 0 to i − 2 have been sampled and a number of experiments in a binomial distri-
bution is carried out to determine the individuals from level i − 1. Hence, considering
the outcome of C≤i−2 and using that Ci−1 = C≤i−1 −C≤i−2, our event is equivalent
to that the event

E∗ := {Ci−1 ≥ (λ − μ − a) + k
} ∩ {C≤i−2 = a}

happens for some a < λ − μ. Recall from our model that Ci−1 follows a binomial
distribution with λ − a trials and with a certain success probability s. The number of
trials left after having sampled levels 0, . . . , i − 2 is at least μ since a < λ − μ. The
probability of E∗ is determined by conditioning on that C≤i−2 = a, i. e., a samples
have fallen into levels 0, . . . , i − 2 and that afterwards i − 1 has already been hit by
λ−μ−a samples. Thenμ trials are left that still may sample withinCi−1. Altogether,
we proven that Ci−1, conditioning on M = i , follows a binomial distribution with
parameters μ and q, where the value of q depends on the random M . This proves the
first item of the lemma.

We now use a dual line of argumentation to prove the second item of the lemma.
While the item is concernedwith D∗

t+1−C∗∗
t+1, it ismore convenient to analyzeC≥M−1

and then exploit that

D∗
t+1 − C∗∗

t+1 = (C≥M−1 − C≥M ) − (μ − C≥M ) = C≥M−1 − μ, (3)

which follows directly from the definition of C∗∗
t+1 and D∗

t+1.
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We claim that
C≥M−1 ∼ μ + 1 + Bin(λ − μ − 1, q ′), (4)

for some probability q ′ depending on the outcome of M . To show this, we take the
same view on the stochastic process as above but imagine now that the levels are
sampled in the order from n − 1 down to 0. Conditioning on that levels n − 1, . . . , M
have been sampled, there are at least λ−μ trials are left to populate level M −1 since
by definition less thanμ samples fall into levels n−1, . . . , M . However, by definition
of M , at leastμ+1−C≥M of these trials must fall into level M −1. Afterwards, there
are λ − μ − 1 trials left, each of which may hit level M − 1 or not. This proves (4). ��

As announced, the purpose of the following lemma is to analyze the second param-
eters of the binomial distributions that appear in Lemma 6. Roughly speaking, up to
an exponentially small failure probability, we obtain Ω(1/σt ) as success probability
of the binomial distribution.

Lemma 7 Let σ 2
t := ∑n

i=1 pt,i (1 − pt,i ) be the sampling variance of the UMDA.
Consider C∗∗

t+1 ∼ Bin(μ, q) and D∗
t+1 − C∗∗

t+1 ∼ 1 + Bin(λ − μ − 1, q ′) as defined
in Lemma 6. There is an event E∗ with Pr(E∗) = 1 − e−Ω(μ) such that for all t ≥ 0
the following holds:

1. Conditioned on E∗, it holds that q = Ω(1/σt ). Hence E(C∗∗
t+1 | σt ) = Ω(μ/σt ).

2. Conditioned on E∗, it holds that q ′ = Ω(1/σt ). Hence E(D∗
t+1 − C∗∗

t+1 | σt ) =
1 + Ω((λ − μ − 1)/σt ).

Proof We recall the first statement from Lemma 6 and the stochastic model used in
its proof. Let X be the number of 1s at the considered position j in a single individual
sampled in the process of creating the λ offspring (without conditioning on certain
levels being hit). The aim is to derive bounds on q using X . By our stochastic model,
q denotes the probability to sample an individual with M − 1 1s, given that it cannot
have less than M − 1 1s. By omitting this condition, we clearly do not increase the
probability. Hence, we pessimistically assume that q = Pr(X = i − 1), given M = i .
The latter probability heavily depends on M . We will now concentrate on the values
of i where Pr(M = i) is not too small.

The random variable X follows a Poisson binomial distribution with vector p′
t as

defined in the Proof of Lemma 6. Clearly, the variance of this distribution, call it σ̃ 2
t , is

smaller than σ 2
t since bit j is left out. Still, since σ 2

t ≥ n · (1/n)(1− 1/n) = 1− 1/n
due to the borders on the frequencies, we obtain σ̃ 2

t ≥ 1−1/n−1/4 and σ̃ 2
t = Θ(σ 2

t ).
We define

L := min

{
i | Pr(X ≤ i) ≥ 1

2 + 2β

}

and

U := max

{
i | Pr(X ≥ i) ≥ β

2 + 2β

}
,
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where β is still the constant from our assumption λ = (1+β)μ. By Chernoff bounds,
both the number of individuals sampled aboveU is less than 1

1+β
λ = μ and the number

of individuals sampled below L is less than β
1+β

λ = λ−μwith probability 1−e−Ω(λ).
Then the μth ranked individual will be within Z := [L ,U ] with probability at least
1 − e−Ω(μ), which means that

Pr(M ∈ Z) = 1 − e−Ω(μ). (5)

Note that M ∈ Z is the event E∗ mentioned in the statement of the lemma.
We now assume M ∈ Z and apply Lemma 2, using � := 1/(2 + 2β) and u :=

β/(2 + 2β), in accordance with the above definition of L and U . Hence, every level
in Z , in particular level M − 1, is hit with probability Ω(min{1, 1/σ̃t }) = Ω(1/σt ).

Hence with probability 1 − e−Ω(μ) we have that q = Ω(1/σt ) and therefore
C∗∗
t+1 ∼ Bin(μ,Ω(1/σt )). Using the properties of the binomial distribution and the

law of total probability, we obtain E(C∗∗) = Ω(μ/σt ), which proves the first item of
the lemma.

The second item is proven similarly. We recall from Lemma 6 that D∗
t+1 −C∗∗

t+1 =
1 + Bin(λ − μ − 1, q ′) where q ′ is the probability of hitting level M − 1, assuming
levels n−1, . . . , M have been sampled. Hence with probability 1−e−Ω(μ) according
to (5), we have q ′ = Ω(1/σt ). Altogether, we obtain E(D∗

t+1 −C∗∗
t+1) = 1+ Ω((λ −

μ − 1)/σt ), which concludes the proof of the second item of the lemma. ��
As mentioned above, we now know much about the distribution of the number

of 2nd-class individuals and candidates. The next step is to bound the number of 1s
sampled at position j in these individuals.

Lemma 8 For all t ≥ 0

Xt+1 � Bin(μ − C∗∗
t+1, Xt/μ) + min{C∗∗

t+1,Bin(D
∗
t+1, Xt/μ)}.

Proof We essentially show that the expected overhang in 2nd-class candidates from
level M − 1 compared to 2nd-class individuals from this level allows a bias of the
frequency towards higher values, as detailed in the following. We recall that we ignore
2nd-class individuals stemming from levels M − 2 and M . These might introduce a
bias that is only larger, which is why the statement of the lemma only establishes a
lower bound on Xt+1.

In each of the D∗
t+1 2nd-class candidates from level M − 1, bit j is sampled as 1

with probability Xt/μ. Only a subset of the candidates, namely the C∗∗
t+1 2nd-class

individuals from this level, is selected for the best μ offspring determining the next
frequency. As observed above in Sect. 2.2, the number of 1s at position j in the 1st-
class individuals is binomially distributed with parameters μ − C∗

t+1 and Xt/μ. We
have C∗

t+1 ≥ C∗∗
t+1 and recall that the distribution of Xt+1 becomes stochastically

smallest when equality holds. Hence, we obtain for the number of 1s (at position j)
in the μ selected offspring that

Xt+1 � Bin(μ − C∗∗
t+1, Xt/μ) + min{C∗∗

t+1,Bin(D
∗
t+1, Xt/μ)},
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which is what we wanted to show. ��
Finally, based on the preceding two lemmas, we can quantify the bias of the fre-

quencies due to selection in a simple drift statement. The following lemma is crucially
used in the drift analyses that prove Theorems 10 and 12.

Lemma 9 Let μ = ω(1). Then for all t ≥ 0,

E(Xt+1 | Xt , σt ) = Xt + Ω
(
(μ/σt )(Xt/μ)(1 − Xt/μ)

)
.

If pt ≤ 1 − c/n, where c > 0 is a sufficiently large constant, then

E(pt+1 | pt , σt ) = pt + Ω(pt (1 − pt )/σt ).

Proof We start with the bound

Xt+1 � Bin(μ − C, Xt/μ) + min{C,Bin(D, Xt/μ)} (6)

fromLemma8,wherewewriteC := C∗∗
t+1 and D := D∗

t+1 for notational convenience.
We will estimate the expected value of Xt+1 based on this stochastic lower bound. By
Lemma 5, the expected value of the minimum is at least as large as the minimum of

C
Xt

μ
+ 1

4
(D − C)

Xt

μ

(
1 − Xt

μ

)

and

C
Xt

μ
+ 1

4
C
Xt

μ

(
1 − Xt

μ

)
,

where C and D are still random.
Taking the expected value in (6), we obtain

E(Xt+1 | Xt , σt ,C, D) ≥ E(Bin(μ − C, Xt/μ) | Xt , σt ,C, D) + C
Xt

μ

+ 1

4

Xt

μ

(
1 − Xt

μ

)
min{C, D − C}

≥ Xt + 1

4

Xt

μ

(
1 − Xt

μ

)
min{C, D − C}, (7)

where the last inequality computed the expected value of the binomial distribution.
We also note that C and D are independent of Xt as Xt counts the number of ones in
bit j , which is not used to determine C and D.

Recall that the overall aim is to bound E(Xt+1 | Xt , σt ) = E(E(Xt+1 |
Xt , σt ,C, D) | Xt , σt ) from below. Hence, inspecting the last bound from (7), we
are left with the task to prove a lower bound on

E(min{C, D − C} | Xt , σt ) = E(min{C, D − C} | σt ),
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using that C and D − C are independent of Xt . We recall from Lemmas 6 and 7 that
C � Bin(μ, q) and D − C � 1 + Bin(λ − μ − 1, q ′), where q = Ω(1/σt ) and q ′ =
Ω(1/σt ) with probability 1 − e−Ω(μ). Also, Lemma 7 yields E(C | σt ) = Ω(μ/σt )

and E(D−C | σt ) ≥ 1+Ω((λ−μ−1)/σt ) = 1+Ω(μ/σt ), where the last equality
used our assumption that λ = (1 + Θ(1))μ.

We distinguish between two cases. If μ/σt ≤ κ for an arbitrary constant κ > 0
(chosen later) then 1/σt = O(1/μ) = o(1) by our assumption on μ. Working with
the lower bound 1 on D − C , we get

E(min{C, D − C} | σt ) ≥ E(C · 1{C ≤ 1} | σt )

≥ Pr(C = 1) =
(

μ

1

)
Ω

(
(1/σt )(1 − o(1)

) = Ω(μ/σt ).

Ifμ/σt ≥ κ and κ is chosen sufficiently large but constant then Chernoff bounds yield
that each of the events

C ≥ E(C)

2

and

D ≥ E(D − C)

2

fail to happen with probability at most 1/4, so by a union bound both events happen
simultaneously with probability at least 1/2. This proves

E(min{C, D − C} | σt ) = Ω(μ/σt )

also in this case. Plugging this back into (7), we obtain

E(Xt+1 | Xt ) = Xt + Ω
(
(μ/σt )(Xt/μ)(1 − Xt/μ)

)
,

which proves the statement on E(Xt+1 | Xt , σt ) from this lemma.
To conclude on the expected value of pt+1, we recall fromAlgorithm 1 that pt+1 :=

cap1−1/n
1/n (Xt+1/μ). Using our assumption pt ≤ 1 − c/n we get 1 − Xt/μ ≥ c/n.

Hence, as hitting the upper border changes the frequency by only at most 1/n and the
lower border can be ignored here, we also obtain

E(pt+1 | pt ) ≥ pt + Ω((1/σt )pt (1 − pt ))

if c is large enough to balance the implicit constant in the Ω . ��
We note that parts of the analyses behind Lemmas 6–9 are inspired by [14]; in

particular, the modeling of the stochastic process and the definition of M follow that
paper closely. However, as [14] is concerned with lower bounds on the running time,
it bounds the number of 2nd-class individuals from above and needs a very different
argumentation in the core of its proofs.
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3 Above the Phase Transition

We now prove our main result for the case of large λ. It implies an O(n log n) running
time behavior if μ = c

√
n log n.

Theorem 10 Let λ = (1 + β)μ for an arbitrary constant β > 0, let μ ≥ c
√
n log n

for some sufficiently large constant c > 0 as well as μ = nO(1). Then with probability
Ω(1), the optimization time of both UMDA and UMDA∗ onOneMax is bounded from
above by O(λ

√
n). For UMDA, also the expected optimization time is bounded in this

way.

The Proof of Theorem 10 follows a well-known approach that is similar to tech-
niques partially independently proposed in several previous analyses of EDAs and of
ant colony optimizers [8,21,26]. Here we show that the approach also works for the
UMDA. Roughly, a drift analysis is performed with respect to the sum of frequencies.
In Lemma 9, we have already established a drift of frequencies towards higher values.
Still, there are random fluctuations (referred to as genetic drift in [26]) of frequencies
that may lead to undesired decreases towards 0. The Proof of Theorem 10 uses that
under the condition on μ, typically all frequencies stay sufficiently far away from
the lower border; more precisely, no frequency drops below 1/4. Then the drift is
especially beneficial.

The following lemma formally shows that, if μ is not too small, the positive drift
along with the fine-grained scale implies that the frequencies will generally move
to higher values and are unlikely to decrease by a large distance. Using the lemma,
we will obtain a failure probability of O(n−cc′

) within ncc
′
generations, which can

subsume any polynomial number of steps by choosing c large enough.

Lemma 11 Consider an arbitrary bit and let pt be its frequency at time t. Suppose
that μ ≥ c

√
n log n for a sufficiently large constant c > 0. For T := min{t ≥ 0 |

pt ≤ 1/4} it then holds that Pr(T ≤ ecc
′ log n) = O(e−cc′ log n), where c′ is another

positive constant.

Proof The aim is to apply Theorem 3.We consider the frequency pt := pt,i associated
with the considered bit i and its distance Xt := μpt from the lower border. By
initialization of the UMDA, X0 = μ/2. Note that Xt for t > 0 is a process on
{μ/n, 1, 2, . . . , μ − 1, μ(1 − 1/n)}.

In the notation of the drift theorem, we set [a, b] := [μ/4, μ/2], hence � = μ/4.
Next we establish the three conditions. First, we observe that E(Xt+1 − Xt | Xt ) =
Ω(Xt (1 − Xt/μ)/

√
n) (Lemma 9 along with the trivial bound σt = O(

√
n)) for

Xt ∈ {1, . . . , μ}. The bound is Ω(μ/
√
n) for Xt ∈ [a, b]. Since μ ≥ c

√
n log n by

assumption, we will set ε′ := cc1 log n for some constant c1 > 0. Hereinafter, we will
omit the conditions Xt ; a < Xt < b from the expected values. To establish the first
condition of the drift theorem, we need to show that the expected value is “typical”;
formally, we will find a not too large κ such that

E
(
(Xt+1 − Xt ) · 1{Xt+1 − Xt ≤ κε′}) ≥ ε′

2
. (8)

Then the first condition is established with ε := ε′/2 = cc1(log n)/2.
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In the following, we show the claim that

E((Xt+1 − Xt ) · 1{Xt+1 − Xt > κ ′ε}) ≤ ε′

2

if κ is chosen sufficiently large. Obviously, this implies (8). We recall from Lemma 8
that Xt+1 is stochastically at least as large as the sum of two random variables
Z1 ∼ Bin(μ − C∗∗, Xt/μ) and Z2 ∼ min{C∗∗,Bin(D∗, Xt/μ)} for some ran-
dom variables C∗∗ and D∗, which are related to binomial distributions according to
Lemma 6. Theorem 3 allows us to deal with a stochastic lower bound Δt (Xt+1 − Xt )

on the drift. We make the drift stochastically smaller in several ways. First, we assume
that μ = c

√
n log n and that σt = Ω(

√
n), i. e., the pessimistic bounds used to esti-

mate ε′ above hold actually with equality. This is possible since the lower bound on
the drift derived in the analysis from Lemma 9, using the insights from Lemmas 6–8,
becomes stochastically smaller by decreasing the two parameters.

Second, we assume that Xt+1 = Z1 + Z2 (essentially ignoring 2nd-class indi-
viduals coming from levels M and M − 2). But now the Xt+1 obtained in this way
is stochastically also bounded from above by Z1 + Bin(D∗, Xt/μ), by omitting the
minimum in Z2. We conclude that

Xt+1 � Bin(μ − C∗∗, Xt/μ) + Bin(D∗, Xt/μ)

= Bin(μ, Xt/μ) + Bin(D∗ − C∗∗, Xt/μ).

By Lemma 6, D∗ −C∗∗ −1 is binomially distributed with known number of successes
λ−μ−1, which is Θ(

√
n log n) by our assumptions, yet random success probability.

We note that the lower bounds on E(Xt+1 | Xt , σt ) from Lemma 9 stem from the
case that the success probability is Ω(1/σt ), which actually happens with probability
1−e−Ω(μ). So,without decreasing the drift, we can assume that the success probability
is actually fixed at Θ(1/σt ) = Θ(1/

√
n). These estimations lead to the bound

Xt+1 � Bin(μ, Xt/μ) + Bin(Θ(
√
n log n),Θ(1/

√
n)).

To ease notation, wewrite Z ′
1 ∼ Bin(μ, Xt/μ) and Z ′

2 ∼ Bin(c2
√
n log n, c3/

√
n) for

some unknown constants c2, c3 > 0 and obtain Xt+1 = Z1 + Z2 � Z ′
1 + Z ′

2. We also
recall that Xt/μ ∈ [1/2, 3/4]. ByChernoff bounds, Pr(Z ′

1 ≥ E(Z ′
1)+c4(log n)

√
μ) ≤

e−Ω(c4 log2 n) ≤ 1/μ2 if c4 is chosen large enough but constant. Similarly, Pr(Z ′
2 ≥

E(Z ′
2) + c5 log n) ≤ 1/μ2 if c5 is a sufficiently large constant. We now look into the

event Z ′
1 + Z ′

2 ≥ E(Z ′
1) + c4(log n)

√
μ + E(Z ′

2) + c5 log n. A necessary condition
for this to happen is that at least one of the two events Z ′

1 ≥ E(Z ′
1) + c4(log n)

√
μ

and Z ′
2 ≥ E(Z ′

2) + c5 log n happens. A union bound yields that

Pr(Z ′
1 + Z ′

2 ≥ E(Z ′
1 + Z ′

2) + c4(log n)
√

μ + c5 log n) ≤ 2

μ2
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and therefore clearly

Pr(Z ′
1 + Z ′

2 ≥ E(Z ′
1 + Z ′

2) + c6(log n)
√

μ) ≤ 2

μ2

for some constant c6 > 0. Since Xt+1 � Z ′
1 + Z ′

2, we conclude that

Pr(Xt+1 ≥ E(Z ′
1 + Z ′

2) + c6(log n)
√

μ) ≤ 2

μ2 .

Since Xt+1 ≤ μ and E(Z ′
1 + Z ′

2) ≤ Xt + c7 log n for c7 = c2 · c3, we obtain

E(Xt+1 · 1{Xt+1 ≥ Xt + c7 log n + c6(log n)
√

μ}) ≤ 2

μ

and, since Xt ≥ 0, clearly also

E
(
(Xt+1 − Xt ) · 1{Xt+1 − Xt ≥ (c6 + c7)(log n)

√
μ}) ≤ 2

μ
≤ ε′

2
.

Note that (c6 + c7)(log n)
√

μ = Θ(
√

με′). This proves the claim for κ = Θ(
√

μ)

and establishes the first condition of the drift theorem.
To show the second condition, recall from Sect. 2.2 that Xt+1 stochastically

dominates Bin(μ, Xt/μ). Hence, to analyze steps where Xt+1 < Xt , we may pes-
simistically assume themartingale case,where Xt+1 follows this binomial distribution,
and obtain

ς2 := Var(Xt − Xt+1 | Xt ) = μ
Xt

μ

(
1 − Xt

μ

)
≤ μ

4
,

so ς = O(
√

μ). Using Lemma 1 with d = jς and b = 1, we get Pr(Xt+1 −
Xt ≤ − jς) ≤ e−Ω(min{ j2, j}). Hence, we can work with some r = c7

√
μ for some

sufficiently large constant c7 > 0 and satisfy the second condition on jumps that
decrease the state.

The third condition is also easily verified. We recall that � = Θ(μ), ε = Θ(log n),
r = Θ(

√
μ) and κ = Θ(

√
μ). We note that ε/r2 = Θ((log n)/μ), 1/r = Θ(1/

√
μ)

and 1/ε = Θ(1/log n). Hence, the λ from the drift theorem (not to be confused
with the λ of the UMDA) equals ε/(17r2) and λ� = Ω(c log n) by our assumption
μ ≥ c

√
n log n from the lemma. Recalling that ε ≥ cc1(log n)/2 and � = μ/4, we

obtain by choosing c large enough that

ε�

17r2
≥ 2 ln

(
4r2

17ε2

)

since the right-hand side is at most 2 ln(Θ(μ/log2 n)) = Θ(ln n) due to μ = nO(1).
Thereby, we satisfy the third condition. Hence, the drift theorem implies that the
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first hitting time of states less than a, starting from above b is at least ecc
′ log n with

probability at least 1− e−cc′ log n , if n is large enough and c′ is chosen as a sufficiently
small positive constant independent of c. ��

We now ready to prove the main theorem from this section.

Proof (Proof of Theorem 10) We use a similar approach and partially also similar
presentation of the ideas as in [26]. Following [21, Theorem 3] we show that, starting
with a setting where all frequencies are at least 1/2 simultaneously, with probabil-
ity Ω(1) after O(

√
n) generations either the global optimum has been found or at

least one frequency has dropped below 1/4. In the first case we speak of a success and
in the latter of a failure. The expected number of generations until either a success or
a failure happens is O(

√
n).

With respect to UMDA, we can use the success probability Ω(1) to bound the
expected optimization time. We choose a constant γ > 3. According to Lemma 11,
the probability of a failure in altogether nγ generations is at most n−γ , provided the
constant c in the condition μ ≥ c

√
n log n is large enough. In case of a failure we

wait until all frequencies simultaneously reach values at least 1/2 again and then
repeat the arguments from the preceding paragraph. It is easy to show via additive
drift analysis for the UMDA (not the UMDA∗) that the expected time for one fre-
quency to reach the upper border is always bounded by O(n3/2), regardless of the
initial probabilities. This holds since by Lemma 9 there is always an additive drift of
Ω(pt,i (1 − pt,i )/σt ) = Ω(1/(nσt )) = Ω(1/n3/2). By standard arguments on inde-
pendent phases, the expected time until all frequencies have reached their upper border
at least once is O(n3/2 log n). Once a frequency reaches the upper border, we apply a
straightforward modification of Lemma 11 to show that the probability of a frequency
decreasing below 1/2 in time nγ is at most n−γ (for large enough c). The probability
that there is a frequency for which this happens is at most n−γ+1 by the union bound.
If this does not happen, all frequencies attain value at least 1/2 simultaneously, and we
apply our above arguments again. As the probability of a failure is at most n−γ+1, the
expected number of restarts is O(n−γ+1) and the expected time until all bits recover
to values at least 1/2 only leads to an additional term of n−γ+1 ·O(n3/2 log n) ≤ o(1)
(as n−γ ≤ n−3) in the expectation. We now only need to show that after O(

√
n)

generations without failure the probability of having found the all-ones string isΩ(1).
In the rest of this proof, we consider the potential function φt := n−1−∑n

i=1 pt,i ,
which denotes the total distance of the frequencies from the upper border 1−1/n. For
simplicity, for the moment we assume that no frequency is greater than 1−c/n, where
c is the constant from Lemma 9. Using Lemma 9 and the linearity of expectation, we
obtain for some constant γ > 0 the drift

E(φt − φt+1 | φt ) =
n∑

i=1

(pt+1,i − pt,i )

=
n∑

i=1

(pt,i + γ pt,i (1 − pt,i )/σt − pt,i ) = γ σt ,
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since
∑n

i=1 pt,i (1 − pt,i ) = σ 2
t . Using our assumption pt,i ≥ 1/4, we obtain the

lower bound

E(φt − φt+1 | φt ) ≥ γ

√√√√
n∑

i=1

pt,i (1 − pt,i ) ≥ γ

√√√√
n∑

i=1

(1 − pt,i )/4 = γ

√
φt

2
. (9)

The preceding analysis ignored frequencies above 1 − c/n. To take these into
account, we now consider an arbitrary but fixed frequency being greater than 1− c/n.
We claim that in each of the μ selected offspring the underlying bit (say, bit j) is set
to 0 with probability at most c/n. Clearly, each of the λ offspring (before selection)
has bit j set to 0 with probability at most c/n. Let us again model the sampling of
offspring as a process where bit j is sampled last after the outcomes of the other n−1
bits have been determined. Since setting bit j to 0 leads to a lower OneMax-value
than setting it to 1, the probability that bit j is 0 in a selected offspring cannot be larger
than c/n.

By linearity of expectation, an expected number of at most μc/n out of μ selected
offspring set bit j to 0. Hence, the expected next value of frequency of bit j must
satisfy

E(pt+1, j | pt, j ; pt, j > 1 − c/n) ≥ (μ − μc/n) · 1 + (μc/n) · 0
μ

= 1 − c

n
,

so E(pt, j − pt+1, j ) | pt, j ; pt, j > 1− c/n) ≥ c/n. Again by linearity of expectation,
the frequencies greater than 1−c/n contribute to the expected changeE(φt−φt+1 | φt )

an amount of no less than −c.
Combining this with (9), we bound the drift altogether by

E(φt − φt+1 | φt ) ≥ γ
√

φt

2
− c.

If φt is above a sufficiently large constant, more precisely, if
√

φt ≥ 4c/γ (equivalent
to c ≤ γ

√
φt/4), the bound is still positive and only by a constant factor smaller than

the drift bound stemming from (9). We obtain

E(φt − φt+1 | φt ;
√

φt ≥ 4c/γ ) ≥ γ
√

φt

2
− c ≥ γ

√
φt

2
− γ

√
φt

4
= γ

√
φt

4
.

We now set h(φt ) := γ
√

φt
4 and apply the variable drift theorem (Theorem 4) with

drift function h(φt ), maximum n and minimum xmin = 16c2/γ 2 (since
√

φt ≥ 4c/γ
is required). Hence, the expected number of generations until the φ-value is at most
16c2/γ 2 is at most

xmin

h(xmin)
+

∫ n

xmin

dx

h(x)
≤ 16c2/γ 2

γ
√
16c2/γ 2/4

+
∫ n

16c2/γ 2

dx

γ
√
x/4

= O(
√
n)
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since both c and γ are constant. Hence, by Markov’s inequality, O(
√
n) generations,

amounting to O(λ
√
n) function evaluations, suffice with probability Ω(1) to reach

φt ≤ 16c2/γ 2 = O(1). It is easy to see that φt = O(1) implies an at least constant
probability of sampling the all-ones string (assuming that all pt,i are at least 1/4).
Hence, the optimum is sampled in O(

√
n) generations with probability Ω(1), which,

as outlined above, proves the first statement of the lemma and also the statement on
UMDA’s expected running time. ��

TheΩ(1) bound in Theorem 10 on the probability of UMDA∗ finding the optimum
(without stagnating at wrong borders) results from two factors: the application of
Markov’s inequality and the probability Ω(1) of sampling the optimum after

√
φt ≤

4c/γ has been reached from the first time. It is not straightforward to improve this
bound to higher values (e. g., probability 1 − o(1)) since one would have to analyze
the subsequent development of potential in the case that the algorithm fails to sample
the optimum at

√
φt ≤ 4c/γ .

4 Below the Phase Transition

Theorem 10 crucially assumes that μ ≥ c
√
n log n for a large constant c > 0. As

described above, the UMDA shows a phase transition between unstable and stable
behavior at the threshold Θ(

√
n log n). Above the threshold, the frequencies typically

stay well focused on their drift towards the upper border and do not drop much below
1/2. The opposite is the case ifμ < c′√n log n for a sufficiently small constant c′ > 0.
Krejca and Witt [14] have shown for this regime that with high probability nΩ(1)

frequencies will walk to the lower border before the optimum is found, resulting in
a coupon collector effect and therefore the lower bound Ω(n log n) on the running
time. It also follows directly from their results (although this was not made explicit)
that UMDA∗ will in this regime with high probability have infinite optimization time
since nΩ(1) frequencies will get stuck at 0. Hence, in the regime μ = Θ(

√
n log n),

the UMDA∗ turns from efficient with at least constant probability to inefficient with
overwhelming probability.

Interestingly, the value Θ(
√
n log n) has also been derived in [26] as an important

parameter settingw. r. t. the update strengths called K and 1/ρ in the simple EDAs cGA
and 2-MMASib, respectively. Below the threshold value, lower bounds are obtained
through a coupon collector argument, whereas above the threshold, the running time is
O(K

√
n) (and O((1/ρ)

√
n), respectively) since frequencies evolve smoothly towards

the upper border. The UMDA and UMDA∗ demonstrate the same threshold behavior,
even at the same threshold points.

The EDAs considered in [26] use borders 1/n and 1 − 1/n for the frequencies in
the same way as the UMDA. The only upper bounds on the running time are obtained
for update strengths greater than c

√
n log n. Below the threshold, no conjectures on

upper bounds on the running time are stated; however, it seems that the authors do not
see any benefit in smaller settings of the parameter since they recommend always to
choose values above the threshold. Surprisingly, this does not seem to be necessary if
the borders [1/n, 1 − 1/n] are used. With respect to the UMDA, we will show that
even for logarithmicμ it has polynomial expected running time, thanks to the borders,
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while we already know that UMDA∗ will fail. We also think that a similar effect can
be shown for the EDAs in [26].

We now give our theorem for the UMDA with small μ. If μ = Ω(
√
n log n), it is

weaker than Theorem 10, again underlining the phase transition. The proof is more
involved since it has to carefully bound the number of times frequencies leave a border
state.

Theorem 12 Let λ = (1 + β)μ for an arbitrary constant β > 0 and μ ≥ c log n for
a sufficiently large constant c > 0 as well as μ = O(n1−ε) for some constant ε > 0.
Then the expected optimization time ofUMDAonOneMax is O(λn). ForUMDA∗, it is
infinite with high probability ifμ < c′√n log n for a sufficiently small constant c′ > 0.

Before we prove the theorem, we state two lemmas that work out properties of
frequencies that have reached the upper border. In a nutshell, the following lemma
show that with high probability such frequencies will stay in the vicinity of the border
afterwards, assuming a sufficiently large drift stemming from σt = O(1). Moreover,
it return to the border very quickly afterwards with high probability; in fact, it will
only spend a constant number of steps at a non-border value with high probability.
Since we are dealing with a Markov chain, the analysis does not change if a certain
amount of time has elapsed. In the following lemma, we therefore w. l. o. g. assume
that the time where the border is hit equals 0.

Lemma 13 In the setting of Theorem 12, consider the frequency pt , t ≥ 0, belonging
to an arbitrary but fixed bit and suppose that p0 = 1 − 1/n and σt = O(1) for
t ≥ 1, where σ 2

t = ∑n
i=1 pt,i (1 − pt,i ). Then for every constant c1 > 0 there is a

constant c2 > 0 such that

– p1 ≥ 1 − c2/μ with probability at least 1 − n−c1 .
– There is a constant r > 0 with the following properties: if p1 ≥ 1 − c2/μ then
with probability 1 − e−Ω(c log n), pt ≥ 1 − c2/μ for all t ∈ {2, . . . , r − 1} and
finally pr = 1 − 1/n.

Proof By assumption, p0 = 1 − 1/n. We analyze the distribution of p1. Since the μ

best individuals are biased towards one-entries, the number N of 0s sampled at the
bit among the μ best is stochastically smaller than Bin(μ, 1/n). Since μ = O(n1−ε)

according to the assumptions from Theorem 12, we obtain for any k > 0

Pr(N ≥ k) ≤
(

μ

k

)(
1

n

)k

≤ 1

k!
(μ

n

)k ≤ n−c′k

for some constant c′ > 0. If N = k > 0, then clearly p1 = 1− k/μ by the update rule
of the UMDA (using that μ = o(n) so that p1 is not capped at the border). We can
now choose a constant k such that c′k = c1 and establish the first claim with c2 = k.

To establish the second claim, we consider the distance Xt := μpt of the frequency
from the lower border for t ≥ 1. By assumption, X1 = μ − c2. The aim is to show
the following: a phase of O(1) steps will consist of increasing steps only such that
the upper border is finally reached, all with probability 1 − e−Ω(c log n). For technical
reasons, it is not straightforward to apply Theorem 3 to show this. Instead, we use a

123



Algorithmica (2019) 81:632–667 657

more direct and somewhat simpler argumentation based on the analysis of the sampling
process.

Recall from Sect. 2.2, in particular Lemma 8, that Xt+1 is obtained by summing
up the number of 1s at position j sampled in both the 1st-class individuals and the
2nd-class individuals at generation t + 1. Denote by D∗ the number of 2nd-class
candidates and by C∗∗ the number of 2nd-class individuals as in Lemma 6. From
Lemma 7 we obtain that D∗ −C∗∗ −1 with probability 1−e−Ω(μ) follows a binomial
distribution with parameters Ω(μ) and Ω(1/σt ); analogously for C∗∗. We assume
both to happen. Note that Ω(1/σt ) = Ω(1) by assumption, which implies μ/σt =
Ω(μ) = Ω(c log n), where we used the constant c from Theorem 12.

ByChernoff bounds, the probability that D∗−C∗∗ ≥ c3μ for some constant c3 > 0
is at least 1 − e−Ω(μ) = 1 − e−Ω(c log n); similarly, C∗∗ ≥ c3μ with probability
1−e−Ω(c log n). We assume both these event also to happen. The number of 1s sampled
in the D∗ candidates is at least D∗(1 − c4)Xt/μ with probability 1 − e−Ω(c log n) by
Chernoff bounds (using that Xt/μ = Θ(1)), where c4 is a constant that can be chosen
small enough. Also by Chernoff bounds, the number of 1s sampled in theμ−C∗∗ 1st-
class individuals (pessimistically assuming thatC∗ = C∗∗ and thatμ−C∗∗ = Ω(μ))
is at least (μ − C∗∗)(1 − c4)Xt/μ with probability 1 − e−Ω(c log n).

Assuming all this to happen, we have Xt+1 ≥ Xt +(D∗−C∗∗)Xt/μ−c4(μ+D∗−
C∗∗)Xt/μ (or Xt+1 takes its maximum μ anyway) with probability 1 − e−Ω(c log n).
If c4 is chosen sufficiently small compared to c3, we obtain Xt+1 ≥ Xt + c4μ/2 with
probability 1− e−Ω(c log n). Note that the constants in the exponent of e−Ω(c log n) may
be different; we use the smallest ones from these estimations and union bounds to
obtain the bound 1 − e−Ω(c log n) on the final probability.

If Xt+1 ≥ Xt + c4μ/2 for a constant number r ≤ 2c2/c4 of iterations, then the
frequency pt has raised from 1 − c2/μ to its upper border in this number of steps.
By a union bound over these many iterations, the probability that any of the events
necessary for this happens to fail is most O(1) · e−Ω(c log n) = e−Ω(c log n) as claimed
above. ��

In the following lemma,we showa statement on the expected value of the frequency.
To obtain this value, it is required that the frequency does not drop below 1− O(1/μ)

and quickly returns to 1−1/n, which can be satisfied bymeans of the previous lemma.

Lemma 14 In the setting of Theorem 12, consider the frequency pt , t ≥ 0, belonging
to an arbitrary but fixed bit and suppose that

– p0 = 1 − 1/n,
– pt ≥ 1 − O(1/μ) for all t ≥ 0, and
– there is a constant r > 0 such that the followingholds: for all t ′ where pt ′ = 1−1/n
there is some s ∈ {1, . . . , r} such that pt ′+s = 1 − 1/n.

Then for all t ≥ 0 it holds that E(pt ) = 1 − O(1/n).

Proof By assumption, p0 = 1 − 1/n. We will analyze the distribution and expected
value of pt for t ≥ 1. We will show that for all t ≥ 0, we have Pr(pt = 1 − 1/n) ≥
1 − c1μ/n for some constant c1 > 0. By assumption, in any case pt ≥ 1 − O(1/μ).
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Using the law of total probability to combine the cases pt = 1−1/n and pt < 1−1/n,
we obtain

E(pt ) ≥
(
1 − c1μ

n

)(
1 − 1

n

)
+ c1μ

n

μ − O(1)

μ
= 1 − O(1/n).

We are left with the claim Pr(pt = 1 − 1/n) = 1 − O(μ/n). Recall that on
p1 < 1 − 1/n we have p1 = 1 − O(1/μ) and that again pt = 1 − 1/n after t ≤ r
steps.We take now a simpler view bymeans of a two-stateMarkov chain, where state 0
corresponds to frequency 1− 1/n and state 1 to the rest of the reachable states. Time
is considered in blocks of r steps, which will be justified in the final paragraph of this
proof. The transition probability from 0 to 1 is at most O(μ/n) (the expected number
of 0s sampled in the μ best individuals) and the transition probability from 1 to 0 is 1;
the remaining probabilities are self-loops. Now, it is easy to analyze the steady-state
probabilities, which are 1 − O(μ/n) for state 0 and O(μ/n) for state 1. Moreover,
since the chain starts in state 0, simple calculations of occupation probabilities over
time yield for state 0 a probability of 1 − O(μ/n) for all points of time t ≥ 0. More
precisely, at the transition from time t to time t + 1 the occupation probability of
state 0 can only decrease by O(μ/n). When state 1 exceeds an occupation probability
of c2μ/n for a sufficiently large constant c2 > 0, the process goes to state 0 with
probability at least c2μ/n, which is less than the decrease of the occupation probability
for state 0 for c2 large enough. Hence, the occupation probability of state 0 cannot
drop below 1 − O(μ/n).

Finally, we argue why we may consider phases of length r in the Markov chain
analysis. Note that only every r th step a transition from state 1 to 0 is possible (in our
pessimistic model), however, in fact every step can transit from state 0 to 1. Formally,
wehave towork in these additional steps in our two-statemodel.Wedo so by increasing
the probability of leaving state 0 by a factor of r , which vanishes in the O(μ/n) bound
used above. ��

Having proved these two preparatory lemmas, we can give the proof of the main
theorem from this section.

Proof (Proof of Theorem 12) The second statement can be derived from [14], as
discussed above. We now focus on the first claim, basically reusing the potential
function φt = n − 1 − ∑n

i=1 pt,i from the Proof of Theorem 10. Let k denote the
number of frequencies below 1− c/n for the c from Lemma 9, w. l. o. g., these are the
frequencies associated with bits 1, . . . , k. The last n − k bits are actually at 1 − 1/n
since 1/μ = ω(1/n) by assumption. They are set to 0 with probability at most 1/n
in each of the selected offspring, amounting to a total expected loss of at most 1.
Similarly as in the Proof of Theorem 10, we compute the drift

E(φt − φt+1 | φt ) ≥
k∑

i=1

(pt+1,i − pt,i ) − (n − k)
1

n

≥
k∑

i=1

(pt,i + γ pt,i (1 − pt,i )/σt − pt,i ) − 1
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= γ
∑k

i=1 pt,i (1 − pt,i )√
((n − k)/n)(1 − 1/n) + ∑k

i=1 pt,i (1 − pt,i )
− 1

≥ γ
∑k

i=1 pt,i (1 − pt,i )√
1 + ∑k

i=1 pt,i (1 − pt,i )
− 1 (10)

where γ is the implicit constant in theΩ-notation from Lemma 9, and the last equality
just used the definition of σt . We now distinguish two cases depending on V ∗ :=∑k

i=1 pt,i (1 − pt,i ), the total variance w. r. t. the bits not at the upper border.
Case 1 If V ∗ ≥ c′ for some sufficiently large constant c′ > 0, we obtain

γ V ∗
√
1 + V ∗ ≥ 2,

and therefore

E(φt − φt+1 | φt ) ≥ γ V ∗
√
1 + V ∗ − 1 ≥ 1

from (10). If V ∗ < c′, we will show by advanced arguments that the bits that have
reached the upper border can almost be ignored and that the drift with respect to the
other bits is still in the order Ω(V ∗/

√
1 + V ∗). Using this (to be proved) statement,

we apply variable drift (Theorem 4) with xmin = 1/μ (since each pi,t = i/μ for some
i ∈ {1, . . . , μ − 1} if it is not at a border) and

h(x) := min{1, c′′x/
√
1 + x}

for some constant c′′. Let x∗ be the point where 1 = c′′x∗/
√
1 + x∗ and note that x∗

is some constant bigger than 1 if c′′ is small enough. We obtain the upper bound

xmin

h(xmin)
+

∫ n

1/μ

1

h(x)
dx = (1/μ)

√
1 + 1/μ

c′′/μ
+

∫ x∗

1/μ

√
1 + x

c′′x
dx +

∫ n

x∗
dx

1
(11)

on the expected number of generations until all frequencies have hit the upper bor-
der at least once. The anti-derivative of

√
1 + x/x is 2

√
1 + x + ln(

√
1 + x − 1) −

ln(
√
1 + x + 1). Hence,

∫ x∗

1/μ

√
1 + x

c′′x
dx ≤ O(1) − ln(

√
1 + 1/μ − 1)

c′′ = O(logμ)

since ln(
√
1 + 1/μ − 1) ≥ ln(1/(2μ) − 1/(8μ2)) = − ln(μ)/2 + Θ(1) by a Taylor

expansion. Hence, the whole bound (11) can be simplified to

O(1) + O(logμ) + O(n) = O(n)
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using μ = o(n). When the potential has reached its minimum value, the optimum is
sampled with probability Ω(1). If this fails, the argumentation can be repeated. The
expected number of repetitions is O(1). This corresponds to an expected running time
of O(λn).

Case 2 We still have to show that we have a drift of Ω(V ∗/
√
1 + V ∗) if V ∗ ≤

c′. Actually, we will consider a phase of κn generations for some sufficiently large
constant κ > 0 and show that the claim holds with high probability throughout the
phase. We then show that under this assumption the optimum is still sampled with
probability Ω(1) in the phase. In case of a failure, we repeat the argumentation and
get an expected number of O(1) repetitions, altogether an expected running time of
O(λn).

We have seen above that frequencies at the upper border may contribute negatively
to the drift of the φt -value. Hence, to show the claim that the potential also is expected
to decrease when V ∗ ≤ c′, we will analyze an arbitrary but fixed frequency and use
the above-proven fact that it is likely to stay in the vicinity of the upper border once
having been there. We work under the assumption that we have σt = O(1) within
a phase of κn generations. We claim that this actually happens with probability at
least 1− O(1/n), a proof of which will be given below. In case of a failure, we repeat
the argumentation and are done within an expected number of O(1) repetitions.

We invoke Lemma 13 for any frequency that has hit the upper border and note
that, unless a failure event of probability e−Ω(c log n) + n−c1 happens, we can apply
Lemma 14. We assume that the constant c (stemming from the assumption μ ≥
c log n) as well as c1 have been chosen appropriately such that the failure probability
is O(1/n2). Hereinafter, we assume that no failure occurs. Hence, we have an expected
frequency of 1−O(1/n). This expected value is just the probability of sampling a 1 at
the underlying bit. Consequently, if there are � bits that have been at the upper border
at least once, the probability of sampling only 1s at all these bits is at least

�∏

i=1

(
1 − O

(
1

n

))
= Ω(1).

This still allows the optimum to be sampled with probability Ω(1) after the potential
on the bits that never have hit the border so far has decreased below c′.

Finally, we have to justify why with high probability σt ′ = O(1) for any t ′ ≥ t
within κn steps after the first time t where φt = O(1). The frequencies that never have
been at the upper border contribute at most c′ = O(1) to φt by assumption and, since
σt ≤ φt , also to σt . Frequencies that are at the upper border leave this state only with
probabilityO(μ/n) and have a value of 1−O(1/μ) afterwards according toLemma13
with high probability. In every step only an expected number of n · O(μ/n) = O(μ)

frequencies leave the upper border. By Chernoff bounds, the number is O(μ) even
with probability 1 − e−Ω(μ). Finally, since every frequency that has left the upper
border returns to it within r steps with high probability, there are within the phase
only O(μ) such frequencies with high probability. Their contribution to σt is therefore
O(μ)·O(1/μ) = O(1)with high probability. The failure probability is again O(1/n2)
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Fig. 3 Left-hand side: empirical running time of UMDA on OneMax, right-hand side: number of hits of
lower border; for n = 2000, λ ∈ {14, 16, . . . , 350}, μ = λ/2, and averaged over 3000 runs
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Fig. 4 Left-hand side: empirical running time of UMDA on OneMax, right-hand side: number of hits of
lower border; for n = 5000, λ ∈ {14, 16, . . . , 650}, μ = λ/2, and averaged over 3000 runs

as the constants in Lemma 13 and the c in the assumption μ ≥ c log n were chosen
sufficiently large. Hence, the probability of a failure in O(κn) steps is O(1/n).

We finally note that, although the state of the algorithm may switch between the
cases V ∗ ≤ c′ and V ∗ > c′ more than once, the drift argument can always be applied
since we have established a drift of Ω(V ∗/

√
1 + V ∗) for the φt -value regardless of

the case. ��
We have now concluded the Proof of Theorem 12. As mentioned before, we can

extract from this theorem a second value of μ that gives the O(n log n) running time
bound, namely μ = c′ log n. We also believe that values μ = o(log n) will lead to
a too coarse-grained frequency scale and exponential lower bounds on the running
time, which can be regarded as another phase transition in the behavior. We do not
give a proof here but only mention that such a phase transition from polynomial to
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exponential running time is known from ACO algorithms and non-elitist (1, λ) EAs
when a parameter crosses log n [21,23].

5 Experiments

We have carried out experiments for UMDA on OneMax to gain some empirical
insights into the relationship between λ and the average running time. The algorithm
was implemented in the C programming language using the PCG32 random number
generator. The problem size was set to n = 2000, λ was increased from 14 to 350 in
steps of size 2, μ was set to λ/2, and, due to the high variance of the runs especially
for small λ, an average was taken over 3000 runs for every setting of λ. The left-hand
side of Fig. 3 demonstrates that the average running time in fact shows a multimodal
dependency on λ. Starting out from very high values, it takes aminimum at λ ≈ 20 and
then increases again up to λ ≈ 70. Thereafter it falls again up to λ ≈ 280 and finally
increases rather steeply for the rest of the range. The right-hand side, a semi-log plot,
also illustrates that the number of times the lower border 1/n of the frequencies is hit
seems to decrease exponentially with λ. The phase transition where the behavior of
frequencies turns from chaotic into stable is empirically located somewhere between
250 and 300.

Similar results are obtained for n = 5000, see Fig. 4. The location of the maximum
does not seem to increase linearly with n.

6 Conclusions

We have analyzed the UMDA on OneMax and obtained the upper bounds O(μ
√
n)

and O(μn) on its expected running time in different domains for μ, more precisely
if μ ≥ c

√
n log n and μ ≥ c′ log n, respectively, where c, c′ are positive constants.

This implies an expected running time of O(n log n) for two asymptotic values of μ,
closing the previous gap between the lower bound Ω(μ

√
n + n log n) and the upper

bound O(n log n log log n). In our proofs, we provide detailed tools for the analysis of
the stochastic processes at single frequencies in the UMDA. We hope that these tools
will be fruitful in future analyses of EDAs.

Wenote that all our results assumeλ = O(μ). However,we do not think that largerλ
can be beneficial; if λ = αμ, for α = ω(1), the progress due to 2nd-class individuals
can be by a factor of at most α bigger; however, also the computational effort per
generation would grow by this factor. A formal analysis of other ratios between μ

and λ is open, as is the case of sublogarithmic μ. Moreover, we do not have lower
bounds matching the upper bounds from Theorem 10 if μ is in the regime where both
μ = ω(log n) and μ = o(

√
n log n).

Acknowledgements Financial support by theDanish Council for Independent Research (DFF-FNU4002–
00542) is gratefully acknowledged.

123



Algorithmica (2019) 81:632–667 663

Appendix

Proof of Theorem 3

We will use Hajek’s drift theorem to prove Lemma 3. As we are dealing with a
stochastic process, we implicitly assume that the random variables Xt , t ≥ 0, are
adapted to some filtration Ft such as the natural filtration X0, . . . , Xt , t ≥ 0.

We do not formulate the theorem using a potential/Lyapunov function g mapping
from some state space to the reals either. Instead, we w. l. o. g. assume the random
variables Xt as already obtained by the mapping.

The following theorem follows immediately from taking Conditions D1 and D2
in [10] and applying Inequality (2.8) in a union bound over L(�) time steps.

Theorem 15 [10] Let Xt , t ≥ 0, be real-valued random variables describing a
stochastic process over some state space, adapted to a filtration Ft . Pick two real
numbers a(�) and b(�) depending on a parameter � such that a(�) < b(�) holds.
Let T (�) be the random variable denoting the earliest point in time t ≥ 0 such that
Xt ≤ a(�) holds. If there are λ(�) > 0 and p(�) > 0 such that the condition

E
(
e−λ(�)·(Xt+1−Xt ) | Ft ; a(�) < Xt < b(�)

) ≤ 1 − 1

p(�)
(∗)

holds for all t ≥ 0 then for all time bounds L(�) ≥ 0

Pr
(
T (�) ≤ L(�) | X0 ≥ b(�)

) ≤ e−λ(�)·(b(�)−a(�)) · L(�) · D(�) · p(�),

where D(�) = max
{
1,E

(
e−λ(�)·(Xt+1−b(�)) | Ft ; Xt ≥ b(�)

)}
.

Proof (Proof of Theorem 3) We will apply Theorem 15 for suitable choices of its
variables, some of which might depend on the parameter � = b − a denoting the
length of the interval [a, b]. The following argumentation is also inspired by Hajek’s
work [10].

By assumption Δt (Xt+1 − Xt ) � Xt+1 − Xt . Clearly, for the process X ′
t =

X0+∑t−1
j=0 Δt (Xt+1− Xt )we have X ′

t � Xt . Hence, the hitting time T ∗ for state less
than a of the original process Xt is stochastically at least as big as the corresponding
hitting time of the process X ′

t . In the following, we will therefore without further
mention analyze X ′

t instead of Xt and bound the tail of its hitting time. We work with
Δ := Δt , which equals X ′

t+1 − X ′
t . We still use the old notation Xt instead of X ′

t .
The aim is to bound the moment-generating function (mgf.) from Condition (∗).

In this analysis, we for notational convenience often omit the filtration Ft . First we
observe that it is sufficient to bound the mgf. of Δ · 1{Δ ≤ κε} since

E(e−λΔ) = E(e−λΔ1{Δ≤κε}−λΔ1{Δ>κε})
= E(e−λΔ1{Δ≤κε}e−λΔ1{Δ>κε}) ≤ E(e−λΔ1{Δ≤κε}),
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using Δ1{Δ > κε} > 0 and hence e−λΔ1{Δ>κε} ≤ 1. In the following, we omit the
factor 1{Δ ≤ κε} but implicitly multiply Δ with it all the time. The same goes for
1{a < Xt < b}.

To establish Condition (∗), it is sufficient to identify values λ := λ(�) > 0 and
p(�) > 0 such that

E(e−λΔ1{a < Xt < b}) ≤ 1 − 1

p(�)
.

Using the series expansion of the exponential function, we get

E(e−λΔ1{a < Xt < b}) = 1 − λE(Δ) +
∞∑

k=2

(−λ)k

k! E(Δk)

= 1 − λE(Δ) +
∞∑

k=2

(−λ)k

k!
(
E(Δk1{Δ ≥ 0}) + E(Δk1{Δ < 0})

)
.

We first concentrate on the positive steps in the direction of the expected value,
more precisely, we consider for any odd k ≥ 3

Mk := λk

k! E(Δk1{Δ ≥ 0}) − λk+1

(k + 1)!E(Δk+11{Δ ≥ 0}).

Since we implicitly multiply with 1{Δ ≤ κε}, we have Δk1{Δ ≥ 0} ≤ (κε)k and
hence |E(Δk+11{Δ ≥ 0})/E(Δk1{Δ ≥ 0})| ≤ κε. By choosing λ ≤ 1/(κε), we
have

Mk ≥ λk

k! E(Δk1{Δ ≥ 0}) − λk

κε(k + 1)!κεE(Δk1{Δ ≥ 0}) ≥ 0,

for k ≥ 3 since (1/k!)/(1/(k + 1)!) = k. Hence,

E(e−λΔ) ≤ 1 − λE(Δ) + λ2

2
E(Δ21{Δ ≥ 0})

≤ 1 − λE(Δ) + λ2

2
E(Δ · κε · 1{Δ ≥ 0})

≤ 1 − λE(Δ) + λ
1

2κε
· κε · E(Δ) ≤ 1 − λε/2

where the first inequality used that Δ2 ≤ Δκε due to our implicit multiplication with
1{Δ ≤ κε} everywhere and the second used again λ ≤ 1/(κε). So, we have estimated
the contribution of all the positive steps by 1 − λE(Δ)/2.

We proceed with the remaining terms.We overestimate the sum by usingΔ′ := |Δ ·
1{Δ < 0})| and bounding (−λk) ≤ λk in all terms starting from k = 2. Incorporating
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the contribution of the positive steps, we obtain for all γ ≥ λ

E(e−λΔ) ≤ 1 − λ

2
E(Δ) + λ2

γ 2

∞∑

k=2

γ k

k! E(Δ′k)

≤ 1 − λ

2
E(Δ) + λ2

γ 2

∞∑

k=0

γ k

k! E(Δ′k) ≤ 1 − λ

2
ε + λ2

E(eγΔ′
)

γ 2
︸ ︷︷ ︸
=:C(γ )

,

where the last inequality uses the first condition of the theorem, i. e., the bound on the
drift.

Given any γ > 0, choosing λ := min{1/(κε), γ, ε/(4C(γ ))} results in

E(e−λΔ1{a < Xt < b}) ≤ 1 − λ

2
ε + λ · ε

4C(γ )
· C(γ ) = 1 − λε

4
= 1 − 1

p(�)

with p(�) := 4/(λε).
The aim is now to choose γ in such a way that E(eγΔ′

) is bounded from above by
a constant. We get

E(eγΔ′
) ≤

∞∑

j=0

eγ ( j+1)r Pr(Δ ≤ − jr) ≤
∞∑

j=0

eγ ( j+1)r e− j

where the inequality uses the second condition of the theorem.
Choosing γ := 1/(2r) yields

E(eγΔ′
) ≤

∞∑

j=0

e( j+1)/2− j = e1/2
∞∑

j=0

e− j/2 = e1/2
1

1 − e−1/2 ≤ 4.2.

Hence, C(γ ) ≤ 4.2/γ 2 and therefore λ ≤ ε/(4 · 4.2r2) < ε/(17r2). From the
definition of λ, we altogether have λ = min{1/(2r), ε/(17r2), 1/(κε)}. Since p(�) =
4/(λε), we know p(�) = O(r/ε + r2/ε2 + κ). Condition (∗) of Theorem 15 has been
established along with these bounds on p(�) and λ = λ(�).

To bound the probability of a success within L(�) steps, we still need a bound on
D(�) = max{1,E(e−λ(Xt+1−b) | Xt ≥ b)}. If 1 does not maximize the expression
then

D(�) = E(e−λ(Xt+1−b) | Xt ≥ b) ≤ E(e−λ|Δ| | Xt ≥ b)

≤ 1 + E(eγΔ′ | Xt ≥ b),

where the first inequality follows from Xt ≥ b and the second one from γ ≥ λ

along with the bound + 1 for the positive terms as argued above. The last term can be
bounded as in the above calculation leading to E(eγΔ′

) = O(1) since that estimation
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uses only the second condition, which holds conditional on Xt > a. Hence, in any
case D(�) = O(1). Altogether, we have

e−λ(�)·� · D(�) · p(�) ≤ e−λ� · 4

λε

= e−λ�ε+ln(4/(λε))

By the third condition, we have λ� ≥ 2 ln(4/(λε)), which finally means that

e−λ(�)·� · D(�) · p(�) ≤ O(e−λ�ε/2))

Choosing L(�) = eλ�/4, Theorem 15 yields

Pr(T (�) ≤ L(�)) ≤ L(�) · O(e−λ�/4) = O(e−λ�/4),

which proves the theorem. ��
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