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Abstract We study a dynamic allocation problem that arises in various scenarios
where mobile clients joining and leaving the system have to communicate with static
stations via radio transmissions. Restrictions are a maximum delay, or laxity, between
consecutive client transmissions and a maximum bandwidth that a station can share
among its clients. We study the problem of assigning clients to stations so that every
client transmits to some station, satisfying those restrictions. We consider reallocation
algorithms, where clients are revealed at its arrival time, the departure time is unknown
until they leave, and clients may be reallocated to another station, but at a cost propor-
tional to the reciprocal of the client’s laxity. We present negative results for previous
related protocols that motivate the study; we introduce new protocols that expound
trade-offs between station usage and reallocation cost; we determine experimentally
a classification of the clients attempting to balance those opposite goals; we prove
theoretically bounds on our performance metrics; and we show through simulations
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that, for realistic scenarios, our protocols behave much better than our theoretical
guarantees.

Keywords Base station assignment ·Reallocation algorithms ·Competitive analysis ·
Radio networks

1 Introduction

We study a dynamic allocation problem that arises in various scenarios where data
on mobile devices has to be gathered and uploaded periodically to one of the many
static access points available. 1 Examples includewearable health-monitoring systems,
where ambulatory patients carry physiological sensors and the data gathered must
be periodically uploaded, and participatory sensing [33,35], where communities of
mobile device users upload periodically information about their environment. For
example, in the SPA system [38], sensors are attached to participants periodically
sampling the heart rate, blood pressure, movement etc.; while in the MobGeoSen
application [32], mobile phones update periodically their geo-location and associated
environment. Depending on individuals the frequency different participants need to
communicate may differ, e.g., depending on the health conditions.

Mobile devices, called clients, join and leave the system continuously, and they
communicate with the static access points, called stations, via radio transmissions.
The ephemeral nature of the clients is modeled by characterizing each client with a
life interval (from its arrival time to departure time), during which the client has to
communicate with some station periodically. The need of periodic communication is
modeled by the client’s laxity, which bounds the maximum duration a client is not
transmitting to some stations. The intrinsically shared nature of the access to stations
is modeled by a maximum station bandwidth shared among its connected clients, by
a client bandwidth required for each transmission, and by the client laxity governing
how often it must connect to some stations.

Based on the above model, we study the problem of assigning clients to stations
so that every client transmits to some stations satisfying the laxity and bandwidth
constraints. We consider settings where clients are revealed at its arrival time and their
departure time is only revealed when they depart (as in online algorithms). Clients may
be reassigned from one station to another and we call such reassignment reallocation.
As to be further elaborated in the next paragraph, reallocation has been considered
in a similar context in the Windows Scheduling problem [23], where the cost of
reallocation is proportional to the number of clients reallocated. While counting the
number of clients reallocated ensures that we do not reallocate too much, this may not
be a fair cost and it is typical in scheduling to consider reallocation (or migration) in
terms of the sizes of the jobs instead of the number, e.g., [37]. Intuitively reallocation
causesmore disturbance to a clientwith small laxity. Therefore,we assume reallocation

1 We consider an upstream model, but the same results apply to downstream communication.
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incurs a cost inversely proportional to a client’s laxity. 2 Reallocation usually involves
handover from one station to another incurring a cost that is time related and also
signal related [20].

We aim to reduce the number of active stations (a station is active if it has at
least one client allocated to it to transmit) and reduce the reallocation cost. However,
these two goals are orthogonal, e.g., we can reallocate the clients every time a client
arrives/departs so that the number of active stations is minimized while incurring a
very high reallocation cost; alternatively we can keep the reallocation cost to zero
but we may use many active stations after a sequence of client departures. In this
paper, we quantify the trade-off between both performance metrics: number of active
stations and reallocation cost. We call this problem Station Assignment Problem with
Reallocation (SA).
Previous work To the best of our knowledge, the closest work to the present paper
is [23], where reallocation algorithms were presented for Windows Scheduling (WS).
TheWSproblem [10,11,16,23] is a particular case of SAwhere the bandwidth require-
ment of each client is the same and each channel (a.k.a. station in our case) can only
serve one client at a time.WS has applications to various areas such as communication
networks, supply chain, job scheduling, media on demand systems, etc. In [23], a unit
cost is incurred for each client reallocated and the objective is to minimize an aggre-
gate sum reflecting the amortized reallocation cost and the number of channels used. A
protocol called Classified Reallocation is showed to guarantee an amortized constant
number of reallocations. This protocol is also evaluated experimentally together with
two other protocols Preemptive Reallocation and Lazy Reallocation.

WS [10,11,16] was first studied without reallocation and the objective was mainly
to minimize the number of channels. As pointed out in [29], the WS problem can be
shown to be NP-hard by assembling results available in literature [9,11,28]. For the
static case [10,11] where a client never departs, we can have online algorithm whose
number of channels is only an additive of O(

√
H) from the optimal H , where H is the

sum of reciprocal laxities of all clients [11]. For the dynamic case [16] where a client
may depart, the maximum number of channels used over time by the online algorithm
is at most a constant times that of the optimal [16]. This means that the comparison
is against peak load which may occur at different time in the online algorithm and the
optimal offline algorithm. In [23] and this work, we compare against current load.

As noted in [11], WS is closely related to the classical bin packing problem [17–
19]. In addition to this, introducing bandwidth in our model gives another perspective
in relation to bin packing. If all clients have very large laxity (such that the laxity
constraint does not restrict them from being assigned to the same station) and the
only concern becomes the bandwidth, then the problem of minimizing the number of
stations becomes the same as minimizing the number of bins. Therefore, lower bounds
on the approximation ratios of bin packing, i.e., 1.54037 for asymptotic approximation
ratio [7] and 1.5 for absolute approximation ratio [21], apply to the station usage ratio
of our problem when reallocation is not allowed.

2 As a first step we consider a reallocation cost in terms of laxity. It is of interest to consider bandwidth in
the cost and we leave this future work.
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SA and other assignment problems SA generalizes several problems. It generalizes
the WS problem that considered periodic transmission to capture bandwidth sharing.
Different objectives are considered, in [10,11,16] the goal is to minimize the number
of channels used while in [23] the goal is to minimize a combined cost of the number
of reallocated clients and number of channels. We extend the later cost function such
that the number of reallocated clients is weighted inversely by the client laxity. The
problem in [25] considers clients with the same laxity and characterizes adversarial
arrivals that admit feasible solutions. This makes the problem substantially different
from ours as the periodic transmission can be handled as if the bandwidth is shared
equally among the clients. We generalize the study to allow different laxities, and
provide trade-off between reallocation cost and number of stations.

Our problem differs from existing scheduling problems despite sharing similari-
ties. SA shares the idea of assigning tasks of different bandwidth to stations as the
load balancing problem [5] of assigning jobs of different loads to machines, yet the
load balancing problem does not consider periodic transmission, does not allow real-
location, and the objective is to minimize the maximum load. Interval coloring [1,22]
concerns the number of machines used but not periodic tasks. Periodic tasks have
been considered in real time scheduling [12] but the periodic appearance of the tasks
is determined by the input, while in our problem the periodic appearance is deter-
mined by the algorithm to satisfy the laxity constraint. The SA problem is also related
to online assignment problems such as b-matching [31], fractional matching [6], and
adwords [24]. Among other details, the objective function is different.

We consider two orthogonal objectives which is common in scheduling context.
E.g., in energy efficient scheduling problems, one would minimize the use of energy
to provide acceptable quality of service. There are two typical approaches of opti-
mization: to minimize the summation of two costs, e.g., energy efficient flow time
scheduling minimizes the sum of energy usage and total flow time of the tasks [2];
and to formulate two performance ratios as we do in this work, e.g., energy effi-
cient throughput scheduling derives online algorithm that is t-throughput-competitive
and e-energy-competitive [15]. Moreover, jointly targeting high bandwidth and low
delay is also quite common in practice. For instance, in [30], the authors present a
greedy scheduling policy for wireless networks aimed to achieve provably good per-
formance in terms of both, throughput and delay. The model is different from ours
(multiple radio channels, which can be viewed as a discrete version of our continuous-
bandwidth allocation, but only one base station and only one packet per client), but
the two-dimensional optimization is the same.

Our objective function takes into account the assignment cost, which is often the
optimization criteria in scheduling and network design problems. A good example is
energy efficient speed-scaling scheduling where the speed of a processor is scalable
to a higher speed consuming more energy while more productive. In [8] the objective
function is the energy usage (modeled as an arbitrary power function) plus fractional
weighted flow time. This is generalized in [26] to parallelmachineswhere the objective
function is energy plus an arbitrary assignment cost. Similar cost functions have been
considered for the minimum-cost network-design problem, where packets have to be
routed through a network of speed scalable routers, and the goal is to minimize the
aggregate cost of assigning a packet to a link and the energy consumption of supporting
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the current load on the router [4]. On the other hand, scheduling in wireless networks
with reallocation of resources has also been considered [13] yet reallocation is assumed
to incur no cost.

Reallocation has been considered in the context of scheduling [3,14,36]. In [14],
a distinction is made between reassignment within server (reschedule) and between
servers (migration). Here, we assume rescheduling within a station is free and we use
“reallocation” to refer to reassignment to other stations. It is often that the number/size
of jobs reallocated is bounded, but by different quantities, e.g., by a function of the
number of jobs in the system [14], the size of the arriving job [36] or the number of
machines [3]. In our problem, we bound the reallocation by the weight (cumulative
inverse laxity) of the clients departed.

2 Our Results

In this paper, we study reallocation algorithms for SA assuming that clients have
laxity and bandwidth requirements (arbitrary for the analysis, set to specific values for
experimental evaluation), that clients depart from the system at arbitrary times, and
that they may be reallocated, but at some cost proportional to the resources needed.
Specifically, our contributions are the following.

– We define a characterization of SA reallocation algorithms, which we call (α, β)-
performance, as a combination of the competitive ratio on station usage (α) and
the cost of reallocations contrasted with the resources released by departures (β).

– We show a sequence of negative results proving that worst-case guarantees cannot
be provided by previous protocols Classified Reallocation and Preemptive Real-
location [23], even if they are modified to our reallocation cost function.

– We present a novel SA protocol called Classified Preemptive Reallocation (CPR)
where clients are classified according to laxity and bandwidth requirements, and
upon departures the remaining clients are preemptively reallocated to minimize
station usage, but only within their class. The protocol presented includes a range
of classifications that exposes trade-offs between reallocation cost and station
usage. In fact, we first found experimentally what is the classification function
that seems to balance these goals (i.e. neither of the number of active stations nor
the reallocation cost is the largest observed), and then we provided theoretical
guarantees for all functions considered.

– In our main theorem, we prove bounds on both of our performance metrics, and
we instantiate those bounds into three classifications and for specific scenarios in
two corollaries (refer to Sect. 5 for the specific bounds.)

– Finally, we present the results of our extensive simulations that allowed us to
find the function that maintains both, station usage and reallocation cost, below
the maximum observed. Additionally, our simulations show that, for a variety of
realistic scenarios,CPRperformsbetter than expected by theworst-case theoretical
analysis, and close to optimal on average.

123



Algorithmica (2019) 81:1096–1125 1101

3 Definitions

ModelWe consider a set S of stations and a set C of clients. Each client must transmit
packets to some station. Time is slotted so that each time slot is long enough to transmit
one packet. A client can be assigned to transmit to only one station in any given time
slot. Starting from some initial time slot 1, we refer to the infinite sequence of time
slots 1, 2, 3, . . . as global time. Each client c ∈ C is characterized by an arrival time
ac and a departure time dc, that define a life interval τc = [ac, dc] in which c is
active. That is, client c is active from the beginning of time slot ac up to the end of
time slot dc. We defineC(t) ⊆ C to be the set of clients that are active during time slot
t . With respect to resources required, each client c is characterized by a bandwidth
requirement bc, and a laxitywc, such that 0 < wc ≤ |τc|. I.e., cmust transmit to some
station in S at least one packet within each wc consecutive time slots in τc. 3 On the
other hand, each station s ∈ S is characterized by a station bandwidth or capacity B,
which is the maximum aggregated bandwidth of clients that may transmit to s in each
time slot.

Notation Let the schedule of a client c be an infinite sequence σc of values from the
alphabet {0} ∪ S. Let σc(t) be the t th value of σc. A station assignment is a set σ

of schedules that models the transmissions from clients to stations. That is, for each
client c ∈ C and time slot t , it is σc(t) = s if c is scheduled to transmit to station
s ∈ S in time slot t , and σc(t) = 0 if c does not transmit in time slot t . If a client c
is scheduled to transmit to a station s we say that c is assigned to station s. Note that
a client is assigned to a station from its arrival time or when it is reallocated to this
station until its departure time or when it is reallocated to another station (not only
at the instant time that it transmits). We say that a station that has clients assigned is
active, and inactive or empty otherwise.

Problem The Station Assignment problem (SA) is defined as follows. For a given
set of stations and set of clients, obtain a station assignment such that (i) each client
transmits to some station at least once within each period of length its laxity during its
life interval, (ii) in each time slot, no station receives from clients whose aggregated
bandwidth is more than the station capacity. Notice that, for any finite set of stations,
there are sets of clients such that the SA problem is not solvable. We assume in this
work that S is infinite and what we want to minimize is the number of active stations.
AlgorithmsWe study reallocation algorithms for SA. That is, the parameters wc and
bc needed to assign the client to some station are revealed at time ac, but the departure
time dc is unknown to the algorithm until the client actually leaves the system (as in
online algorithms). Then, at the beginning of time slot t , an SA reallocation algorithm
returns the transmission schedules of all clients that are active in time slot t , possibly
reassigning some clients from one station to another. (I.e., the schedules of clients
that were already active may be changed from one time slot to another.) We refer to
the reassignment of one client as a reallocation, whereas all the reassignments that
happen at the beginning of the same time slot are called a reallocation event.

3 To maintain station usage low, we will assume that the laxity can be relaxed during reallocation.
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Performance metric Previous work [23] has considered the number of clients reallo-
cated as the reallocation cost. In the present work, we consider a different scenario
where the cost of reallocating a client is proportional to resources requested by that
client. Specifically, we assume a cost for the reallocation of each client c of ρ/wc,
where ρ > 0 is a scaling factor that generalizes this cost to different settings. For our
simulations, we set ρ = 1, since ρ is also a multiplicative factor in our reallocation
metric and, hence, does not provide additional information about the performance of
our protocols in terms of reallocation.

Then, lettingR(ALG, t) be the cost of the reallocation event incurred by algorithm
ALG at time t , and R(ALG, t) be the set of clients being reallocated, the overall cost
is the following.

R(ALG, t) = ρ
∑

c∈R(ALG,t)

1

wc
. (1)

We will drop the specification of the algorithm whenever clear from the context.
With respect to performance, we aim for algorithms with low reallocation cost and

small number of active stations. Unfortunately, these are contradictory goals. Indeed,
the reallocation cost could be zero if no client is reallocated (online algorithm), but the
number of active stations could be as big as the number of active clients (e.g. initially
multiple clients assigned to each station, and then all but one client from each active
station depart). On the other hand, the number of active stations could possibly be
reduced by applying an offline algorithm on each time slot, but the reallocation cost
could be large. Thus, we characterize algorithms with both metrics as follows.

For any SA algorithm ALG, let S(ALG, t) be the number of active stations at
time t in the schedule, let D(ALG, t) be the set of clients departed since the last
reallocation up to time t . Denoting

∑
c∈C ′ 1/wc as the weight of the clients inC ′ ⊆ C ,

let D(ALG, t) be the weight of the clients departed since the last reallocation up to
time t , that is,

D(ALG, t) =
∑

c∈D(ALG,t)

1

wc
.

Also,we denote theminimumnumber of active stations needed at time t as S(OPT, t).
Throughout, we will drop the specification of the algorithm whenever it is clear from
the context. Then, we say that an SA reallocation algorithm ALG achieves an (α, β)-
performance if the following holds for any input.

max
t

S(ALG, t)

S(OPT, t)
≤ α

max
t :R(ALG,t)>0

R(ALG, t)

D(ALG, t)
≤ β.

In words, the overhead on the number of stations used by ALG is never more than
a multiplicative factor α over the optimal, and the reallocation cost, amortized on
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the “space” left available by departing clients is never more than β. The reallocation
cost is only measured at the time when ALG reallocates some clients, i.e., when
R(ALG, t) > 0, because it is notmeaningful to consider times in between reallocation
events. The rationale of comparingR(ALG, t) againstD(ALG, t) is as follows.When
clients do not depart, the WS problem admits very good approximation performance
even without reallocation (recall in the introduction that in such case there is online
algorithm that differs from the optimal offline algorithm by only an additive term [11]).
Therefore, we are motivated to study how algorithms may benefit from reallocation
when there is departure by reusing the space released by the departure.

Notice that the above ratios are strong guarantees, in the sense that they are the
maximum of the ratios instead of the ratio of the maxima. (This distinction was called
previously in the literature against current load versus against peak load respectively.)
Moreover, the reallocation ratio computed as the maximum over reallocation events
is also stronger than the ratio of cumulative weights since the system started.

4 Algorithms

Broadcast treesAcommon theme inWS algorithmswith periodic transmission sched-
ules is to represent those schedules with Broadcast Trees [10,16,23]. Broadcast trees
are a convenient representation because they allow to visualize easily how the lax-
ities are combined. Consider for instance two clients a and b, both with laxity 2.
Both clients may be assigned to the same station alternating their transmissions. This
assignment is represented by one binary tree where a and b hang from the root of a
broadcast tree, modeling such station schedule. Throughout the paper, we refer to a
set of broadcast trees as the forest, and to the distance in edges from a node to the root
of a broadcast tree as the depth. Generalizing, the 2d nodes at depth d in a complete
binary tree represent the time slots t mod 2d (see Fig. 1a). Then, to indicate that some
(periodic) time slot has been reserved for a client c to transmit to a given station s, we
say informally that c is assigned to the corresponding node in the broadcast tree of s.
Throughout the rest of the paper, we use both indistinctively.

Notice that once a client c is assigned to a node i , no other client can be assigned as a
subtree of i , because all the time slots represented by i have been reserved for c. (Refer
to Fig. 1b) However, sibling clients are possible because they represent interleaving
reservations (as in the example with a and b in the previous paragraph). Thus, if at
any internal node only one child has a client assigned, an empty leaf is placed in the
other child, making explicit the availability of the corresponding (periodic) time slot.
Consequently, in broadcast trees all nodes have exactly zero or all possible children.
Consider for instance the tree shown in Fig. 1c, where black nodes represent clients
assigned and white nodes represent available slots. The transmission schedule in this
example is depicted in the figure. Refer to [10,16] for further details on broadcast
trees.
WS algorithms In [16] Chan et al. presented a WS algorithm that allocates clients
with laxities that are powers of 2 preserving the following invariant. For each station,
the broadcast tree modeling the station schedule has at most one available leaf at
each depth. In order to preserve this invariant, when a client departs from a tree, the
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Fig. 1 Illustration of a binary broadcast tree. a A depth-2 tree corresponds to periodic broadcast of period
22. b Clients are assigned to leaves, e.g., client c with laxity 4 is assigned the black node meaning time slot
1, 5, 9, etc. are reserved for it. c Open leaf (white node) corresponds to available slot

remaining clients in the same tree are rearranged for free. This invariant allows to upper
bound the space available at each tree, but if reallocations among trees are possible,
the same idea can be extended to all trees simultaneously. Indeed, that is the approach
followed in the algorithmPreemptiveReallocation (PR) [23],maintaining the invariant
that throughout all trees there is at most one available leaf at each depth. For laxities
that are powers of 2, PR achieves an optimal station usage of H(C(t)) for time slot t ,
where H(C(t)) = �∑c∈C(t) 1/wc	, because the sum of all empty leaves (i.e., the sum
of the inverse of laxities of all clients that could be placed in those leaves) is less than 1.
Such guarantee is met re-establishing the invariant each time a client departs, possibly
through reallocations among trees, at a constant cost per client reallocated between
trees (within the tree are still free). It was shown experimentally that for various inputs
the number of clients reallocated, amortized on the number of arrivals and departures, is
constant [23]. However, we show in Lemma 1 that there are arrival/departure schedules
for which the amortized cost in PR is unbounded. Furthermore, we show in Lemma 2
that if we simply modify PR to reallocate the sibling subtree of smaller weight (rather
than the subtree with less clients) to restore the invariant, there are arrival schedules
for which the reallocation-cost ratio is exponential for our cost function (Eq. 1).

AWSalgorithmwith provable bounded reallocation cost guaranteeswas shownalso
in [23]. The protocol, called Classified Reallocation (CR), guarantees that all clients
assigned to the same station have the same laxity, except for one distinguished station
that handles all laxities linear and above. At any time t , CR has an additive overhead
on station usage of at most 1+ log(min{maxc∈C(t) wc, ��C(t)		}/minc∈C(t) wc), 4 for
laxities that are powers of 2. To attain constant amortized reallocation cost, clients are
moved to/from the distinguished station only after the number of clients in the system
has halved/doubled. However, for the reallocation cost function in Eq. 1, that is a
reallocation cost that depends on the resource requirements of the clients reallocated,
CR has an arbitrarily bad reallocation cost ratio, as we show in Lemma 3.
Classified preemptive reallocation The negative results in Lemmas 1, 2, and 3 apply
to WS. Given that WS is a particular case of SA fixing bc = B for all clients, the same
negative results apply to SA. Thus, should the reallocation cost be maintained low, a

4 Throughout, log means log2 unless otherwise stated.
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Algorithm 1: Classified Preemptive Reallocation. 

x�� is the largest power of 2
that is not larger than x . We represent the transmission schedules with broadcast
trees. A node with both children available becomes an available leaf. A station
with no client assigned becomes non-active. 〈wlow,whigh〉 are the boundaries
of the class of the input client. Refer to Algorithm 2 for further details on the
classification.
Algorithm

upon arrival or departure of a client c do
if arrival then allocate(c, 〈wlow,whigh〉)
else consolidate(c, 〈wlow, whigh〉)

endupon
Procedure allocate(c, 〈wlow, whigh〉)

for each depth i = 
logwc� − �logwlow	 down to 0 do
for each active station s of class 〈wlow, whigh , 1/

B/bc��〉 do

if there is a leaf � available at depth i in the broadcast tree of s then
allocate to � a new subtree with client c assigned at depth 
logwc� − i − �logwlow	
of the broadcast subtree
return

end
end

end
activate a new station s in class 〈wlow, whigh , 1/

B/bc��〉
choose one of the leaves � at depth 0 of the broadcast subtrees of s
allocate to � a new subtree with client c assigned at depth 
logwc� − �logwlow	 of the
broadcast subtree

Procedure consolidate(c, 〈wlow, whigh〉)
for each depth i = 
logwc� − �logwlow	 down to 1 do

if there are two active stations of class 〈wlow,whigh , 1/

B/bc��〉 both with a leaf at depth
i available then reallocate sibling subtree of smaller weight
else return

end
// reallocations cleared a whole broadcast subtree
if there are two active stations of class 〈wlow, whigh , 1/

B/bc��〉 with empty broadcast
subtrees then reallocate a subtree from the station with at least one empty subtree to the station
with exactly one empty subtree

new approach is needed. We present now an online SA protocol (Algorithm 1) which
we call Classified Preemptive Reallocation (CPR), that provides guarantees in sta-
tion usage and reallocation cost. The protocol may be summarized as follows. Clients
are classified according to laxity and bandwidth requirements. Upon arrival, a client
is allocated to a station within its corresponding class to guarantee a usage excess
(with respect to optimal) of at most one station per class plus one station throughout
all classes. Upon departure of a client, if necessary to maintain the above-mentioned
guarantee, clients are reallocated, but only within the corresponding class. The pro-
tocol includes three different classifications providing different trade-offs between
reallocation cost and station usage. We recreate the idea of broadcast trees, but now
we have multiple trees representing the schedule of each station. On one hand, we
use broadcast trees with depth bounded by the class laxities. We call them broadcast
subtrees to reflect that they are only part of a regular broadcast tree. On the other
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hand, we have the multiplicity yielded by the shared station capacity B. An example
of broadcast subtrees can be seen in Fig. 2. Further details follow.

Algorithm 2:Class Computation. 

x�� is the largest power of 2 that is not larger
than x . The parameter f actor indicates how the client classes are defined.
Function findLaxityClass(c,factor)

if 1 ≤ 

wc�� < 2 then return 〈1, 2〉
if 2 ≤ 

wc�� < 4 then return 〈2, 4〉
w ← 4
if f actor = constant then

while 

wc�� ≥ 2w do // whigh = 2wlow
w ← 2w

end
return 〈w, 2w〉

end
else if f actor = logarithmic then

while 

wc�� ≥ w log2 w do // whigh = wlow log2 wlow
w ← w log2 w

end
return 〈w,w log2 w〉

end
else // f actor = linear

while 

wc�� ≥ w2 do // whigh = w2
low

w ← w2

end
return 〈w,w2〉

end

The mechanism to allocate an arriving client can be described as follows. Upon
arrival, a client c is classified according to its laxity and bandwidth requirement. Specif-
ically, c is assigned to a class for clients with bandwidth requirement B/

B/bc�� and
laxity in [wlow,whigh), for somewlow andwhigh that depend on the classification cho-
sen, as shown in Algorithm 2. Notice that each station has up to 

B/bc�� · ��wlow		
subtrees. That is, 

B/bc�� ways to share its capacity B and ��wlow		 ways to share
its schedule (see Fig. 2). Within its class, we assign c to an available leaf at depth

logwc� − �logwlow	 in any subtree in the forest (see Fig. 2b). If there is no such
leaf available, we look at smaller depths up in the forest one by one. If we find an
available leaf at depth �logwlow	 ≤ i < 
logwc� − �logwlow	, we allocate to that
leaf a new subtree with c assigned at depth 
logwc� − i with respect to the root of
the broadcast subtree (see Fig. 2a, c). If no such leaf is available at any depth, a new
broadcast subtree T is created with c assigned at depth 
logwc� − �logwlow	, and T
is assigned to a newly activated station. Refer to Algorithm 1 for further details.

The above allocation mechanism maintains the following invariant: (1) there is at
most one leaf available at any depth larger than �logwlow	 of the forest, and (2) there
is at most one station with leaves available at depth �logwlow	 (an empty broadcast
subtree). When a client departs, this invariant is re-established through reallocations
as follows. When a client c departs, if 
logwc� > �logwlow	, we check if there was
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station1 station1

2noitats1noitats

(a) (b)

(c)

Fig. 2 Illustration of allocation mechanism. Class: laxities [4, 16), bandwidth 1/2. Subtrees are depicted
connected to a broadcast tree to reflect their location in the station schedule. a Arrival of client i with
wi = 8. b Arrival of client j with w j = 4. c Arrival of client k with wk = 4

already a leaf � available at depth 
logwc� − �logwlow	. If there was one, either
the sibling of c or the sibling of � has to be reallocated to re-establish the invariant.
We greedily choose to reallocate whichever sibling has smaller weight of the two
(see Fig. 3a). The process does not necessarily stop here because, if 
logwc� − 1 >

�logwlow	 and there was a leaf already available at depth 
logwc� − 1− �logwlow	,
together with the newly available leaf at depth 
logwc� − 1 − �logwlow	 due to
the reallocation at depth 
logwc�− �logwlow	, it yields two leaves available at depth

logwc�−1−�logwlow	. Hence, again one of the sibling subtrees has to be reallocated
(see Fig. 3b). This transitive reallocations upwards the forestmay continue until a depth
where no reallocation is needed or until the depth �logwlow	 + 1 is reached, when
the reallocation leaves a broadcast subtree empty. In the latter case, we reallocate a
whole broadcast subtree so that only one station has empty subtrees and the invariant
is re-established. Refer to Algorithm 1 for further details.

Notice that when a client is reallocated (even within a station) its laxity may be
violated once. Consider for instance the schedule in Fig. 1c. Let wa = 4, that is, a is
transmitting at its lowest possible frequency. If at the end of time slot 7 client b departs,
at the beginning of time slot 8 client awill be reallocated to the slot of client b, that is, to
transmit next in slot 11. This new schedule violateswa because the previous slot when
a transmitted was 5. For WS, in [16] the issue is approached making a client transmit
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station2

depart

realloc

station1

2noitats1noitats

realloc

(a)

(b)

Fig. 3 Illustration of reallocation mechanism. Class: laxities [4, 16), bandwidth 1/2. After the second
reallocation Station 2 is left empty and, hence, deactivated. Subtrees are depicted connected to a broadcast
tree to reflect their location in the station schedule. a Departure of client j with w j = 4. b Upwards
reallocation of sibling with smaller weight

once more within the original schedule. As the authors say, this approach introduces
a transition delay. In their model, there is no impact on station usage because their
ratio is against peak load. However, for a ratio against current load such as our model,
reserving a slot for a client in more than one station implies an overhead on station
usage. Indeed, for any given allocation/reallocation policy, an adversarial input can be
shown so that either the laxity is stretched or the station usage is not optimal. Hence,
in our model we assume that when a client is reallocated the laxity may be stretched,
folding the cost in the reallocation cost.

5 Analysis

We start with negative results in Lemmas 1, 2, and 3, which apply to WS, and to SA
fixing bc = B for all clients. The proofs are all based on showing an adversarial client
set for which the claim holds.

Lemma 1 There exists a client arrival/departure schedule such that, in Preemptive
Reallocation [23], the ratio of number of clients reallocated against the number of
arrivals plus departures is unbounded.
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realloc

dep

realloc

dep

realloc

dep

realloc

dep

(d)

(a) (b) (c)

Fig. 4 Illustration of Lemma 1. a First departure. b Second departure. c Third departure. d i th departure

Proof Consider the following adversarial client arrival/departure schedule divided
in rounds. In the first round, 2 clients of laxity 2 arrive. Then, for each round r =
2, 3, 4, . . . , two clients of laxity 2r arrive and, after these clients have been allocated,
a client of laxity 2r−1 departs. Figure 4 shows the status of the forest right before each
departure.

To compute the reallocation cost, consider any round r ≥ 2.After the departure, two
leaves are left available at depth r of the forest. For example, refer to Fig. 4c depicting
round 4. After the client at depth 4 departs, two leaves are left available at that depth.
To restore the invariant, PR reallocates the sibling subtrees of the available leaves, so
that they are assigned to the same parent node. In doing so, now two leaves are left
available at depth r − 1 of the forest. Because PR reallocates the subtree with less
clients assigned, similar reallocations are repeated transitively up through the forest
until one of the trees is left empty. (Refer to Fig. 4c). Then, the number of reallocated
clients in round r is r , whereas the number of arriving or departing clients in each
round is always 3. Given that the number of rounds is infinite, the overall reallocation
cost ratio is unbounded. ��

Lemma 2 For Preemptive Reallocation [23], modified so that the sibling subtree of
smaller weight is reallocated to restore the invariant, rather than the subtree with
less clients, the following holds. For any d > 0, there exists a client arrival/departure
schedule such that it is maxt :R(t)>0 R(t)/D(t) ≥ ρ(2d − 1)2/2d .

Proof Given d > 0, consider the following adversarial client arrival/departure sched-
ule divided in phases. First a client of laxity 2d arrives. After this client was assigned, a
sequence of clients arrive one by one so that a new client arrives only after the previous
client was assigned. The sequence of laxities of those clients is the following.

2d+1, 2d+2, . . . , 22d−1, 22d ,
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2d ,2d+1, . . . , 22d−2, 22d−1,

2d−1, 2d ,2d+1, . . . , 22d−2,

. . .

22, 23, . . . , 2d−1, 2d ,2d+1.

Then, another client of laxity 2d arrives. Figure 5a illustrates the assignment of clients
by PR for d = 3. Finally, after all clients have been assigned, the client that arrived first
departs. No other client arrives or departs afterwards. The client departure leaves two
leaves available at depth d. Then, the sibling subtree of smaller weight is reallocated
(refer to Fig. 5a). In turn, this reallocation leaves two leaves available at depth d − 1,
which triggers the reallocation of the sibling subtree of smallerweight (refer to Fig. 5b).
These transitive reallocations continue upwards the tree depth-by-depth up to depth
2 (refer to Fig. 5c), when the last reallocation leaves one of the trees empty (refer to
Fig. 5d).

Then, at the time slot t when all clients have been reallocated, we have

R(t)

D(t)
= ρ

∑
c∈R(t) 1/wc

1/2d

= ρ
∑d+1

i=2
∑d−1

j=0 1/2
i+ j

1/2d

= ρ(2d − 1)2

2d
.

��

Lemma 3 For any integer x > 0 and any w ≥ 2x+5 arbitrarily big such that w is
a power of 2, there exists a client arrival/departure schedule such that, in Classified
Reallocation [23], we have maxt :R(t)>0 R(t)/D(t) ≥ ρ/4

7·2x w.

Proof We use the terminology “channel” in [23] in this proof. The thresholds to
reallocate from/to the big channel in CR are the following [23]. For any time t , if a
client c allocated to the big channel has laxity wc < ��|C(t)|		, c is reallocated to
other channel according to wc, call it wc-channel. On the other hand, if at any time t
a client c that is not allocated to the big channel has laxity wc > 2��|C(t)|		, then c
is reallocated to the big channel.

Consider an adversarial scenario where the system has 2x clients with laxity 2x+2

and 7·2x clients with laxityw, wherew is a power of 2 such thatw ≥ 2x+5. (The order
in which these clients have arrived is irrelevant.) Because the total number of clients
is 2x+3, the clients with laxity w ≥ 2x+5 > 2 · 2x+3 are allocated to the big channel,
whereas the clients with laxity 2x+2 < 2x+3 are allocated to a (2x+2)-channel. After
these clients have been allocated, adversarially, all the clients with laxity w depart.
Because the new number of clients in the system is now 2x , the remaining clients, all
with laxity 2x+2 > 2 · 2x have to be reallocated to the big channel. Then, at time t
after reallocation, the following holds.
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realloc

dep

realloc

realloc

(a) (b)

(c) (d)

Fig. 5 Illustration of Lemma 2. a Before first reallocation. b Before second reallocation. c Before third
reallocation. d Final assignment

R(t)

D(t)
= ρ

∑
c∈R(t) 1/wc∑

c∈D(t) 1/wc

= ρ/4

7 · 2x w.

��
The above lemmas show that the application of previousWS reallocation algorithms

to SA is not feasible. The following theorem gives guarantees on station usage and
reallocation cost for CPR. The proof starts by analyzing CPS to show that the invariant
is re-established after each arrival or departure. Then, competitiveness on station usage
is derived from the invariant properties. Finally, to bound β, a worst case scenario
minimizing the weight of departed clients and maximizing the reallocated weight is
shown.
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Theorem 1 At any time slot t , CPR achieves an (α, β)-performance as follows.

α = max
t

4(1 + Γ (ALG, t) + S(OPT, t))

S(OPT, t)

β = max
t

ρ(2

whighmax(t)��/��wlowmax(t)		 − 1).

Where Γ (ALG, t) is the number of classes used by CPR at time t, and whighmax(t)
and wlowmax(t) are the maximum upper and lower limits of a class at time t.

Proof We start by showing that the invariant in Algorithm 1 is preserved. Recall
that the invariant is the following. At any time slot t and for any class of clients
〈wlow,whigh, x〉, there is at most one leaf available at any depth larger than �logwlow	
of the forest. Theremight bemore than one leaf available at depth �logwlow	 (an empty
broadcast subtree), but only in one station in the class.

The arrival of clients does not change the invariant, but the departure of a client c
at a given depth i > �logwlow	 may change the number of leaves available at depth i .
If there was no leaf available at depth i before the departure, the number of available
leaves at depth i is at most one after departure and the invariant is preserved. If, on
the other hand, there was a leaf � available at depth i , either the sibling of c or the
sibling of � will be reallocated in Line 1 of the algorithm. This reallocation leaves
two sibling leaves available at depth i , which combined yield a leaf available at depth
i − 1. The same argument applies transitively upwards the tree. If the invariant is
re-established before reaching depth �logwlow	, we are done. If on the other hand a
broadcast subtree is emptied, the invariant is re-established (if necessary) reallocating
a whole broadcast subtree in Line 1. Notice that reallocating one subtree is enough to
re-establish the invariant, since before the departure there was (at most) one station
with empty subtrees, and the departure (possibly followed by reallocations)may empty
only one subtree.

To bound α, we observe that the invariant above guarantees that there is at most
one station per class with empty broadcast subtrees. For the stations with non-empty
subtrees, aggregating the at most one available leaf at each depth larger than 0 (and
smaller than 
logwhigh�) of each forest, we have an additional available space of at
most one station, throughout all classes. So, the overhead in station usage is the number
classes plus one. Additionally, we have to take into account that clients are scheduled
to transmission periods that are powers of 2, and with a bandwidth that is a power of
2 fraction of the capacity B, which introduces a multiplicative factor in station usage
of at most 4. Thus, we have

max
t

S(ALG, t)

S(OPT, t)
≤ max

t

4(1 + Γ (ALG, t) + S(OPT, t))

S(OPT, t)

To bound β, we compute the maximum weight of clients reallocated upon a
departure. We notice that, for any class of clients 〈wlow,whigh, x〉, in the worst
case a departure at depth 
logwhigh� triggers transitive reallocations upwards up to
depth �logwlow	 − 1 in the forest, followed by a reallocation of a whole broadcast
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subtree of weight at most 1/��wlow		. The aggregated weight of all those realloca-
tions is then 1/��wlow		 + 1/(2��wlow		) + 1/(4��wlow		) + · · · + 1/

whigh�� =
2/��wlow		 − 1/

whigh��. Replacing, we obtain

max
t :R(ALG,t)>0

R(ALG, t)

D(ALG, t)
≤ max

wlow,whigh

ρ(2/��wlow		 − 1/

whigh��)
1/

whigh��

≤ max
t

ρ(2

whighmax(t)��/��wlowmax(t)		 − 1).

��
Instantiating Theorem 1 in the classification factors of Algorithm 2, we obtain

bounds for all three algorithms, shown in Corollary 1.

Corollary 1 At any time slot t , CPR achieves an (α, β)-performance as follows.

1. Constant factor If the client classification boundaries are [wi , wi+1), wherew1 =
1, and wi = 2wi−1, for any i > 1, then

α = 4

⎛

⎝1 +
1 +

(
1 + log ��B/bmin(t)		

��B/bmax(t)		
) (

1 + log 

wmax(t)��


wmin(t)��

)

H(C(t))

⎞

⎠

β = 3ρ.

2. Logarithm factor If the client classification boundaries are [wi , wi+1), where
w1 = 1, w2 = 2, w3 = 4, and wi = wi−1 logwi−1, for any i > 3, then

α = 4

⎛

⎝1 +
1 +

(
1 + log ��B/bmin(t)		

��B/bmax(t)		
) (

1 + log

wmax(t)��
log logmax{4,

wmin(t)��}

)

H(C(t))

⎞

⎠

β = ρ(2 logwmax(t) − 1).

3. Linear factor If the client classification boundaries are [wi , wi+1), where w1 =
1, w2 = 2, and wi = w2

i−1, for any i > 2, then

α = 4

⎛

⎝1 +
1 +

(
1 + log ��B/bmin(t)		

��B/bmax(t)		
) (

1 + log logmax{2,

wmax(t)��}
logmax{2,

wmin(t)��}

)

H(C(t))

⎞

⎠

β = ρ
(
2
√

wmax(t) − 1
)

.

where H(C(t)) = �∑c∈C(t) 1/wc	, wmax(t) = maxc∈C(t) wc, wmin(t) = minc∈C(t)

wc, bmax(t) = maxc∈C(t) bc, and bmin(t) = minc∈C(t) bc.

Proof Using that S(OPT, t) ≥ H(C(t)), andbounding thevalues ofmaxt Γ (ALG, t)
and maxt

whighmax(t)��/��wlowmax(t)		 in Theorem 1, the claim follows. ��
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We note that the choice of classification factor gives a trade-off on the performance
on station usage and reallocation cost, i.e., the station usage improves as we move
from constant to logarithm to linear factor while the reallocation cost improves as
we move from linear to logarithm to constant factor. We comment that the logarithm
classification gives good performance for both measurement.

To provide intuition, we instantiate Corollary 1 on a setting where all laxities are
powers of 2 and all bandwidth requirements are the full capacity of a station, as follows.

Corollary 2 For a set of clients C such that, for all c ∈ C, it is bc = B and wc = 2i

for some i ≥ 0, and for all t it is wmax(t) > wmin(t) ≥ 4, the following holds. At any
time slot t , CPR achieves an (α, β)-performance as follows.

1. If the client classification boundaries are [wi , wi+1), where w1 = 1, and wi =
2wi−1, for any i > 1, then

α = 1 + (2 + log(wmax(t)/wmin(t))) /H(C(t))

β = 3ρ.

2. If the client classification boundaries are [wi , wi+1), where w1 = 1, w2 =
2, w3 = 4, and wi = wi−1 logwi−1, for any i > 3, then

α = 1 + (2 + logwmax(t)/ log logwmin(t)) /H(C(t))

β = ρ(2 logwmax(t) − 1).

3. If the client classification boundaries are [wi , wi+1), where w1 = 1, w2 = 2, and
wi = w2

i−1, for any i > 2, then

α = 1 + (2 + log(logwmax(t)/ logwmin(t))) /H(C(t))

β = ρ
(
2
√

wmax(t) − 1
)

.

where H(C(t)) = �∑c∈C(t) 1/wc	, wmax(t) = maxc∈C(t) wc, wmin(t) = minc∈C(t)

wc, bmax(t) = maxc∈C(t) bc, and bmin(t) = minc∈C(t) bc.

6 Simulations

In this section, we present the main results of our experimental simulations of the CPR
algorithm. We highlight here that the classification factor (logarithmic) that maintains
simultaneously station usage and reallocation cost below the maximum observed was
found through experimentationwith various functions. For the specific cases presented
(constant, logarithmic, and linear factors) we have focused on a scenario where ∀c ∈
C, bc = 1/2i , and wc = 2 j , where i, j ≥ 0 and B was normalized to 1. For all
the evaluations the reallocation cost of each client c has been set to the inverse of its
laxity 1/wc. That is, ρ = 1, since the scaling factor ρ is also a multiplicative factor in
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Fig. 6 Cumulative inverse laxity (H(C(t))) versus time for n = 4000 and wmax = 1024. Key: L laxity, A
arrival, U uniform, B batched, P Poisson, SB small-biased, LB large-biased

our reallocation metric and, hence, does not provide additional information about the
performance of our protocols in terms of reallocation.

Our theoretical bounds on performance apply to worst-case scenarios. Hence, the
purpose of these simulations is to complement those bounds evaluating how much
better (if anything) our protocol behaves in practice for average cases. Given that the
main feature of the protocol is to allocate (and reallocate) “efficiently”, we aim to
stress such feature considering inputs that entail extremal cases of arrivals. That is,
smooth distributions of arrivals as well as batched arrivals. The set of inputs chosen
are representative of those cases. Moreover, they are also the customary choices in
experimental evaluation for other problems such as job scheduling, packet routing, etc.
Other reallocation algorithms were not simulated since, to the best of our knowledge,
this is the first time that restrictions on laxity and bandwidth under a reallocation cost
proportional to resources requested have been considered.

We have produced various sets of clients (recall that each client is characterized
by a time of arrival, a time of departure, a bandwidth, and a laxity). The laxity of
each client was chosen independently at random from {1, 2, 4, . . . , wmax}, for each
wmax = 1024, 4096, and 16384. We evaluated three distributions over that range:
uniform, biased towards small laxities, and biased towards large laxities. Biasedmeans
probability 0.7 of choosing from one half of the range (lower or higher), and then
uniform probability within the half chosen. The bandwidth of each client cwas chosen
at random as bc = 1/2i with probability 1/2i for each i = 1, 2, . . . For each of
n = 4000, 8000, and 16000 clients, time was discretized in 2n slots.
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Fig. 7 Reallocation/departure ratio (β) versus time for constant classification factor, n = 4000 andwmax =
1024
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Fig. 8 Reallocation/departure ratio (β) versus time for logarithmic classification factor, n = 4000 and
wmax = 1024
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Fig. 9 Reallocation/departure ratio (β) versus time for linear classification factor, n = 4000 and wmax =
1024
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The arrival time of each client was chosen: (a) uniformly at random within the
interval [1, 2n]; (b) in 3 batches of n/3 clients arriving at t = 1, t = n/2, and t = n;
and (c) as a Poisson process with mean rate λ = 0.7. The choice of a Poisson process
intends to model another case where the arrival schedule does not include bursts,
whereas the value chosen for λ intends to model an arrival schedule that is somewhat
dense (0.7 expected arrivals per unit of time until all n clients have arrived). For each
client, the departure time was chosen uniformly at random from the interval [ta, 2n],
where ta is the time of arrival of such client. The inputs for n = 4000 andwmax = 1024
are illustrated in Fig. 6 showing the H(C(t)) function, which is a lower bound on the
optimal number of stations needed.

With respect to the protocol, three different classification factors: constant, log-
arithmic, and linear, were used, as detailed in Algorithm 2. We implemented the
protocol and input generator in Java 8. The simulations were carried out on one of the
Linux servers at Pace University. The specifications are Intel�Xeon�CPUX5450@
3.00GHz, 2GB RAM, 150GB HD, running Debian 8 x64.

For each of the 243 scenarios that arise from the combination of the above variants
(3 wmax, 3 laxity distributions, 3 arrival distributions, 3 numbers of clients, and 3 pro-
tocols), we evaluated experimentally the (α, β)-performance of CPR. Our simulations
showed that the performance in practical settings is indeed as expected or better than
the theoretical bounds (as in Corollary 1). The discussion and plots that follow, refer
to n = 4000 and wmax = 1024, but similar results were obtained for the other cases.
The source code, the input data, and the raw output data are publicly available in [27].

It can be seen in Figs. 7, 8, and 9 that the reallocation vs. departures weight ratio
(bounded by β) is frequently at most 1. For constant factor classification on uniform
arrival distribution and uniform laxity no client was ever reallocated. Hence, this case
is not plotted. Also, the ratio is defined on reallocation events. Hence, no data points
are shown in time slots without reallocations.

To quantify the latter observations, we compute statistics of the reallocation vs.
departures weight ratio, over time slots where some client has been reallocated. The
results are shown in Fig. 10. It can be seen that in all cases the average plus one
standard deviation is below 2.5. For comparison, we compute the bounds β proved in
Corollary 1. Recall that the sample space for wmax in the simulations was [1, 1024].
Nevertheless, being pessimistic and replacing wmax = 8, and the value ρ = 1 used in
our simulations, we have that the theoretical upper bound is β ≥ 3 for all classification
factors. For larger values ofwmax the gap between our observations and the theoretical
bound is even larger, showing that on realistic inputs our protocol behaves much better
than the worst-case theoretical bounds.

With respect to station usage, Fig. 11 shows that after a period upon initial arrivals
and a period before last departures, the station usage ratio against H(C(t)), which
is only a lower bound of the optimal, (bounded by α) is most of the time below 4,
and frequently below 2. We make this observation more precise by computing the
percentage of time slots when the station usage ratio against H(C(t)) is below 4 for
each combination of classification factor and arrival distribution. The results are shown
in Table 1.

Should the reallocation ratio be minimized, the constant factor classification
achieves better performance at a higher station usage. On the other hand, if station
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Fig. 10 Reallocation/departure ratio statistics for different classification factors, laxity distributions, and
arrival distributions, for n = 4000 and wmax = 1024

usage must be kept low, the linear factor classification performs better incurring in
higher reallocation cost. The logarithmic factor balances both costs. Figure 12 illus-
trates these trade offs. In comparison with the bounds proved in Corollary 1, for the
scenarios simulated CPR behaves better than expected. As we see in the figure, these
trade-offs appear in all input distributions, although in some the impact is milder (e.g.
large-biased laxities with uniform or Poisson arrivals).

The inputs chosen for our evaluation are intuitively representative of a variety of
likely cases. Namely, bursts and smooth arrivals, more/even/less demanding clients,
etc. Should a comparison among factors regardless of distributions be needed (e.g.,
if the distribution is unknown, but the extremal values of bandwidths, laxities, and
H(C(t)) are known) the worst-case guarantees in the analysis must be used.

7 Conclusions and Future Work

In this paper, we study a dynamic allocation problem SA and associated reallocation
algorithms assuming that clients have laxity and bandwidth requirements. We charac-
terize these algorithms by defining the notion (α, β)-performance as combination of
the competitive ratio on station usage (α) and the cost of reallocations (β). We show
that previous protocols that work well for unit cost per client reallocation do not work
well when the cost is more general. We then present a new protocol called Classi-
fied Preemptive Reallocation and prove bounds on both of our performance metrics.
We also present experimental simulation results on average cases supplementing our
theoretical analysis on worst case.

There are a few future directions. To further understand the performance of algo-
rithms, it is desirable to derive lower bounds on the performance ratio of a general
algorithms. In this paper we assume that each station has the same capacity. An obvi-
ous generalization is to consider stations having different capacities. In addition, we
may extend cost model to introduce a weight to each client and the reallocation cost
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Fig. 11 Station usage ratio (α) versus time, for n = 4000 and wmax = 1024
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Table 1 Percentage of time slots when the station usage ratio is below 4, for each classification factor,
laxity distribution, and arrival distribution, for n = 4000 and wmax = 1024

Laxity distribution Arrival distribution Factor Percentage

Unif Unif Const 69.0875

SmallBiased Unif Const 76.5625

LargeBiased Unif Const 9.575

Unif Batched Const 83.4

SmallBiased Batched Const 89.225

LargeBiased Batched Const 79.3125

Unif Poisson Const 73.3875

SmallBiased Poisson Const 80.9

LargeBiased Poisson Const 41.475

Unif Unif Log 90.1875

SmallBiased Unif Log 91.9375

LargeBiased Unif Log 75.925

Unif Batched Log 95.0

SmallBiased Batched Log 95.3375

LargeBiased Batched Log 88.825
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Table 1 continued

Laxity distribution Arrival distribution Factor Percentage

Unif Poisson Log 90.0625

SmallBiased Poisson Log 94.05

LargeBiased Poisson Log 78.4375

Unif Unif Linear 91.05

SmallBiased Unif Linear 91.9375

LargeBiased Unif Linear 86.725

Unif Batched Linear 96.0

SmallBiased Batched Linear 95.925

LargeBiased Batched Linear 90.875

Unif Poisson Linear 92.5875

SmallBiased Poisson Linear 94.7375

LargeBiased Poisson Linear 83.275

is then calculated as a weighted cost. In terms of the setting, we aim to quantify the
resources required to complete all requests from clients. A direction is to consider
limited resources and striking a balance between completing more clients and not
violating the resource limitation.
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