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Abstract
We prove that every set of Δ − 1 slopes is 1-bend universal for the planar graphs with
maximum vertex degreeΔ. This means that any planar graphwithmaximum degreeΔ

admits a planar drawing with at most one bend per edge and such that the slopes of the
segments forming the edges can be chosen in any given set of Δ−1 slopes. Our result
improves over previous literature in three ways: Firstly, it improves the known upper
bound of 3

2 (Δ−1) on the 1-bend planar slope number; secondly, the previously known
algorithms compute 1-bend planar drawings by using sets of O(Δ) slopes that may
vary depending on the input graph; thirdly, while these algorithms typically minimize
the slopes at the expenses of constructing drawings with poor angular resolution, we
can compute drawings whose angular resolution is at least π

Δ−1 , which is worst-case

optimal up to a factor of 3
4 . Our proofs are constructive and give rise to a linear-time

drawing algorithm.
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1 Introduction

This paper is concerned with planar drawings of graphs such that each edge is a poly-
line with few bends, each segment has one of a limited set of possible slopes, and the
drawing has a good angular resolution, i.e. it forms large angles between consecutive
edges incident to a common vertex. Besides their theoretical interest, visualizations
with these properties find applications in software engineering and information visu-
alization (see, e.g., [15,34,49]). For example, degree-4 planar graphs (that is, with
maximum degree four) are widely used in database design, where they are typically
represented by orthogonal drawings, i.e. drawings such that every edge is a polygonal
chain of horizontal and vertical segments. Clearly, orthogonal drawings of degree-4
planar graphs are optimal both in terms of angular resolution and in terms of the num-
ber of distinct slopes for the edges. A classical result in the graph drawing literature is
that every degree-4 planar graph, except for the octahedron, admits a planar orthogonal
drawing with at most two bends per edge [5].

It is immediate to see that more than two slopes are needed in any planar drawing
of a graph with vertex degree Δ ≥ 5. The k-bend planar slope number of a graph G
with degree Δ is defined as the minimum number of distinct slopes that are sufficient
to compute a crossing-free drawing of G with at most k bends per edge. Keszegh et
al. [39] generalize the aforementioned technique by Biedl and Kant [5] and prove that
for any Δ ≥ 5, the 2-bend planar slope number of a degree-Δ planar graph is �Δ/2�;
the construction in their proof has an optimal angular resolution, that is 2π

Δ
.

For the case of drawings with one bend per edge, Keszegh et al. [39] also show
an upper bound of 2Δ and a lower bound of 3

4 (Δ − 1) on the 1-bend planar slope
number, while a recent paper by Knauer and Walczak [40] improves the upper bound
to 3

2 (Δ − 1). Both these papers use a similar technique: The graph is first realized as
a contact representation with T -shapes [13], which is then transformed into a planar
drawing where vertices are points and edges are poly-lines with at most one bend. The
set of slopes depends on the initial contact representation and may change from graph
to graph; also, each slope is either very close to horizontal or very close to vertical,
which in general gives rise to a bad angular resolution. Note that Knauer and Walczak
[40] also consider subclasses of planar graphs. In particular, they prove that any set
of �Δ

2 � slopes can be used to construct 1-bend outerplanar drawings of outerplanar
graphs with Δ > 2, and present an upper bound of Δ + 1 and a lower bound of
2
3 (Δ − 1) for planar bipartite graphs. In addition, Durocher and Mondal [23] prove
that 2

3Δ slopes and Δ slopes always suffice to compute 1-bend planar drawings of
2-trees and of planar 3-trees, respectively.

In this paper, we study the trade-off between number of slopes, angular resolution,
and number of bends per edge in a planar drawing of a graph with maximum degreeΔ.
Our main contribution is a constructive proof that any set of Δ − 1 slopes is universal
for 1-bend planar drawings of planar graphs with maximum degree Δ ≥ 4. More
precisely, we prove the following.

Theorem 1 For any Δ ≥ 4, every set S of Δ− 1 slopes is universal for 1-bend planar
drawings of planar graphs with maximum degree Δ. Namely, every such graph has
a planar drawing with the following properties: (i) each edge has at most one bend;
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Fig. 1 A 1-bend planar drawing
with 4 slopes and angular
resolution π

4 of a graph with
Δ = 5.

(ii) each edge segment uses one of the slopes in S. Furthermore, a drawing with these
properties can be constructed in linear time.

The first implication of Theorem1 is an improvement on the upper bound of Knauer
and Walczak [40] on the 1-bend planar slope number of planar graphs. In fact, our
result, in conjunction with [35], implies that the 1-bend planar slope number of planar
graphs with n ≥ 5 vertices and maximum degree Δ ≥ 3 is at most Δ − 1.

Further, by using an equispaced set of slopes, in which the minimum angle between
any two slopes is π

Δ−1 , we can also guarantee that the constructed drawings have
angular resolution π

Δ−1 . We formalize this observation in the following corollary of
Theorem1.

Corollary 1 For any Δ ≥ 4, every planar graph with maximum degree Δ has a planar
drawing with the following properties: (i) each edge has at most one bend; (ii) each
edge segment uses one of the slopes of an equispaced set of Δ− 1 slopes; and (iii) the
minimum angle between any two consecutive edge segments incident to a vertex or a
bend is at least π

Δ−1 . Furthermore, a drawing with these properties can be constructed
in linear time.

An implication of the proof given in [39] for the 3
4 (Δ−1) lower bound on the 1-bend

planar slope number is that a 1-bend planar drawing may require angular resolution
smaller than 4π

3(Δ−2) (see Corollary2 in p. 27). Hence, the result in Corollary1 is worst-

case optimal up to amultiplicative factor of at least 34 (asΔ tends to infinity).We remark
that our result also improves the best-known upper bound of π

4Δ , proved by Duncan
and Kobourov [22], on the angular resolution of 1-bend planar drawings (where the
number of slopes is not limited). This comes at the cost of increased drawing area,
since our algorithm may produce drawings with a non-polynomial area.

We prove Theorem1 by using an approach that is conceptually different from that
of Knauer and Walczak [40]: We do not construct an intermediate representation and
then transform it into a 1-bend planar drawing, but we provide an algorithm that
directly computes a 1-bend drawing of any planar graph with degree at most Δ on
any set of Δ − 1 slopes. Our proof is constructive and it gives rise to a linear-time
algorithm, assuming the real RAM model of computation. Figure1 shows a drawing
computed by our algorithm with an equispaced set of slopes, while Figs. 8 and15
show larger examples with different sets of slopes. The construction for triconnected
planar graphs uses a variant of the shifting method of de Fraysseix, Pach, and Pollack
[14]; this construction is the building block for the drawing algorithm for biconnected
planar graphs, which is based on the SPQR-tree decomposition of the graph into its
triconnected components (see, e.g., [15]). Finally, the result is extended to connected
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graphs by using a block-cutvertex tree decomposition as a guideline to assign subsets
of the universal slope set to the different biconnected components of the input graph. If
the graph is disconnected, since we use universal sets of slopes, the distinct connected
components can be drawn independently.

Related Work The results on the slope number of graphs are mainly classified into
two categories based on whether the constructed drawings are required to be planar or
not. For a (planar) graph G with maximum degree Δ, the slope number (planar slope
number) is theminimum number of slopes that are sufficient to compute a straight-line
(planar) drawing of G. The slope number of non-planar graphs is lower bounded by
�Δ/2� [50] but it can be arbitrarily large, even when Δ = 5 [1,20]. For Δ = 3 this
number is 4 [44], while it is unknown for Δ = 4, to the best of our knowledge. Upper
bounds on the slope number are known for complete graphs [50] and outer 1-planar
graphs [16] (i.e., graphs that can be drawn in the plane such that each edge is crossed
at most once, and all vertices are on the external boundary). Deciding whether a graph
has slope number 2 is NP-complete [26]. Concerning poly-line drawings, Knauer
and Walczak [40] proved that general graphs with maximum degree Δ have a 1-bend
drawingwith �Δ

2 �+1 slopes, which improves a previous result byDujmovic et al. [20].
For a planar graph G with maximum degree Δ, the planar slope number of G is

lower bounded by 3Δ−6 and upper bounded by O(2Δ) [39]. Improved upper bounds
are known for certain subclasses of planar graphs, e.g., planar graphs with Δ ≤ 3
[18,19,36], outerplanar graphs withΔ ≥ 4 [41], partial 2-trees [42], and planar partial
3-trees [33]. Note that determining the planar slope number of a graph is hard in the
existential theory of the reals [32].

The slope number problem has been studied also in the upward setting, i.e., for
straight-line and poly-line drawings of directed graphs such that all edges flow towards
a common direction (see, e.g., [4,28]). Upward drawings of ordered sets with straight-
line edges and few slopes have been studied by Czyzowicz [10] and by Czyzowicz
et al. [11]. Concerning 1-bend drawings, Di Giacomo et al. [17] proved that every
series-parallel directed graph has an upward drawing with one bend per edge and Δ

slopes. The construction is worst-case optimal in terms of the number of slopes, and it
gives rise to drawings with optimal angular resolution π

Δ
. Also, Czyzowicz et al. [12]

studied upward drawings of ordered sets with one bend per edge and few slopes.
Closely related to our problem is the problem of finding d-linear drawings of

graphs, in which all angles (that are formed either between consecutive segments of
an edge or between edge-segments incident to the same vertex) are multiples of 2π/d.
Bodlaender and Tel [8] showed that, for d = 4, an angular resolution of 2π/d implies
d-linearity and that this is not true for any d > 4. Special types of d-linear drawings are
the orthogonal [5,7,28,48] and the octilinear [2,3,45] drawings, for which d = 2 and
d = 4 holds, respectively. As already recalled, Biedl and Kant [5], and independently
Liu et al. [43], have shown that any planar graph with Δ ≤ 4 (except the octahedron)
admits a planar orthogonal drawingwith atmost two bends per edge.Decidingwhether
a degree-4 planar graph has an orthogonal drawingwith no bends is NP-complete [28],
while it is solvable in polynomial time if one bend per edge is allowed [6] (see also the
work by Felsner et al. [25]). On the other hand, octilinear drawings have been mainly
studied in the context of metro map visualization and map schematization [46,47].
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Nöllenburg [45] proved that deciding whether a given embedded planar graph with
Δ ≤ 8 admits a straight-line planar octilinear drawing is NP-complete. Bekos et al.
[2] showed that a planar graph with Δ ≤ 5 always admits a planar octilinear drawing
with at most one bend per edge and that such drawings do not always exist if Δ ≥ 6.
Note that in our work we generalize their positive result to any Δ. Later, Bekos et al.
[3] studied bounds on the total number of bends of planar octilinear drawings.

Finally, trade-offs between number of bends, angular resolution, and area require-
ment of planar drawings of graphs with maximum degree Δ are, for example, studied
in [9,21,22,24,27,30].

Paper Organization The rest of this paper is organized as follows. Preliminaries are
given in Sect. 2. In Sect. 3, we describe a drawing algorithm for triconnected planar
graphs. The technique is extended to biconnected and to general planar graphs in
Sects. 4 and5, respectively. Finally, in Sect. 6 we list some open problems.

2 Preliminaries

A graph G = (V , E) containing neither loops nor multiple edges is simple. We
consider simple graphs, if not otherwise specified. The degree of a vertex of G is the
number of its neighbors. We say that G has maximum degree Δ if it contains a vertex
with degree Δ but no vertex with degree larger than Δ. A graph is connected if for
any pair of vertices there is a path connecting them, and is k-connected, k ≥ 1, if the
removal of any set of k − 1 vertices leaves it connected. A 2-connected (3-connected)
graph is also called biconnected (triconnected, respectively).

A drawing Γ of a graph G maps each vertex of G to a point in the plane and each
edge of G to a Jordan arc between its two endpoints. A drawing is planar if no two
edges cross (except at common endpoints). A planar drawing divides the plane into
connected regions, called faces. The unbounded one is called outer face. A graph is
planar if it admits a planar drawing. A planar embedding of a planar graph is an
equivalence class of planar drawings that combinatorially define the same set of faces
and outer face.

The slope s of a straight line � is the angle that a horizontal line needs to be rotated
counter-clockwise in order to make it overlap with �.1 The slope of an edge-segment
is the slope of the line containing it. Let S be a set of slopes sorted in increasing order;
assumewithout loss of generality up to a rotation, that S contains the 0 angle, whichwe
call horizontal slope. A 1-bend planar drawing Γ of graph G on S is a planar drawing
of G in which every edge is composed of at most two straight-line segments, each
of which has a slope that belongs to S. We say that S is equispaced if the difference
between any two consecutive slopes of S is π

|S| . For a vertex v in G, each slope s ∈ S
defines two different rays that emanate from v and have slope s. If s is the horizontal
slope, then these rays are called horizontal. Otherwise, the one going upward is a top
and the other one is a bottom ray of v. Consider a 1-bend planar drawing Γ of a graph

1 Note that, formally, for a straight line �, the angle that a horizontal line needs to be rotated counter-
clockwise in order to make it overlap with � is the angle of incline of �, while its slope s is the tangent of
this angle. However, for simplicity reasons, and similarly as in previous papers (see, e.g., [16,19,20]), we
refer directly to the angle of incline of � as its slope.
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Fig. 2 A biconnected planar graph (left) and its SPQR-tree (right). For S-, P-, and R-nodes, the skeleton
is depicted in the gray balloons and the reference edge is dashed; for Q-nodes the corresponding edge is
shown

G and a ray rv emanating from a vertex v of G. We say that rv is free if there is no
edge attached to v through rv . We also say that rv is incident to face f of Γ if rv is
free and the first face encountered when moving from v along rv is f .

Let Γ be a 1-bend planar drawing of a graph and let e be an edge on the boundary
of the outer face of Γ that has a horizontal segment. A cut at e is a strictly y-monotone
curve that (i) starts at any point of the horizontal segment of e, (ii) ends at any point of
a horizontal segment of an edge e′ incident to the outer face of Γ , where e′ �= e, unless
both sides of e are incident to the outer face of Γ , and (iii) crosses only horizontal
segments of Γ . A cut at e is called degenerate if both sides of e are incident to the
outer face of Γ and it does not cross any edge of Γ different from e.

Central in our approach is the canonical order of triconnected planar graphs [14,37].
LetG = (V , E) be a triconnected plane graph and letΠ = (P0, . . . , Pm) be a partition
of V into paths, such that P0 = {v1, v2}, Pm = {vn}, and edges (v1, v2) and (v1, vn)

exist and belong to the outer face of G. For k = 0, . . . ,m, let Gk be the subgraph
induced by∪k

i=0Pi and denote byCk the cycle delimiting the outer face of Gk . We say
that Π is a canonical order of G if for each k = 1, . . . ,m − 1 the following hold: (i)
Gk is biconnected, (ii) all neighbors of Pk in Gk−1 are on Ck−1, (iii) |Pk | = 1 or the
degree of each vertex of Pk is 2 in Gk , and (iv) all vertices of Pk with 0 ≤ k < m have
at least one neighbor in Pj for some j > k. A canonical order of any triconnected
planar graph can be computed in linear time [37].

An SPQR-tree T represents the decomposition of a biconnected graph G into its
triconnected components [15]; refer to Fig. 2 for an illustration. Every triconnected
component of G is associated with a node μ ofT . The triconnected component itself
is called the skeleton of μ, denoted by Gskel

μ . A node μ in T can be of four different
types: (i) μ is an R-node, if Gskel

μ is a triconnected graph, (ii) a simple cycle of length
at least three classifies μ as an S-node, (iii) a bundle of at least three parallel edges
classifies μ as a P-node, (iv) the leaves of T are Q-nodes, whose skeleton consists of
two parallel edges. Neither two S- nor two P-nodes are adjacent in T . For each node
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ν that is adjacent to μ inT , graph Gskel
μ contains a virtual edge that corresponds to ν;

symmetrically, Gskel
ν contains a virtual edge that corresponds to μ. We also say that

these two virtual edges correspond to each other. If we assume that T is rooted at a
Q-node ρ, then the virtual edge of Gskel

μ that corresponds to its parent is the reference
edge of μ, and its endpoints are the poles of μ. Note that the reference edge always
exists, unless μ = ρ. Every subtree Tμ rooted at a node μ of T induces a subgraph
Gμ of G called pertinent, which is described byTμ in the decomposition. We remark
that the SPQR-tree of a biconnected planar graph can be computed in linear time [31].

Finally, the BC-tree B of a connected graph G represents the decomposition of
G into its biconnected components. Namely, B has a B-node for each biconnected
component of G and a C-node for each cutvertex of G. Each B-node is connected to
the C-nodes that are part of its biconnected component.

3 Triconnected Planar Graphs

Let G be a triconnected planar graph with maximum degree Δ ≥ 4 and let S be
any set of Δ − 1 slopes containing the horizontal one (as already observed, this
assumption is not restrictive). We consider the vertices of G according to a canonical
order Π = (P0, . . . , Pm). At each step k = 1, . . . ,m, we consider the planar graph
G−

k obtained by removing edge (v1, v2) from Gk . Let C
−
k be the path from v1 to v2

obtained by removing (v1, v2) from Ck . We seek to construct a 1-bend planar drawing
of G−

k on S satisfying the following invariants.

I.1 For any two vertices u ∈ Pi and v ∈ Pj with 0 ≤ i ≤ j ≤ k, one of the following
hold:

(a) If i = j or j = 1, then u and v have the same y-coordinate; also, if edge (u, v)

exists, then it is drawn as a horizontal segment.
(b) Otherwise (i.e., i < j and j �= 1), vertex u is strictly below v; also, if edge

(u, v) exists, then its bend-point (if any) is strictly above u, and below or at
the same y-coordinate as v.

I.2 Every edge on C−
k has a horizontal segment. Also, for any point p of this segment

there is a strictly y-monotone curve on the outer face of the drawing that starts at
p and ends at any point strictly above the drawing (i.e., all its interior points are
above p and it does not cross the drawing).

I.3 Each vertex v on C−
k has at least as many free top rays incident to the outer face

of G−
k as the number of its neighbors in G \ Gk .

We briefly discuss some direct implications of Invariants I.1–I.3. Invariant I.1
implies that no part of the drawing lies below vertices v1 and v2, which are horizontally
aligned. In particular, Invariant I.1a implies that any edge between two vertices in the
same path Pi , with i ≥ 1, is drawn as a horizontal segment. Invariant I.2 implies that
the drawing of C−

k does not “spiralize”. Finally, note that if Invariant I.2 holds for one
point of the horizontal segment of an edge of C−

k , then it also holds for any point of
this segment.
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(a) (b)

Fig. 3 Illustrations for Lemma1; edge (w, z) in the proof is drawn dotted-red (Color figure online)

Once a 1-bend planar drawing on S of G−
m satisfying Invariants I.1–I.3 has been

constructed, a 1-bend planar drawing on S of G = G−
m ∪ {(v1, v2)} can be obtained

by drawing edge (v1, v2) as a polyline composed of two straight-line segments, one
attaching at the first clockwise bottom ray of v1 and the other one at the first anti-
clockwise bottom ray of v2. Note that, since Δ ≥ 4, there are at least three slopes in
S, and thus these two rays cross at a point below v1 and v2 with finite coordinates. By
Invariant I.1, adding this edge does not introduce any crossing.

In the following lemma we show another important property of any 1-bend planar
drawing on S satisfying Invariants I.1–I.3.

Lemma 1 Let Γk be a 1-bend planar drawing on S of G−
k satisfying Invariants I.1–I.3

and let σ be any positive number. For any edge (u, v) of C−
k such that u precedes

v along path C−
k , there exists a 1-bend planar drawing Γ ′

k on S of G−
k , satisfying

Invariants I.1–I.3, such that: (i) the horizontal distance between u and v is increased
by σ ; (ii) the horizontal distance between any two other vertices that are consecutive
along C−

k is the same as in Γk .

Proof We first show that there exists a cut of Γk at (u, v) that separates the subpath of
C−
k connecting v1 to u from the subpath of C−

k connecting v to v2. We use this cut to
construct Γ ′

k as a copy of Γk in which all the horizontal segments that are crossed by
the cut are elongated by σ . For an illustration refer to Fig. 3.

The existence of the cut is proved by induction on k. In the base case, k = 1 holds. In
this case, each edge (u, v) in C−

1 is drawn as a straight-line segment by Invariant I.1a,
and thus any point of this edge can be used to define a degenerate cut. For the inductive
case k ≥ 2, assume that a cut exists for all edges ofC−

ν , with 1 ≤ ν < k. Consider now
an edge (u, v) that belongs to C−

k . If (u, v) also belongs to C−
k−1, then the existence of

the cut is guaranteed by the induction hypothesis. Otherwise, at least one between u
and v belongs to Pk , say v (the other case is symmetric). By Invariant I.2, edge (u, v)

has a horizontal segment. Let u ∈ Pi and v ∈ Pk , for some i ≤ k. We claim that
the horizontal segment of (u, v) is incident to v: If i = k, then (u, v) is drawn as a
single horizontal segment by Invariant I.1a; otherwise, the bend-point of (u, v) cannot
be at the same y-coordinate as u by Invariant I.1b, and thus it must be at the same
y-coordinate as v, as otherwise there would be no horizontal segment.

Let f be the internal face of Γk to which edge (u, v) is incident to; this face is
uniquely defined sinceGk is biconnected and (u, v) is incident to the outer face. By the
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canonical order, there exists at least an edge (w, z) incident to f that belongs to G−
k−1

but not to G−
k . In particular, (w, z) belongs to C−

k−1 and thus it contains a horizontal
segment by Invariant I.2. Also, by Invariant I.1b, both w and z are strictly below v,
and thus the horizontal segment of (w, z) is strictly below the horizontal segment of
(u, v). Let p and p′ be any two points that belong to the horizontal segments of (u, v)

and (w, z), respectively. We have that p lies strictly above p′; also, by Invariant I.2, f
is below p; finally, by Invariant I.1a, all vertices of Pk have the same y-coordinate. It
follows that we can join p and p′ with a y-monotone curve that lies in the interior of
f . By induction, there is a cut starting at any point of the horizontal segment of (w, z),
and in particular at p′, that separates the subpath of C−

k−1 connecting v1 to w from the
subpath of C−

k−1 connecting z to v2. We can join this cut with the y-monotone curve
described above, obtaining the desired cut. In particular, recall that C−

k is obtained by
replacing a subpath π of C−

k−1 containing w and z and with end-vertices denoted by
u� and ur , with a subpath starting at u�, visiting all vertices of Pk , and finishing at
ur . (Note that u� or ur may coincide with u; see e.g. Fig. 3). Thus, the obtained cut at
(u, v) starting from point p separates the subpath of C−

k connecting v1 to u from the
subpath of C−

k connecting v to v2, as desired.
We now describe how to obtain a drawing Γ ′

k of G−
k satisfying all the required

properties. Consider the y-monotone curve γ that is obtained by concatenating the cut
at (u, v) starting at point p with the y-monotone curve that starts at p and ends at any
point above Γk , which exists by Invariant I.2. Let L and R be the two sets of vertices
separated by γ . All the vertices in L and all the edges between any two of them are
drawn in Γ ′

k as in Γk ; all the vertices in R and all the edges between any two of them
are drawn in Γ ′

k as in Γk , after a translation to the right by σ . Finally, for each edge
that is crossed by the cut, its horizontal segment is elongated by σ ; also, if this edge
contains a segment that is not horizontal, then this segment is either drawn in Γ ′

k as in
Γk , if it is to the left of the cut, or translated by σ , if it is to the right of the cut.

We prove that Γ ′
k satisfies all properties of the lemma. First, Γ ′

k is a 1-bend drawing
ofG−

k on S since Γk is, and since all the edge-segments have the same slope in Γ ′
k as in

Γk . Also, Γ ′
k is planar, since Γ ′

k is obtained from Γk by elongating only the horizontal
segments intersected by curve γ , which is y-monotone and spans the whole vertical
extension of Γk . The fact that the horizontal distances between consecutive vertices of
C−
k are the required ones descends from the fact that L contains all the vertices in the

path of C−
k from v1 to u, while R contains all the vertices in the path of C−

k from v to
v2. We finally prove that Γ ′

k satisfies the three invariants. Namely, Invariant I.1 holds
since the y-coordinates of the vertices and of the bend-points, as well as the slope of
the edge-segments, have not been changed, while Invariants I.2–I.3 hold since all the
edges are attached to their incident vertices in Γ ′

k using the same rays as in Γk . 
�
Invariant I.3 guarantees that every vertex on C−

k has enough free top rays incident
to the outer face to attach all its incident edges following it in the canonical order. The
next lemma exploits Lemma1 to show that these rays can be always used to actually
draw these edges.

Lemma 2 Let Γk be a 1-bend planar drawing on S of G
−
k satisfying Invariants I.1–I.3.

Let u be any vertex of C−
k , and let ru be any free top ray of u that is incident to the
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Fig. 4 Illustration for Lemma2

outer face of G−
k in Γk . Then, there exists a 1-bend planar drawing Γ ′

k on S of G−
k ,

satisfying Invariants I.1–I.3, in which ru does not cross any edge of Γ ′
k .

Proof Since ru is a top ray of u incident to the outer face of Γ −
k , if ru crosses some

edges of G−
k , then it also crosses some edges of C−

k . So, we can focus on removing
the crossings with the edges of C−

k .
Let P1 be the path of C−

k between v1 and u, and let P2 be the path of C−
k between

u and v2. Also, let u1 and u2 be the neighbors of u in P1 and P2, respectively. Refer
to Fig. 4. By Lemma1, we can elongate (u, u1) to eliminate all crossings between ru
and edges of P1 without introducing any new crossings between ru and edges of P2.
Analogously, we can elongate (u, u2) to eliminate all crossings between ru and edges
of P2 without introducing any new crossings between ru and edges of P1. The obtained
drawing Γ ′

k satisfies all the requirements of the lemma. The statement follows. 
�
Wenowdescribe our algorithm.First,wedraw P0 = {v1, v2} and P1 = {v3, . . . , v j }

of partition Π such that v1, v3, . . . , v j , v2, and the path connecting them, lie along
a horizontal line, in this order (recall that edge (v1, v2) is not drawn at this stage).
Invariants I.1a and I.2 clearly hold. Invariant I.3 follows from the fact that S contains
Δ − 2 top rays and all vertices drawn so far (including v1 and v2) have at most Δ − 2
neighbors later in the canonical order.

We now describe how to add path Pk , for some k > 1, to a drawing Γk−1 satisfying
Invariants I.1–I.3, in such a way that the resulting drawing Γk ofG

−
k is a 1-bend planar

drawing on S satisfying Invariants I.1–I.3.We distinguish two cases, based on whether
Pk is a chain or a singleton.

Suppose first that Pk is a chain, say {vi , vi+1, . . . , v j }; refer to Fig. 5a. Let u� and
ur be the neighbors of vi and v j in C

−
k−1, respectively. By Invariant I.3, each of u� and

ur has at least one free top ray that is incident to the outer face of Γk−1; among them,
we denote by τa(u�) the first one in anti-clockwise order for u�, and by τc(ur ) the first
one in clockwise order for ur . By Lemma2, we can assume that τa(u�) and τc(ur ) do
not cross any edge in Γk−1. Consider any horizontal line that lies completely above
Γk−1. By possibly applying Lemma1 at any edge between u� and ur we may assume
that the crossing point of τa(u�) is to the left of the crossing point of τc(ur ) along
this horizontal line. Let h be the horizontal line segment between these two crossing
points. We proceed by placing all the vertices vi , vi+1, . . . , v j of Pk on interior points
of h, in this left-to-right order. Finally, we draw edge (u�, vi ) with a segment along h
and the other one along τa(u�); we draw edge (ur , v j ) with a segment along h and the
other one along τc(ur ), and we draw every edge (vq , vq+1), with q = i, . . . , j − 1,
with a unique segment along h.
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(a) (b)

Fig. 5 Illustration of the cases in which Pk is: a a chain, and b a singleton of degree δi in G−
k

By construction, Γk is a planar drawing on S and all the vertices of Pk lie above
u� and ur . Further, the bend-points of edges (u�, v1) and (ur , v j ) lie at the same y-
coordinate as v1 and v j . Hence, Invariant I.1b is satisfied. Since all the edges of Pk are
drawn as horizontal segments, Invariant I.1a is also satisfied. For Invariant I.2, note
that every edge that is drawn at this step has a segment along h, which is horizontal
and lies above Γk−1. Hence, the edges in C−

k \ C−
k−1 satisfy Invariant I.2. Consider

an edge e that is in C−
k ∩C−

k−1. By Invariant I.2, there is a y-monotone curve starting
at any point of the horizontal segment of e and lying in the outer face of Γk−1. Note
that this curve may now be crossed by some edge in C−

k \ C−
k−1 of Γk . In this case,

however, by following the drawing of the crossed edges, one can easily modify this
curve so that it remains y-monotone and lies in the outer face of Γk . Hence, Invariant
I.2 is also maintained. Finally, Invariant I.3 is satisfied since we attached edges (u�, vi )

and (ur , v j ) at vertices u� and ur using the first anti-clockwise free top ray of u� and
the first clockwise free top ray of ur among those that are incident to the outer face,
respectively. Thus, we reduced only by one the number of free top rays incident to
the outer face for u� and ur . For the other vertices of Pk , the invariant is satisfied
since their Δ − 2 top rays are free and incident to the outer face. This concludes our
description when Pk is a chain.

Suppose now that Pk is a singleton, say {vi }, of degree δi ≤ Δ in G−
k . This also

includes the case in which k = m, that is, Pk is the last path of Π . If δi = 2, then vi is
placed as in the case of a chain. So, we may assume in the following that δi ≥ 3. Let
u�, u1, u2, . . . , uδi−2, ur be the neighbors of vi as they appear along C−

k−1.
By Invariant I.3, each neighbor of vi in C−

k−1 has at least one free top ray that is
incident to the outer face of Γk−1; among them, we denote by τa(u�) the first one in
anti-clockwise order for u� and by τc(ur ) the first one in clockwise order for ur , while
for each vertex uq , with q = 1, . . . , δi − 2, we denote by τ(uq) any of these rays
arbitrarily. Refer to Fig. 5b. By Lemma2, we can assume that these rays do not cross
any edge in Γk−1.

Consider any horizontal line hi lying above all vertices of Γk−1. Rays τa(u�),
τ(u1), . . . , τ (uδi−2), τc(ur ) cross hi ; however, the corresponding intersection points
p�, p1, . . . , pδi−2, pr may not appear in this left-to-right order along hi ; see Fig. 6a. To
guarantee this property, we perform a sequence of stretchings of Γk−1 by repeatedly
applying Lemma1. First, if p� is not the leftmost of these intersection points, then let
σ be the distance between p� and the leftmost intersection point. We apply Lemma1
at any edge between u� and u1 alongC

−
k−1 to stretch Γk−1 so that all the vertices in the
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(a) (b)

Fig. 6 a Intersection points p�, p1, . . . , pδi−2, pr appear in a wrong order along hi . b Applying Lemma1
to make p� be the leftmost intersection point

(a) (b)

Fig. 7 Placement of a singleton vi . a Moving vi upwards along λ increases the distance among any two
points ρq and ρq+1. For readability, ρ3 and ρ4 are not drawn in their correct position, which is more to the
right. b After the stretching, p2 coincides with ρ2, and p3, . . . , pδi−2 lie between ρ2 and ρ3

path of C−
k from u1 to v2 are moved to the right by a quantity σ ′ slightly larger than

σ . This implies that p� is not moved, while all the other intersection points are moved
to the right by a quantity σ ′, and thus they all lie to the right of p� in the new drawing;
see Fig. 6b. Analogously, we can move p1 to the left of every other intersection point,
except for p�, by applying Lemma1 at any edge between u1 and u2 alongC

−
k−1. Thus,

by applying this stretching at most δi −1 times, we obtain that in Γk−1 the intersection
points appear in the correct left-to-right order along hi .

We now describe how to place vi . Let β1(vi ), . . . , βδi−2(vi ) be any set of δi − 2 ≤
Δ − 2 consecutive bottom rays of vi . Observe that, if we place vi at any point
above hi , rays β1(vi ), β2(vi ), . . . , βδi−2(vi ) intersect hi in this left-to-right order.
Let ρ1, . . . , ρδi−2 be the corresponding intersection points. The goal is to place vi so
that each ρq , for each q = 1, . . . , δi − 2, coincides with pq . To do so, consider the
line λ passing through p1 with the same slope as β1(vi ). Refer to Fig. 7a. Note that
placing vi along λ and above hi results in ρ1 to coincide with p1. Also note that, while
moving vi upwards along λ, the distance d(ρq , ρq+1) between any two consecutive
points ρq and ρq+1, with q = 1, . . . , δi − 3, increases. Thus, we can place vi along
λ in such a way that d(ρq , ρq+1) > d(p1, pδi−2), for each q = 1, . . . , δi − 3. This
implies that all points p2, . . . , pδi−2 lie strictly between ρ1 and ρ2.

Then, we apply Lemma1 at any edge between u1 and u2 along C−
k−1 to stretch

Γk−1 so that all the vertices in the path of C−
k from u2 to v2 are moved to the right

by a quantity d(p2, ρ2). Refer to Fig. 7b. In this way, u1 is not moved, and thus p1
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still coincides with ρ1; also, p2 is moved to the right to coincide with ρ2; finally,
since d(ρ2, ρ3) > d(p1, pδi−2) > d(p2, pδi−2), all points p3, . . . , pδi−2 lie strictly
between ρ2 and ρ3. By repeating this transformation for all points p3, . . . , pδi−2, we
guarantee that each ρq , with q = 1, . . . , δi −2, coincides with pq . We draw each edge
(vi , uq), with q = 1, . . . , δi −2, with one segment along τ(uq) and one along βq(vi );
see Fig. 5b.

It remains to drawedges (vi , u�) and (vi , ur ),whichmust have a horizontal segment,
in order to satisfy Invariant I.2. By possibly applying Lemma1 at any edge between u�

and u1 alongC
−
k−1 to stretch Γk−1, we can guarantee that τa(u�) crosses the horizontal

line through vi to the left of vi . Similarly, by possibly applying Lemma1 at any edge
between uδi−2 and ur , we can guarantee that τc(ur ) crosses the horizontal line through
vi to the right of vi . We draw edge (vi , u�) with one segment along τa(u�) and one
along the horizontal line through vi , and we draw edge (vi , ur ) with one segment
along τc(ur ) and one along the horizontal line through vi . A drawing Γk produced in
this step of the algorithm is illustrated in Fig. 5b.

The fact that Γk is a 1-bend planar drawing on S follows by the construction. We
show that it satisfies Invariants I.1b, I.2 and I.3. For vertices vi , u�, and ur , for the
edges (vi , u�) and (vi , ur ), and for the edges ofC

−
k \C−

k−1, this can be proved as in the
case in which Pk is a chain. For the other vertices and edges, note that u1, . . . , uδi−2
do not have neighbors in G \ Gk and do not belong to C−

k , and thus do not need to
satisfy Invariants I.2 and I.3. On the other hand, the fact that the edges connecting
these vertices to vi satisfy Invariant I.1b follows from the fact that their bend-points
are along hi , which lies above all the vertices of Γk−1 and below vi . This concludes
our description for the case in which Pk is a singleton.

From the above discussion, it follows that the algorithm described in this section
produces a 1-bend planar drawing on S of any planar graph with maximum degree Δ,
where S is any set of Δ − 1 slopes. We formalize this result in the following theorem,
where we also prove that the algorithm can be performed in linear time. We refer to
Fig. 8 for an example of a drawing constructed by our algorithm.

Theorem 2 For any Δ ≥ 4, every set S of Δ− 1 slopes is universal for 1-bend planar
drawings of triconnected planar graphs with maximum degree Δ. Also, for any such
graph on n vertices, a 1-bend planar drawing on S can be computed in O(n) time.

Proof Let G be any triconnected planar graph with maximum degree Δ ≥ 4. Apply
the algorithm described above to produce a 1-bend planar drawing of G on S. The
correctness has been proven throughout the section.

We now prove the time complexity. As alreadymentioned, computing the canonical
order Π of G takes linear time [37]. Hence, our algorithm can be easily implemented
in quadratic time. In fact, when a path Pk of Π is added, we first apply Lemma2
twice, once for τa(u�) and once for τc(ur ); each application uses Lemma1 twice with
a suitable stretching amount σ , which can be computed in constant time as follows.
Let s be the slope of S such that a = min{s, π − s} is minimum over all slopes in
S (note that s is the “flattest” slope between the one that follows the horizontal slope
in clockwise order in S and the corresponding one in anti-clockwise order). Let ymax

be the largest y-coordinate of the current drawing. Consider the intersection point p
between the horizontal line at ymax and the half-line starting at the origin and having
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v1 v2
v4 v5

v6

v7
v8

v9

v3

Fig. 8 A 1-bend drawing with 5 slopes of a triconnected planar graph with maximum degree 6 constructed
by applying the algorithm of Theorem2

slope s. Note that no segment of the drawing can have a horizontal projection larger
than the absolute value of the x-coordinate of point p. Then we can choose σ equal
to twice this quantity, which guarantees that the considered ray will not cross any
segment of the drawing anymore after the stretching.

After having applied Lemma2 twice as explained above, we apply Lemma1 once
if Pk is a chain, or O(δi ) times if Pk is a singleton vi of degree δi ≤ Δ. In the latter
case, since

∑n
i=1 δi = O(n), the total number of applications of the lemma over all

singletons is O(n). In each application of Lemma1, the stretching amount σ can be
computed in constant time as described in the algorithm. The total quadratic time
comes from the fact that a straightforward application of Lemma1 may require linear
time.

To improve the time complexity of our algorithm to linear we seek to use the
shifting method of Kant [35]. However, as the y-coordinates of the vertices are not
necessarily consecutive, this method is not directly applicable. On the other hand, the
y-coordinates of the vertices that have been placed at some step of our algorithm do
not change in later steps. As noted by Bekos et al. [2], one can exploit this property
so to allow the usage of the shifting method (even in the case of non-consecutive
y-coordinates) in order to perform all applications of Lemma1 in total linear time.
This approach relies on two main observations. The first one is that each chain is not
imposing any restriction on the height of the drawing, i.e., onemay assumew.l.o.g. that
the vertices of each chain are placed one unit above the drawing constructed so far.
This can be guaranteed, e.g., by appropriately stretching the drawing horizontally. The
second observation is that, in order to determine the y-coordinate of a singleton, one
needs to compute the x-distances between its neighbors in the drawing constructed
so far. This inevitably must be done by computing the exact x-distances between the
neighbors of this singleton (which means that one has to “switch” from relative to
exact x-distances for these vertices). The key observation is that the computation of
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exact x-distances will not involve the same set of vertices more than once, which
guarantees that the total time of our algorithm will stay linear. 
�

We conclude this section by observing that every planar graph G with maximum
degree Δ, even if not triconnected, can be triangulated by adding edges so that the
resulting triangulated planar graph G ′ has maximum degree at most � 3

2Δ� + 11, as
shown in [38]. Together with Theorem2, it follows that every set S of � 3

2Δ� + 10
slopes is universal for 1-bend planar drawings of planar graphs, which matches the
upper bound on the 1-bend planar slope number by Knauer and Walczak [40] up to a
small additive factor. In the next sections we improve this bound to Δ−1 with a more
sophisticated argument, hence extending Theorem2 to all planar graphs.

4 Biconnected Planar Graphs

In this section we describe how to extend Theorem2 to biconnected planar graphs.
Note that variants of the canonical order for biconnected planar graphs exist (see,
e.g., [29,30]) and one may wonder whether these variants can be used to prove a
bound of Δ − 1 slopes also for biconnected planar graphs. These variants how-
ever allow vertices having only one predecessor, which may create issues for our
construction. More precisely, let v be a vertex with one predecessor and Δ − 1 suc-
cessors. Since we have Δ − 1 slopes in total, and thus Δ − 2 top rays, we must
use a horizontal segment incident to v when representing an edge that connects v

to one of its successors in the order, but this would violate Invariant I.1b. To over-
come this problem, we present a technique based on the SPQR-tree data structure (see
Sect. 2).

The idea is to traverse the SPQR-tree of the input biconnected planar graph G
bottom-up and to construct for each visited node a special drawing of its perti-
nent graph (except for its two poles) inside an axis-aligned rectangle. In particular,
besides being a 1-bend planar drawing on S, this drawing must have additional prop-
erties concerning the placement of the neighbors of the two poles and the slope of
the edge-segments incident to them. In the following we give a formal definition
and describe how to compute this drawing for each type of node of the SPQR-
tree.

Let T be the SPQR-tree of G rooted at an arbitrary Q-node ρ. Let μ be a node
of T with poles sμ and tμ. Let Gμ be the pertinent graph of μ. Let Gμ be the graph
obtained from Gμ as follows: (i) Remove edge (sμ, tμ), if it exists; (i i) subdivide
each edge incident to sμ (to tμ) with a dummy vertex, which is called a pin of sμ (is
called a pin of tμ); and (i i i) remove sμ and tμ, and their incident edges. Note that, ifμ
is a Q-node other than the root ρ, then Gμ is the empty graph. We denote by δ(sμ,μ)

and δ(tμ,μ) the degree of sμ and tμ in Gμ, respectively; note that the number of pins
of sμ (of tμ) is δ(sμ,μ) − 1 (is δ(tμ,μ) − 1), if edge (sμ, tμ) exists in G, otherwise
it is δ(sμ,μ) (it is δ(tμ,μ)).

The goal is to construct a 1-bend planar drawing of Gμ on S, which lies inside an
axis-aligned rectangle, called chip ofμ and denoted byCμ, that satisfies the following
invariant properties (see Fig. 9a):
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(a) (b)

Fig. 9 a Illustration of a stretchable drawing of a node μ inside a chip Cμ. The poles sμ and tμ (in gray)
do not belong to the drawing. b Illustration for Lemma3

P.1: All pins of sμ lie on one vertical side of Cμ and all pins of tμ lie on the opposite
side.

P.2: For each pin of either sμ or tμ, the (unique) edge incident to the pin is horizontal.
P.3: There exist pins on the bottom-left and on the bottom-right corners of Cμ.

A drawing of Gμ that satisfies Properties P.1–P.3 is such that we can increase its
width without changing the slope of its segments by elongating the horizontal edges
incident to the pins on the left or right side of the chip; for this reason, we say that any
of these drawings is horizontally-stretchable (or stretchable, for short). Note that a
stretchable drawing remains stretchable after any uniform scaling and any translation.

Before giving the details of the algorithm, we describe a subroutine that we will
often use to add the poles of a node μ to a stretchable drawing of Gμ and draw the
edges incident to them.

Lemma 3 Let u ∈ {sμ, tμ} be a pole of a node μ ∈ T and let u1, . . . , uq be the
neighbors of u in Gμ. Suppose that there exists a set of q consecutive free rays of u
and a stretchabledrawing of Gμ such that the elongation of the edge incident to each
pin of u intersects all these rays. Then, it is possible to draw edges (u, u1), . . . , (u, uq),
each with two straight-line segments whose slopes are in S, without introducing any
crossing.

Proof Refer to Fig. 9b. Let p1, . . . , pq be the pins of u, where pi is adjacent to ui
(i = 1, . . . , q). First note that, since p1, . . . , pq are all on the same side of Cμ, the
elongations of their incident edges intersect the q free rays of u in the same order; we
name the rays as r1, . . . , rq according to this order. Also note that, since the elongations
of the edges incident to all the pins intersect all of r1, . . . , rq , the elongation of the edge
incident to either p1 or pq separates u from all the other pins. We assume without loss
of generality that the elongation of the edge incident to p1 separates u from p2, . . . , pq ,
as in Fig. 9b. We then place each pin pi , with 1 ≤ i ≤ q, on the intersection point
between the elongation of its incident edge and ri , and draw edge (u, ui ) as a poly-line
with a single bend at pi . The fact that no crossing is introduced directly follows from
the construction. This concludes the proof of the lemma. 
�

We now describe the algorithm. At each step of the bottom-up traversal of T ,
we consider a node μ ∈ T with children ν1, . . . , νh , and we construct a stretch-
able drawing of Gμ starting from the stretchable drawings of Gν1 , . . . ,Gνh that have
already been constructed. In the following, we distinguish four different cases, based
on whether μ is a Q-, a P-, an S-, or an R-node.

123



Algorithmica (2019) 81:2527–2556 2543

Fig. 10 Construction of a
stretchable drawing of Gμ

inside Cμ, when μ is a P-node

Fig. 11 Construction of a stretchable drawing of Gμ when μ is an S-node

Suppose that μ is a Q-node If μ is not the root ρ of T , we do not do anything, since
Gμ is the empty graph; edge (sμ, tμ) of G corresponding to μ will be drawn when
visiting either the parent ξ of μ, if ξ is not a P-node, or the parent of ξ . In the case in
which μ = ρ, we observe that it has only one child ν1. In particular, Gμ = Gν1 , and
thus the stretchable drawing of Gν1 is also a stretchable drawing of Gμ. Vertices sμ
and tμ, and their incident edges, will be added after the traversal of T .

Suppose that μ is a P-node; refer to Fig. 10. Since Gμ does not contain the edge
between the poles sμ and tμ of μ, for simplicity we assume that none of ν1, . . . , νh
is a Q-node. We create a chip Cμ whose height is larger than the sum of the heights
of the chips Cν1 , . . . ,Cνh and whose width is larger than the maximum width of any
of them. Then, we place the stretchable drawings of Gν1 , . . . ,Gνh so that the chips
Cν1, . . . ,Cνh lie inside Cμ without overlapping with each other, their left sides lie
along the left side of Cμ, and the bottom side of Cνh lies along the bottom side of Cμ.
Finally, we elongate the edges incident to the pins on the right sides of Cν1 , . . . ,Cνh

till reaching the right side of Cμ. The resulting drawing is stretchable since each of
the drawings of Gν1 , . . . ,Gνh is stretchable. In particular, Property P. 3 holds for Cμ

since it holds for Cνh .

Suppose that μ is an S-node; refer to Fig. 11. Let u1, . . . , uh−1 be the internal vertices
of the path of virtual edges between sμ and tμ that is obtained by removing the virtual
edge (sμ, tμ) from the skeleton Gskel

μ of μ. We proceed as follows.
First, we place vertices u1, . . . , uh−1 in this order along a horizontal line lμ. For

i = 1, . . . , h − 1, let τc(ui ) and τa(ui ) be the first top rays of ui in clockwise and
in anti-clockwise order, respectively. Then, for each child νi of μ, with i = 1, . . . , h,
we place the chip Cνi as follows. For i = 2, . . . , h − 1, we possibly apply a uniform
scaling-down of Cνi and then we place it in such a way that its left side is to the right
of ui−1, its right side is to the left of ui , it does not cross τa(ui−1) and τc(ui ), and
either its bottom side lies on line lμ (if edge (ui−1, ui ) /∈ G; see Cν2 in Fig. 11), or it
lies slightly above it (otherwise; see Cνh−1 in Fig. 11). Analogously, we place Cν1 in
such a way that its right side is to the left of u1, it does not cross τc(u1), and either
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its bottom side lies on line lμ (if edge (sμ, u1) /∈ G, as in Fig. 11), or it lies slightly
above it (otherwise). Finally, we place Cνh in such a way that its left side is to the right
of uh−1, it does not cross τa(uh−1), and either its bottom side lies on line lμ (if edge
(tμ, uh−1) /∈ G), or it lies slightly above it (otherwise, as in Fig. 11).

We now draw all the edges incident to each vertex ui , with i = 1, . . . , h − 1.
Namely, if edge (ui−1, ui ) ∈ G, for i = 2, . . . , h − 1, then it can be drawn as a
horizontal segment, by construction (see (uh−2, uh−1) in Fig. 11). Otherwise, ui can
be connected with a horizontal segment to its neighbor in Gνi corresponding to the
pin on the bottom-right corner of Cνi , which exists by Property P. 3 (see u1 and u2
in Fig. 11). In both cases, one of these edges is attached at a horizontal ray of ui .
Analogously, one of the edges connecting ui to its neighbors in Gνi+1 ∪ {ui+1} can be
attached at the other horizontal ray of ui . Thus, it is possible to draw the remaining
δ(ui , νi )+δ(ui , νi+1)−2 ≤ Δ−2 edges incident to ui by attaching them at (a subset
of) the Δ − 2 top rays of ui , by applying Lemma3. In fact, since the chips of νi and
νi+1 lie to the left and to the right of ui , respectively, and do not cross τc(ui ) and
τa(ui ), the elongations of the edges incident to the pins of ui intersect all the top rays
of ui , hence satisfying the preconditions to apply the lemma.

Finally, we construct chip Cμ as the smallest axis-aligned rectangle enclosing the
current drawing. We now show that it is possible to place the pins of poles sμ and tμ
along the two vertical sides of Cμ so to satisfy Properties P.1–P.3.

Suppose first that ν1 is not a Q-node. Then, the left side of Cμ contains the left side
ofCν1 , and thus all the pins of sμ that correspond to pins of pole sν1 of ν1 are already on
the left side ofCμ. Note that, if (sμ, u1) does not belong toG, then these are all the pins
of sμ; also, in this case, the bottom-left corner of Cμ coincides with the bottom-left
corner of Cν1 , which contains a pin due to Property P.3. Hence, Properties P.1–P.3 are
satisfied (see Fig. 11). On the other hand, if (sμ, u1) belongs to G, then Cν1 lies above
lμ, and so it is possible to place the pin of sμ corresponding to (sμ, u1) on the bottom-
left corner ofCμ, and connect it with a horizontal segment to u1 (see the corresponding
case forCνh in Fig. 11); thus, Properties P.1–P.3 are satisfied also in this case. Suppose
now that ν1 is a Q-node; note that in this case edge (sμ, u1) belongs to G, and the pin
corresponding to this edge is the only pin of sμ. Also note that, by construction, vertex
u1 lies on the bottom-left corner of Cμ. In order to avoid overlapping between u1 and
the pin corresponding to (sμ, u1), we slightly enlarge Cμ to the left and place the pin
on its bottom-left corner, hence satisfying Properties P.1–P.3.

A symmetric argument applies to the pins of tμ, which implies that the constructed
drawing of Gμ is stretchable. This concludes the case in which μ is an S-node.

Suppose that μ is an R-node In order to compute a stretchable drawing of Gμ, we
first construct a 1-bend planar drawing on S of the whole pertinent graph Gμ of μ,
including its poles sμ and tμ, and then we remove these poles and their incident edges;
we finally define a chip Cμ and place the pins on its two vertical sides so to satisfy
Properties P.1–P.3.

To compute the drawing of Gμ, we exploit the fact that the skeleton Gskel
μ of μ is

triconnected. Hence, we can use the algorithm described in Sect. 3 as a main tool for
drawing Gμ, with suitable modifications to take into account the fact that each virtual
edge (u, v) of Gskel

μ actually corresponds to a whole subgraph, namely the pertinent
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graph Gν of the child ν of μ with poles sν = u and tν = v. Thus, when a virtual
edge (u, v) is considered in the canonical order, we add the stretchable drawing of
Gν , together with the edge (u, v), if it exists; this enforces additional requirements for
our drawing algorithm.

The first obvious requirement is that the edges connecting u and v to their neighbors
in Gν will occupy δ(u, ν) consecutive rays of u and δ(v, ν) consecutive rays of v, and
not just a single ray for each of them, as in the triconnected case. Note that, however,
reserving the correct amount of rays of u and v is not always sufficient to add the chip
Cν of Gν . In fact, we need to ensure that there exists a placement for Cν such that the
elongations of the horizontal edge-segments incident to the pins of u (of v) intersect
all the reserved rays of u (of v), hence satisfying the preconditions to apply Lemma3.
As an additional difficulty, this has to be done while considering that the edge (u, v),
which does not belong to Gν , may belong to the original graph. This requires two
slightly different constructions, depending on the existence of this edge, in order to
guarantee that some rays of u and v do not remain unused.

From a high-level point of view, for the virtual edges that would be drawn with
a horizontal segment in the triconnected case (all the edges of a chain, and the first
and last edges of a singleton), we handle these requirements by using a construction
similar to the one of the case in which μ is an S-node. For the edges that do not have
any horizontal segment (the internal edges of a singleton), instead, we need a more
complicated construction.

We now describe in detail the algorithm, which is based on considering the vertices
of Gμ according to a canonical order Π = (P0, . . . , Pm) of Gskel

μ , in which v1 = sμ
and v2 = tμ. For k = 1, . . . ,m, we denote by Hk the graph that is the union of the
pertinent graphs of the virtual edges of Gskel

μ connecting vertices in P0, P1, . . . , Pk ,
except for the reference virtual edge (v1, v2) of μ. Note that the reference virtual edge
(v1, v2) of μ represents the rest of the graph with respect to Gμ, and thus we have that
Hm = Gμ.

For each graph Hk , the algorithm constructs a 1-bend planar drawing on S sat-
isfying a modified version of Invariants I.1–I.3. We use Ck to denote the outer
face of Hk and we let C−

k be the path from v1 to v2 containing the vertices in
Pk .

M.1 Let (u, v) be a virtual edge of Gskel
μ , such that u ∈ Pi and v ∈ Pj (i ≤ j). Let ν

be the node of T associated with (u, v).

(a) If i = j or j = 1, then u and v have the same y-coordinate; also, if edge (u, v)

exists, then it is drawn as a horizontal segment. Finally, the drawing of Gν is
inside a rectangle with u and v along its bottom side (possibly at the corners).

(b) Otherwise (i.e., i < j and j �= 1), vertex u is strictly below v; also, if edge
(u, v) exists, then its bend-point (if any) is strictly above u and below or at the
same y-coordinate as v. Finally, the drawing of Gν is inside a rectangle with
u along its bottom side and v along one of its other sides.

M.2 Let (u, v) �= (v1, v2) be a virtual edge of Gskel
μ with both u and v onC−

k . Let ν be
the node ofT associatedwith (u, v). Each edge ofGν incident to u or v (possibly
including (u, v)) has a horizontal segment. Also, consider the edge incident to
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Fig. 12 Construction of a drawing of P0 ∪ P1 satisfying Invariants M.1–M.3

u that is incident to C−
k . Then, for any point p of its horizontal segment there

is a strictly y-monotone curve on the outer face of the drawing that starts at p
and ends at any point strictly above the drawing. The same holds for the edge
incident to v that is incident to C−

k .
M.3 Each vertex ofGskel

μ onC−
k has at least as many free top rays incident to the outer

face of Hk as the number of its neighbors in Gμ that have not been drawn yet.

Note that Invariant M.1 is similar to Invariant I.1. In particular, it ensures that
v1 and v2 are the bottommost vertices in the drawing and are horizontally aligned.
InvariantM.2 corresponds to Invariant I.2, as it ensures that we can still apply Lemma1
and Lemma2. Finally, Invariant M.3 is the natural extension of Invariant I.3 to take
into account our previous observation that a virtual edge of Gskel

μ corresponds to a
whole subgraph of Gμ.

At the first step, we draw P0 = {v1, v2} and P1 = {v3, . . . , v j }. Consider the
path of virtual edges (v1, v3), (v3, v4), . . . , (v j , v2), and let ν1,3, ν3,4, . . . , ν j,2 be the
corresponding children of μ. We consider this path as the skeleton of an S-node μ

with poles sμ = v1 and tμ = v2, and we apply the same algorithm as described in the
previous subsection; refer to Fig. 12. Namely, we place the chips of ν1,3, ν3,4, . . . , ν j,2
inside a rectangle, which we call the chip Cv1,v2 of P0 ∪ P1 (with a slight abuse of
notation).

Note that, by construction, Cv1,v2 has pins on its bottom-left and on its bottom-
right corners. We then place v1 and v2 with the same y-coordinate as the bottom side
of Cv1,v2 , with v1 to the left and v2 to the right of Cv1,v2 . This ensures that we can
draw one of the edges incident to v1 horizontal, and the remaining δ(v1, ν1,3) − 1 by
applying Lemma3. We draw v2 symmetrically.

We denote the resulting drawing byΓ1, and prove that it satisfies the three invariants.
First, observe that for every virtual edge (vi , vi+1), with i = 3, . . . , j − 1, vertices vi
and vi+1 lie on the two bottom side of the rectangle enclosing the drawing of Gνi,i+1 ;
see the dotted rectangle in Fig. 12 for Gν3,4 . Note that this rectangle degenerates to a
horizontal segment if νi,i+1 is aQ-node.Also, the same property holds for virtual edges
(v1, v3) and (v j , v2). Hence, Invariant M.1a is satisfied. Since the existence of the y-
monotone curves requiredby InvariantM.2 is guaranteedby construction,we canprove
that Invariant M.2 is satisfied in the same way we proved that Invariant P.4 holds for
S-nodes. Finally, for Invariant M.3, observe that each vertex vi , with i = 4, . . . , v j−1,
has consumed δ(vi , νi−1,i )+δ(vi , νi,i+1)−2 top rays out of theΔ−2 available ones,
since exactly two of its incident edges are attached at its horizontal rays. Thus, vi has
Δ − δ(vi , νi−1,i ) − δ(vi , νi,i+1) free top rays incident to the outer face, which can be
used to attach the at most Δ− δ(vi , νi−1,i )− δ(vi , νi,i+1) remaining neighbors it may
have in Gμ, and so it satisfies the invariant. Analogous arguments hold for v3 and v j ,
which have consumed δ(v3, ν1,3)+ δ(v3, ν3,4)−2 and δ(v j , ν j−1, j )+ δ(v j , ν j,2)−2
top rays, respectively. As for v1 and v2, they have consumed δ(v1, ν1,3) − 1 and
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Fig. 13 Addition of a chain Pk to drawing Γk−1, resulting in a drawing Γk satisfying Invariants M.1–M.3

δ(v2, ν j,2)−1 top rays, respectively, since each of them has only one edge attached to
a horizontal ray; thus, they have Δ − δ(v1, ν1,3) − 1 and Δ − δ(v2, ν j,2) − 1 free top
rays incident to the outer face, respectively. However, since both v1 and v2 have at least
a neighbor inGμ \H1, their remaining neighbors inGμ are at mostΔ−δ(v1, ν1,3)−1
and Δ− δ(v2, ν j,2)− 1, respectively, and so they also satisfy Invariant M.3. Note that
no other vertices of H1 have further neighbors in Gμ.

We now describe how to add path Pk , for some k > 1, to the current drawing Γk−1
in the two cases in which Pk is a chain or a singleton, so that the resulting drawing Γk

satisfies the three invariants.
Suppose that Pk is a chain, say {vi , vi+1, . . . , v j }. Let u� and ur be the neighbors of

vi and v j inGskel
μ that lie onC−

k , respectively. Denote by ν� and νr the children ofμ cor-
responding to virtual edges (u�, vi ) and (v j , ur ), respectively, and by νi , . . . , ν j−1 the
children of μ corresponding to virtual edges (vi , vi+1), . . . , (v j−1, v j ), respectively.

We define rays τa(u�) and τc(ur ), and the horizontal segment h between them, as
in the triconnected case. However, in this case, we possibly perform an additional
stretching of the drawing, by applying Lemma1 at an edge between u� and ur along
C−
k , in order to ensure that there exists at least an internal point of hwhose x-coordinate

lies between those of u� and ur ; see Fig. 13. Due to Lemma2, we can assume that
τa(u�) and the δ(u�, ν�) − 1 top rays of u� following it in anti-clockwise order do not
cross any edge of Γk−1, and the same for τc(ur ) and the δ(ur , νr ) − 1 top rays of ur
following it in clockwise order. Note that, by Invariant M.3, all these rays are free and
incident to the outer face of the drawing.

Then, as in the previous step in which we considered P0 and P1 of Π , we use the
algorithm for the case in which μ is an S-node to construct a drawing of the subgraph
composed of vertices vi , . . . , v j and of the pertinent graphs of ν�, νi , . . . , ν j−1 and
νr , inside a rectangle Cu�,ur having pins on its bottom-left and on its bottom-right
corners. After possibly performing a uniform scaling-down of Cu�,ur , we place it so
that: (i) its bottom side lies on h; (ii) its left side is to the right of u�; (iii) its right
side is to the left of ur ; and (iv) it does not cross τa(u�) and τc(ur ); see Fig. 13. Note
that conditions (ii) and (iii) can be met due to the previous application of Lemma1,
which ensures that there exists at least an internal point of h whose x-coordinate
lies between those of u� and ur . We will use these two conditions to guarantee that
virtual edges (u�, vi ) and (v j , ur ) satisfy Invariant M.1. Finally, we draw the δ(u�, ν�)

edges between u� and its neighbors in Gν�
∪ {vi }, and the δ(ur , νr ) edges between
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(a)

(b) (c)

Fig. 14 Illustrations for the case in which Pk is a singleton, when μ is an R-node. a An ordering of the
intersection points of sets Bq and Tq , with q = 1, . . . , δi − 2, respecting the BT-ordering condition. b
Placement of vi along line λ. c Addition of chip Cνq to the drawing

ur and its neighbors in Gνr ∪ {v j }, by applying Lemma3, whose preconditions are
satisfied.

The fact that the constructed drawing satisfies the three invariants can be proved
similarly as in the step in which we considered P0 and P1. In particular, the existence
of the y-monotone curves required by Invariant M.2 is guaranteed by the fact that h
lies above Γk−1. Hence, as anticipated above, the only additional argument we need is
to show that (u�, vi ) and (v j , ur ) satisfy Invariant M.1b. Due to condition (ii), to the
construction of Cu�,ur , and to the fact that h lies above u�, we have that the pertinent
graph of ν� lies inside a rectangle having u� along the bottom side and vi along the right
side; see the dotted rectangle in Fig. 13. Analogously, we can prove that the pertinent
graph of νr lies inside a rectangle having ur along the bottom side and vi along the
left side. This concludes the analysis of the case in which Pk is a chain.

Suppose finally that Pk is a singleton {vi }, and let u�, u1, . . . , uδi−2, ur be the
neighbors of vi in Gskel

μ that lie (in this order) along C−
k−1, with δi ≤ Δ. As in the

triconnected case, we assume that δi ≥ 3. Let ν�, ν1, . . . , νδi−2, νr be the children of
μ corresponding to the virtual edges connecting vi to these vertices.

For each q = 1, . . . , δi − 2, we select any set Tq of consecutive δ(uq , νq) free
top rays of uq incident to the outer face, which exist by Invariant M.3, and a set Bq

of consecutive δ(vi , νq) bottom rays of vi ; refer to Fig. 14a. Sets B1, . . . , Bδi−2 are
selected in such a way that all the rays in Bq precede all the rays in Bq+1 in anti-
clockwise order. Since δ(vi , ν�)+ δ(vi , νr ) ≥ 2, vertex vi has enough bottom rays for
sets B1, . . . , Bδi−2. We also define sets T� and Tr as composed of the first δ(u�, ν�)

free top rays of u� in anti-clockwise order and of the first δ(ur , νr ) free top rays of ur
in clockwise order, respectively, which exist by Invariant M.3.

We then select a horizontal line hi lying above every vertex in Γk−1. As in the
triconnected case, after possibly applying Lemma1 at most Δ − 1 times, we can
assume that all the rays in sets T�, T1, . . . , Tδi−2, Tr intersect hi in the correct order.
Namely, when moving along hi from left to right, we encounter all the intersections
with the rays in T�, then all those with the rays in T1, and so on. On the other hand, this
property is guaranteed by construction for the rays in B1, . . . , Bδi−2. This defines two
total left-to-right orders OT and OB of the intersection points of T�, T1, . . . , Tδi−2, Tr
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and of B1, . . . , Bδi−2 along hi , respectively. To simplify the description, we extend
these orders to the rays in T�, T1, . . . , Tδi−2, Tr and in B1, . . . , Bδi−2, respectively.

Our goal is to merge the two sets of intersection points, while respecting OT and
OB , in such a way that for each q = 1, . . . , δi − 2 the following condition, called
BT-ordering condition, holds. If edge (vi , uq) belongs to H , then the first intersection
point of Tq in OT coincides with the first intersection point of Bq in OB , and the
second intersection point of Bq inOB is to the right of the last intersection point of Tq
inOT ; see T1 and B1 in Fig. 14a. Otherwise, that is (vi , uq) /∈ H , the first intersection
point of Bq in OB is to the right of the last intersection point of Tq in OT ; see T3 and
B3 in Fig. 14a. In both cases, the intersection points of Tq and Bq are to the left of
those of Tq+1 and Bq+1.

To achieve this goal, we perform a procedure analogous to the one described in the
triconnected case of our algorithm to make points p1, . . . , pδi−2 coincide with points
ρ1, . . . , ρδi−2. Namely, we consider a half-line λ whose slope is the one of the first
ray in B1 such that, if edge (v1, u1) belongs to H , then λ starts at the first intersection
point of T1 inOT , otherwise, it starts at any point between the last intersection point of
T1 and the first intersection point of T2 in OT . Then, we place vi along λ, far enough
from hi so that the distance between any two consecutive intersection points in OB

is larger than the distance between the first and the last intersection points in OT ; see
Fig. 14b. Finally, we apply Lemma1 at most δi − 3 times to move the intersection
points of sets T2, . . . , Tδi−2, one by one, so to meet the BT-ordering condition; see
Fig. 14a.

Once the BT-ordering condition is met for each q = 1, . . . , δi − 2, we consider
another horizontal line h′

i lying slightly above hi such that its intersections with the
rays in T�, T1, . . . , Tδi−2, Tr and B1, . . . , Bδi−2 appear along it in the same order as
along hi ; refer to Fig. 14c. For each q = 1, . . . , δi − 2, we place the chip Cνq of νq ,
after possibly scaling it down uniformly, in the interior of the region delimited by
these two lines, by the last ray in Tq , and by a ray in Bq (either the second or the first,
depending on whether (vi , uq) ∈ Gμ or not).

We draw the edges incident to vi and uq , for each q = 1, . . . , δi − 2, as follows.
If edge (vi , uq) belongs to Gμ, then we draw it with one segment along the first ray
in Tq and one along the first ray in Bq (see Fig. 14c). For the other edges we apply
Lemma3 twice, whose preconditions are satisfied due to the placement of Cνq (see
the blue and green edges in Fig. 14c).

We conclude by drawing the edges connecting vi , u�, and vertices inGν�
; the edges

connecting vi , ur and vertices in Gνr are drawn symmetrically. First, after possibly
applying Lemma1 at the edge incident to u� that belongs to the path of C

−
k−1 from u�

to ur , we assume that vi is to the right of u�, and that the last ray of T� intersects the
horizontal line through vi at a point pi that is to the left of vi . After possibly scaling
down uniformly the chip Cν�

of ν�, we place it so that: (i) its left side is to the right of
both pi and u�; (ii) its right side is to the left of vi ; (iii) it does not cross the first top ray
of vi in clockwise order; and (iv) its bottom side lies either above the horizontal line
through vi , if edge (u�, vi ) ∈ Gμ, or along it, otherwise. Then, if (u�, vi ) ∈ Gμ, we
draw it with one segment along the last ray of T� and the other one along the horizontal
line through vi . Otherwise, we draw as a horizontal segment the edge connecting vi
to its neighbor in Gν�

corresponding to the pin on the bottom-right corner of Cν�
. We
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finally apply Lemma3 twice, to draw the edges from u� and from vi to their neighbors
in Gν�

.
We prove that Γk satisfies Invariants M.1b, M.2 and M.3. For vertices u�, vi , and

ur , and for the virtual edges (u�, vi ), and (vi , ur ), the same arguments as in the case
in which Pk is a chain hold. On the other hand, vertices u1, . . . , uδi−2 do not belong
to C−

k , and so these vertices and the virtual edges connecting them to vi do not need
to satisfy Invariants M.2 and M.3, but only Invariant M.1b. To see that this is the
case, observe that for each virtual edge (uq , vi ), with q = 1, . . . , δi − 2, we have that
uq is at the bottom side and vi is at the top side of the rectangle enclosing Gνq , by
construction; see the dotted rectangle in Fig. 14c.

Once the last path Pm of Π has been added, we have a drawing Γm of Hm = Gμ

satisfying InvariantsM.1–M.3.We construct a stretchable drawing ofGμ starting from
Γm , as follows. We initialize the chip Cμ of μ as the smallest axis-aligned rectangle
enclosingΓm . By InvariantM.1a, vertices v1 and v2 lie on the bottom side ofCμ. Also,
by Invariant M.2, all the edges connecting either v1 or v2 to one of their neighbors
attach to this neighbor with a horizontal segment (this is due to the fact that v1 and v2
belong to C−

k , for all k = 1, . . . ,m). We thus remove v1 and v2 (and their incident
edges) from Γm , we elongate the horizontal segments incident to their neighbors till
reaching the vertical sides of Cμ, and we place pins at their ends. The fact that the
obtained drawing satisfies Properties P.1–P.3 follows from the observation that v1 and
v2 were on the bottom side of Cμ, and from the fact that they were both using a
horizontal ray to attach to one of their neighbors. This concludes the case in which μ

is an R-node.
Once the bottom-up traversal of T has been completed, after visiting the root ρ

of T , we have a stretchable drawing of Gρ inside a chip Cρ , which we extend to a
drawing ofG as follows. Refer to Fig. 9a. We place the poles sρ and tρ of ρ at the same
y-coordinate as the bottom side of Cρ , with sρ to its left and tρ to its right, so that Cρ

does not cross any of the rays of sρ and of tρ . Then, we draw edge (sρ, tρ) with one
segment along the first bottom ray in clockwise order of sρ and the other one along
the first bottom ray in anti-clockwise order of tρ . Note that, since Δ ≥ 4, these rays
intersect at a point with finite coordinates. Also, we draw the edges connecting sρ and
tρ to the vertices corresponding to the pins on the bottom corners of Cρ as horizontal
segments. Finally, we draw all the remaining edges incident to sρ and tρ by applying
Lemma3 twice. We refer to Fig. 15 for an example of a drawing constructed by our
algorithm. The following theorem summarizes the discussion in this section.

Theorem 3 For any Δ ≥ 4, every set S of Δ− 1 slopes is universal for 1-bend planar
drawings of biconnected planar graphs with maximum degree Δ. Also, for any such
graph on n vertices, a 1-bend planar drawing on S can be computed in O(n) time.

Proof Let G be any biconnected planar graph with maximum degree Δ. Apply the
algorithm described above to produce a 1-bend planar drawing of G on S. The cor-
rectness has been proved throughout the section.

For the time complexity, first observe that the SPQR-treeT of G can be computed
in linear time [31]. Also, for each nodeμ ∈ T , we can compute a stretchable drawing
of Gμ in time linear in the size of Gskel

μ assuming that for each chip we only store the
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v1 v2
v4 v5

v7

v8

v9

v3

v6

Fig. 15 A 1-bend drawing with 5 slopes of a biconnected planar graph with maximum degree 6 constructed
by applying the algorithm of Theorem3. The SPQR-tree of this graph contains a Q-node for each of its
edges, two R-nodes, and one S-node. The two shaded in gray rectagles illustrate one R-node and one S-node

coordinates of two opposite corners. Final coordinates can then be assigned by travers-
ing the SPQR-tree top-down. In particular, notice that the linear-time complexity for
R-nodes can be proved analogously as for the algorithm for triconnected graphs; see
Theorem2. Since the total size over all the skeletons of the nodes ofT is linear in the
size of G, the time complexity of the algorithm is linear. 
�

5 General Planar Graphs

Let G be a connected planar graph with maximum degree Δ and letB be its BC-tree.
Let β be a B-node whose parent inB is the C-node γ . Let (γ, ξ) be an edge of β, and
consider the SPQR-tree of β rooted at the Q-node ρ corresponding to edge (γ, ξ). We
call Gβ the graph Gρ , as defined in Sect. 4.

For each B-node β ofB, we compute a stretchable drawing Γ (β) ofGβ , satisfying
an additional property other than P.1–P.3. Consider any vertex c of β different from γ

that is a cut-vertex in G, and let δc be the number of neighbors of c in G that do not
belong to β.

P.4 There exists a set of δc consecutive bottom rays of c that are not used in Γ (β).

To satisfy the above property, we slightly modify the algorithm of Theorem3, as
follows. Recall that cut-vertex c is drawn in Γ (β) by this algorithm when considering
a node μ of the SPQR-tree of β such that μ is either an S-node or an R-node and c
is an internal vertex of the corresponding skeleton. If μ is an S-node, all the bottom
rays of c are free by construction. If μ is an R-node, c is either a singleton or part of a
chain in the canonical order used to draw the pertinent graph of μ. When c is part of a
chain, its bottom rays are free again by construction. When c is a singleton, note that
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Fig. 16 Placement of the chip
Cρ for a child ζi of β

the algorithm reserves a set of consecutive bottom rays Bq (as in Fig. 14a) for each
virtual edge connecting c with one of its predecessors in the canonical order. Hence,
it is enough to reserve one more set B∗ with cardinality δc. The argument that c has
enough bottom rays is implied by the fact that c uses both its horizontal rays in Γ (β),
it has Δ − 2 bottom rays, and it has maximum degree Δ in G.

We now show how to combine the drawings of all the B-nodes of B. Let β be a
B-node of B. For each C-node c that is a child of β in B, consider all its children
ζ1, . . . , ζq , with q ≤ Δ − 2. Note that for each of these blocks ζi , with i = 1, . . . , q,
the drawing Γ (ζi ) of Gζi inside a chip Cζi has been computed by rooting the SPQR-
tree of ζi at a Q-node ρi corresponding to an edge incident to c. This implies that c
does not belong to Gζi . We now show how to add Cζi and the pole wi of ρi different
from c to the drawing Γ (β) of Gβ , and how to draw the edges connecting c and wi to
their neighbors in Gζi .

Let δ(c, ζi ) be the degree of c in ζi . Since
∑q

i=1 δ(c, ζi ) = δc, we can insert these
drawings into Γ (β) using the δc free bottom rays of c, which are guaranteed to exist
by Property P.1, as follows. Let τa and τb be the a-th and b-th rays within the δc
free bottom rays of c in anti-clockwise order, where a = 1 + ∑i−1

j=1 δ(c, ζ j ) and

b = ∑i
j=1 δ(c, ζ j ). These two rays define a cone in which we place the chip Cρ , refer

to Fig. 16. Let τ ′
a be the top ray of wi with the same slope as τa . Suppose that wi has

t top rays following τ ′
a in clockwise order. After possibly performing a scaling-down

of Cρ , we place it such that: (a) Cρ lies in the intersection of the cone delimited by
τa and by the bottom ray of c following τa in anti-clockwise order, and of the cone
delimited by the first top ray of wi in anti-clockwise order and by the first bottom
ray of wi in clockwise order; (b) the (t + 1)-th pin of wi from top to bottom has
the same y-coordinate as wi . These two properties guarantee that all the edges that
connect c and wi to vertices in Gζi can be drawn with one bend and with slopes in
S. In particular, note that edge (c, wi ) exists, since it corresponds to the Q-node ρi ;
this edge is drawn as a single segment along τa . Also, the edge incident to wi and to
the vertex corresponding to the (t + 1)-th pin of wi from top to bottom is drawn as a
horizontal segment. Further, the edges connecting c to its neighbors in Gζi are drawn
by applying Lemma3. Finally, the edges connecting wi to its neighbors in Gζi are
drawn by applying twice Lemma3, once for those above the (t + 1)-th pin of wi , and
once for those below it.

Since the modification to the algorithm in Theorem3 that is applied to satisfy
Property P.1 does not alter its linear-time complexity, and since the procedure to

123



Algorithmica (2019) 81:2527–2556 2553

Fig. 17 Illustration for the proof
of Corollary2

C

C ′
u′

w′v′

u

v w

merge all the computed drawing can also be implemented to run in linear time with
respect to the size of B, the overall procedure takes linear time. Thus, the algorithm
described in this section extends the result of Theorem3 to every connected graph.

In order to obtain a complete proof of Theorem1, we need to extend this result
even to disconnected graphs. This is however immediately implied by the fact that we
construct universal slope sets, and thus the same set of slopes can be used to draw
each connected component independently.

We conclude this section by proving the following corollary of Theorem1 that
proves that planar graphs of degree at most Δ admit 1-bend planar drawings whose
angular resolution is worst-case optimal up to a multiplicative factor of at least 3

4 (as
Δ tends to infinity).

Corollary 2 A planar graph with maximum degree Δ ≥ 3 admits a planar drawing
with at most one bend per edge and angular resolution at least π

Δ−1 . Also there exist
planar graphs with maximum degree Δ whose planar drawings with at most one bend
per edge all have angular resolution strictly less than 4π

3(Δ−2) .

Proof For Δ ≥ 4, the first part of the statement is a consequence of Theorem1 when
considering an equispaced set of Δ − 1 slopes. When Δ = 3, the statement follows
from a work by Kant [35] who proved that an orthogonal planar drawing with at most
one bend per edge can always be constructed.

The second part of the statement is an almost straightforward consequence of the
technique by Keszegh et al. [39] used to prove a 3

4(Δ−1) lower bound on the 1-bend
planar slope number. For every integer Δ ≥ 3, consider the graph GΔ of Fig. 17
(which shows the case when Δ = 5). In any planar embedding of GΔ, either the cycle
C (bold in Fig. 17) is in the interior of the 3-cycle with vertices u, v, w or the cycle
C ′ (bold in Fig. 17) is in the interior of the 3-cycle with vertices u′, v′, w′. Assume
that C is inside the 3-cycle induced by vertices u, v, w (the proof in the other case
is analogous). In every 1-bend planar drawing of G, the 3-cycle with vertices u, v, w

is represented as a k-gon � with 3 ≤ k ≤ 6. It follows that the sum of the internal
angles of � at vertices u, v, w is strictly less than 4π and, therefore, at least one of
these three angles–say the one at u–is strictly less than 4π

3 . Since the number of edges
connecting u to C is Δ − 3, it follows that the minimum angle between any two such
edges is strictly less than 4π

3(Δ−2) . 
�
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6 Conclusions and Open Problems

In this paper, we improved the best-known upper bound of Knauer and Walczak [40]
on the 1-bend planar slope number from 3

2 (Δ − 1) to Δ − 1, for Δ ≥ 4. We obtained
this as a corollary of a stronger result, namely, that any set of Δ−1 slopes is universal
for 1-bend planar drawings of planar graphs with maximum degree Δ ≥ 4. By using
an equispaced set of slopes, the angular resolution of our drawings is at least π

Δ−1 .
A side-result of our work is the following. For Δ = 4, our algorithm guarantees

that planar graphs with maximum degree 4 admit 1-bend planar drawings on a set of
slopes {0, π

3 , 2π
3 }, while previously it was known that such graphs can be embedded

with one bend per edge on a set of slopes {0, π
4 , π

2 , 3π
4 } [2] and with two bends per

edge on a set of slopes {0, π} [5].
Our work raises several open problems.

– Reduce the gap between the 3
4 (Δ − 1) lower bound and the Δ − 1 upper bound

on the 1-bend planar slope number.
– Our drawings may have super-polynomial area. Is this unavoidable for 1-bend
planar drawings with few slopes (and good angular resolution)?

– Study the straight-line case (e.g., for degree-4 graphs). Note that the stretching
operation might be difficult in this setting.
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