
Algorithmica (2019) 81:2430–2483
https://doi.org/10.1007/s00453-018-00540-x

Computing L1 Shortest Paths Among Polygonal Obstacles
in the Plane

Danny Z. Chen1 · Haitao Wang2

Received: 25 November 2015 / Accepted: 24 December 2018 / Published online: 8 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Given a point s and a set of h pairwise disjoint polygonal obstacles with a total of
n vertices in the plane, suppose a triangulation of the space outside the obstacles is
given; we present an O(n + h log h) time and O(n) space algorithm for building a
data structure (called shortest path map) of size O(n) such that for any query point
t , the length of an L1 shortest obstacle-avoiding path from s to t can be computed in
O(log n) time and the actual path can be reported in additional time proportional to the
number of edges of the path. The previously best algorithm computes such a shortest
path map in O(n log n) time and O(n) space. So our algorithm is faster when h is
relatively small. Further, our techniques can be extended to obtain improved results
for other related problems, e.g., computing the L1 geodesic Voronoi diagram for a set
of point sites among the obstacles.

Keywords Shortest paths · Polygonal domains · L1 metric · Voronoi diagrams ·
Computational geometry · Algorithms and data structures

1 Introduction

Computing obstacle-avoiding shortest paths in the plane is a fundamental problem in
computational geometry [6,10,15,19,22,24,25,31,34,36]. In this paper,we consider the

Preliminary results of this paper appeared in the Proceedings of the 19th European Symposium on
Algorithms (ESA 2011) and the Proceedings of the 30th Symposium on Theoretical Aspects of Computer
Science (STACS 2013).

B Haitao Wang
haitao.wang@usu.edu

Danny Z. Chen
dchen@nd.edu

1 Department of Computer Science and Engineering, University of Notre Dame, Notre Dame,
IN 46556, USA

2 Department of Computer Science, Utah State University, Logan, UT 84322, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-018-00540-x&domain=pdf
http://orcid.org/0000-0001-8134-7409

Algorithmica (2019) 81:2430–2483 2431

L1 version of the problem where the path length is measured by the L1 metric. Given
a point s and a set of h pairwise disjoint polygonal obstacles, P = {P1, P2, . . . , Ph},
with a total of n vertices in the plane, the plane minus the interior of the obstacles is
called the free space of P . Two obstacles are pairwise disjoint if they do not intersect
in their interior. The L1 shortest path map problem, denoted by L1-SPM, is to compute
a single-source shortest path map (SPM for short) with s as the source point such that
for any query point t , an L1 shortest obstacle-avoiding path from s to t can be obtained
efficiently.

If the input also includes another point t and the problem only asks for a single
L1 shortest path from s to t , then we call this problem version the L1 shortest path
problem, denoted by L1-SP.

A closely related problem solved by our approach is to find shortest rectilinear
paths. A rectilinear path is a path each of whose edges is parallel to a coordinate axis.
Rectilinear shortest paths are used widely in VLSI design and network wire-routing
applications. As shown in [11,27,29,30], it is easy to convert an arbitrary polygonal
path to a rectilinear path with the same L1 length. Thus, in this paper, we focus on
computing polygonal paths measured by the L1 distance.

1.1 PreviousWork

The L1-SP problem has been studied extensively (e.g., see [7,8,11,12,27,29,30,37]).
In general, there are two approaches for solving this problem: constructing a sparse
“path preserving” graph (analogous to a visibility graph), and the continuous Dijkstra
paradigm. Clarkson, Kapoor, and Vaidya [11] constructed a graph of O(n log n) nodes
and O(n log n) edges such that a shortest path can be found in the graph in O(n log2 n)

time; subsequently, they gave an algorithm of O(n log1.5 n) time and O(n log1.5 n)

space [12]. Based on some observations, Chen, Klenk, and Tu [8] showed that the
problem was solvable in O(n log1.5 n) time and O(n log n) space. By applying the
continuous Dijkstra paradigm,Mitchell [29,30] solved the problem in O(n log n) time
and O(n) space. An O(n + h log h) time lower bound can be established for solving
L1-SP (e.g., based on the results in [13]). Hence, Mitchell’s algorithm is optimal when
h = �(n). By using a corridor structure and building a smaller path preserving graph,
Inkulu and Kapoor [21] solved the L1-SP problem in O(n + h log1.5 n) time and
O(n + h log1.5 h) space.

For the query version of the problem, i.e., L1-SPM, Mitchell’s algorithm [29,30]
builds an SPM of size O(n) in O(n log n) time and O(n) space such that for any query
point t , the length of an L1 shortest path from s to t can be reported in O(log n) time
and an actual shortest path can be found in additional time linear in the number of
edges of the path. An SPM is a decomposition of the free space into regions (or cells)
such that each cell C has a “root” r (which is a vertex of P or the source point s) with
the following property: for any point t ∈ C , there is a shortest path from s to t that is a
concatenation of a shortest path from s to r and the line segment r t . Refer to [29,30]
for more details.

123

2432 Algorithmica (2019) 81:2430–2483

In addition, for the convex case where all polygonal obstacles in P are convex,
to our best knowledge, we are not aware of any previous results better than those
mentioned above.

1.2 Our Results

Given a triangulation of the free space of P , we present an algorithm that builds an
SPM of size O(n) in O(n + h log h) time and O(n) space, with query time the same
as that in [29,30]. The currently best algorithms can triangulate the free space of P
in O(n log n) time or O(n + h log1+ε h) time for any ε > 0 [2]. Thus, our algorithm
is faster than Mitchell’s O(n log n) time algorithm [29,30] when h is relatively small,
e.g., h = O(nδ) for any positive δ < 1.

Our approach usesMitchell’s algorithm [29,30] as a procedure and further explores
the corridor structure of P [25]. One interesting observation we found is that to find
an L1 shortest path among convex obstacles, it is sufficient to consider at most four
extreme vertices (along the horizontal and vertical directions) of each obstacle (these
vertices define a core for each obstacle). We then apply Mitchell’s algorithm to these
cores, which takes only O(h log h) time.Morework needs to be done for computing an
SPM. For example, one key result we have is that we give an O(n′+m′) time algorithm
for a special case of constructing the L1 geodesic Voronoi diagram in a simple polygon
of n′ vertices form′ weighted point sites, where the sites all lie outside the polygon and
influence the polygon through one (open) edge (see Fig. 1). We are not aware of any
specific previous work on this problem, although an O((n′ + m′) log(n′ + m′)) time
solution may be obtained by standard techniques (e.g., sweeping, divide-and-conquer,
and continuous Dijkstra scheme). Our linear time algorithm, which is clearly optimal,
may be interesting in its own right.

For the convex case where all obstacles in P are convex, we can find a shortest s-t
path in O(n + h log h) time and O(n) space since the triangulation can be done in
O(n + h log h) time (e.g., by the approaches in [2,20]); this is optimal. A by-product
of our techniques is that in O(n+h log h) time and O(n) space, we can build an SPM
of size O(h) (instead of O(n)) such that the shortest path length queries are answered
in O(log h) time each (instead of O(log n) time).

r3

r2

r1 VD(r)1

r3

r2

r1

d

c

d

c

VD(r)

VD(r)
(b)(a)

B

3

2

Fig. 1 a Three weighted sites (in red) and a simple polygon B with an open edge cd. The goal is to compute
the L1 geodesic Voronoi diagram in B with respect to the three sites which influence B only through the
edge cd. b Illustrating a possible solution: B is partitioned into three Voronoi regions VD(ri) for each ri ,
1 ≤ i ≤ 3 (Color figure online)

123

Algorithmica (2019) 81:2430–2483 2433

Our techniques have other applications. The L1 geodesic Voronoi diagram problem,
denoted by L1-GVD, is defined as follows. Given an obstacle set P and a set of m
point sites in the free space, compute the geodesic Voronoi diagram for the m point
sites under the L1 metric among the obstacles in P , i.e., partition the free space into
regions such that each point site q corresponds to a region that consists of all points
in the free space whose nearest point site is q with respect to the L1 shortest path
distance. Mitchell [29,30] solved the problem in O((n + m) log(n + m)) time. Our
approach can compute the diagram in O(n + (m + h) log(m + h)) time after the
free space along with the m point sites is triangulated. Note that the time complexity
becomes O(n + m logm) if it is applied to a simple polygon. In comparison, the
Euclidean problem in simple polygons is solvable in O(n log n +m logm) time [33],
and recently, an O(n + m logm log2 n) time algorithm was proposed [32].

2 An Overview of Our Approach

Denote byF the free space ofP , and we assume thatF has already been triangulated.
Note that we consider s as a point obstacle and include s in the triangulation, which
can be done in additional linear time after F is triangulated (in the problem L1-SP, t
is also given in the input and we do the same for t). We begin with our algorithm for
the convex case, which is a key procedure for solving the general problem.

We first discuss the L1-SP problem. In the convex case, each obstacle in P =
{P1, P2, . . . , Ph} is convex. For each Pi ∈ P , we compute its core, denoted by
core(Pi), which is a constant-size simple polygon by connecting the topmost, left-
most, bottommost, and rightmost points of Pi . Let core(P) be the set of all h cores
of P . For any point t in the free space F , we show that given any shortest s-t path
avoiding all cores in core(P), we can find in O(n) time a shortest s-t path avoiding
all obstacles in P with the same L1 length. Based on this observation, our algorithm
has two main steps: (1) apply Mitchell’s algorithm [29,30] on core(P) to compute
a shortest s-t path πcore(s, t) avoiding the cores in core(P), which takes O(h log h)

time since each core in core(P) has at most four vertices; (2) based on πcore(s, t),
compute a shortest s-t path avoiding all obstacles in P in O(n) time. This algorithm
runs in O(n + h log h) time and O(n) space.

To build an SPM in F (for the source point s), similarly, we first apply Mitchell’s
algorithm on core(P) to compute an SPM of O(h) size in the free space with respect
to all cores, which can be done in O(n + h log h) time and O(n) space. Based on the
above SPM, in additional O(n) time, we are able to compute an SPM inF . Our results
for the convex case are given in Sect. 3.

For the general problem where the obstacles in P are not necessarily convex, we
first compute a corridor structure [25], which consists of O(h) corridors and O(h)

junction triangles. Each corridor possibly has a corridor path. As in [25], the corridor
structure can be used to partition the plane into a set P ′ of O(h) pairwise disjoint
convex polygons with a total of O(n) vertices such that a shortest s-t path in F is a
shortest s-t path avoiding the convex polygons in P ′ and possibly containing some
corridor paths. Thus, in addition to the corridor paths, finding a shortest path is reduced
to an instance of the convex case. By incorporating the corridor path information into

123

2434 Algorithmica (2019) 81:2430–2483

Mitchell’s continuous Dijkstra paradigm [29,30], our algorithm for the convex case
can be modified to find a shortest path in O(n + h log h) time. The above algorithm
is presented in Sect. 4.

Sections 4.3, 5, and 6 are together devoted to compute an SPM in F (Sect. 4.3
outlines the algorithm). We use the corridor structure to partition F into the ocean
M, bays, and canals. While the ocean M may be multiply connected, every bay or
canal is a simple polygon. Each bay has a single common boundary edge withM and
each canal has two common boundary edges withM. But two bays or two canals, or
a bay and a canal do not share any edge. A common edge of a bay (or canal) withM
is called a gate. Thus each bay has one gate and each canal has two gates. Further,
the ocean M is exactly the free space with respect to the convex polygonal set P ′.
By modifying our algorithm for the convex case, we can compute an SPM in M in
O(n + h log h) time. This part is discussed in Sect. 4.3.

Denote by SPM(M) the SPM inM. To obtain an SPM in F , we need to “expand”
SPM(M) into all bays and canals through their gates. Here, a challenging subproblem
is to solve a special case of the (additively) weighted L1 geodesic Voronoi diagram
problem on a simple polygon B: the weighted point sites all lie outside B and influence
B through one (open) edge (e.g., see Fig. 1). The subproblem models the procedure
of expanding SPM(M) into a bay, where the polygon B is the bay, the point sites are
obstacle vertices in M, the weight of each site is the length of its shortest path to the
source point s, and the edge of the polygon (e.g., cd in Fig. 1) is the gate of the bay.
We give a linear time algorithm for this subproblem in Sect. 5.

Expanding SPM(M) into canals, which is discussed in Sect. 6, is also done in
linear time by using our algorithm for the above subproblem as a main procedure.
In summary, given SPM(M), computing an SPM for the entire free space F takes
additional O(n) time.

In Sect. 7, we generalize our techniques to solve the L1-GVD problem. Section 8
concludes the paper with remark on possibly extending our techniques to solve other
related problems.

As in [29,30], for simplicity of discussion, we assume that the free space F is
connected and the point t is always in F (thus, an s-t path always exists). We also
make a general position assumption that no two obstacle vertices lie on the same
horizontal or vertical line. In the rest of this paper, unless otherwise stated, a shortest
path always refers to an L1 shortest path and a path length is always measured by the
L1 metric.

3 Shortest Paths Among Convex Obstacles

In this section, we give our algorithms for the convex case, and the techniques will
be used for the general case in later sections. Let P ′ = {P ′

1, P
′
2 . . . , P ′

h} be a set of h
pairwise disjoint convex polygonal obstacles with a total of n vertices. With respect to
the source point s, our algorithm builds an SPM of O(n) size in O(n + h log h) time
and O(n) space.

123

Algorithmica (2019) 81:2430–2483 2435

3.1 Notation and Observations

For each convex polygon P ′
i ∈ P ′, we define its core, denoted by core(P ′

i), as the sim-
ple polygon by connecting the leftmost, topmost, rightmost, and bottommost vertices
of P ′

i with line segments (see Fig. 2). Note that core(P ′
i) is contained in P ′

i and has at
most four edges. Let core(P ′) be the set of the cores of all obstacles in P ′. Consider
a point t in the free space F . A key observation (to be proved) is that a shortest s-t
path avoiding the cores in core(P ′) can be converted to a shortest s-t path avoiding
the obstacles in P ′ with the same L1 length. Note that a path avoiding the cores in
core(P ′) may intersect the interior of some obstacles in P ′.

We first define some concepts. Consider an obstacle P ′
i and core(P ′

i). For each
edge ab of core(P ′

i) with vertices a and b, if ab is not an edge of P ′
i , then it divides

P ′
i into two polygons, and we call the one that does not contain core(P ′

i) an ear of
P ′
i based on ab, denoted by ear(ab) (see Fig. 2). If ab is also an edge of Pi , then

ear(ab) is not defined. Note that ear(ab) has only one edge bounding core(P ′
i), i.e.,

ab, which we call its core edge. The other edges of ear(ab) are on the boundary of
P ′
i , which we call obstacle edges. There are two paths between a and b along the

boundary of ear(ab): One path is the core edge ab and the other consists of all its
obstacle edges. We call the latter path the obstacle path of the ear. A line segment
is positive-sloped (resp., negative-sloped) if its slope is positive (resp., negative). An
ear is positive-sloped (resp., negative-sloped) if its core edge is positive-sloped (resp.,
negative-sloped). Due to our assumption no two obstacle vertices lie on the same
horizontal or vertical line, no ear has a horizontal or vertical core edge. A point p is
higher (resp., lower) than another point q if the y-coordinate of p is no smaller (resp.,
no larger) than that of q. The next observation is self-evident.

Observation 1 For any ear, its obstacle path is monotone in both the x- and y-
coordinates. Specifically, consider an ear ear(ab) and suppose the vertex a is lower
than the vertex b. If ear(ab) is positive-sloped, then the obstacle path from a to b is
monotonically increasing (i.e., non-decreasing) in both the x- and y-coordinates; if
it is negative-sloped, then the obstacle path from a to b is monotonically decreasing
in the x-coordinates and monotonically increasing in the y-coordinates.

For an ear ear(ab), we define its interior as the region of ear(ab) excluding its
obstacle edges (the interior of the core edge ab belongs to the interior of ear(ab)). We
say that a line segment cd penetrates ear(ab) if the following hold (see Fig. 3): (1)

Fig. 2 Illustrating the core and
ears of a convex obstacle;
ear(ab) is indicated

a

bear(ab)

core

123

2436 Algorithmica (2019) 81:2430–2483

Fig. 3 The line segment cd
penetrates ear(ab); cd intersects
the obstacle path of ear(ab) at e
and f

ear(ab)

b
d

f

e

c a

cd intersects the interior of ear(ab), (2) neither c nor d is in the interior of ear(ab),
and (3) cd does not cross ab at its interior.

Observation 2 Suppose a line segment cd penetrates an ear ear(ab). If cd is positive-
sloped (resp., negative-sloped), then ear(ab) is also positive-sloped (resp., negative-
sloped).

Clearly, if cd penetrates the ear ear(ab), then cd intersects the boundary of ear(ab)
at two points and both points lie on the obstacle path of ear(ab) (e.g., see Fig. 3).

Observation 3 Suppose a line segment cd penetrates an ear ear(ab). Let e and f be
the two points on the obstacle path of ear(ab) that cd intersects. Then the L1 length
of the line segment e f is equal to that of the portion of the obstacle path of ear(ab)
between e and f (see Fig. 3).

If cd penetrates ear(ab), then by Observation 3, we can obtain another path from c
to d by replacing e f with the portion of the obstacle path of ear(ab) between e and f
such that the new path has the same L1 length as cd and does not intersect the interior
of ear(ab).

The results in the following lemma have been proved in [29,30].

Lemma 1 [29,30] There exists a shortest s-t path in the free space such that if the path
makes a turn at a point p, then p is an obstacle vertex.

We call a shortest path in Lemma 1 a vertex-preferred shortest path. Mitchell’s
algorithm [29,30] can find a vertex-preferred shortest s-t path. Denote by Tri(P ′) a
triangulation of the free space and the space inside all obstacles.Note that the free space
can be triangulated in O(n+h log h) time [2,20] and the space inside all obstacles can
be triangulated in O(n) time [3]. Hence, Tri(P ′) can be computed in O(n + h log h)

time. The next lemma gives our key observation.

Lemma 2 Given a vertex-preferred shortest s-t path that avoids the polygons in
core(P ′), we can find in O(n) time a shortest s-t path with the same L1 length
that avoids the obstacles in P ′.

Proof Consider a vertex-preferred shortest s-t path for core(P ′), denoted by
πcore(s, t). Suppose it makes turns at p1, p2, . . . , pk , ordered from s to t along the
path, and each pi is a vertex of a core in core(P ′). Let p0 = s and pk+1 = t . Then

123

Algorithmica (2019) 81:2430–2483 2437

for each i = 0, 1, . . . , k, the portion of πcore(s, t) from pi to pi+1 is the line segment
pi pi+1, which does not intersect the interior of any core in core(P ′). Below, we first
show that we can find a path from pi to pi+1 such that it avoids the obstacles in P ′
and has the same L1 length as pi pi+1.

If pi pi+1 does not intersect the interior of any obstacle in P ′, then pi pi+1 is the
path we seek. Otherwise, because pi pi+1 avoids core(P ′), it can intersect only the
interior of some ears. Consider any such ear ear(ab). Below, we prove that pi pi+1
penetrates ear(ab).

First, we already know that pi pi+1 intersects the interior of ear(ab). Second, it is
obvious that neither pi nor pi+1 is in the interior of ear(ab). Denote by A′ ∈ P ′ the
obstacle that contains ear(ab). Note that ab is an edge of core(A′). Since pi pi+1 does
not intersect the interior of core(A′), pi pi+1 cannot cross ab at its interior. Therefore,
pi pi+1 penetrates ear(ab).

Without loss of generality, assume that pi pi+1 is positive-sloped. By Observation
2, ear(ab) is also positive-sloped. Let e and f denote the two intersection points
between pi pi+1 and the obstacle path of ear(ab), and ̂e f denote the portion of the
obstacle path of ear(ab) between e and f . By Observation 3, we can replace e f by
̂e f to obtain a new path from pi to pi+1 of the same L1 length as pi pi+1. Further, as
a portion of the obstacle path of ear(ab), ̂e f is a boundary portion of the obstacle A′
that contains ear(ab), and thus ̂e f does not intersect the interior of any obstacle inP ′.

By processing each ear whose interior is intersected by pi pi+1 as above, we find a
new path from pi to pi+1 such that the path has the same L1 length as pi pi+1 and the
path does not intersect the interior of any obstacle in P ′.

By processing each segment pi pi+1 in πcore(s, t) as above for i = 0, 1, . . . , k, we
obtain another s-t path π(s, t) such that the L1 length of π(s, t) is equal to that of
πcore(s, t) and π(s, t) avoids all obstacles in P ′. On the other hand, since each core in
core(P ′) is contained in an obstacle in P ′, the length of a shortest s-t path avoiding
core(P ′) cannot be longer than that of a shortest s-t path avoiding P ′. Because the
length of π(s, t) is equal to that of πcore(s, t) and πcore(s, t) is a shortest s-t path
avoiding core(P ′), π(s, t) is a shortest s-t path avoiding P ′.

Note that the above discussion also provides a way to construct π(s, t), which can
be done in O(n) time with the help of the triangulation Tri(P ′). The lemma thus
follows. ��

In light of Lemma 2, our algorithm for finding a single shortest s-t path works as
follows: (1) apply Mitchell’s algorithm [29,30] on core(P ′) to find a vertex-preferred
shortest s-t path avoiding the cores in core(P ′); (2) by Lemma 2, find a shortest s-t
path that avoids the obstacles inP ′. The first step takes O(h log h) time and O(h) space
since the cores in core(P ′) have a total of O(h) vertices. The second step takes O(n)

time and O(n) space. Hence, we can find a single shortest s-t path in O(n + h log h)

time and O(n) space.

3.2 Computing the Shortest PathMap

In this subsection, we compute the SPM for P ′. Mitchell’s algorithm [29,30] can
compute an O(n) size SPM in O(n log n) time and O(n) space. By applyingMitchell’s

123

2438 Algorithmica (2019) 81:2430–2483

algorithm [29,30] on the core set core(P ′), we can compute an O(h) size SPM in
O(h log h) time and O(h) space, denoted by SPM(core(P ′)). With a point location
data structure [14,26], for any query point t in the free space, the length of a shortest
s-t path avoiding core(P ′) can be reported in O(log h) time, which is also the length
of a shortest s-t path avoiding P ′ by Lemma 2.

The above result is superior to Mitchell’s algorithm [29,30] in three aspects, i.e.,
the preprocessing time, the SPM size, and the length query time. However, in order
to compute an actual shortest path from s to any query point t in an output-sensitive
fashion, we build an SPM for P ′, denoted by SPM(P ′), of O(n) size, as follows.

Lemma 3 Given the shortest path map SPM(core(P ′)) for the core set core(P ′), we
can compute a shortest path map SPM(P ′) for the obstacle set P ′ in O(n) time.

Proof Consider a cell Ccore(r) with the root r in SPM(core(P ′)). Recall that r is
always a vertex of a core in core(P ′) and all points in Ccore(r) are visible to r with
respect to core(P ′) [29,30]. In other words, for any point p in the cell Ccore(r), the
line segment rp is contained in Ccore(r), and further, there exists a shortest s-p path
avoiding core(P ′) that contains rp.

Denote by F(P ′) (resp., F(core(P ′))) the free space with respect to P ′ (resp.,
core(P ′)). Note that Ccore(r) is a simple polygon in F(core(P ′)). The cell Ccore(r)
may intersect some ears. In other words, certain space in Ccore(r) may be occupied
by ears. Let C(r) be the subregion of Ccore(r) by removing from Ccore(r) the space
occupied by all ears except their obstacle paths. Thus C(r) lies in F(P ′). However,
for each point p ∈ C(r), p may not be visible to r with respect to P ′. Our task here is
to further decompose C(r) into a set of SPM regions such that each such region has a
root visible to all points in the region with respect toP ′; further, we need to make sure
that each point q in an SPM region has a shortest path in F(P ′) from s that contains
the line segment connecting q and the root of the region. For this, we first show that
C(r) is a connected region.

To show that C(r) is connected, it suffices to show that for any point p ∈ C(r),
there is a path in C(r) that connects r and p. Consider an arbitrary point p ∈ C(r).
Since p ∈ Ccore(r), rp is in Ccore(r) and there is a shortest path in F(core(P ′))
from s to p that contains rp. If rp does not intersect the interior of any ear, then
we are done since rp is in C(r). If rp intersects the interior of some ears, then let
ear(ab) be one of such ears. By the proof of Lemma 2, rp penetrates ear(ab). Let
e and f be the two points on the obstacle path of ear(ab) that rp intersects, and ̂e f
be the portion of the obstacle path between e and f . Note that if rp is horizontal or
vertical, then it cannot penetrate ear(ab) due to the monotonicity of its obstacle path
by Observation 1. Without loss of generality, we assume that rp is positive-sloped. By
Observation 2, ear(ab) is also positive-sloped. Recall that e and f lie on rp. Without
loss of generality, assume that r is higher than p and f is higher than e. Then the
segment e f from e to f is monotonically increasing in both the x- and y-coordinates.
By Observation 1, the obstacle path portion ̂e f from e to f is also monotonically
increasing in both the x- and y-coordinates. As in the proof of Lemma 2, for any
point q ∈ ̂e f , there is a shortest path in F(core(P ′)) from s to q that contains r f
and the portion of ̂e f between f and q. Since e f is on rp contained in Ccore(r), by
the properties of the L1 shortest path map [29,30], ̂e f is also contained in the cell

123

Algorithmica (2019) 81:2430–2483 2439

Ccore(r). Thus, ̂e f is also contained in C(r). If we process each ear whose interior
intersects rp as above, we find a path in C(r) that connects r and p; further, this path
has the same L1 length as rp. Hence, C(r) is a connected region.

Next, we claim that for any point p ∈ C(r), there is a shortest path inF(P ′) from s
to p that contains r . Indeed, since p ∈ Ccore(r), there is a shortest path inF(core(P ′))
from s to p that contains rp; let πcore(s, r) be the portion of this path between s and
r . On the one hand, we have shown above that there is a path from r to p in C(r) with
the same L1 length as rp. On the other hand, by Lemma 2, there exists a path inF(P ′)
from s to r with the same length as πcore(s, r). Hence, a concatenation of these two
paths results in a shortest path from s to p in F(P ′) that contains r . Our claim thus
follows.

The above claim and its proof also imply that decomposing C(r) into a set of SPM
regions is equivalent to computing an SPM in C(r) with the vertex r as the source
point, which we denote by SPM(C(r)). SinceC(r) is a connected region andCcore(r)
is a simple polygon, we claim that C(r) is a (possibly degenerate) simple polygon.
This is because for any ear E that intersects Ccore(r), the portion E ∩ Ccore(r) lies
on the boundary of the simple polygon Ccore(r); thus, removing E except its obstacle
path from Ccore(r) [to form C(r)] changes only the boundary shape of Ccore(r) but
does not change the nature of the simplicity [from Ccore(r) to C(r)]. Based on the
fact that C(r) is a (possibly degenerate) simple polygon, SPM(C(r)) can be easily
computed in linear time in terms of the number of edges of C(r). For example, since
the Euclidean shortest path between any two points in a simple polygon is also an L1
shortest path between the two points [17], an SPM in a simple polygon with respect
to the Euclidean distance is also one with respect to the L1 distance. Therefore, we
can use a corresponding shortest path algorithm for the Euclidean case (e.g., [16]) to
compute each SPM(C(r)) in our problem.

Note that our discussion above also implies that given SPM(core(P ′)), for each
cell Ccore(r) with a root r , we can compute the corresponding SPM(C(r)) separately.
Clearly, the SPM(C(r)) corresponding to all cells in SPM(core(P ′)) constitute a
shortest path map SPM(P ′) for P ′.

Due to the planarity of the cell regions involved, the total number of edges of all
C(r) is O(n). Given a triangulation Tri(P ′), all regions C(r) can be obtained in O(n)

time. Computing all SPM(C(r)) also takes O(n) time in total. Thus, SPM(P ′) can be
constructed in O(n) time. ��

With Lemma 3, we can obtain following result.

Theorem 1 Given a set of h pairwise disjoint convex polygonal obstacles with a total
of n vertices in the plane, in O(n + h log h) time and O(n) space, we can construct
a shortest path map of size O(n) with respect to a source point s, such that given any
query point t , the length of an L1 shortest s-t path can be reported in O(log h) time
and an actual shortest path can be found in O(log n + k) time where k is the number
of edges of the path.

123

2440 Algorithmica (2019) 81:2430–2483

4 Shortest Paths Among General Polygonal Obstacles

In the general case, the obstacles inP are not necessarily convex. InSect. 4.1,we review
the corridor structure [25], and introduce the ocean M. In Sect. 4.2, we present the
algorithm for computing a single shortest path and the similar idea also computes an
SPM for M, i.e., SPM(M). In Sect. 4.3, we outline our algorithm for computing an
SPM in the entire free space F .

4.1 The Corridor Structure

For ease of discussion, we consider s and t as two point obstacles and assume that
all obstacles are contained in a rectangle R (see Fig. 4). Let F be the free space
insideR. We assume that F has already been triangulated, and let Tri(F) denote the
triangulation.

Let G(F) denote the (planar) dual graph of Tri(F), i.e., each node of G(F)

corresponds to a triangle in Tri(F) and each edge connects two nodes of G(F) cor-
responding to two triangles sharing a diagonal of Tri(F). The degree of each node
in G(F) is at most three. As in [25], at least one node dual to a triangle incident to
each of s and t is of degree three. Based on G(F), we compute a planar 3-regular
graph, denoted byG3 (the degree of each node inG3 is three), possibly with loops and
multi-edges, as follows. First, we remove every degree-one node from G(F) along
with its incident edge; repeat this process until no degree-one node exists. Second,
remove every degree-two node from G(F) and replace its two incident edges by a
single edge; repeat this process until no degree-two node exists. The resulting graph is
G3 (e.g., see Fig. 4), which has O(h) faces, O(h) nodes, and O(h) edges [25]. Each
node of G3 corresponds to a triangle in Tri(F), which is called a junction triangle.
The removal of all junction triangles from Tri(F) results in O(h) corridors, each of
which corresponds to one edge of G3.

The boundary of a corridor C consists of four parts (see Fig. 5): (1) a boundary
portion of an obstacle Pi ∈ P , from a point a to a point b; (2) a diagonal of a junction
triangle from b to a boundary point e on an obstacle Pj ∈ P (Pi = Pj is possible);
(3) a boundary portion of the obstacle Pj from e to a point f ; (4) a diagonal of a
junction triangle from f to a. The two diagonals be and a f are called the doors of C ,
and the other two boundary portions are the two sides of C . Note that C is a (possibly
weak) simple polygon. Let π(a, b) [resp., π(e, f)] denote the shortest path from a to

Fig. 4 Illustrating a triangulation
of the free space among two
obstacles and the corridors (with
red solid curves). There are two
junction triangles indicated by
the large dots inside them,
connected by three solid (red)
curves. Removing the two
junction triangles results in three
corridors (Color figure online)

123

Algorithmica (2019) 81:2430–2483 2441

x

b e

f

a

y

b e

f
a

P j

P j
P i

P i

Fig. 5 Illustrating an open hourglass (left) and a closed hourglass (right) with a corridor path linking the
apices x and y of the two funnels. The dashed segments are diagonals. The paths π(a, b) and π(e, f) are
shown with thick solid curves

b (resp., e to f) inside C . The region HC bounded by π(a, b), π(e, f), and the two
diagonals be and f a is called an hourglass, which is open if π(a, b) ∩ π(e, f) = ∅
and closed otherwise (see Fig. 5). If HC is open, then both π(a, b) and π(e, f) are
convex chains and are called the sides of HC ; otherwise, HC consists of two “funnels”
and a path πC = π(a, b)∩π(e, f) joining the two apices of the two funnels, called the
corridor path of C . The two funnel apices connected by the corridor path are called
the corridor path terminals. Each funnel side is also convex.

We compute the hourglass for each corridor. With the triangulation Tri(F), com-
puting the hourglasses for all corridors takes O(n) time.

Let Q be the union of all junction triangles and hourglasses. Then Q consists of
O(h) junction triangles, open hourglasses, funnels, and corridor paths. As shown in
[21], there exists a shortest s-t path π(s, t) avoiding the obstacles in P which is
contained in Q. We have the following lemma.

Lemma 4 Suppose π(s, t) intersects both doors of a corridor C and the hourglass HC

of C is closed, then there exists another shortest s-t path that contains corridor path
of C.

Proof Suppose π(s, t) intersects the two doors ofC , say, at two points p and q respec-
tively. Then since C is a simple polygon, a Euclidean shortest path between p and q
inside C , denoted by πE (p, q), is also an L1 shortest path in C [17], and πE (p, q)

must contain the corridor path ofC . If we replace the portion of π(s, t) between p and
q by πE (p, q), then we obtain a new L1 shortest s-t path that contains the corridor
path. ��

In the following, we assume that π(s, t) has the property that if it intersects both
doors of C and HC is closed, then it contains the corridor path of C .

LetM beQminus the corridor paths. We callM the ocean. Clearly,M ⊆ F . The
boundary ofM consists of O(h) reflex vertices and O(h) convex chains, implying that
the complementary regionR\M consists of a set of polygons of O(h) reflex vertices
and O(h) convex chains. As shown in [25], the region R\M can be partitioned into
a set P ′ of O(h) convex polygons with total of O(n) vertices (e.g., by extending an

123

2442 Algorithmica (2019) 81:2430–2483

angle-bisecting segment inward from each reflex vertex). The oceanM is exactly the
free space with respect to the convex polygons in P ′ (i.e., if we consider the polygons
of P ′ as obstacles, then M is the free space). In addition, for each corridor path, no
portion of it lies inM. Further, the shortest path π(s, t) is a shortest s-t path avoiding
all convex polygons inP ′ and possibly containing some corridor paths. The setP ′ can
be obtained in O(n+h log h) time. Therefore, as in [25], other than the corridor paths,
we reduce our original L1-SP problem to the convex case. Note that our algorithms
given later can be applied to M directly without partitioning R\M into the convex
polygons in P ′, but for ease of exposition, we will discuss our algorithms on P ′.

The algorithm in Sect. 4.2 will focus on the space M. Note that M is only a
subspace ofF , and we will examine the rest of the space, i.e.,F\M, later in Sect. 4.3.

4.2 Finding a Single Shortest Path and Computing an SPM forM

To find a shortest s-t path in F , if there is no corridor path, then we can simply apply
our algorithm for the convex case in Sect. 3 to the convex polygon set P ′. Otherwise,
since the corridor paths can give possible “shortcuts” for the sought s-t path, we
must take these possible “shortcuts” into consideration while running the continuous
Dijkstra paradigm [29,30], as follows.

First, we compute the core set core(P ′) of P ′. However, the way we construct
core(P ′) here is slightly different from Sect. 3. For each convex polygon A′ ∈ P ′,
in addition to its leftmost, topmost, rightmost, and bottommost vertices, if a vertex v

of A′ is a corridor path terminal, then v is also kept as a vertex of the core core(A′).
In other words, core(A′) is a simple (convex) polygon whose vertex set consists of
the leftmost, topmost, rightmost, and bottommost vertices of A′ and all corridor path
terminals on A′. Since there are O(h) terminal vertices, the cores in core(P ′) still
have a total of O(h) vertices and edges. Further, the core set thus defined still has the
properties discussed in Sect. 3 for computing shortest L1 paths, e.g., Observation 1,
2, 3, and Lemma 2. Hence, by using our scheme in Sect. 3, we can first find a shortest
s-t path avoiding the cores in core(P ′) in O(h log h) time by applying Mitchell’s
algorithm [29,30], and then obtain a shortest s-t path avoiding P ′ in O(n) time by
Lemma 2. But, the path thus computed may not be a true shortest path in F since
the corridor paths are not utilized. To find a true shortest path, we need to modify the
continuous Dijkstra paradigm when applying it to core(P ′), as follows.

In Mitchell’s algorithm [29,30], when an obstacle vertex v is hit by the wavefront
for the first time, it will be “permanently labeled” with a value d(v), which is the
length of a shortest path from s to v in the free space. The wavefront consists of
many “wavelets” (each wavelet is a line segment of slope 1 or − 1). The algorithm
maintains a priority queue (called “event queue”), and each element in the queue is a
wavelet associated with an “event point” and an “event distance”, which means that
the wavelet will hit the event point at the event distance. The algorithm repeatedly
takes (and removes) an element from the event queue with the smallest event distance,
and processes the event. After an event is processed, some new events may be added
to the event queue. The algorithm stops when the point t is hit by the wavefront for
the first time.

123

Algorithmica (2019) 81:2430–2483 2443

To handle the corridor paths in our problem, consider a corridor path πC with x
and y as its terminals and let l be the length of πC . Recall that x and y are vertices of
a core in core(P ′). Consider the moment when the vertex x is permanently labeled
with the distance d(x). Suppose the wavefront that first hits x is from the funnel whose
apex is x . Then according to our discussions above, the only way that the wavelet of
the wavefront at x can affect a shortest s-t path is through the corridor path πC . If y
is not yet permanently labeled, then y has not been hit by the wavefront. We initiate
a “pseudo-wavelet” that originates from x with the event point y and event distance
d(x) + l, meaning that y will be hit by this pseudo-wavelet at the distance d(x) + l.
We add the pseudo-wavelet to the event queue. If y has been permanently labeled by
the time when x is permanently labelled, then the wavefront has already hit y and is
currently moving along the corridor path πC from y to x . Thus, the wavelet through
x will meet the wavelet through y somewhere on the path πC , and these two wavelets
will “die” there and never affect the free space outside the corridor. Thus, in this case
we do not need to do anything on y. In addition, at the moment when the vertex x
is permanently labeled, if the wavefront that first hits x is from the corridor path πC

(i.e., through y), then the wavelet at x will keep going to the funnel of x through x ;
therefore, we process this event on x as usual (i.e., as in [29,30]), by initiating new
wavelets that originate from x .

For a corridor pathπC with two terminals x and y, when x is permanently labeled, if
thewavefront that first hits x is not from the corridor pathπC , thenwe call x awavefront
incoming terminal; otherwise, x is a wavefront outgoing terminal. According to our
discussion above, at least one of x and y must be a wavefront incoming terminal. In
fact, both x and y can be wavefront incoming terminals, in which case the wavefronts
passing through x and y “die” inside the corridor.

Intuitively, the above treatment of corridor path terminals makes corridor paths act
as possible “shortcuts” when we propagate the wavefront. The rest of the algorithm
proceeds in the sameway as in [29,30] (e.g., processing the segment dragging queries).
The algorithm stops when the wavefront first hits the point t , at which moment a
shortest s-t path in F has been found.

Since there areO(h) corridor paths,with the abovemodifications toMitchell’s algo-
rithm as applied to core(P ′), its running time is still O(h log h). Indeed, comparing
with the original continuous Dijkstra scheme [29,30] (as applied to core(P ′)), there
are O(h) additional events on the corridor path terminals, i.e., events corresponding
to those pseudo-wavelets. To handle these additional events, we may, for example, as
preprocessing, for each corridor path, associate with each its corridor path terminal x
the other terminal y as well as the corridor path length l. Thus, during the algorithm,
when we process the event point at x , we can find y and l immediately. In this way,
each additional event is handled in O(1) time in addition to adding a new event for it
to the event queue. Hence, processing all events still takes O(h log h) time. Note that
the shortest s-t path thus computed may penetrate some ears of P ′. As in Lemma 2,
we can obtain a shortest s-t path in the free space F in additional O(n) time. Since
applying Mitchell’s algorithm on core(P ′) takes O(h) space, the space used in our
entire algorithm is O(n). As a summary, we have the following result.

123

2444 Algorithmica (2019) 81:2430–2483

Theorem 2 Given a set of h pairwise disjoint polygonal obstacles with a total of n
vertices in the plane, suppose that the free space has been triangulated; we can find
an L1 shortest path between two points in the free space in O(n + h log h) time and
O(n) space.

AsMitchell’s algorithm [29,30], the above algorithm also computes a shortest path
map on the free space of the convex polygons inP ′, i.e., SPM(M).We should point out
that because of the O(h) corridor paths, SPM(M) is different from a “normal” SPM in
the following aspect. Consider a corridor path πC with two terminals x and y. Suppose
x is a wavefront incoming terminal and y is a wavefront outgoing terminal. Then this
means that the algorithm determines a shortest path from s to y which goes through x .
Corresponding to the corridor path πC , we may put a “pseudo-cell” in SPM(M) with
x as the root such that y is the only point in this “pseudo-cell”, and we also associate
with the pseudo-cell the corridor path πC , which indicates that there is a shortest s-y
path that consists of a shortest s-x path and the corridor path πC . If x and y are both
wavefront incoming terminals, then we need not do anything for this corridor path.
Clearly, since there are O(h) corridor paths, the above procedure of building pseudo-
cells affects neither the space bound nor the time bound for constructing SPM(M).
Therefore, the SPM(M) of size O(n) can be computed in O(n + h log h) time and
O(n) space.

4.3 Computing a Shortest Path Map

Based on SPM(M), in Sect. 4.3, together with Sects. 5 and 6, we will compute in
additional O(n) time an SPM on the entire free spaceF for the source point s, denoted
by SPM(F). Our techniques for constructing SPM(F) are independent of those in the
earlier sections of this paper.

In the rest of this section, we discuss bays and canals, and outline the algorithm,
while the details are given in Sects. 5 and 6.

4.3.1 Bays and Canals

To compute SPM(F), sinceM ⊆ F and we already have SPM(M), we only need to
compute the portion of SPM(F) in the spaceF\M. We first examine the spaceF\M,
which we partition into two type of regions, bays and canals, defined as follows. These
concepts were also used before for computing visibility polygons [9].

Consider an hourglass HC of a corridor C . We first discuss the case in which HC

is open (see Fig. 6). HC has two sides. Let S1(HC) be an arbitrary side of HC . The
obstacle vertices on S1(HC) all lie on the same side of the corridor C . Let c and d be
any two adjacent vertices on S1(HC) such that the line segment cd is not an obstacle
edge (see the left figure in Fig. 6). The region enclosed by cd and a boundary portion
of C between c and d is called a bay, denoted by bay(cd), which is a simple polygon.
We call cd the gate of the bay.

If the hourglass HC is closed, then let x and y be the two apices of its two funnels.
Consider two adjacent vertices c and d on a side of a funnel such that the line segment
cd is not an obstacle edge. If neither c nor d is a funnel apex, then c and d must lie on

123

Algorithmica (2019) 81:2430–2483 2445

e

y

b e

f
a

Pj

Pjc

d
z

bay(cd)

canal(x,y)

d

x

b

a

f

Pi

Pi

Fig. 6 Illustrating a bay bay(cd) in an open hourglass (left) and a canal canal(x, y) in a closed hourglass
(right) with a corridor (dotted) path linking the apices x and y of its two funnels. In the right figure, the xd
and yz are the two gates of canal(x, y) (note that there are three bays in the corridor, one with gate xb and
the other two with gates incident to y and a, respectively)

the same side of C and the segment cd also defines a bay as above. However, if either
c or d is a funnel apex, say, c = x , then x and d may lie on different sides of C . If they
lie on the same side of C , then they also define a bay; otherwise, we call xd a canal
gate at x (see Fig. 6). Similarly, there is also a canal gate at the funnel apex y, say yz.
The region of C enclosed by the two canal gates xd and yz that contains the corridor
path of HC is called a canal, denoted by canal(x, y), which is a simple polygon.

To build SPM(F), we will “expand” SPM(M) to all bays/canals through their
gates. Computing an SPM for a bay is a key for solving the problem, and the canal
case uses the bay algorithm as a main procedure.

4.3.2 Expanding SPM(M) Into Bays and Canals

Consider a bay bay(cd). Let n′ be the number of vertices of bay(cd). If its gate cd is
in a single cell C(r) of SPM(M) with r as the root, then each point in bay(cd) has a
shortest path to s via r . Thus, to construct an SPM for bay(cd), it suffices to compute
an SPM on bay(cd) with respect to r , which can be done in O(n′) time since bay(cd)

is a simple polygon.1

If cd is not in a single cell of SPM(M), then multiple vertices of SPM(M), i.e., the
intersections of the boundaries of the cells of SPM(M)with cd , may lie in the interior
of cd . This is actually the challenging subproblem illustrated by Fig. 1. We refer to the
vertices of SPM(M) on cd (including its endpoints c and d) as the SPM(M) vertices
and let m′ be their total number. A straightforward approach for computing an SPM
for bay(cd) is to use the continuous Dijkstra paradigm [29,30] to let the wavefront
continue to move into bay(cd). But, this approach takes O((n′ + m′) log(m′ + n′))
time. Later in Sect. 5, we derive an O(n′+m′) time algorithm, as stated in the following
lemma.

1 For example, since the Euclidean shortest path between any two points in a simple polygon is also an L1
shortest path [17], a Euclidean SPM in a simple polygon is also an L1 one. Thus, we can use a corresponding
shortest path algorithm for the Euclidean case (e.g., [16]) to compute an L1 SPM in bay(cd) with respect
to r in linear time.

123

2446 Algorithmica (2019) 81:2430–2483

Lemma 5 For a bay of n′ vertices with m′ SPM(M) vertices on its gate, a shortest
path map of size O(n′ + m′) for the bay can be computed in O(n′ + m′) time.

Since a canal has two gates which are also edges ofM, multiple SPM(M) vertices
may lie on both its gates. Later in Sect. 6, we prove the following result.

Lemma 6 For a canal of n′ vertices with a total of m′ SPM(M) vertices on its two
gates, a shortest path map of size O(n′ + m′) for the canal can be computed in
O(n′ + m′) time.

By Lemmas 5 and 6, the time for computing the shortest path maps for all bays and
canals is linear in terms of the total sum of the numbers of obstacle vertices of all bays
and canals, which is O(n), and the total number of the SPM(M) vertices on the gates
of all bays and canals, which is also O(n) since the size of SPM(M) is O(n). We
hence conclude that given SPM(M), SPM(F) can be computed in additional O(n)

time. Thus, we obtain the following result.

Theorem 3 Given a set of h pairwise disjoint polygonal obstacles with a total of n
vertices and a source point s in the plane, suppose that a triangulation of the free
space is given; we can build a shortest path map of size O(n) with respect to s in
O(n + h log h) time and O(n) space, such that for any query point t , the length of an
L1 shortest s-t path can be reported in O(log n) time and an actual shortest path can
be found in additional time linear in the number of edges of the path.

5 Computing a Shortest PathMap for a Bay

Consider a bay bay(cd) whose gate is cd (see Fig. 6). Let SPM(bay(cd)) be the
SPM for bay(cd) that we seek to compute. In this section, we give an algorithm for
computing SPM(bay(cd)) in O(n′ + m′) time, and thus prove Lemma 5.

Let R be the set of roots of the cells of SPM(M) that intersect with cd . To obtain
SPM(bay(cd)), we first compute, for each r ∈ R, the Voronoi region VD(r) inside
bay(cd) such that for any point t ∈ VD(r), there is a shortest s-t path via r ; we then
compute an SPM on VD(r)with respect to r . Since every VD(r) is a simple polygonal
region in bay(cd), the shortest path map SPM(VD(r), r) can be computed in linear
time in terms of the number of vertices of VD(r) (e.g., by using an algorithm in [16]).
Thus, the key is to decompose bay(cd) into Voronoi regions for the roots of R. Denote
by VD(bay(cd)) this decomposition of bay(cd). We aim to compute VD(bay(cd))

in O(n′ + m′) time.
Without loss of generality, we assume that cd is positive-sloped, bay(cd) is on the

right of cd , and the vertex c is higher than d [e.g., bay(cd) = B in Fig. 1]. Other cases
can be handled similarly. Let R = {r1, r2, . . . , rk} be the set of roots of the cells of
SPM(M) that intersect with cd in the order from c to d along cd . Note that R may be
a multi-set, i.e., two roots ri and r j with i
= j may refer to the same physical point;
but this is not important to our algorithm (e.g., we can view each ri as a distinct copy
of the same root). Let c = v0, v1, . . . , vk = d be the SPM(M) vertices on cd ordered
from c to d (thus m′ = k + 1). Hence, for each 1 ≤ i ≤ k, the segment vi−1vi is on

123

Algorithmica (2019) 81:2430–2483 2447

the boundary of the cell C(ri) of SPM(M). Note that each cell C(ri) is a star-shaped
polygon, and for each 1 ≤ i ≤ k − 1, vi lies on the common boundary of C(ri) and
C(ri+1). To compute VD(bay(cd)), we need to compute the Voronoi region VD(ri)
for each ri ∈ R.

In the following, we begin with an algorithm overview in Sect. 5.1.

5.1 Outline

To compute VD(bay(cd)), it turns out that we need to deal with the interactions
between some rays, each of which belongs to the bisector of two roots in R. Every
such ray is either horizontal or vertical (there are also other types of rays, but they
are easy to handle). We process these rays in a certain order (e.g., as to be proved,
their origins somehow form a staircase structure). For each ray, if it is vertical, then
it is easy (it eventually leads to a ray shooting operation), and its processing does not
introduce any new ray. A stack is used to store certain vertical rays that need to be
further processed. But, if it is horizontal, then it may intersect the vertical rays in the
stack (following the top-bottom order) and the situation is more complicated since its
processing may introduce many new horizontal rays and (at most) one vertical ray,
also in a certain order along a staircase structure (in addition to causing a ray shooting
operation).

The algorithm needs to perform ray shooting operations for some vertical and
horizontal rays. Although there are known data structures for ray shooting queries
[4,5,16,18], they are not efficient enough for a linear time implementation of the
entire algorithm. Based on observations, our approach makes use of the horizontal and
vertical visibility maps of bay(cd) [3]. More specifically, we prove that all vertical
ray shootings are in a “nice” sorted order (called target-sorted). With this property, all
vertical ray shootings are performed in totally linear time by using the vertical visibility
map of bay(cd). The horizontal visibility map is used to guide the overall process of
the algorithm.During the algorithm,wemarch into the bay and the horizontal visibility
map allows us to keep track of our current position (i.e., in a trapezoid of the map
that contains our current position). The horizontal visibility map also allows each
horizontal ray shooting to be done in O(1) time. In addition, in the preprocessing of
the algorithm, we also need to perform some other ray shootings (for rays of slope
− 1); our linear time solution for this also hinges on the target-sorted property of such
rays.

Our algorithm is conceptually simple. As mentioned above, the only data structures
we need are linked lists, a stack, and the horizontal and vertical visibility maps. Its
correctness relies on the fact that the algorithm implicitly maintains a set of invariant
properties in each iteration. To prove the correctness of the algorithm, we need to show
that these invariant properties hold iteratively. For this purpose, before presenting the
algorithm in Sect. 5.3, we first show a set of observations in Sect. 5.2, which capture
some essential properties of this L1 problem.

123

2448 Algorithmica (2019) 81:2430–2483

p1 p1p1

p2 p2 p2

(1) (2) (3)

Fig. 7 Illustrating some cases of the bisector B(p1, p2) of two weighted points p1 and p2. In (3), an entire
quadrant (the shaded area) can be used as B(p1, p2), but we choose B(p1, p2) to be the vertical (solid
thick) half-line

5.2 Bisector Properties of the Roots of R

In this subsection, we give a number of observations, most of which help capture the
behaviors of the bisectors for the roots of R in computing VD(bay(cd)).

For a point p, denote by x(p) its x-coordinate and by y(p) its y-coordinate. For
two objects O1 and O2 in the plane, if x(p1) ≤ x(p2) for any two points p1 ∈ O1 and
p2 ∈ O2, then we say O1 is to the left or west of O2; if y(p1) ≤ y(p2) for any two
points p1 ∈ O1 and p2 ∈ O2, then we say O1 is to the south of O2 or O1 is below O2.
Similarly, we can define right, east, north, and above. If O1 is to the left of O2 and
is also below O2, then we say O1 is to the southwest of O2. Similarly, we can define
northeast, southeast, and northwest.

Each root ri ∈ R can be viewed as an additively weighted point whose weight is
the L1 length of a shortest path from s to ri . Thus, we need to consider the possible
shapes of the bisector of two weighted points. For two weighted points p1 and p2 with
weights w1 and w2, respectively, their bisector B(p1, p2) consists of all points q such
that the L1 length of the line segment p1q plusw1 is equal to the L1 length of p2q plus
w2. Figure 7 shows some cases. Note that the bisector can be an entire quadrant of the
plane [e.g., see Fig. 7(3)]; in this case, as in [29,30], we choose a vertical half-line as
the bisector. For any pair of consecutive roots ri−1 and ri in R for 2 ≤ i ≤ k, since
the SPM(M) vertex vi−1 ∈ cd is on the common boundary of C(ri−1) and C(ri),
vi−1 lies on the bisector B(ri−1, ri) of ri−1 and ri . For two points p1 and p2, denote
by Rec(p1, p2) the rectangle with p1 and p2 as its two diagonal vertices. The next
observation is self-evident.

Observation 4 The bisector B(p1, p2) consists of three portions: two half-lines and
a line segment connecting them; the line segment has a slope 1 or − 1 and is the
intersection of B(p1, p2) and the rectangle Rec(p1, p2). Each of the two half-lines
is perpendicular to an edge of Rec(p1, p2) that touches the half-line. Depending on
the relative positions and weights of p1 and p2, some portions of B(p1, p2) may
degenerate and become empty. B(p1, p2) is monotone to both the x- and y-axes. For
any line l containing one of the three portions of B(p1, p2), p1 and p2 cannot lie
strictly on the same side of l.

We call the open line segment of B(p1, p2) strictly inside Rec(p1, p2) its middle
segment, denoted by BM (p1, p2), and the two half-lines of B(p1, p2) its two rays,
each originating at a point on an edge of Rec(p1, p2). Thus, the origins of the two
rays of B(p1, p2) are the two endpoints of BM (p1, p2).

123

Algorithmica (2019) 81:2430–2483 2449

Fig. 8 An example of ri to the
northeast of ri−1. The point
p
= vi−1 is on vi−1vi and is
infinitely close to vi−1. The line
segment ri p must cross
ri−1vi−1

vi

ri−1

ri

p
vi−1

c

d

B(ri,ri−1)

Since each cell in an SPM is a star-shaped simple polygon, the observation below
is obvious.

Observation 5 Let C(r) and C(r ′) be two different cells in SPM(M) with roots r and
r ′. For any two points p ∈ C(r) and p′ ∈ C(r ′), the line segments pr and p′r ′ cannot
cross each other.

Recall that we assumed that no two obstacle vertices lie on the same vertical or
horizontal line. Since each root in R is an obstacle vertex, no two roots lie on the same
vertical or horizontal line. Also recall that the gate cd of bay(cd) is positive-sloped.
The next lemma shows the possible relative positions of two consecutive roots in R.

Lemma 7 For any two consecutive roots ri−1 and ri in R with 2 ≤ i ≤ k, ri cannot
be to the northeast of ri−1.

Proof Since vi−1 ∈ cd lies on the common boundary of the two cells C(ri−1) and
C(ri), vi−1 is on the bisector B(ri−1, ri).

Assume to the contrary that ri is to the northeast of ri−1. Note that vi−1 may lie on
either a half-line or the middle segment of B(ri−1, ri). In either case, since ri is to the
northeast of ri−1 and cd is positive-sloped, according to Observation 4, vi−1 must be
lower than ri , and vi−1 must be to the right of ri−1 (see Fig. 8).

Since the segment vi−1vi is not a single point and vi is to the left of vi−1, we
can find a point p ∈ vi−1vi such that p
= vi−1 (see Fig. 8). Since p ∈ vi−1vi and
vi−1vi ⊆ C(ri), we have p ∈ C(ri). Note that vi−1 ∈ C(ri−1)∩C(ri). Belowwe show
that the two line segments ri p and ri−1vi−1 must cross each other, which contradicts
with Observation 5.

Since both ri and ri−1 are obstacle vertices, by our assumption, ri and ri−1 do not
lie on a horizontal or vertical line. Hence ri is strictly to the northeast of ri−1. Note
that no root in R lies on cd . Since vi−1 is lower than ri and is to the right of ri−1, the
three points vi−1, ri , and ri−1 do not lie on the same line (see Fig. 8). In other words,
the triangle �rivi−1ri−1 is not empty. Further, suppose ρ(ri , vi−1) [resp., ρ(ri , ri−1)]
is the ray originating from ri and going through vi−1 (resp., ri−1); then ρ(ri , ri−1) can
be obtained by rotating ρ(ri , vi−1) clockwise by an angle ∠vi−1riri−1 > 0◦. By the
definition of the point p, during this rotation, p will be encountered by the rotating ray
ρ(ri , vi−1) at an angle ∠vi−1ri p with 0◦ < ∠vi−1ri p < ∠vi−1riri−1, which implies
that ri p crosses ri−1vi−1. The lemma thus follows. ��

123

2450 Algorithmica (2019) 81:2430–2483

ri

ri−1

ri−1

ri
vi−1

vi−1

vi−1ri

ri−1

(3)(1) (2)

c

d

c

d d

c

Fig. 9 Illustrating the three possible relative positions of ri−1 and ri

By Lemma 7, there are three cases on the possible relative positions of ri−1 with
respect to ri , i.e., ri−1 can be to the northwest, southeast, or northeast of ri (e.g., see
Fig. 9).

Lemma 8 Consider any two consecutive roots ri−1 and ri in R with 2 ≤ i ≤ k.

1. If ri is to the southeast of ri−1, then vi−1 is on a ray of B(ri−1, ri) that is hor-
izontally going east (i.e., a rightward horizontal ray) and vi−1 is to the right of
Rec(ri−1, ri) [see Fig. 9(1)].

2. If ri is to the northwest of ri−1, then vi−1 is on a ray of B(ri−1, ri) that is vertically
going south (i.e., a downward vertical ray) and vi−1 is below Rec(ri−1, ri) [see
Fig. 9(2)].

3. If ri is to the southwest of ri−1, then vi−1 is either on the middle segment
BM (ri−1, ri), or on a ray of B(ri−1, ri) that is either horizontally going east
or vertically going south [see Fig. 9(3)]. Further, if vi−1 is on the ray horizontally
going east, then vi−1 is to the right of Rec(ri−1, ri); if vi−1 is on the ray vertically
going south, then vi−1 is below Rec(ri−1, ri).

Proof We first prove Part 1 of the lemma. If ri is to the southeast of ri−1 [see
Fig. 9(1)], then the rectangle Rec(ri−1, ri) cannot intersect cd . Thus, vi−1 cannot
be on BM (ri−1, ri), and vi−1 must be on a ray of B(ri−1, ri), denoted by ρ. By Obser-
vation 4, the origin of ρ is on an edge α of Rec(ri−1, ri) and is perpendicular to the
edge α. Since vi−1 ∈ ρ and ri−1 is to the northwest of ri , α must be one of the two
edges incident to ri , i.e., the bottom edge or the right edge of Rec(ri−1, ri). In addi-
tion, if α is the bottom edge of Rec(ri−1, ri), then ρ must be vertically going south;
further, since ri is to the southeast of ri−1, by a similar argument as that for the proof
of Lemma 7, we can obtain a contradiction. Thus, α is the right edge of Rec(ri−1, ri)
and ρ must be horizontally going east. In addition, it is easy to see that vi−1 must be
to the right of Rec(ri−1, ri). Part 1 of the lemma thus follows.

Part 2 can be proved analogously as Part 1, and we omit it.
For Part 3, if Rec(ri−1, ri) intersects cd , then it is possible that BM (ri−1, ri) inter-

sects cd (at vi−1). If BM (ri−1, ri) does not intersect cd , then vi−1 lies on a ray
of B(ri−1, ri), denoted by ρ. Again, the origin of ρ is on either the right edge of
Rec(ri−1, ri) or the bottom edge of Rec(ri−1, ri). In the former case, ρ is horizon-
tally going east and vi−1 is to the right of Rec(ri−1, ri). In the latter case, ρ is vertically
going south and vi−1 is below Rec(ri−1, ri). Part 3 thus follows. ��

123

Algorithmica (2019) 81:2430–2483 2451

For any two consecutive roots ri−1 and ri in R with 2 ≤ i ≤ k, if vi−1 is on a ray ρ

of B(ri−1, ri), then we let ρi−1 be the ray originating at vi−1 with the same direction
as ρ. If vi−1 lies on the middle segment of B(ri−1, ri), then by Lemma 8, ri−1 is to
the northeast of ri and cd intersects Rec(ri−1, ri); in this case, let ρi−1 be the ray
of B(ri−1, ri) whose origin is the lower endpoint of BM (ri−1, ri) (if the origin is at
the right edge of Rec(ri−1, ri), then ρi−1 is horizontally going easy; otherwise it is
vertically going south). For a ray ρ, let or(ρ) denote the origin of ρ.

Observation 6 For any 2 ≤ i ≤ k, the ray ρi−1 is either horizontally going east or
vertically going south. If vi−1 is on a ray of B(ri−1, ri), then or(ρi−1) = vi−1; if vi−1
is on BM (ri−1, ri), then or(ρi−1) is on either the right edge or the bottom edge of
Rec(ri−1, ri).

Lemma 9 Consider any two consecutive roots ri−1 and ri in R with 2 ≤ i ≤ k.

1. If the ray ρi−1 is horizontal, then ri−1 is above ρi−1 and ri is below ρi−1.
2. If ρi−1 is vertical, then ri−1 is to the right of ρi−1 and ri is to the left of ρi−1.
3. The origin or(ρi−1) of ρi−1 is always below ri−1 and to the right of ri .

Proof There are three cases on the possible relative positions of ri−1 and ri .

• If ri−1 is to the northwest of ri [see Fig. 9(1)], then by the proof of Lemma 8, ρi−1
is horizontal and is contained in the ray of B(ri−1, ri) whose origin is on the right
edge of Rec(ri−1, ri). Since ri−1 and ri are two diagonal vertices of Rec(ri−1, ri),
ρi−1 is above ri and below ri−1.
Further, the origin or(ρi−1) is vi−1, which is below ri−1 and to the right of ri .

• If ri−1 is to the southeast of ri [see Fig. 9(2)], then by the proof of Lemma 8, ρi−1
is vertical and lies on the ray of B(ri−1, ri) whose origin is on the bottom edge of
Rec(ri−1, ri). Since ri−1 and ri are two diagonal vertices of Rec(ri−1, ri), ρi−1 is
to the right of ri and to the left of ri−1. Further, the origin or(ρi−1) is vi−1, which
is below ri−1 and to the right of ri .

• If ri−1 is to the northeast of ri [see Fig. 9(3)], then if ρi−1 is horizontal, then the
proof is similar to the first case; otherwise, the proof is similar to the second case.

��
Lemma 10 For any i with 3 ≤ i ≤ k − 1, if ri is to the southwest of ri−1, then vi−2 is
to the right of the rectangle Rec(ri−1, ri) and vi is below Rec(ri−1, ri).

Proof Suppose ri is southwest of ri−1. We only prove that vi−2 is to the right of
the rectangle Rec(ri−1, ri). The case that vi is below Rec(ri−1, ri) can be proved
analogously.

Note that vi−2 ∈ B(ri−2, ri−1). We discuss the three possible relative positions of
ri−2 and ri−1. By Lemma 7, ri−2 may be southeast, northwest, or northeast of ri−1.
Since ri is southwest of ri−1, to prove vi−2 is to the right of Rec(ri−1, ri), it suffices
to show that vi−2 is to the right of ri−1.

• If ri−2 is southeast of ri−1, then by Lemma 8, vi−2 is on the ray of B(ri−1, ri−2)

vertically going south, i.e., ρi−2 is vertical. By Lemma 9, ri−1 is to the left of ρi−2.
Since vi−2 ∈ ρi−2, vi−2 is to the right of ri−1.

123

2452 Algorithmica (2019) 81:2430–2483

Fig. 10 Illustrating the case
when r j is to the northeast of
r j+1 and or(ρ j)
= v j z

rj

rj+1

d

c
v

ρ

jj

j

• If ri−2 is northwest of ri−1, then byLemma8, vi−2 is to the right of Rec(ri−2, ri−1),
and thus to the right of ri−1.

• If ri−2 is northeast of ri−1, then the rectangle Rec(ri−2, ri−1) is to the north-
east of Rec(ri−1, ri). If vi−2 is on BM (ri−2, ri−1), then since vi−2 is inside
Rec(ri−2, ri−1), vi−2 is to the right of Rec(ri−1, ri); otherwise, the proof is similar
to the above two cases. ��
Recall that when sketching the algorithm in Sect. 5.1, we claimed that the origins

of the rays involved somehow form a staircase structure. The next lemma states this
important fact.

Lemma 11 For any i with 2 ≤ i ≤ k − 1, or(ρi−1) is to the northeast of or(ρi).

Proof We first discuss a scenario that will be used later in this proof. Consider any
two consecutive roots r j and r j+1 in R, 1 ≤ j ≤ k − 1, with or(ρ j)
= v j . Then
based on our discussion above, it must be the case that r j+1 is to the southwest of
r j , cd intersects the rectangle Rec(r j , r j+1), and or(ρ j) is a point on an edge of
Rec(r j , r j+1). Let z j be the intersection of cd and the right edge of Rec(r j , r j+1)

(see Fig. 10). The origin or(ρ j) can be either on the right edge or the bottom edge of
Rec(r j , r j+1). In either case, or(ρ j) must be both below and to the left of z j , i.e., z j
is to the northeast of or(ρ j).

Consider any i with 2 ≤ i ≤ k − 1. To prove the lemma, depending on whether
or(ρi−1) = vi−1 and whether or(ρi) = vi , there are four cases.

1. If or(ρi−1) = vi−1 and or(ρi) = vi , then since vi−1 and vi are on cd in the order
from c to d, vi−1 is to the northeast of vi , and thus or(ρi−1) is to the northeast of
or(ρi).

2. If or(ρi−1) = vi−1 and or(ρi)
= vi , then by our discussion at the beginning of
this proof, ri+1 is to the southwest of ri , the rectangle Rec(ri , ri+1) intersects cd ,
and the point zi is to the northeast of or(ρi). Further, since ri+1 is to the southwest
of ri , by Lemma 10, vi−1 is to the right of Rec(ri , ri+1) and thus to the right of
zi . Since vi−1 is to the right of zi and both vi−1 and zi are on cd , vi−1 is to the
northeast of zi . Therefore, or(ρi−1) (which is vi−1) is to the northeast of or(ρi).

3. If or(ρi−1)
= vi−1 and or(ρi) = vi , then the analysis is analogous to the second
case.

4. If or(ρi−1)
= vi−1 and or(ρi)
= vi , then ri−1 is to the northeast of ri and ri is
to the northeast of ri+1. Hence, the rectangle Rec(ri−1, ri) is to the northeast of
Rec(ri , ri+1). Since or(ρi−1) is on Rec(ri−1, ri) and or(ρi) is on Rec(ri , ri+1),
we also obtain that or(ρi−1) is to the northeast of or(ρi). ��

123

Algorithmica (2019) 81:2430–2483 2453

Note that our algorithm may need to process a pair of non-consecutive roots of R.
For this, we have the following lemma.

Lemma 12 Consider any root ri ∈ R with 1 ≤ i ≤ k. For any ray ρ j , if j ≤ i − 1
and ρ j is vertical, then ρ j is to the right of ri ; if j ≥ i and ρ j is horizontal, then ρ j

is below ri .

Proof Without loss of generality, assume i < k. Consider the ray ρi , which is on
B(ri , ri+1). By Lemma 9, the origin or(ρi) is below ri . By Lemma 11, for any ray ρ j

with j ≥ i , or(ρ j) is below or(ρi) and thus is below ri . Hence, if ρ j is horizontal,
then ρ j must be below ri .

By an analogous analysis, we can show that if j ≤ i − 1 and ρ j is vertical, then ρ j

is to the right of ri . ��
For any two consecutive roots ri−1 and ri in R, 2 ≤ i ≤ k, the vertex vi−1

divides B(ri−1, ri) into two portions; we denote by Bbay(ri−1, ri) the portion that
goes inside bay(cd) after vi−1. A key to building VD(bay(cd)) is to compute the
interactions among all Bbay(ri−1, ri)’s, for i = 2, 3, . . . , k. Recall that if vi−1 is
on a ray of B(ri−1, ri), then Bbay(ri−1, ri) is the ray ρi−1; otherwise, vi−1 is on
BM (ri−1, ri) [i.e., the middle segment of B(ri−1, ri)], and Bbay(ri−1, ri) consists of
a portion of BM (ri−1, ri) in Rec(ri−1, ri) [i.e., the line segment vi−1or(ρi−1)] and
the ray ρi−1. Lemma 13 below shows that the portion of BM (ri−1, ri) inside bay(cd)

appears in SPM(F) [and thus in VD(bay(cd))], implying that we can simply keep it
when computing VD(bay(cd)) and we only need to further deal with the rays ρi for
i = 1, 2, . . . , k − 1. Thus, dealing with the rays ρi is the main issue of our algorithm
(as discussed in Sect. 5.1).

Lemma 13 For any two consecutive roots ri−1 and ri in R, 2 ≤ i ≤ k, if vi−1
lies on BM (ri−1, ri), then the portion of BM (ri−1, ri) inside bay(cd) appears in
VD(bay(cd)).

Proof Consider two consecutive roots ri−1 and ri in R, 2 ≤ i ≤ k, with vi−1 lying on
BM (ri−1, ri).

Denote by B ′
M the portion of BM (ri−1, ri) inside bay(cd). Recall that BM (ri−1, ri)

is an open segment that does not contain its endpoints and is strictly inside
Rec(ri−1, ri). To prove the lemma, it suffices to show that for any two roots r j and rh
in R with {r j , rh}
= {ri−1, ri }, if a portion of B(r j , rh) appears in SPM(F), then that
portion does not intersect B ′

M .
ByLemma7, ri maybe to the southeast, or northwest, or southwest of ri−1. Since cd

is positive-sloped, if ri is to the northwest or southeast of ri−1, then cd cannot intersect
the rectangle Rec(ri−1, ri) and thus vi−1 cannot lie on BM (ri−1, ri). Therefore, the
only possible case is that ri is to the southwest of ri−1.

First, we assume i − 1 ≥ 2 and consider the root ri−2. We discuss the possi-
ble relative positions of ri−2 with respect to ri−1. Recall that the bisector portion
Bbay(ri−2, ri−1) either is ρi−2 or consists of vi−2or(ρi−2) and ρi−2. Note that
in either case, when moving along Bbay(ri−2, ri−1) from vi−2, Bbay(ri−2, ri−1) is
monotonically increasing in the x-coordinates. Hence, vi−2 is a leftmost point of

123

2454 Algorithmica (2019) 81:2430–2483

Bbay(ri−2, ri−1). Since ri is to the southwest of ri−1, by Lemma 10, vi−2 is to the
right of Rec(ri−1, ri) and thus is strictly to the right of B ′

M . Hence, Bbay(ri−2, ri−1)

cannot intersect B ′
M .

For any pair of consecutive roots r j−1 and r j in R, 2 ≤ j ≤ i − 2, similarly, when
moving from v j−1 along Bbay(r j−1, r j), Bbay(r j−1, r j) is monotonically increasing
in the x-coordinates. Since vi−2 is strictly to the right of B ′

M and v j−1 is to the right
of vi−2, Bbay(r j−1, r j) cannot intersect B ′

M .
Let R1 = {r1, r2, . . . , ri−1} and R2 = {ri , ri+1, . . . , rk}. (Note that since R may be

amulti-set, R1 and R2 possibly contain the same physical root, but this is not important
to our analysis).

For any two different pairs of consecutive roots r j−1, r j and rt−1, rt with 2 ≤ j ≤
i − 1 and 2 ≤ t ≤ i − 1, it is possible that Bbay(r j−1, r j) and Bbay(rt−1, rt) intersect
in SPM(F); if that happens, then let B ′ be the resulting bisector. It is not difficult to see
that B ′ must be going in a direction between the original directions of Bbay(r j−1, r j)
and Bbay(rt−1, rt). Since neither Bbay(r j−1, r j) nor Bbay(rt−1, rt) intersects B ′

M , B ′
cannot intersect B ′

M . We can further consider the possible intersection between B ′ and
the bisector of another two roots in R1 in the manner as above, and show likewise that
the new bisector thus resulted cannot intersect B ′

M .
The above argument proves the lemma for R1, i.e., for any two roots r j and rt in R1

such that a portion of B(r j , rt) appears inVD(bay(cd)), that portion does not intersect
B ′
M . By a similar argument, we can also prove the lemma for R2, i.e., for any two roots

r j and rt in R2 such that a portion of B(r j , rt) appears in VD(bay(cd)), that portion
does not intersect B ′

M . It remains to prove the lemma for two roots in different subsets,
i.e., prove that for any two roots r j ∈ R1 and rt ∈ R2 such that {r j , rt }
= {ri−1, ri }
and a portion of B(r j , rt) appears in VD(bay(cd)), that portion does not intersect
B ′
M . Note that the case of B(r j , rt) (partially) appearing in VD(bay(cd)) can occur

only after Bbay(ri−1, ri) is “blocked” by an intersection between Bbay(ri−1, ri) and
the bisector of two roots in R1 or two roots in R2. Since the bisector of any two roots
in R1 or any two roots in R2 cannot intersect B ′

M , the portion of B(r j , rt) appearing
in VD(bay(cd)) cannot intersect B ′

M either. ��

The observations presented above help determine the behaviors of the bisectors for
the roots in R (e.g., the properties of the rays ρ1, ρ2, . . . , ρk−1), which are crucial to
constructing VD(bay(cd)). They form a basis for both showing the correctness and
the efficiency of our algorithm in Sect. 5.3. For example, Lemma 11 can help conduct
a set of ray shooting operations in linear time, and Lemma 13 allows us to decompose
the problem into certain subproblems with nice properties.

5.3 The Algorithm for ComputingVD(bay(cd))

In this subsection, we present our algorithm for computing VD(bay(cd)), i.e., com-
puting the Voronoi region VD(r) for each root r ∈ R.

As shown in [29,30], a key property of the L1 metric is that there exists an SPM
such that each edge of the SPM is horizontal, or vertical, or of a slope 1 or − 1. As
shown below, the curves involved in specifying VD(bay(cd)) consist of only line

123

Algorithmica (2019) 81:2430–2483 2455

Fig. 11 Illustrating an example
of BM (ri−1, ri) intersecting
both cd (at vi−1) and ∂ (at p).
The line segment vi−1 p divides
bay(cd) into bay1 and bay2

vi−1

ri

ri−1

bay2

B(ri−1 ,r i) bay1

p

d

c

segments of slopes 0, ∞, and − 1 (there is no + 1, which is due to the assumption
that cd is positive-sloped). A line (segment) is said to be (− 1)-sloped if its slope is
− 1. Our algorithm needs to perform O(k) vertical, horizontal, and (− 1)-sloped ray
shooting queries. By exploiting some properties shown in Sect. 5.2, we conduct all
ray shootings in a global manner in O(n′ + k) time.

Before describing the main algorithm, we discuss some preprocessing work as well
as some basic algorithmic methods that will be used later in the main algorithm.

5.3.1 Preliminaries and Preprocessing

By Lemma 13, for any two consecutive roots ri−1 and ri in R, 2 ≤ i ≤ k, if the
middle segment BM (ri−1, ri) of their bisector intersects cd (at vi−1), then we can
“separately” process the portion of BM (ri−1, ri) inside Rec(ri−1, ri), as follows. Let
∂ be the boundary of bay(cd) excluding cd .

Clearly, vi−1 divides BM (ri−1, ri) into two segments, only one of which contains
a point in bay(cd) [let B ′

M (ri−1, ri) denote that segment]. Thus, B ′
M (ri−1, ri) is a

line segment whose endpoints are vi−1 and or(ρi−1). We first determine whether
B ′
M (ri−1, ri) intersects ∂ , by performing a − 1-sloped ray shooting operation. Specif-

ically, we shoot a ray ρ originating at vi−1 and passing through or(ρi−1). If the length
of the portion of ρ between vi−1 and the first point p on ∂ hit by ρ is larger than
the length of B ′

M (ri−1, ri), then B ′
M (ri−1, ri) does not intersect ∂ , and we do noth-

ing. Otherwise, B ′
M (ri−1, ri) intersects ∂ (at the point p). By Lemma 13, the line

segment vi−1 p appears in SPM(F). Also, vi−1 p partitions bay(cd) into two simple
polygons (see Fig. 11); one polygon contains cvi−1 as an edge, which we denote
as bay1, and we denote the other polygon as bay2. Let R1 = {r1, r2, . . . , ri−1} and
R2 = {ri , ri+1, . . . , rk}. Since vi−1 p is in VD(bay(cd)), for any point q in bay1, there
is a shortest path from s to q that goes through a root r ∈ R1. Similarly, for any point q
in bay2, there is a shortest s-q path that goes through a root r ∈ R2. This implies that
we can divide the original problem of computing VD(bay(cd)) on bay(cd) and R into
two subproblems of computing VD(bay1) on bay1 and R1 and computing VD(bay2)
on bay2 and R2.

If we process each pair of consecutive roots in R as above, then the original problem
may be divided into multiple subproblems, each of which has the following property:
for any pair of consecutive roots ri−1 and ri in the root subset of R of a subproblem, if

123

2456 Algorithmica (2019) 81:2430–2483

Fig. 12 Illustrating the
horizontal visibility map of a
simple polygon

BM (ri−1, ri) intersects cd , then B ′
M (ri−1, ri) does not intersect ∂ and is contained in

the subpolygonofbay(cd)of the subproblem; further, B ′
M (ri−1, ri) is inVD(bay(cd))

and has been computed.
To perform the above process, a key is to derive an efficient method for the − 1-

sloped ray shooting operations. For this, we choose to check all pairs of consecutive
roots in R in the order of r1, r2, . . . , rk . In this way, it is easy to see that the ray
shootings are conducted such that the origins of the rays are sorted along cd from c
to d. This is summarized by the next observation.

Observation 7 Partitioning into subproblems conducts O(k) − 1-sloped ray shooting
operations that are organized such that the origins of all rays are sorted on cd from
c to d.

We show next that the ray shootings for Observation 7 can be done in O(n′ + k)
time. Since the origins of all rays in Observation 7 are sorted on cd , we can perform the
ray shootings by computing the visible region of bay(cd) from cd along the direction
of these rays. This can be easily done by a visibility algorithm on a simple polygon
(e.g., [1,23,28]). Below, we give a different algorithm for a more general problem; this
more general result is needed by the main algorithm.

Given a simple polygon P , the horizontal visibility map of P contains a horizontal
line segment inside P through each vertex of P , extending as long as possible without
properly crossing the boundary of P (such line segments are called the diagonals; see
Fig. 12). The vertical visibility map with vertical diagonals is defined similarly. Each
region in a visibility map is a trapezoid (a triangle is a special trapezoid). A visibility
map of a simple polygon can be computed in linear time [3].

For a ray ρ with its origin in bay(cd) (inside it or on the boundary), the boundary
point of bay(cd) that is not the origin or(ρ) hit by ρ first is called the target point of
ρ, denoted by tp(ρ). Recall that ∂ is the boundary of bay(cd) excluding the edge cd .
In the rest of this paper, unless otherwise stated, a ray in our discussion always has its
origin in bay(cd) and its target point on ∂ .

We say that m parallel rays ρ′
1, ρ

′
2, . . . , ρ

′
m are target-sorted if we move from c to

d (clockwise) on ∂ , we encounter the target points of these rays on ∂ in the order of
tp(ρ′

1), tp(ρ
′
2), . . . , tp(ρ

′
m).

Given a set of m target-sorted parallel rays ρ′
1, ρ

′
2, . . . , ρ

′
m for bay(cd) whose

origins are in bay(cd) and whose target points are on ∂ , below we present a visibility
map based approach for computing their target points in O(n′ + m) time (recall that
n′ is the number of vertices of bay(cd)).

123

Algorithmica (2019) 81:2430–2483 2457

Without loss of generality, we assume that the rays are all horizontal. We first
compute the horizontal visibility map of bay(cd) in O(n′) time. Then, starting from
the vertex c, we scan ∂ and check each edge e of ∂ and the trapezoid t(e) of the
visibility map bounded by e, to see whether the next ray ρ′

i (initially i = 1) is in the
trapezoid t(e) and can hit the edge e. Once the target point of the ray ρ′

i is found, we
continue with the next ray ρ′

i+1. Clearly, the time for computing all target points is
O(n′ + m). Thus, we have the following result.

Lemma 14 Given a set of m target-sorted parallel rays for bay(cd) whose origins are
in bay(cd) and whose target points are on ∂ , their target points can be computed in
O(n′ + m) time.

For the ray shootings in Observation 7, it is easy to see that these rays are target-
sorted. Thus, by Lemma 14, their target points can be computed in O(n′ + k) time.

In addition, as part of the preprocessing for ourmain algorithm,we also compute the
horizontal visibility map HM(bay(cd)) and the vertical visibility map VM(bay(cd))

of bay(cd). Further, for each 1 ≤ i ≤ k−1, we compute the trapezoid of the horizontal
visibility map HM(bay(cd)) that contains the origin or(ρi) of the ray ρi , in totally
O(n′ + k) time, in the following way.

Recall that or(ρi) is either vi or in the interior of bay(cd). In the latter case, or(ρi)
is an endpoint of the line segment B ′

M (ri , ri+1) = vi or(ρi) whose slope is − 1, and
the position of or(ρi) has been determined earlier by the − 1-sloped ray shooting
operations. By Lemma 11, all origins or(ρ1), or(ρ2), . . . , or(ρk−1) are ordered from
northeast to southwest. Further, or(ρi)’s are all visible from cd along the direction of
slope− 1.Thus, it is not difficult to show that ifwevisit the trapezoids of HM(bay(cd))

by scanning the edges of ∂ from c to d and looking at the trapezoids bounded by each
edge, then the trapezoids containing such or(ρi)’s are encountered in the same order
as or(ρ1), or(ρ2), . . . , or(ρk−1). This implies that we can use a similar algorithm as
for computing the target points of target-sorted parallel rays on ∂ (i.e., scanning ∂ from
c to d and checking the trapezoids of HM(bay(cd)) thus visited along ∂) to find all
the sought trapezoids, in O(n′ + k) time.

The above discussion leads to the following lemma.

Lemma 15 The preprocessing on bay(cd) takes O(n′ + k) time.

In the main algorithm, the horizontal visibility map HM(bay(cd)) will be used to
guide the main process. More specifically, during the algorithm, we traverse inside
bay(cd) following certain rays, and use HM(bay(cd)) to keep track of where we are
(i.e., which trapezoid of HM(bay(cd)) contains our current position). The vertical
visibility map VM(bay(cd)) will be used to compute the target points of some target-
sorted vertical rays using the above visibility map based approach.

For any two points a and b on ∂ with a lying on the portion of ∂ from c clockwise
to b, we denote by ∂(a, b) the portion of ∂ between a and b, and we say that a is before
b or b is after a.

123

2458 Algorithmica (2019) 81:2430–2483

5.3.2 The Main Algorithm

After the preprocessing, the problem of computing VD(bay(cd)) with the root set R
may be divided into multiple subproblems and we need to solve each subproblem. For
convenience of the forthcoming discussion, we assume that the original problem on
bay(cd) with R is merely one such subproblem, i.e., for any two consecutive roots ri
and ri+1 in R, if vi ∈ BM (ri , ri+1), then B ′

M (ri , ri+1) [= vi or(ρi)] lies completely
in VD(bay(cd)) and has been computed. Recall that in the preprocessing, we have
already computed the trapezoid of the horizontal visibility map HM(bay(cd)) that
contains the origin or(ρi) of the ray ρi , for each 1 ≤ i ≤ k − 1. Observation 8 below
summarizes these facts.

Observation 8 After the preprocessing,

• for any two consecutive roots ri and ri+1 in R, if vi ∈ BM (ri , ri+1), then their
bisector portion B ′

M (ri , ri+1) [= vi or(ρi)] has been computed;
• for each 1 ≤ i ≤ k − 1, the trapezoid of HM(bay(cd)) that contains the origin
or(ρi) of the ray ρi is known.

As discussed before, our task is to handle the interactions among the rays ρi for all
i = 1, 2, . . . , k − 1.

In the algorithm, we need to compute the target points for O(k) horizontal and verti-
cal rays. The main procedure is guided by the horizontal visibility map HM(bay(cd))

so that the target point of each horizontal ray can be determined in amortized constant
time. For the vertical ray shootings, we use the visibility map based approach with the
vertical visibility map VM(bay(cd)). Note that the vertical ray shootings will occur
in an online fashion in the algorithm. We will show that the vertical rays involved are
target-sorted. To compute the target points for these vertical rays, the algorithm main-
tains a reference point, denoted by p∗. Initially, p∗ = c. Then during the algorithm,
p∗ will be moved forward along ∂ from c to d. In this way, the target points of all
vertical rays are computed in totally O(n′ + k) time [recall that n′ is the number of
obstacle vertices of bay(cd)].

Let	 = {ρ1, ρ2, . . . , ρk−1}. We process the rays of	 incrementally in the order of
ρ1, ρ2, . . . , ρk−1, whose origins are ordered from northeast to southwest by Lemma
11. By Observation 6, each ray in 	 is either horizontally going east or vertically
going south. We say that initially all rays are active and the entire bay(cd) is active.
In general, the active rays are used to decompose the active region of bay(cd). During
the algorithm, some portion of bay(cd)will be implicitly set as inactive, which means
that each point of such a region is in the Voronoi region of a root that has been
determined. The active region of bay(cd) at any moment of the algorithm always
forms a connected simple polygon, a fact that we will not explicitly argue in the
following algorithm description. Similarly, some rays will be set as inactive, meaning
that they will no longer be involved in the further decomposition of the current active
region of bay(cd). When the algorithm terminates, the entire bay(cd) is inactive and
all rays of	 are inactive.Note that setting a region or a ray as inactive is done implicitly
and is used only for our analysis. Since each ray in 	 lies on the bisector of two roots
in R, we say that the two roots define the ray.

123

Algorithmica (2019) 81:2430–2483 2459

Fig. 13 Illustrating an example
of ρ1 being horizontal

r2

r1

v1
ρ1

bay1

tp()ρ1

ρ2
d

c

p=

Since our algorithm, and particularly, the argument of its correctness, is quite
involved, in the followingwe first provide a quick sketch of the algorithm. The detailed
algorithm including its correctness proof and time analysis will be presented after-
wards.

A Quick Sketch of the Algorithm

We start with the first ray ρ1 (i.e., the one whose origin is the northeast most). If
ρ1 is horizontal (going east), then we compute its target point tp(ρ1) on ∂ by using
HM(bay(cd)) (see Fig. 13). In this case, we can immediately determine VD(r1). We
move the reference point p∗ from c to tp(ρ1). We then continue with the next ray ρ2.

If ρ1 is vertical (going south), then we push ρ1 onto a stack S (initially, S = ∅),
and let the reference point p∗ stay at c. We then continue with the next ray ρ2.

In general, suppose our algorithm is about to process a ray ρi ∈ 	, i > 1, which
lies on the bisector B(ri , ri+1). There are a number of cases and subcases to con-
sider, depending on whether ρi is vertical or horizontal, whether S is empty, etc. Our
algorithmmaintains an invariant that the rays in S from bottom to top are target-sorted.
Case 1: ρi is vertical (going south). Then we simply push ρi onto the top of S and
the reference point p∗ is not changed. The algorithm then continues with the next ray
ρi+1 ∈ 	 in this situation.
Case 2: ρi is horizontal (going east). We compute the target point tp(ρi) of ρi . We can
show that tp(ρi) is after the reference point p∗ on ∂ . Depending on whether S = ∅,
there are two subcases.
Subcase 2(a): S = ∅. In this case, we can determine the Voronoi region VD(ri)
immediately. We move p∗ to tp(ρi) and then consider the next ray ρi+1.
Subcase 2(b): S
= ∅. In this case, for the rays in S whose target points lie on
∂(p∗, tp(ρi)), we compute their target points by scanning ∂(p∗, tp(ρi)) from p∗
to tp(ρi). The target points of some rays in S (e.g., the ray at the top of S) are not yet
found if they are on ∂ after tp(ρi).

Let ρ be the ray at the top of S (e.g., if ρi−1 is vertical, then ρ is ρi−1). Suppose
ρ is on the bisector B(r j , r j ′) with j ′ > j . As will be seen later, our algorithm may
produce a ray not in	 and the two roots defining the ray may not be consecutive in R.

123

2460 Algorithmica (2019) 81:2430–2483

Fig. 14 Illustrating Subcase
2(b.1) in which the target points
of all rays in S are before
p = tp(ρi). All vertical rays are
in S. The ray ρ is at the top of S
and ρ′ is at the bottom of S

vi ρi

VD(r)t

rt

ρ ’

tp()ρip=

ρtp()

ρ’

d

c

ρ

z=tp()

Hence, ρ may not be in 	, and r j and r j ′ may not be consecutive. However, it always
holds that i = j ′ and or(ρi) is to the southwest of or(ρ). Depending on whether the
target point tp(ρ) is before tp(ρi), there are two subcases.
Subcase 2(b.1): tp(ρ) is before tp(ρi). In this case, the scanning procedure has com-
puted the target points of all rays of S on ∂(p∗, tp(ρi)) (i.e., all such target points
are before tp(ρi) on ∂; see Fig. 14). In this case, we can readily compute the Voronoi
regions of the roots defining the rays in S. Finally, we pop all rays of S out and move
p∗ to tp(ρi). We then consider the next ray ρi+1.
Subcase 2(b.2): tp(ρ) is not before tp(ρi). In this case, tp(ρ) was not found on
∂(p∗, p) by the scanning procedure. This is themost involved case sinceρ intersectsρi
before it hits ∂ (and somay someother rays in S).Weneed to consider the consequences
of the intersections of such rays of S with ρi .

First of all, the Voronoi region VD(ri) can be readily computed (see Fig. 15). Let
p1 be the intersection point of ρi and ρ, and q1 the intersection of the horizontal line
through ri+1 and the vertical line through r j (see Fig. 15).We can show that q1 is to the
southeast of p1. Because the rectangle Rec(p1, q1) is contained in Rec(r j , ri+1), the
portion of B(r j , ri+1) in Rec(p1, q1) is a portion of themiddle segment of B(r j , ri+1).
Further, since p1 is the intersection of ρi and ρ, p1 is at the intersection of B(ri , ri+1)

and B(r j , ri). Thus, p1 is on B(r j , ri+1).
We can show that ri+1 is to the southwest of r j , and thus the middle segment of

B(r j , ri+1) is − 1-sloped. The portion of B(r j , ri+1) contained in Rec(p1, q1) is a
segment with an endpoint at p1 and the other endpoint (denoted by p′

1) on one of the
two edges of Rec(p1, q1) incident to q1 (see Fig. 15). We can prove that the portion
of p1 p′

1 contained in bay(cd) appears in VD(bay(cd)), and thus we should keep

this portion of p1 p′
1. However, p1 p

′
1 may intersect ∂ . We determine whether such

intersection occurs, with the help of HM(bay(cd)).

1. If p1 p′
1 intersects ∂ , say, at at point z (see Fig. 16). In this case, we can readily

compute the Voronoi regions of the roots that define the rays in S. Finally, we
move the reference point p∗ to z, and continue with the next ray ρi+1.

2. If p1 p′
1 does not intersect ∂ (see Fig. 17), then depending on whether the point p′

1
is on the right edge or the bottom edge of Rec(p1, q1), there are further two cases.

123

Algorithmica (2019) 81:2430–2483 2461

Fig. 15 Illustrating an example
that the ray ρ at the top of S
intersects ρi (at p1) before ρ

hits ∂ . The region V D(ri) is
highlighted and
B′
M (r j , ri+1) = p1 p

′
1

tp()ρip=vi
ρiri+1

vj
vi−1

rj

p1

1q

ri

p’1

VD(r)i

d
ρ

c

tp()ρip=vi
ρiri+1

vj
vi−1

rj

p1

1q

ri

VD(r)i

p’1

c

ρd

z

bay’

Fig. 16 Illustrating an example that B′
M (r j , ri+1) (= p1 p

′
1) intersects ∂ (first at z)

(a) If p′
1 is on the bottom edge of Rec(p1, q1) (see Fig. 17), then let ρ∗

i be the
vertical ray originating at p′

1 and going south, which is on B(r j , ri+1). We pop
ρ out of S and push ρ∗

i onto the top of S. We move p∗ to tp(ρi)), and then
continue with the next ray ρi+1 ∈ 	.

(b) If p′
1 is on the right edge of Rec(p1, q1) (see Fig. 18), then denote by ρi1 the

horizontal ray originating at p′
1 and going east, which is on B(r j , ri+1). Then,

we pop ρ out of S and move p∗ to tp(ρi). Finally, we let ρi1 be the next ray
to be considered by the algorithm (note that ρi1 is not in).

The Details of the Algorithm

We now present the full details of the algorithm, including its proof of correctness.

123

2462 Algorithmica (2019) 81:2430–2483

Fig. 17 Illustrating an example
that the point p′

1 [= or(ρ∗
i)] is

on the bottom edge of
Rec(p1, q1)

tp()ρip=vi
ρiri+1

vj
vi−1

rj

p1

1q

ri

VD(r)i
p’1

ρ*i

c

d

ρ

’ρ

Fig. 18 Illustrating an example
that the point p′

1 [= or(ρi1)] is
on the right edge of Rec(p1, q1)

tp()ρip=vi
ri+1

vj
vi−1ri

VD(r)i
ρi p1

rj

1q
p’1

c

d

ρ

’ρ

ρi1

We start with the first ray ρ1. If ρ1 is horizontal (going east), then since or(ρ1) is
the first origin along the northeast direction, no other ray in 	 can intersect it. Let p
be the target point of ρ1 on ∂ (see Fig. 13). Clearly, p can be found in O(1) time since
we already know the trapezoid in HM(bay(cd)) that contains or(ρ1) by Observation
8. Denote by α the portion of B(r1, r2) between v1 and p. Note that α is either the line
segment v1 p [if v1 = or(ρ1)], or the concatenation of the two line segments v1or(ρ1)
and or(ρ1)p. In either case, α partitions bay(cd) into two simple polygons. One of
them contains cv1 as an edge and we denote it by bay1 (see Fig. 13). We claim that
bay1 is the Voronoi region of r1, i.e., VD(r1) = bay1. Indeed, by the above analysis
and Lemma 13, α is in VD(bay(cd)), implying that for any point q ∈ bay1, there is
a shortest path from s to q via r1. The claim thus follows, and VD(r1) is determined.
We then set the ray ρ1 and the region of bay1 as inactive. Hence, the active region of
bay(cd) becomes bay(cd)\bay1, which needs to be further decomposed. In addition,
we move the reference point p∗ from c to p [= tp(ρ1)]. We then continue with the
next ray ρ2.

123

Algorithmica (2019) 81:2430–2483 2463

If ρ1 is vertical (going south), then we push ρ1 onto a stack S (initially, S = ∅),
and let the reference point p∗ stay at c. We then continue with the next ray ρ2.

We will show below that our algorithm maintains the following general invariants,
which are used to prove the correctness of the algorithm. Suppose the current moment
of the algorithm is right before the next ray ρ is considered, and assume ρ lying on
the bisector B(r j , ri) with i > j . The stack S may be non-empty; if S = ∅, then the
invariants below related to any rays in S are not applicable. Let ρ′ be the ray at the top
of S, and suppose ρ′ lies on B(rt , rt ′) with t ′ > t .

Algorithm Invariants Our algorithm maintains the following invariant properties:

1. All rays in S are active and vertically going south.
2. The origins of all rays in S from top to bottom are ordered from southwest to

northeast.
3. The origin of the next ray to be considered by the algorithm (i.e., ρ) is to the

southwest of the origin of the ray at the top of S (i.e., ρ′).
4. The two indices j and t ′ are equal.
5. For each ray ρ′′ in S ∪ {ρ}, suppose ρ′′ lies on the bisector B(r j ′, ri ′) of two roots

r j ′ and ri ′ with i ′ > j ′; then the portion of the boundary of the Voronoi region
VD(ri ′) [resp., VD(r j ′)] from vi ′−1 (resp., v j ′) to the origin or(ρ′′) of ρ′′ has
already been computed [more specifically, the boundary of VD(ri ′) is partitioned
into two portions by vi ′−1 and or(ρ′′), and the above boundary portion refers to
the one that does not include vi ′−1vi ′ on cd; the similar applies to the boundary
portion of VD(r j ′)].

6. For each ray ρ′′ in S, suppose it lies on the bisector B(r j ′, ri ′) of two roots r j ′ and
ri ′ with i ′ > j ′; then r j ′ is to the right of ρ′′ and ri ′ is to the left of ρ′′.

7. The root rt is to the left of all rays in S\{ρ′} [recall that ρ′ ⊂ B(rt , rt ′)with t ′ > t].
8. For any two consecutive rays ρ′

1 and ρ′
2 in S such that ρ′

1 is closer to the top of S,
suppose ρ′

1 is on B(ri1, ri2) for i2 > i1 and ρ′
2 is on B(r j1, r j2) for j2 > j1; then

i1 = j2.
9. The target points of all rays in S from bottom to top are ordered clockwise on

∂ (i.e., from c to d).
10. If ρ is vertical, then the target point tp(ρ) of ρ is after the target point tp(ρ′) of

ρ′ on ∂ .
11. If the target point of any ray in S has not been computed yet, then the target point

of that ray is after the reference point p∗ [i.e., on ∂(p∗, d)].
12. The target point tp(ρ) is after p∗.
13. Suppose ρ′′ is the first horizontal ray in	 that will be considered by the algorithm

in a future time from now; then its target point tp(ρ′′) is after p∗.
14. The trapezoid in the horizontal visibility map HM(bay(cd)) that contains the

origin or(ρ) of the ray ρ has been computed.

Now consider the moment that is right after we finish processing ρ1 and before we
consider ρ2. Based on the processing of ρ1 discussed above, either ρ1 is horizontal
and S is empty, or ρ1 is vertical and S = {ρ1}. Lemma 16 below shows that in either
case, all invariants of the algorithm hold. We intend to use the proof of Lemma 16 as a
“warm-up” for the analysis of the more general situations later. Observation 9 follows
from the definitions of the rays in 	 and Lemma 11.

123

2464 Algorithmica (2019) 81:2430–2483

Observation 9 The target points of all rays in 	 are on ∂ . For any two rays r j and ri
in 	 with i > j , if r j is horizontal or ri is vertical, then tp(ri) is after tp(r j) on ∂ .

Lemma 16 At the moment after ρ1 has been processed and before ρ2 is considered,
all invariants of the algorithm hold.

Proof Recall that ρ1 is on B(r1, r2) and ρ2 is on B(r2, r3), and the reference point p∗
is at the target point tp(ρ1) if ρ1 is horizontal and at the vertex c otherwise.

Wefirst discuss the casewhenρ1 is horizontal, inwhich S is empty and p∗ = tp(ρ1).
Invariants (1) through (11) except (5) simply follow since they are all related to some
rays in S. For Invariant (5), we only need to consider ρ2 ⊂ B(r2, r3), i.e., we need to
show that the portion of the boundary of the Voronoi region VD(r3) from v2 to the
origin or(ρ2) of ρ2, which is also the boundary portion of the Voronoi region VD(r2)
from v2 to or(ρ2), has already been computed. Denote this boundary portion by α.
Note that α is the portion of B(r2, r3) between v2 and or(ρ2). Recall that or(ρ2) is
either v2 or not. If or(ρ2) = v2, then we are done since α is just a single point v2.
Otherwise, v2 must be on BM (r2, r3) and α is B ′

M (r2, r3) [= v2or(ρ2)], which has
been computed in our preprocessing by Observation 8. Hence, Invariant (5) follows.

For Invariant (12), we need to show that tp(ρ2) is after p∗ = tp(ρ1), which is true
due to Observation 9 and ρ1 being horizontal. For Invariant (13), let i > 1 be the
smallest index such that ρi ∈ 	 is horizontal. If there is no such i , then Invariant (13)
trivially holds; otherwise, we need to prove that tp(ρi) is after p∗ = tp(ρ1), which
is true due to Observation 9 and ρ1 being horizontal. For Invariant (14), we need to
show that the trapezoid of HM(bay(cd)) containing or(ρ2) is known, which is true
by Observation 8. Hence, when ρ1 is horizontal, all invariants hold.

We then discuss the case when ρ1 is vertical, in which S = {ρ1} and the reference
point p∗ = c. Invariants (1) and (2) simply follow. By Lemma 11, or(ρ2) is to the
southwest of or(ρ1), and thus Invariant (3) holds. Invariant (4) is obvious. For Invariant
(5), we need to consider both ρ1 and ρ2. The proof is similar to that for the case when
ρ1 is horizontal, and we omit it. For Invariant (6), we need to show that r1 is to the right
of ρ1 and r2 is to the left of ρ1, which is true due to Lemma 9 and ρ1 being vertical.
Invariant (7) simply follows since ρ1 is the only ray in S. Invariants (8) and (9) trivially
hold since S has only one ray. For Invariant (10), we need to show that if ρ2 is vertical,
then tp(ρ2) is after tp(ρ1), which is true by Observation 9. For Invariant (11), note that
the target point tp(ρ1) has not been computed. Since p∗ = c, Invariant (11) trivially
holds. Invariants (12) and (13) also easily hold since p∗ = c and the target points
of all rays in 	 are on ∂ . For Invariant (14), we need to show that the trapezoid of
HM(bay(cd)) that contains or(ρ2) is known, which is true by Observation 8.

We hence conclude that all invariants of the algorithm hold. ��
As an implementation detail, although we view S as a stack, we represent S as a

doubly-linked list so that we can access the rays in S from both the top and the bottom
of S. But, we always pop a ray out of S from its top and push a ray onto S at its top.
Next, we discuss the general situations of our algorithm.

Suppose our algorithm just starts to process a ray ρi ∈ 	, i > 1, which lies
on the bisector B(ri , ri+1), and all invariants of the algorithm hold right before ρi is
processed. There are a number of cases and subcases to consider, depending onwhether

123

Algorithmica (2019) 81:2430–2483 2465

ρi is vertical or horizontal, whether S is empty, and the intersecting consequences
between ρi and the rays in S (if S
= ∅), etc.

Case 1: ρi is vertical (going south). Then we simply push ρi onto the top of S and
the reference point p∗ is not changed. The algorithm then continues with the next ray
ρi+1 ∈ 	 in this situation. Lemma 17 below shows that all invariants of the algorithm
hold.

Lemma 17 If the ray ρi ∈ 	 is vertical, then at the moment after ρi is processed and
before ρi+1 is considered, all invariants of the algorithm hold.

Proof Note thatρi+1 is on B(ri+1, ri+2). Let ξ be themoment right afterρi is processed
and ξ ′ be the moment right before ρi is considered. Thus, from ξ ′ to ξ , the only change
to S is that we push ρi onto the top of S. The proof below is based on the assumption
that S has at least two rays at the moment ξ (i.e., ρi and at least another ray), since
otherwise the invariants related to other rays in S than ρi trivially hold. This also
implies that S is not empty at the moment ξ ′. Let ρ be the ray at the top of S at the
moment ξ ′, and assume ρ lying on the bisector B(r j , r j ′) with j ′ > j .

Invariant (1) holds since ρi is vertical.
For Invariant (2), since all invariants of the algorithm hold at the moment ξ ′, it

suffices to show that or(ρi) is to the southwest of or(ρ). Note that at the moment
ξ ′, ρi is the next ray to be considered by the algorithm. Thus, by Invariant (3) at the
moment ξ ′, or(ρi) is to the southwest of or(ρ). Invariant (2) thus follows.

For Invariant (3), Lemma 11 implies that or(ρi+1) is to the southwest of or(ρi).
Invariant (4) trivially holds since ρi ⊂ B(ri , ri+1) and ρi+1 ⊂ B(ri+1, ri+2).
For Invariant (5), it suffices to consider the ray ρi+1, i.e., to show that the portion

of the boundary of VD(ri+1) between vi+1 and or(ρi+1), which is also the portion of
the boundary of VD(ri+2) between vi+1 and or(ρi+1), has already been computed.
(Note that the case for the ray ρi trivially holds due to Invariant (5) at the moment ξ ′
when ρi is the next ray to be considered.) Recall that the above boundary portion is a
single point vi+1 if vi+1 = or(ρi+1) and is the line segment vi+1or(ρi+1) otherwise.
By Observation 8, if vi+1
= or(ρi+1), then vi+1or(ρi+1) has already been computed
in the preprocessing. Thus, Invariant (5) follows.

For Invariant (6), it suffices to prove that ri is to the right of ρi and ri+1 is to the
left of ρi , which follows from Lemma 9 since ρi is vertical.

For Invariant (7), it suffices to show that ri is to the left of ρ. Recall that ρ is on
B(r j , r j ′) with j ′ > j . At the moment ξ ′, by Invariant (4), j ′ = i ; by Invariant (6), ri
(= r j ′) is to the left of ρ. Thus, Invariant (7) follows.

For Invariant (8), it suffices to show j ′ = i , which has been proved above for
Invariant (7).

For Invariant (9), it suffices to show that tp(ρi) is after tp(ρ) on ∂ . Since ρi is
vertical, at the moment ξ ′, by Invariant (10), tp(ρi) is after tp(ρ) on ∂ . Invariant (9)
thus follows.

For Invariant (10), we need to prove that if ρi+1 is vertical, then tp(ρi+1) is after
tp(ρi) on ∂ , which follows from Observation 9.

For Invariant (11), note that the target point tp(ρi) has not been computed.We need
to show that tp(ρi) is after p∗ on ∂ . At the moment ξ ′, by Invariant (12), tp(ρi) is after
p∗. Further, p∗ has not been moved since the moment ξ ′. Invariant (11) thus follows.

123

2466 Algorithmica (2019) 81:2430–2483

For Invariant (12), we need to show that tp(ρi+1) is after p∗. If ρi+1 is vertical, then
by Observation 9, tp(ρi+1) is after tp(ρi) on ∂ , and we have also shown above that
tp(ρi) is after p∗; thus tp(ρi+1) is after p∗. If ρi+1 is horizontal, then at the moment
ξ ′, since ρi is vertical, the first horizontal ray in	 to be considered by the algorithm in
future is ρi+1; thus by Invariant (13), tp(ρi+1) is after p∗. Invariant (12) then follows.

Invariant (13) trivially holds since ρi is vertical. More specifically, suppose the first
horizontal ray in 	 that will be considered by the algorithm after the moment ξ ′ is
ρ j . Note that j ≥ i . Since all invariants of the algorithm hold at the moment ξ ′, by
Invariant (13), tp(r j) is after p∗ on ∂ . Then at the moment ξ , since ρi is vertical, the
first horizontal ray in 	 to be considered by the algorithm is still ρ j . Proving that
Invariant (13) holds at the moment ξ is to prove that tp(r j) is after p∗, which has been
proved above since p∗ has not been moved since the moment ξ ′.

For Invariant (14),we need to show that the trapezoid of HM(bay(cd)) that contains
or(ρi+1) is known, which is true by Observation 8.

We conclude that all invariants of the algorithm hold at the moment ξ . ��
Case 2: ρi is horizontal (going east). Let p = tp(ρi). We claim that we can find p in
constant time. Indeed, since ρi is the next ray considered by the algorithm, by Invariant
(14), the trapezoid of HM(bay(cd)) that contains or(ρi) is known. The claim then
follows since p is on the boundary of the above trapezoid. Since ρi is horizontal, by
Invariant (13) (at the moment right before processing ρi), p is after the reference point
p∗. Depending on whether the stack S is empty, there are two subcases to consider.
Subcase 2(a): S = ∅. Then no ray in S intersects ρi before it hits ∂ (and thus no
ray shooting for any ray ρ j ∈ 	 with j < i intersects ρi before hitting ∂). Also, for
each ray ρ j ∈ 	 with j > i , since or(ρ j) is to the southwest of or(ρi) and ρi is
horizontal, ρ j cannot intersect ρi . Hence, the portion or(ρi)p of the ray ρi appears
in VD(bay(cd)). Recall that ρi is on B(ri , ri+1). The portion of B(ri , ri+1) between
vi and p divides the current active region of bay(cd) into two simple polygons; one
of them contains vi−1vi and we denote it by bayi . Further, each point in bayi has a
shortest path to s via ri . Thus, bayi is the Voronoi region VD(ri). We then set ρi and
the region bayi as inactive. In addition, wemove p∗ to p.We then consider the next ray
ρi+1. We prove below that all invariants of the algorithm hold right after processing
ρi .

Since S is empty, Invariants (1) to (11) except (5) simply hold since they are all
related to some rays in S. For Invariant (5), we only need to consider ρi+1, which
also holds by Observation 8 (the analysis is similar as before). For Invariant (12),
we need to show that tp(ρi+1) is after p∗. Since ρi is horizontal, by Observation
9, tp(ρi+1) is after tp(ρi) (= p∗). Thus, Invariant (12) follows. For Invariant (13),
suppose ρ j ∈ 	 is the first horizontal ray to be considered by the algorithm. Note
that it must be j > i . We need to show that tp(ρ j) is after p∗ [= tp(ρi)], which
is true by Observation 9 since ρi is horizontal. For Invariant (14), we need to show
that the trapezoid of HM(bay(cd)) that contains or(ρi+1) is known, which is true by
Observation 8. Therefore, all invariants of the algorithm hold right after processing
ρi .
Subcase 2(b): S
= ∅. Then for the rays in S whose target points lie on ∂(p∗, p), we
compute their target points by scanning ∂(p∗, p) from p∗ to p [= tp(ρi)]; this scan-

123

Algorithmica (2019) 81:2430–2483 2467

ning process uses the visibility map based approach with VM(bay(cd)), as described
in the preprocessing. By Invariant (9), such vertical rays (from bottom to top in S) are
target-sorted. Thus, the scanning procedure takes linear time in terms of the number
of edges of ∂(p∗, p) and the number of target points found in this process. Note that
the scanning procedure stops when we encounter the point p. This also implies that
the target points of some rays in S (e.g., the ray at the top of S) are not yet found if
they are on ∂ after p.

Let ρ be the ray at the top of S (e.g., if ρi−1 is vertical, then ρ is ρi−1). Suppose ρ is
on the bisector B(r j , r j ′) with j ′ > j . Then right before ρi is processed, by Invariant
(4), i = j ′ since ρi ⊂ B(ri , ri+1); by Invariant (3), or(ρi) is to the southwest of
or(ρ). Depending on whether the target point tp(ρ) is before p or not, there are two
subcases.
Subcase 2(b.1): The target point tp(ρ) is before p = tp(ρi). In this case, the scanning
procedure has found tp(ρ) on ∂(p∗, p). Then by Invariants (9) and (11), the target
points of all rays in S have been obtained and all such target points are before p
on ∂ . Since p is the target point of ρi , the above implies that all rays in S hit ∂

before they intersect ρi (see Fig. 14). Further, since all other active rays in 	, i.e.,
ρi+1, ρi+2, . . . , ρk−1, have their origins to the southwest of or(ρi), no ray in S can
intersect these active rays before it hits ∂ . This means that for each ray ρ′ in S,
the portion of ρ′ between or(ρ′) and tp(ρ′) appears in VD(bay(cd)). Based on the
discussion above, we perform a splitting procedure on S, as follows.

Let ρ′ be the ray at the bottom of S and z = tp(ρ′) (see Fig. 14). Suppose ρ′ is on
the bisector B(rt , rt ′) with t ′ > t . By Invariant (5), the boundary portion of VD(rt)
between vt and or(ρ′) has been computed. The concatenation of the segment or(ρ′)z
and this boundary portion of VD(rt) splits the current active region of bay(cd) into
two simple polygons. One of them contains vt−1vt as an edge; further, each point in
this polygon has a shortest path to s via rt . Thus, the polygon containing vt−1vt is the
Voronoi region VD(rt). We also set the region VD(rt) as inactive.

We then continue to process the second bottom ray in S, in the similar fashion. This
splitting procedure stops once all rays in S are processed. In addition, we set all rays
in S as inactive and pop them out of S (S then becomes empty). Finally, we move
the reference point p∗ to p [= tp(ρi)], and consider the next ray ρi+1. By the same
analysis as that for the Subcase 2(a) when S is empty, we can prove that all invariants
of the algorithm hold. We omit the details.
Subcase 2(b.2): The target point tp(ρ) is not before p = tp(ρi). In this case, tp(ρ) has
not been found on ∂(p∗, p) by the scanning procedure. Then,ρ must intersectρi before
it hits ∂ (and so may some other rays in S). We need to consider the consequences of
the intersections of such rays in S with ρi . Recall that ρi is on B(ri , ri+1) and ρ is on
B(r j , ri) with i > j . Below we show how to determine the Voronoi region VD(ri)
and the portion of the bisector B(r j , ri+1) in VD(bay(cd)). Let p1 be the intersection
point of ρi and ρ (see Fig. 15).

First of all, we determine the Voronoi region VD(ri) (see Fig. 15). Since ρ is
the leftmost ray in S by Invariant (2), both the line segments or(ρi)p1 and or(ρ)p1
appear inVD(bay(cd)). Since the ray ρ is in the stack S, by Invariant (5), the boundary
portion of VD(ri) between vi−1 and or(ρ) has been computed, which we denote by α.

123

2468 Algorithmica (2019) 81:2430–2483

At the moment right before ρi is processed, since ρi is the next ray to be considered,
also by Invariant (5), the boundary portion of VD(ri) between vi and or(ρi) has been
computed, which we denote by β [i.e., β = vi if vi = or(ρi) and β = vi or(ρi)
otherwise]. As argued similarly in the earlier analysis, VD(ri) is the region bounded
clockwise by α, the segment or(ρ)p1, the segment or(ρi)p1, β, and vi−1vi . This
region of VD(ri) is then set as inactive.

Second, we determine the portion of the bisector B(r j , ri+1) that appears in
VD(bay(cd)). Since ρi is horizontal, by Lemma 9, the root ri+1 is below ρi . Since
ρ ⊂ B(r j , ri) with i > j , by Invariant (6), r j is to the right of ρ. Therefore, the
intersection point (denoted by q1) of the horizontal line through ri+1 and the vertical
line through r j is to the southeast of p1 (see Fig. 15). We first discuss the portion of
B(r j , ri+1) contained in the rectangle Rec(p1, q1).

Obviously, Rec(p1, q1) is contained in the rectangle Rec(r j , ri+1). Thus, the por-
tion of B(r j , ri+1) in Rec(p1, q1) is a portion of the middle segment of B(r j , ri+1).
Further, since p1 is the intersection of ρi and ρ, p1 is at the intersection of B(ri , ri+1)

and B(r j , ri). Thus, p1 is on B(r j , ri+1).
We claim that ri+1 is to the southwest of r j . This can be proved by showing that

ri+1 is to the southwest of p1 and p1 is to the southwest of r j . Indeed, since ri+1 is
below ρi and cd is positive-sloped, p1 must be to the right of ri+1, which also implies
that ri+1 is to the southwest of p1. Similarly, we can show that p1 is to the southwest
of r j .

Because ri+1 is to the southwest of r j , the middle segment of B(r j , ri+1) is − 1-
sloped. Denote by B ′

M (r j , ri+1) the portion of B(r j , ri+1) contained in Rec(p1, q1).
Based on the above analysis, B ′

M (r j , ri+1) is a − 1-sloped line segment with an end-
point at p1 and the other endpoint on one of the two edges of Rec(p1, q1) incident to
q1 (see Fig. 15). We have the following lemma.

Lemma 18 B ′
M (r j , ri+1) ∩ bay(cd) (i.e., the portion of B ′

M (r j , ri+1) contained in
bay(cd)) appears in VD(bay(cd)).

Proof The proof is similar to that for Lemma 13 and hence we only sketch it here. For
convenience, we view B ′

M (r j , ri+1) as the open segment that does not contain its two
endpoints.

It suffices to show that B ′
M (r j , ri+1) does not intersect any current active ray.

Consider any current active ray ρ′, ρ′ /∈ {ρ, ρi }. Then ρ′ either is in S or is a ray
ρt ∈ 	 with t > i .

• If ρ′ ∈ S, then ρ′ is vertical by Invariant (1). By Invariant (7), ρ′ is to the right of
the root r j , and thus to the right of the rectangle Rec(p1, q1). Hence, ρt does not
intersect B ′

M (r j , ri+1) since B ′
M (r j , ri+1) is strictly inside Rec(p1, q1).

• If ρ′ = ρt ∈ 	 with t > i , then there are two subcases.
If ρt is horizontal, then by Lemma 12, ρt is below ri+1, and is thus below the
rectangle Rec(p1, q1). Hence, ρt does not intersect B ′

M (r j , ri+1).
If ρt is vertical, then by Lemma 11, the origin or(ρi) is to the northeast of or(ρt).
Clearly, or(ρi) is to the left of Rec(p1, q1) and thus or(ρt) is to the left of
Rec(p1, q1). Since ρt is vertical, ρt is also to the left of Rec(p1, q1). Hence,
ρt does not intersect B ′

M (r j , ri+1).

123

Algorithmica (2019) 81:2430–2483 2469

The above argument shows that none of the active rays can intersect B ′
M (r j , ri+1).

Hence, the portion of B ′
M (r j , ri+1) contained in bay(cd) must appear in

VD(bay(cd)). ��

The preceding lemma implies that we should report the portion of B ′
M (r j , ri+1)

that is contained in bay(cd) as part of VD(bay(cd)).
We compute B ′

M (r j , ri+1) in O(1) time, and let B ′
M (r j , ri+1) = p1 p′

1 (see Fig. 15).
Note that p′

1 is either on the right edge or the bottom edge of Rec(p1, q1). However,

p1 p′
1 may intersect ∂ . To determine whether such intersection occurs, wemove among

the trapezoids in the horizontal visibility map HM(bay(cd)) from the endpoint p1 of
B ′
M (r j , ri+1) along the segment p1 p′

1, as follows.
Note that the portion of the ray ρi between its origin or(ρi) and its target point

p = tp(ρi) is contained in a single trapezoid of HM(bay(cd)), i.e., the trapezoid
containing or(ρi), which is already known according to Invariant (14). Further, this
trapezoid is the one that contains p1 since p1 ∈ or(ρi)p. Starting at p1 in this trapezoid,
wemove along the segment p1 p′

1, and enter/exit trapezoids in HM(bay(cd)) one after
another, until we encounter either p′

1 or an edge of ∂ for the first time. In this way,

we can determine whether p1 p′
1 intersects ∂ . Further, if p1 p′

1 intersects ∂ , then the
first such intersection point, denoted by z, is also found in this moving process; if
B ′
M (r j , ri+1) does not intersect ∂ , then the trapezoid of HM(bay(cd)) containing the

point p′
1 is determined. It is easy to see that the running time of the above moving

procedure is proportional to the number of trapezoids in HM(bay(cd)) that we visit
whenmoving along p1 p′

1.Wewill analyze the total running time of themoving process
in a global manner later.

Depending on whether B ′
M (r j , ri+1) (= p1 p′

1) intersects ∂ , there are two cases to
consider.

If B ′
M (r j , ri+1) intersects ∂ , then we have found the first intersection point z of

B ′
M (r j , ri+1) and ∂ (see Fig. 16). Note that z must be after p on ∂ . Also, note that the

Voronoi region VD(ri) has been computed and set as inactive, and thus p1 lies on the
boundary of the current active region of bay(cd) (see Fig. 16). Similarly as before,
the line segment p1z divides the current active region of bay(cd) into two simple
polygons; one of them, say bay′, contains the point p. Then, the Voronoi regions of
the roots that define the rays in S form a decomposition of bay′, andwe use a procedure
similar to the splitting procedure discussed earlier to compute this decomposition of
bay′, i.e., by considering the rays in S from bottom to top. However, it is possible that
the target points of some rays in S have not been computed yet. Recall that all target
points of the rays in S before p [= tp(ρi)] have been computed. But, if the target
point of a ray in S is on ∂(p, z), then it is not yet known. To compute these target
points, we simply scan ∂(p, z) from p to z. Again, by Invariant (9), the vertical rays in
S are target-sorted. Hence this computation can be done in linear time in terms of the
number of edges of ∂(p, z) and the number of target points found during this process.
In addition, we set the region bay′ and all rays in S as inactive, and pop all rays out
of S (S becomes empty). Finally, we move the reference point p∗ to z, and continue
with the next ray ρi+1. Again, since S is empty, similar to the analysis for the subcase

123

2470 Algorithmica (2019) 81:2430–2483

2(a) when S is empty, all invariants of the algorithm hold. We omit the details of the
proof.

If B ′
M (r j , ri+1) (= p1 p′

1) does not intersect ∂ (see Fig. 17), then as shown above,
B ′
M (r j , ri+1) appears entirely in VD(bay(cd)) since it is contained inside bay(cd).

Again, the point p′
1 is on either the right edge or the bottom edge of Rec(p1, q1) (two

cases). We discuss these two cases below. Recall that the trapezoid of HM(bay(cd))

that contains p′
1 has been computed. Recall that the ray at the top of S is ρ, lying on

B(r j , ri) with i > j .
We first discuss the casewhen p′

1 is on the bottom edge of Rec(p1, q1) (see Fig. 17).
Let ρ∗

i be the vertical ray originating at p
′
1 and going south, which is on B(r j , ri+1) by

Observation 4. We pop ρ out of S and push ρ∗
i onto the top of S, and set ρ as inactive

and ρ∗
i as active. We move p∗ to p [= tp(ρi)]. We then continue to consider the next

ray ρi+1 ∈ 	. Lemma 19 below shows that all invariants of the algorithm hold.

Lemma 19 At the moment right before the next ray ρi+1 is considered, all invariants
of the algorithm hold.

Proof Let ξ be the moment right before the next ray ρi+1 is considered, and ξ ′ be the
moment right before the ray ρi is considered. Thus, the change to S from the time
ξ ′ to ξ is that ρ is popped out and ρ∗

i is pushed in. Recall that at the moment ξ ′, all
invariants of the algorithm hold. Our goal is to prove that all invariants still hold at
the moment ξ . We assume that S has at least two rays at the moment ξ (otherwise, all
invariants related to any other rays in S than ρ∗

i hold trivially). Let ρ′ be the second
ray from the top of S (i.e., right below ρ∗

i in S) at the moment ξ . Then ρ′ is also the
second ray from the top of S at the moment ξ ′ (i.e., right below ρ in S). See Fig. 17
for an example.

Invariant (1) simply follows since ρ∗
i is vertically going south.

For Invariant (2), it suffices to show that or(ρ∗
i) is to the southwest of or(ρ′). At the

moment ξ ′, since the ray ρ at the top of S is on B(r j , ri) with i > j , by Invariant (6),
r j is to the left of or(ρ′). Since or(ρ∗

i) ∈ Rec(r j , ri+1) is to the left of r j , we obtain
that or(ρ∗

i) is to the left of or(ρ′). Further, at the moment ξ ′, by Invariant (2), or(ρ)

is to the southwest of or(ρ′). Since or(ρ∗
i) is below or(ρ), or(ρ∗

i) is below or(ρ′).
Since or(ρ∗

i) is both below and to the left of or(ρ′), we obtain that or(ρ∗
i) is to the

southwest of or(ρ′). Invariant (2) thus follows.
For Invariant (3), we need to show that or(ρi+1) is to the southwest of or(ρ∗

i).
By Lemma 11, or(ρi+1) is to the southwest of or(ρi). Since or(ρ∗

i) is to the right
of or(ρi), or(ρ∗

i) is also to the right of or(ρi+1). By Lemma 9(3), or(ρi+1) is below
ri+1. Hence, or(ρi+1) is below the rectangle Rec(p1, q1) and thus below or(ρ∗

i).
Since or(ρi+1) is both below and to the left of or(ρ∗

i), we obtain that or(ρi+1) is to
the southwest of or(ρ∗

i). Thus, Invariant (3) follows.
Invariant (4) simply follows since ρ∗

i ⊂ B(r j , ri+1) and ρi+1 ⊂ B(ri+1, ri+2).
For Invariant (5), we need to consider both ρ∗

i and ρi+1. For ρ∗
i , since ρ∗

i ⊂
B(r j , ri+1), we need to show that the boundary portion of theVoronoi region VD(ri+1)

[resp., VD(r j)] from vi (resp., v j) to or(ρ∗
i) has been computed. For this, recall that the

boundary portion of VD(ri+1) between vi and p1 is a common boundary of VD(ri+1)

and VD(ri), which has been computed. We denote this boundary portion by α. Also,

123

Algorithmica (2019) 81:2430–2483 2471

the boundary portion of VD(r j) between v j and p1 has been computed; we denote

this boundary portion by β. Further, after we find the point p′
1, the line segment p1 p′

1

has also been obtained. Since p1 p′
1 appears entirely in SPM(F), the boundary portion

of VD(ri+1) between vi and or(ρ∗
i) (= p′

1) is the concatenation of α and p1 p′
1, which

has been computed. Similarly, the boundary portion of VD(r j) between v j and or(ρ∗
i)

is the concatenation of β and p1 p′
1, which has been computed too. Thus, the case for

ρ∗
i holds.
For the ray ρi+1, which is the ray to be considered next by the algorithm, we

need to show that the boundary portion of the Voronoi region VD(ri+1) from vi+1 to
or(ρi+1), which is also the boundary portion of the Voronoi region VD(ri+2) from
vi+1 to or(ρi+1), has been computed. This simply follows from Observation 8.

In summary, Invariant (5) holds.
For Invariant (6), it suffices to show that or(ρ∗

i) is to the left of r j and to the right
of ri+1. Recall that or(ρ∗

i) is on the rectangle Rec(p1, q1), q1 is to the southeast of
p1, and q1 is the intersection of the vertical line through r j and the horizontal line
through ri+1. As shown above, ri+1 is to the left of p1. Since or(ρ∗

i) is to the right of
p1, or(ρ∗

i) is to the right of ri+1. Since Rec(p1, q1) is to the left of r j , or(ρ∗
i) is to

the left of r j . Invariant (6) thus holds.
For Invariant (7), we need to show that r j is to the left of all rays in S\{ρ∗

i }. At the
moment ξ ′, the ray ρ ⊂ B(r j , ri) is at the top of S with i > j ; thus by Invariant (7),
r j is to the left of all rays in S\{ρ}. Since S\{ρ} = S\{ρ∗

i }, Invariant (7) still holds at
the moment ξ .

For Invariant (8), recall that ρ′ is the second ray from the top of S at both the
moments ξ and ξ ′. We assume ρ′ lies on B(rt , rt ′) with t ′ > t . To prove Invariant
(8) held at ξ , it suffices to show t ′ = j since ρ∗

i ⊂ B(r j , ri+1). At the moment ξ ′,
since ρ ⊂ B(r j , ri) is the ray at the top of S, by Invariant (8), we have j = t ′. Thus,
Invariant (8) still holds at the moment ξ .

For Invariant (9), it suffices to show that tp(ρ∗
i) is after tp(ρ′) on ∂ . Intuitively this

is true due to the following facts: there is a path inside bay(cd) from vi to or(ρ∗
i) [i.e.,

the concatenation of vi or(ρi), or(ρi)p1, and p1 p′
1], and both ρ∗

i and ρ′ are vertical,
and ρ∗

i is to the left of ρ′. A detailed analysis is given below.
First, it is easy to see that tp(ρ∗

i) must be after the point p [= tp(ρi)]. The target
point tp(ρ′) may be after p or before p. If tp(ρ′) is before p, then we are done. Thus,
we consider the case of tp(ρ′) being after p. By Invariant (2) (at the moment ξ) proved
above, or(ρ′) is to the northeast of or(ρ∗

i). Thus, the ray ρ′ must cross ρi before it
hits ∂ at tp(ρ′); in other words, the two line segments or(ρ′)tp(ρ′) and or(ρi)tp(ρi)
intersect inside bay(cd). Further, since ρ′ is to the right of ρ∗

i and p1 is to the left of
ρ∗
i , the intersection point of or(ρ′)tp(ρ′) and or(ρi)tp(ρi) is on p1tp(ρi).
Recall that vi or(ρi) is either a single point or a line segment that is in VD(bay(cd))

and does not intersect ∂ . Consider the region in bay(cd) bounded by vi or(ρi), or(ρi)p,
and ∂(p, d), which we denote by Z . It is easy to see that Z is a simple polygon. Let α
be the concatenation of p1 p′

1 and p′
1tp(p

∗
i). Note that α is entirely inside Z except that

its two endpoints are on the boundary of Z , i.e., p1 ∈ or(ρi)p and tp(p∗
i) ∈ ∂(p, d).

Thus, α divides Z into two simple polygons; one of them contains p1 p as an edge,

123

2472 Algorithmica (2019) 81:2430–2483

which is denoted by Z ′. Since the intersection of or(ρ′)tp(ρ′) and or(ρi)tp(ρi) is on
p1tp(ρi), the ray ρ′ intersects Z ′. By Invariant (7) (at the moment ξ) proved above,
the root r j is to the left of ρ′. Thus, ρ′ cannot intersect the curve α. Hence, the target
point tp(ρ′)must be on the boundary of Z ′ ∩∂(p, d), which is on ∂(p, tp(ρ∗

i)). Thus,
tp(ρ∗

i) is after tp(ρ′), and Invariant (9) follows.
For Invariant (10), we need to show that if ρi+1 is vertical, then the target point

tp(ρi+1) is after tp(ρ∗
i)on ∂ . By Invariant (3) (at themoment ξ) proved above,or(ρi+1)

is to the southwest of or(ρ∗
i). Let Z be the simple polygonal region in bay(cd) bounded

by vi or(ρi), or(ρi)p1, p1 p′
1, p

′
1tp(ρ

∗
i), ∂(tp(ρ∗

i), d), and dvi . Regardless of whether
or(ρi+1) = vi+1, the origin or(ρi+1) of ρi+1 is in Z since or(ρi+1) is to the southwest
of or(ρ∗

i) = p′
1. Further, since both ρ∗

i and ρi+1 are vertical, tp(ρi+1) must be on
∂(tp(ρ∗

i), d). Invariant (10) thus follows.
For Invariant (11), it suffices to show that tp(ρ∗

i) is after p∗ since tp(ρ∗
i) has

not been computed. Since tp(ρ∗
i) is after p = tp(ρi) (= p∗), Invariant (11) simply

follows.
For Invariant (12), we need to show that the target point tp(ρi+1) is after p∗ [=

p = tp(ρi)]. Let Z be the simple polygonal region in bay(cd) bounded by vi or(ρi),
or(ρi)p, ∂(p, d), and dvi . Clearly, or(ρi+1) is in Z . Further, since or(ρi+1) is to the
southwest of or(ρi), regardless of whether ρi+1 is vertical or horizontal, tp(ρi+1)

must be on ∂(p∗, d). Thus, Invariant (12) holds.
For Invariant (13), suppose l is the smallest index with l > i such that ρl ∈ 	 and

ρl is horizontal. We need to prove that tp(ρl) is after p∗ [= p = tp(ρi)]. Consider
the simple polygon Z defined above for proving Invariant (12). Since ρl is horizontal,
by Lemma 12, ρl is below ri+1. Thus, it is easy to see that or(ρl) is in Z and tp(ρl)
is on ∂(p∗, d). Hence, tp(ρl) is after p∗, and Invariant (13) holds.

For Invariant (14),we need to show that the trapezoid of HM(bay(cd)) that contains
or(ρi+1) is known, which is true by Observation 8.

We conclude that all invariants of the algorithm still hold at the moment ξ . ��
For the purpose of discussing the analysis of the running time of our algorithm

later, we call the ray ρ∗
i the termination vertical ray of the (horizontal) ray ρi .

We have finished the discussion for the case when p′
1 is on the bottom edge of

Rec(p1, q1).
We then discuss the case when the point p′

1 is on the right edge of Rec(p1, q1) (see
Fig. 18). Denote by ρi1 the horizontal ray originating at p′

1 and going east, which is on
B(r j , ri+1) by Observation 4. Then, we pop ρ out of S and set ρ as inactive. Also, we
set ρi1 as active and move the reference point p∗ to p [= tp(ρi)]. Finally, we let ρi1
be the next ray to be considered by the algorithm (note that ρi1 is not in). Lemma
20 below shows that all invariants of the algorithm hold. Recall that the trapezoid of
HM(bay(cd)) that contains p′

1 has been computed.

Lemma 20 At the moment right before the next ray ρi1 is considered, all invariants of
the algorithm hold.

Proof Let ξ be the moment right before the next ray ρi1 is considered, and ξ ′ be the
moment right before the ray ρi is considered. Thus, the only change to S from the time
ξ ′ to ξ is that ρ is popped out. At the moment ξ ′, all invariants of the algorithm hold.

123

Algorithmica (2019) 81:2430–2483 2473

Our goal is to prove that all invariants still hold at the moment ξ . We assume S
= ∅ at
the moment ξ (otherwise, all invariants related to any rays in S hold trivially). Let ρ′
be the ray at the top of S at the moment ξ . Then ρ′ is the second ray from the top of
S (i.e., right below the ray ρ in S) at the moment ξ ′. Refer to Fig. 18 for an example.

Invariants (1) and (2) simply hold.
For Invariant (3), we need to show that or(ρi1) is to the southwest of or(ρ′). By

Invariant (2) at the moment ξ ′, or(ρ) of the ray ρ at the top of S is to the southwest of
or(ρ′). Since or(ρi1) = p′

1 is below or(ρ), or(ρi1) is below or(ρ′). Also, by Invariant
(7) at the moment ξ ′, since the top ray ρ in S is on B(r j , ri) (with i > j), r j is to the
left of ρ′ (which is vertical). Since p′

1 is on the vertical line through r j , p
′
1 = or(ρi1)

is to the left of or(ρ′). Hence, or(ρi1) is to the southwest of or(ρ′), and Invariant (3)
follows.

For Invariant (4), suppose ρ′ is on B(rt , rt ′) with t ′ > t ; we need to show j = t ′
since ρi1 ⊂ B(r j , ri+1) is the next ray to be considered by the algorithm. At the
moment ξ ′, ρ ⊂ B(r j , ri) (with i > j) is at the top of S and ρ′ is the second ray
from the top of S; thus, by Invariant (8) at the moment ξ ′, j = t ′. Invariant (4) hence
follows.

For Invariant (5), since no new ray is pushed onto S, we only need to consider the
ray ρi1. The proof is the same as that for Invariant (5) (for the ray ρ∗

i) in the proof of
Lemma 19, and we omit it.

Invariants (6), (7), (8), (9), and (11) trivially hold since no new ray is pushed
into S.

Invariant (10) simply follows since ρi1 is the next ray to be considered by the
algorithm and ρi1 is not vertical.

For Invariant (12), we need to show that the target point tp(ρi1) is after p∗ [= p =
tp(ρi)]. Consider the simple polygonal region Z in bay(cd) bounded by vi or(ρi),
or(ρi)p, ∂(p, d), and dvi . It is easy to see that or(ρi1) is in Z and tp(ρi1) is on
∂(p∗, d). Thus, tp(ρi1) is after p∗.

For Invariant (13), suppose l is the smallest index with l > i such that ρl ∈ 	 and
ρl is horizontal. We need to prove that tp(ρl) is after p∗ [= p = tp(ρi)]. Consider
the simple polygon Z defined above for proving Invariant (12). Since ρl is horizontal,
by Lemma 12, ρl is below ri+1. Thus, it is easy to see that or(ρl) is in Z and tp(ρl)
is on ∂(p∗, d). Hence, tp(ρl) is after p∗, and Invariant (13) holds.

For Invariant (14), recall that the trapezoid of HM(bay(cd)) that contains p′
1 (=

or(ρi1)) has been computed, and thus Invariant (14) holds.
We conclude that all invariants of the algorithm hold at the moment ξ . ��

For analysis, we refer to the ray ρi1 as a successor horizontal ray of the (horizontal)
ray ρi .

This finished the discussion for the casewhen p′
1 is on the right edge of Rec(p1, q1).

Again, ρi1 is the next ray to be considered by the algorithm. Although our earlier
discussion on the algorithm processing the next ray is mostly on processing a ray
ρi ∈ 	, the processing for ρi1 (/∈) is the same, and the proof for all invariants
is also very similar. In particular, there may also be a termination vertical ray or a
successor horizontal ray generated at the end of processing ρi1, which we still refer
to as a termination vertical ray or a successor horizontal ray of ρi . It is easy to see

123

2474 Algorithmica (2019) 81:2430–2483

Fig. 19 Illustrating the first two
successor horizontal rays ρi1
and ρi2 of a horizontal ray
ρi ∈ 	

ri+1

ri

vi 1p

p2

q1 q2

p’2

iρ

1p’

d

c

i2ρ

ρ ρ ’

ρi1

that a horizontal ray ρi may lead to multiple successor horizontal rays but at most
one termination vertical ray, i.e., a successor horizontal ray may generate another
successor horizontal ray (e.g., see Fig. 19), but a termination vertical ray does not
generate another ray.

One might be curious about why the roles of horizontal rays and vertical rays are
quite different in our above algorithm, while the L1 metric does not prefer one of these
two directions over the other. The asymmetric roles of these two directions are related
to the order of ρ1, ρ2, . . . , ρk−1 in which we process these rays. If one uses a reversed
order (i.e., ρk−1, ρk−2, . . . , ρ1) in the processing, then the roles of these two types of
rays will be reversed.

For the purpose of analyzing the running time of the algorithm later, we discuss
more details related to the successor horizontal rays of a horizontal ray ρi ∈ 	. We
process the first successor horizontal ray ρi1 of ρi in the same way as ρi . After ρi1 is
processed, we may obtain another successor horizontal ray ρi2. In general, assume all
successor horizontal rays we obtain for ρi are ρi1, ρi2, . . . , ρi t , ordered by the time
when they are produced (see Fig. 19). Then, after the last ray ρi t is processed, we
may or may not obtain the termination vertical ray ρ∗

i . For example, when processing
ρi t , if S = ∅, then no termination vertical ray is generated. In either case, after ρi t is
processed, we continue to consider the next ray ρi+1 ∈ 	.

Let ρi0 = ρi . For each 1 ≤ w ≤ t , we define the points pw+1, qw+1, and p′
w+1 for

the ray ρiw similarly to the points p1, q1, and p′
1 for ρi0 (see Fig. 19). Note that when

processing ρi t , depending on the specific situations, the points pt+1, qt+1, and p′
t+1

may not exist (e.g., if S = ∅). In the following, we assume they exist (otherwise, the
analysis is actually simpler).

It is easy to see that for each 1 ≤ w ≤ t , the ray ρi,w−1 contains the top edge of
the rectangle Rec(pw, p′

w) and the ray ρiw touches the bottom edge of Rec(pw, p′
w).

In addition, the ray ρi t contains the top edge of Rec(pt+1, p′
t+1). In other words, ρi0

(= ρi), Rec(p1, p′
1), ρi1, Rec(p2, p

′
2), ρi2, . . . , Rec(pt , p

′
t), ρi t , Rec(pt+1, p′

t+1)

123

Algorithmica (2019) 81:2430–2483 2475

are ordered from high to low and left to right (see Fig. 19). Thus, no two different
rectangles in the sequence above intersect in their interior. Actually, the rectan-
gles Rec(p1, p′

1), Rec(p2, p
′
2), . . . , Rec(pt+1, p′

t+1) are ordered from northwest to
southeast. Further, all successor horizontal rays and rectangles involved are higher than
ri+1. To see this fact, note that for each 1 ≤ w ≤ t +1, the point p′

w is higher than the
point qw and qw is on the horizontal line through ri+1 (see Fig. 19). Thus, all these
rectangles are contained in the horizontal strip between the horizontal line containing
ρi and the horizontal line through ri+1; we denote this strip by HStrip(ρi). Recall that
during our algorithm, the horizontal visibility map HM(bay(cd)) is utilized as a guide
and we often move among its trapezoids. When computing and processing these suc-
cessor horizontal rays,we always follow HM(bay(cd)), e.g., for eachw = 0, 1, . . . , t ,
we utilize HM(bay(cd)) to compute the target point tp(ρiw) of the ray ρiw, to deter-
mine whether pw+1 p′

w+1 intersects ∂ , and to find the trapezoid in HM(bay(cd)) that
contains p′

w+1 = or(ρi,w+1). The discussion above implies that the time for pro-
cessing all successor horizontal rays of ρi is proportional to O(t) plus the number of
trapezoids in HM(bay(cd)) that intersect the horizontal strip HStrip(ρi) as well as
the time for computing the target points of some (vertical) rays in S.

In addition, during this process, each of the t successor horizontal rays ρiw of ρi
corresponds to a ray in S that is popped out. Thus, there are t vertical rays popped out
of S for ρi . But, at most one ray, i.e., the termination vertical ray ρ∗

i , is pushed onto S
for ρi .

We have finished the description of our algorithm for computing SPM(bay(cd)),
which is summarized in the pseudo-code of Algorithm 1.

5.3.3 The Time Complexity

It remains to analyze the running time of the algorithm. First, we show the following
lemma.

Lemma 21 The total number of rays ever contained in the stack S throughout the
entire algorithm is at most k.

Proof When processing each ray ρi ∈ 	, if it is vertical, then we push it onto S; if it is
horizontal, then as shown above, although there may be multiple successor horizontal
rays of ρi , at most one ray, i.e., the termination vertical ray, is put into S. Further,
according to our algorithm, once a ray in S is popped out, it will never be considered
again, and thus never be put into S again. ��

We then discuss the total time for computing the target points for all vertical ray
shootings in the entire algorithm. We use a reference point p∗ on ∂ and the vertical
visibility map VM(bay(cd)) for this purpose. To conduct the vertical ray shootings,
because the rays involved are always target-sorted, we simply scan the edges in a
portion of ∂ between p∗ and another point p that is after p∗ on ∂ . Further, when such
a scanning is done, we always move p∗ to p. This implies that any portion of ∂ is
scanned at most once in the entire algorithm. In addition, the number of all vertical
ray shootings is at most k. This is because each vertical ray involved is from S, and
by Lemma 21, the number of rays ever contained in S is at most k. Therefore, the

123

2476 Algorithmica (2019) 81:2430–2483

Algorithm 1: Computing a shortest path map for bay(cd)

Input: bay(cd), R = {r1, r2, . . . , rk }, and SPM(M) vertices v1, v2, . . . , vk−1.
Output: A shortest path map on bay(cd) with respect to the source point s.

/* Preprocessing */
1 Compute the ray set 	 = {ρ1, ρ2, . . . , ρk−1} ;
2 Compute the line segment vi or(ρi) for each 1 ≤ i ≤ k − 1 if vi
= or(ρi) ;
3 Compute the horizontal visibility map HM(bay(cd)) and the vertical visibility map VM(bay(cd)) ;
4 Compute the trapezoid in HM(bay(cd)) that contains or(ρi) for each 1 ≤ i ≤ k − 1 ;
/* The main algorithm */

5 p∗ ← c, S ← ∅, Q ← {ρ1, ρ2, . . . , ρk−1} ; /* Q is a queue storing the rays. */
6 while Q is not empty do
7 Consider the first ray ρ in Q and remove it from Q ; /* Assume ρ is on B(r j , ri) with

i > j. */
8 if ρ is vertical then
9 Push ρ onto the top of S ;

10 else /* ρ is horizontal. */
11 Compute the target point tp(ρ) ;
12 if S is empty then
13 The Voronoi region VD(r j) is determined with or(ρ)tp(ρ) ;
14 p∗ ← tp(ρ) ;
15 else /* S is not empty; assume ρ′ ⊂ B(rt , r j) with j > t is the ray

at the top of S. */
16 Scan ∂(p∗, tp(ρ)) to compute the target points on ∂(p∗, tp(ρ)) of the rays in S ;
17 if tp(ρ′) is before tp(ρ) (i.e., tp(ρ′) has been computed) then
18 Determine the Voronoi regions for the roots defining the rays in S ;
19 Pop all rays out of S ;
20 p∗ ← tp(ρ) ;
21 else /* tp(ρ′) is not before tp(ρ) (i.e., tp(ρ′) has not been

computed). */
22 Determine the Voronoi region VD(r j) ;
23 Let p be the intersection of ρ and ρ′, and q be the intersection of the horizontal line

through ri and the vertical line through rt ; let p
′ be the other intersection of

BM (rt , ri) and the boundary of Rec(p, q) than p;

24 Move from p along pp′ in HM(bay(cd)) until either p′ or ∂ is encountered first;
25 if ∂ is encountered (say, at the point z) then
26 Scan ∂(tp(ρ), z) to compute the target points on ∂(tp(ρ), z) of the rays in S ;
27 Determine the Voronoi regions for the roots defining the rays in S ;
28 Pop all rays out of S ;
29 p∗ ← z ;
30 else /* ∂ is not encountered. */
31 Pop ρ′ out of S ;
32 if p′ is on the bottom edge of Rec(p, q) then
33 Push the ray originating at p′ and going south onto the top of S ;
34 else /* p′ is on the right edge of Rec(p, q). */
35 Add the ray originating at p′ and going east to the front of Q ;

36 p∗ ← tp(ρ) ;

37 For each ri ∈ 	, compute the SPM on the Voronoi region VD(ri) with respect to ri ;

123

Algorithmica (2019) 81:2430–2483 2477

total time for computing the target points of all vertical rays in the entire algorithm is
O(n′ + k).

For each ray ρi ∈ 	, if it is vertical, then processing it takes O(1) time, i.e., pushing
ρi onto S. If it is horizontal, then assume that ρi has t successor horizontal rays. We
have discussed that, besides the procedure for computing their target points, the time
for processing these t successor horizontal rays is proportional to t plus the number
of trapezoids in HM(bay(cd)) intersecting the horizontal strip HStrip(ρi). We have
also shown that each successor horizontal ray corresponds to a ray in the stack S that
is popped out. Since there are at most k rays ever contained in S by Lemma 21, the
total number of successor horizontal rays in the entire algorithm is at most k. On the
other hand, consider two different horizontal rays ρi and ρ j in 	. We claim that the
two horizontal strips HStip(ρi) and HStrip(ρ j) do not intersect each other in their
interior. Without loss of generality, assume i < j . Indeed, the strip HStrip(ρi) is
above the horizontal line through the root ri+1 and HStrip(ρ j) is below the ray ρ j .
Since ρ j is horizontal and j > i , by Lemma 12, ρ j is below ri+1. Our claim thus holds.
The above claim implies that, besides the time for computing their target points, the
time for processing all successor horizontal rays in the entire algorithm is proportional
to the total number of trapezoids in HM(bay(cd)) plus k, which is O(n′ + k).

The algorithm performs totally O(k) horizontal ray shootings, for computing the
target points of the horizontal rays in 	 and their successor horizontal rays. Using
HM(bay(cd)) and based on the fact that we already know (i.e., have computed) the
trapezoid of HM(bay(cd)) containing the origin of each such horizontal ray, all such
horizontal ray shootings can be done in O(k) time.

In summary, we have proved the total running time of our algorithm for computing
the shortest path map for the bay bay(cd) is O(n′ + m′) (where m′ = k − 1 is the
number of SPM(M) vertices on cd). It is easy to see that the size of this SPM is
O(n′ + m′) [e.g., since the running time is O(n′ + m′)]. Lemma 5 is thus proved.

6 Computing a Shortest PathMap for a Canal

In this section, we show how to compute a shortest path map for a canal, which uses
our shortest path map algorithm for a bay in Sect. 5 as a main procedure.

Consider a canal canal(x, y) with x and y as the corridor path terminals and two
gates xd and yz (e.g., see Fig. 6). There may be multiple SPM(M) vertices on both
gates. Let m1 (resp., m2) be the number of SPM(M) vertices on xd (resp., yz), and
n′ be the number of obstacle vertices of the canal. We show that a shortest path map
for the canal can be computed in O(m1 +m2 + n′) time. Let R1 (resp., R2) be the set
of roots whose cells in SPM(M) intersect xd (resp., yz).

We recall the definition of wavefront incoming/outgoing terminals in Sect. 4.2.
Consider the corridor path terminals x and y of canal(x, y). It is possible that y has
a shortest path from s via x [i.e., this path contains the corridor path of canal(x, y)],
in which case there is a “pseudo-cell” in SPM(M) with x as the root and y being the
only other point in this “pseudo-cell”; then x is a wavefront incoming terminal and y
is the wavefront-outgoing terminal. If neither y has a shortest path from s via x nor x
has a shortest path from s via y, then both x and y are wavefront-incoming terminals.

123

2478 Algorithmica (2019) 81:2430–2483

In this case, there is a point on the corridor path of canal(x, y) that has two shortest
paths from s, one via x and the other via y [we will use this property to compute an
SPM for canal(x, y)]. Note that for the two terminals x and y, either both of them are
wavefront-incoming terminals, or only one of them is an wavefront-incoming terminal
and the other is an wavefront-outgoing terminal. Below, we first discuss the former
case; the latter case is very similar.

6.1 Both x and y areWavefront-Incoming Terminals

If both x and y are wavefront-incoming terminals, by the properties of the corridor
path, there is a point p∗ on the corridor path of canal(x, y) such that there exist
two shortest paths π1(s, p∗) and π2(s, p∗) from s to p∗ with x ∈ π1(s, p∗) and
y ∈ π2(s, p∗). The point p∗ can be found in O(n′) time since we know the shortest
path distances from s to x and to y. More specifically, p∗ has the following property:
the shortest path distance from s to x plus the length of the sub-path of the corridor
path from x to p∗ is equal to the shortest path distance from s to y plus the length of
the sub-path of the corridor path from y to p∗. Since we already know the shortest
path distances from s to x and to y, we can compute p∗ in time linear in the number
of edges of the corridor path, which is bounded by O(n′).

Let VD(canal(x, y), R1) be the (additively) weighted Voronoi diagram of
canal(x, y) with respect to the root set R1, i.e., we treat canal(x, y) as a bay with
the gate xd . As defined in Sect. 5, VD(canal(x, y), R1) is the Voronoi decomposition
of canal(x, y) with respect to the roots in R1. Similarly, let VD(canal(x, y), R2)

be the weighted Voronoi diagram of canal(x, y) with respect to the root set R2.
Using our algorithm in Sect. 5, VD(canal(x, y), R1) and VD(canal(x, y), R2) can
be computed in totally O(m1 + m2 + n′) time. Denote by VD(canal(x, y), R1, R2)

the weighted Voronoi diagram of canal(x, y) with respect to the roots in R1 ∪ R2. As
shown in Sect. 5, after VD(canal(x, y), R1, R2) is computed, an SPM on canal(x, y)
with the source s can be built in O(m1 + m2 + n′) time. Thus, the key is to compute
VD(canal(x, y), R1, R2). Below,we showhow to computeVD(canal(x, y), R1, R2)

in O(m1 + m2 + n′) time with the help of the point p∗, VD(canal(x, y), R1), and
VD(canal(x, y), R2).

To compute VD(canal(x, y), R1, R2), our strategy is to find a “dividing curve”
in canal(x, y) that divides canal(x, y) into two simple polygons C1 and C2, such
that each point in C1 has a shortest path from s via a root in R1 and each point in
C2 has a shortest path from s via a root in R2. Further, each point on the dividing
curve has two shortest paths from s, one path containing a root in R1 and the other
path containing a root in R2. Note that the dividing curve is simple and cannot have
any loops since canal(x, y) is a simple polygon. After finding C1 and C2, we simply
apply the algorithm in Sect. 5 on C1 and R1 to compute the weighted Voronoi dia-
gram of C1 with respect to R1, i.e., VD(C1, R1). We similarly compute VD(C2, R2).
Then, VD(canal(x, y), R1, R2) consists of VD(C1, R1) and VD(C2, R2). Thus, our
remaining task is to compute a dividing curve in canal(x, y), which we denote by γ .

Note that the point p∗ ∈ γ . Computing γ can be done in O(n′ + m1 + m2) time
by a procedure similar to the merge procedure of the divide-and-conquer algorithm

123

Algorithmica (2019) 81:2430–2483 2479

for computing the Voronoi diagram of a set of points in the plane [35]. The details are
given below.

To compute γ , we start at the point p∗ and trace γ out by traversing some corre-
sponding cells in VD(canal(x, y), R1) and in VD(canal(x, y), R2) simultaneously.
Specifically, we first compute a triangulation of VD(canal(x, y), R1), denoted by
Tri1, and a triangulation of VD(canal(x, y), R2), denoted by Tri2 [this can be done
in linear time [3] since each cell of VD(canal(x, y), R1) and VD(canal(x, y), R2)

is a simple polygon]. Since p∗ is in a triangle (say, tr i1) of Tri1 and is in a tri-
angle (say, tr i2) of Tri2, we find tr i1 in Tri1 and tr i2 in Tri2. From the cell of
VD(canal(x, y), R1) [resp., VD(canal(x, y), R2)] that contains tr i1 (resp., tr i2),
we obtain the root r1 (resp., r2) of that cell. We then move along the bisector B(r1, r2)
inside canal(x, y), starting at p∗ and going in each of the two directions along
B(r1, r2). As following a line segment or a ray of B(r1, r2) in a direction, we deter-
mine, in O(1) time, which of tr i1 or tr i2 that we exit first. As we cross from one
triangle tr i (say, in Tri1) to the next triangle tr i ′, we check which of the follow-
ing cases occurs: (i) The next triangle tr i ′ (in Tri1) is contained in the same cell of
VD(canal(x, y), R1) as that containing tr i ; (ii) tr i ′ is contained in a different cell of
VD(canal(x, y), R1) than that containing tr i ; (iii) the movement touches the bound-
ary of canal(x, y) (thus tr i ′ does not exist). In Case (i), we continue to follow the
same bisector [say, B(r1, r2)]. In Case (ii), we find the root (say, r ′

1) of the next cell
of VD(canal(x, y), R1); then we compute a new bisector [say, B(r ′

1, r2)], and our
movement continues along B(r ′

1, r2). In Case (iii), the movement reaches an end of
γ [on the boundary of canal(x, y)]. The dividing curve γ is the concatenation of the
portions of the bisectors thus traversed.

Due to theproperties of the cells ofVD(canal(x, y), R1) andVD(canal(x, y), R2),
our movement above will visit each triangle of Tri1 and Tri2 at most a constant num-
ber of times (due to that γ is piecewise hyperbolic), each taking O(1) time. Thus, the
partition curve γ can be computed in O(n′ + m1 + m2) time.

In summary, in this case, an SPM on canal(x, y) can be computed in O(n′ +m1 +
m2) time.

6.2 Only One of x and y is aWavefront-Incoming Terminal

In this case, exactly one of x and y is a wavefront-incoming terminal. The algorithm
is similar to that for the former case. The only difference is on how to find a point p∗
on the dividing curve γ because in this case no such a point p∗ can be on the corridor
path of canal(x, y).

Without loss of generality, we assume that x is a wavefront-incoming terminal
and y is not. Then each point on the corridor path (including y) has a shortest path
from s via x . Further, the shortest path through x passes y and goes to the outside
of canal(x, y), which means that y is the root of a cell C(y) in SPM(M). If the
canal gate yz is completely contained in the cell C(y), then it is easy to see that
VD(canal(x, y), R1) is VD(canal(x, y), R1, R2). Otherwise, as in the former case,
we need to find a dividing curve γ to divide canal(x, y) into two polygons C1 and
C2 such that each point in C1 has a shortest path from s via a root in R1 and each

123

2480 Algorithmica (2019) 81:2430–2483

point in C2 has a shortest path from s via a root in R2. To obtain γ , the key is to find
a point p∗ ∈ γ . Since the canal gate yz is not completely contained in C(y), there
must be a point q on yz that is on the common boundary of C(y) and another cell
C(r) in SPM(M). We claim that q is on γ . Indeed, note that r is in R2. Hence there is
a shortest path π1(s, q) from s to q that contains x , the corridor path in canal(x, y),
and the line segment yq , and there is another shortest path π2(s, q) from s to q via
the root r ∈ R2. In other words, q has two shortest paths from s, one via a root in R1
and the other via a root in R2. Therefore, q is on the dividing curve γ . The rest of the
algorithm is similar to that for the former case.

In summary, in this case, anSPMon canal(x, y) can also be built inO(n′+m1+m2)

time.
Therefore, a shortest path map SPM on canal(x, y) can be computed in O(n′ +

m1 +m2) time. Similarly, the size of this SPM is O(n′ +m1 +m2). Lemma 6 is thus
proved.

7 The L1 Geodesic Voronoi Diagram

In this section, we extend our techniques to solve the L1 geodesic Voronoi diagram
problem (or L1-GVD for short).

Given a setP of h polygonal obstacles with a total of n vertices and a set ofm point
sites, the L1-GVD problem aims to construct the L1 geodesic Voronoi diagram of for
the m point sites. Denote by GVD(P) the Voronoi diagram that we want to construct.

Mitchell’s algorithm [29,30] can be modified to compute GVD(P) in O((n +
m) log(n + m)) time. Namely, instead of initiating a wavelet at a single source, the
modified algorithm for GVD(P) initiates a wavelet at each point site. The rest of the
algorithm remains the same as before.

We can also extend our SPM algorithm in a similar way to compute GVD(P).
Generally, since our algorithm makes use of Mitchell’s algorithm [29,30] as a main
procedure when computing the shortest path map SPM(M) for the ocean M, to
computeGVD(P), we can simply replaceMitchell’s algorithm by its modified version
for computing L1 geodesic Voronoi diagrams. More specifically, our algorithm for
computing GVD(P) has the following steps. (1) Compute a triangulation of the free
space, in which the m point sites are treated as m point obstacles (hence, more sites
lead to more corridors, bays, and canals). (2) Compute the corridor structure onP and
them point obstacles that consists of O(m+h) corridors, which partition the plane into
a set P ′ of O(m+h) convex polygons with a total of O(n+m) vertices. (3) Compute
the core set core(P ′) for the convex polygons in P ′. (4) Apply Mitchell’s modified
algorithm [29,30] to compute the L1 geodesic Voronoi diagram GVD(core(P ′)) on
the core set core(P ′). (5) Based onGVD(core(P ′)), compute the L1 geodesicVoronoi
diagram GVD(P ′) on the convex polygon set P ′. Although we have multiple sources,
this step is the same as before (i.e., as in Lemma 3). (6) Based on GVD(P ′), compute
the Voronoi regions in all bays and canals, as in Sects. 5 and 6. Again, the algorithms
for this step are as before, i.e., as the algorithms in Sects. 5 and 6. We then obtain the
final L1 geodesic Voronoi diagram GVD(P).

123

Algorithmica (2019) 81:2430–2483 2481

To analyze the running time, Steps (1), (2), and (3) are the same as before except that
the number of obstacles becomesm+h. Specifically, the triangulation in Step (1) takes
O((n+m) log(n+m)) time or O(n+ (h+m) log1+ε(h+m)) time [2]. Steps (2) and
(3) together take O(n+(h+m) log(h+m)) time. Step (4) takes O((m+h) log(m+h))

time since the core set core(P ′) has totally O(m + h) vertices. Steps (5) and (6) are
also the same as before, which take linear time, i.e., O(n + m). Therefore, we have
the following theorem.

Theorem 4 The L1 geodesicVoronoi diagramofm point sites amonga set of h pairwise
disjoint polygonal obstacles with a total of n vertices in the plane can be computed in
O(n + (h + m) log(h + m)) time (suppose a triangulation of the free space is given
in the input).

Since the given m sites are points, there is an alternative triangulation algorithm
that may be faster (than simply applying the algorithm in [2]) in some situations. The
algorithm works as follows: (1) Compute the triangulation of the free space without
considering the m sites; (2) find the triangles in the triangulation that contain those
m sites (e.g., by a point location data structure); (3) triangulate those triangles that
contain at least one point site by considering the point sites as obstacles. The running
time of the algorithm is O(n+h log1+ε h+m log(n+m)), which is actually bounded
by O(n + h log1+ε h + m logm).2 Hence, if the m point sites are all inside a simple
polygon, then we have the following result.

Corollary 1 The L1 geodesic Voronoi diagram of a set of m point sites in a simple
polygon can be computed in O(n + m logm) time.

In comparison, the EuclideanGVDproblemof the simple polygon case is solvable in
O(n log n+m logm) time [33], and recently, an O(n+m logm log2 n) time algorithm
was proposed [32].

8 Concluding Remarks

As in [29,30], we conjecture that our algorithms may be generalized to solve the C-
oriented shortest path problem [38]. AC-oriented metric defines the distance between
two points to be the length of a shortest pathwith each edge parallel to one of a given set
C of fixed orientations. The L1 metric is a special casewith only two fixed orientations.
Let c = |C |. Mitchell’s algorithm [29,30] can compute a shortest C-oriented path in
O(cn log n) time and O(cn) space among h pairwise disjoint polygons with a total of
n vertices in the plane. Similarly, we suspect that our techniques may be extended to
solve the problem as well. We sketch the main idea as follows.

We first consider the convex case (i.e., all polygons are convex). We compute a core
for each convex polygon based on the orientations in C . Note that in this case a core
has O(c) vertices. Thus, we obtain a core set of totally O(c ·h) vertices.We then apply
Mitchell’s algorithm for the fixed orientations ofC on the core set to compute a shortest

2 This was pointed out by an anonymous reviewer. Indeed, if m ≤ √
n, then m log(n + m) = O(n);

otherwise, m log(n + m) = O(m logm).

123

2482 Algorithmica (2019) 81:2430–2483

path avoiding the cores in O(c2h log ch) time and O(c2h) space, after which we find
a shortest path avoiding the input polygons in additional O(n) time as in Lemma 2.
Thus, a shortest path can be found in O(n + c2h log ch) time and O(n + c2h) space.
For the general case, we can use a similar algorithm scheme as our L1 algorithm in
Sect. 4. The algorithm runs in O(n+c2h log ch) time and O(n+c2h) space (provided
that the free space has already been triangulated).

This may also yield an approximation algorithm for computing a Euclidean shortest
path between two points among polygonal obstacles. Since the Euclideanmetric can be
approximated within an accuracy of O(1/c2) if we use c equally spaced orientations,
as in [29,30], our above algorithm computes a path whose length is guaranteed to be
within a factor (1+δ) of the Euclidean shortest path length, where c is chosen such that
δ = O(1/c2). The algorithm runs in O(n + (1/δ)h log h√

δ
) time and O(n + (1/δ)h)

space (given a triangulation of the free space).

Acknowledgements We would like to thank an anonymous reviewer for numerous suggestions that sig-
nificantly improve the presentation of the paper. D.Z. Chen was supported in part by NSF under Grants
CCF-0916606, CCF-1217906, and CCF-1617735. H. Wang was supported in part by NSF under Grant
CCF-1317143.

References

1. Atallah, M.J., Chen, D.Z., Wagener, H.: An optimal parallel algorithm for the visibility of a simple
polygon from a point. J. ACM 38(3), 516–533 (1991)

2. Bar-Yehuda, R., Chazelle, B.: Triangulating disjoint Jordan chains. Int. J. Comput. Geom. Appl. 4(4),
475–481 (1994)

3. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6, 485–524
(1991)

4. Chazelle, B., Edelsbrunner, H., Grigni, M., Gribas, L., Hershberger, J., Sharir, M., Snoeyink, J.: Ray
shooting in polygons using geodesic triangulations. Algorithmica 12(1), 54–68 (1994)

5. Chazelle, B., Guibas, L.: Visibility and intersection problems in plane geometry. Discrete Comput.
Geom. 4, 551–589 (1989)

6. Chen, D.Z., Hershberger, J., Wang, H.: Computing shortest paths amid convex pseudodisks. SIAM J.
Comput. 42(3), 1158–1184 (2013)

7. Chen, D.Z., Inkulu, R., Wang, H.: Two-point L1 shortest path queries in the plane. J. Comput. Geom.
1, 473–519 (2016)

8. Chen, D.Z., Klenk, K.S., Tu, H.-Y.T.: Shortest path queries among weighted obstacles in the rectilinear
plane. SIAM J. Comput. 29(4), 1223–1246 (2000)

9. Chen, D.Z., Wang, H.: Computing the visibility polygon of an island in a polygonal domain. In:
Proceedings of the 39th International Colloquium on Automata, Languages and Programming, pp.
218–229 (2012)

10. Chen, D.Z., Wang, H.: Computing shortest paths among curved obstacles in the plane. ACM Trans.
Algorithms, 11, Article No. 26 (2015)

11. Clarkson, K., Kapoor, S., Vaidya, P.: Rectilinear shortest paths through polygonal obstacles in
O(n log2 n) time. In: Proceedings of the 3rd Annual Symposium on Computational Geometry, pp.
251–257 (1987)

12. Clarkson, K., Kapoor, S., Vaidya, P.: Rectilinear shortest paths through polygonal obstacles in
O(n log2/3 n) time. Manuscript (1988)

13. de Rezende, P.J., Lee, D.T., Wu, Y.F.: Rectilinear shortest paths in the presence of rectangular barriers.
Discrete Comput. Geom. 4, 41–53 (1989)

14. Edelsbrunner, H., Guibas, L., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM J.
Comput. 15(2), 317–340 (1986)

123

Algorithmica (2019) 81:2430–2483 2483

15. Ghosh, S.K., Mount, D.M.: An output-sensitive algorithm for computing visibility graphs. SIAM J.
Comput. 20(5), 888–910 (1991)

16. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for visibility
and shortest path problems inside triangulated simple polygons. Algorithmica 2(1–4), 209–233 (1987)

17. Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homotopy class. Comput.
Geom. 4(2), 63–97 (1994)

18. Hershberger, J., Suri, S.: A pedestrian approach to ray shooting: shoot a ray, take a walk. J. Algorithms
18(3), 403–431 (1995)

19. Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the plane. SIAM J.
Comput. 28(6), 2215–2256 (1999)

20. Hertel, S., Mehlhorn, K.: Fast triangulation of the plane with respect to simple polygons. Inf. Control
64, 52–76 (1985)

21. Inkulu, R., Kapoor, S.: Planar rectilinear shortest path computation using corridors. Comput. Geom.
42(9), 873–884 (2009)

22. Inkulu, R., Kapoor, S., Maheshwari, S.N.: A near optimal algorithm for finding Euclidean shortest
path in polygonal domain. arXiv:1011.6481v1 (2010)

23. Joe, B., Simpson, R.B.: Corrections to Lee’s visibility polygon algorithm. BIT 27, 458–473 (1987)
24. Kapoor, S., Maheshwari, S.N.: Efficient algorithms for Euclidean shortest path and visibility problems

with polygonal obstacles. In: Proceedings of the 4th Annual ACM Symposium on Computational
Geometry, pp. 172–182 (1988)

25. Kapoor, S., Maheshwari, S.N., Mitchell, J.S.B.: An efficient algorithm for Euclidean shortest paths
among polygonal obstacles in the plane. Discrete Comput. Geom. 18(4), 377–383 (1997)

26. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–35 (1983)
27. Larson, R.C., Li, V.O.K.: Finding minimum rectilinear distance paths in the presence of barriers.

Networks 11, 285–304 (1981)
28. Lee, D.T.: Visibility of a simple polygon. Comput. Vis. Graph. Image Process. 22(2), 207–221 (1983)
29. Mitchell, J.S.B.: An optimal algorithm for shortest rectilinear paths among obstacles. In: Abstracts of

the 1st Canadian Conference on Computational Geometry (1989)
30. Mitchell, J.S.B.: L1 shortest paths among polygonal obstacles in the plane. Algorithmica 8(1), 55–88

(1992)
31. Mitchell, J.S.B.: Shortest paths among obstacles in the plane. Int. J. Comput. Geom. Appl. 6(3), 309–

332 (1996)
32. Oh, E., Ahn, H.-K.: Voronoi diagrams for a moderate-sized point-set in a simple polygon. In: Proceed-

ings of the 33rd International Symposium on Computational Geometry, pp. 52:1–52:15 (2017)
33. Papadopoulou, E., Lee, D.T.: A new approach for the geodesic Voronoi diagram of points in a simple

polygon and other restricted polygonal domains. Algorithmica 20, 319–352 (1998)
34. Rohnert, H.: Shortest paths in the plane with convex polygonal obstacles. Inf. Process. Lett. 23(2),

71–76 (1986)
35. Shamos, M.I., Hoey, D.: Closest-point problems. In: Proceedings of the 16th Annual Symposium on

Foundations of Computer Science, pp. 151–162 (1975)
36. Storer, J.A., Reif, J.H.: Shortest paths in the plane with polygonal obstacles. J. ACM 41(5), 982–1012

(1994)
37. Widmayer, P.: On graphs preserving rectilinear shortest paths in the presence of obstacles. Ann. Oper.

Res. 33(7), 557–575 (1991)
38. Widmayer, P., Wu, Y.F., Wong, C.K.: On some distance problems in fixed orientations. SIAM J.

Comput. 16(4), 728–746 (1987)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1011.6481v1

	Computing L1 Shortest Paths Among Polygonal Obstacles in the Plane
	Abstract
	1 Introduction
	1.1 Previous Work
	1.2 Our Results

	2 An Overview of Our Approach
	3 Shortest Paths Among Convex Obstacles
	3.1 Notation and Observations
	3.2 Computing the Shortest Path Map

	4 Shortest Paths Among General Polygonal Obstacles
	4.1 The Corridor Structure
	4.2 Finding a Single Shortest Path and Computing an SPM for mathcalM
	4.3 Computing a Shortest Path Map
	4.3.1 Bays and Canals
	4.3.2 Expanding SPM(mathcalM) Into Bays and Canals

	5 Computing a Shortest Path Map for a Bay
	5.1 Outline
	5.2 Bisector Properties of the Roots of R
	5.3 The Algorithm for Computing calVD(bay(overlinecd))
	5.3.1 Preliminaries and Preprocessing
	5.3.2 The Main Algorithm
	A Quick Sketch of the Algorithm
	The Details of the Algorithm
	5.3.3 The Time Complexity

	6 Computing a Shortest Path Map for a Canal
	6.1 Both x and y are Wavefront-Incoming Terminals
	6.2 Only One of x and y is a Wavefront-Incoming Terminal

	7 The L1 Geodesic Voronoi Diagram
	8 Concluding Remarks
	Acknowledgements
	References

