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Abstract In the densest subgraph problem, given an edge-weighted undirected graph
G = (V, E, w), we are asked to find S ⊆ V that maximizes the density, i.e.,w(S)/|S|,
where w(S) is the sum of weights of the edges in the subgraph induced by S. This
problem has often been employed in a wide variety of graph mining applications.
However, the problem has a drawback; it may happen that the obtained subset is too
large or too small in comparison with the size desired in the application at hand. In
this study, we address the size issue of the densest subgraph problem by generalizing
the density of S ⊆ V . Specifically, we introduce the f -density of S ⊆ V , which is
defined as w(S)/ f (|S|), where f : Z≥0 → R≥0 is a monotonically non-decreasing
function. In the f -densest subgraph problem ( f -DS), we aim to find S ⊆ V that
maximizes the f -density w(S)/ f (|S|). Although f -DS does not explicitly specify
the size of the output subset of vertices, we can handle the above size issue using a
convex/concave size function f appropriately. For f -DS with convex function f , we
propose a nearly-linear-time algorithm with a provable approximation guarantee. On
the other hand, for f -DS with concave function f , we propose an LP-based exact
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algorithm, a flow-based O(|V |3)-time exact algorithm for unweighted graphs, and a
nearly-linear-time approximation algorithm.

Keywords Graphs · Dense subgraph extraction · Densest subgraph problem ·
Approximation algorithms

1 Introduction

Finding dense components in a graph is an active research topic in graph mining.
Techniques for identifying dense subgraphs have been used in various applications.
For example, inWeb graph analysis, they are used for detecting communities (i.e., sets
of web pages dealing with the same or similar topics) [9] and spam link farms [13].
As another example, in bioinformatics, they are used for finding molecular com-
plexes in protein–protein interaction networks [4] and identifying regulatory motifs
in DNA [11]. Furthermore, they are also used for expert team formation [6,21] and
real-time story identification in micro-blogging streams [2].

To date, various optimization problems have been considered to find dense com-
ponents in a graph. The densest subgraph problem is one of the most well-studied
optimization problems. Let G = (V, E, w) be an edge-weighted undirected graph
consisting of n = |V | vertices, m = |E | edges, and a weight function w : E →
Q>0, where Q>0 is the set of positive rational numbers. For a subset of vertices
S ⊆ V , let G[S] be the subgraph induced by S, i.e., G[S] = (S, E(S)), where
E(S) = {{i, j} ∈ E | i, j ∈ S}. The density of S ⊆ V is defined as w(S)/|S|,
where w(S) =∑e∈E(S) w(e). In the (weighted) densest subgraph problem, given an
(edge-weighted) undirected graph G = (V, E, w), we are asked to find S ⊆ V that
maximizes the density w(S)/|S|.

The densest subgraph problem has received significant attention recently because
it can be solved exactly in polynomial time and approximately in nearly linear time.
Indeed, there exist a flow-based exact algorithm [14] and a linear-programming-based
(LP-based) exact algorithm [7]. Charikar [7] demonstrated that the greedy algo-
rithm designed by Asahiro et al. [3], which is called the greedy peeling, obtains a
2-approximate solution1 for any instance. This algorithm runs in O(m+n log n) time
for weighted graphs and O(m + n) time for unweighted graphs.

However, the densest subgraph problem has a drawback; it may happen that the
obtained subset is too large or too small in comparison with the size desired in the
application at hand. To overcome this issue, some variants of the problem have often
been employed. The densest k-subgraph problem (DkS) is a straightforward size-
restricted variant of the densest subgraph problem [10]. In this problem, given an
additional input k being a positive integer, we are asked to find S ⊆ V of size k that
maximizes the density w(S)/|S|. Note that in this problem, the objective function can
be replaced by w(S) since |S| is fixed to k. Unfortunately, it is known that this size

1 A feasible solution is said to be γ -approximate if its objective value times γ is greater than or equal to
the optimal value. An algorithm is called a γ -approximation algorithm if it runs in polynomial time and
returns a γ -approximate solution for any instance. For a γ -approximation algorithm, γ is referred to as an
approximation ratio of the algorithm.
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restriction makes the problem much harder to solve. Indeed, Khot [16] proved that
DkS has no PTAS under some reasonable computational complexity assumption. The
current best approximation algorithm has an approximation ratio of O(n1/4+ε) for any
ε > 0 [5].

Furthermore, Andersen and Chellapilla [1] introduced two relaxed versions of DkS.
The first problem, the densest at-least-k-subgraph problem (DalkS), asks for S ⊆
V that maximizes the density w(S)/|S| under the size constraint |S| ≥ k. For this
problem, Andersen and Chellapilla [1] adopted the greedy peeling, and demonstrated
that the algorithm yields a 3-approximate solution for any instance. Later, Khuller and
Saha [17] investigated the problem more deeply. They proved that DalkS is NP-hard,
and designed a flow-based algorithm and an LP-based algorithm. These algorithms
have an approximation ratio of 2,which improves the approximation ratio of 3 provided
by Andersen and Chellapilla [1]. The second problem is called the densest at-most-
k-subgraph problem (DamkS), which asks for S ⊆ V that maximizes the density
w(S)/|S| under the size constraint |S| ≤ k. The NP-hardness is immediate since
finding a maximum clique can be reduced to it. Khuller and Saha [17] proved that
approximating DamkS is as hard as approximating DkS, within a constant factor.

1.1 Our Contribution

In this study, we address the size issue of the densest subgraph problem by generalizing
the density of S ⊆ V . Specifically, we introduce the f -density of S ⊆ V , which is
defined as w(S)/ f (|S|), where f : Z≥0 → R≥0 is a monotonically non-decreasing
function with f (0) = 0 and f (1) > 0.2 Note that Z≥0 and R≥0 are the sets of
nonnegative integers and nonnegative real numbers, respectively. In the f -densest
subgraph problem ( f -DS), we aim to find a nonempty S ⊆ V that maximizes the f -
density w(S)/ f (|S|). Without loss of generality, we assume that E �= ∅. Hence, any
optimal solution S∗ ⊆ V satisfies |S∗| ≥ 2. Although f -DS does not explicitly specify
the size of the output subset of vertices, we can handle the size issue mentioned above
using a convex size function f or a concave size function f appropriately. Indeed, we
can show that any optimal solution to f -DS with convex (resp. concave) function f
has a size smaller (resp. larger) than or equal to that of any densest subgraph (i.e., any
optimal solution to the densest subgraph problem). For details, see Sects. 2 and 3.

Here we mention the relationship between our problem and DkS. Any opti-
mal solution S∗ ⊆ V to f -DS is a maximum weight subset of size |S∗|, i.e.,
S∗ ∈ argmax{w(S) | S ⊆ V, |S| = |S∗|}, which implies that S∗ is also optimal toDkS
with k = |S∗|. Furthermore, the iterative use of a γ -approximation algorithm for DkS
leads to a γ -approximation algorithm for f -DS. Using the O(n1/4+ε)-approximation
algorithm for DkS [5], we can obtain an O(n1/4+ε)-approximation algorithm for
f -DS.

2 To handle various types of functions (e.g., f (x) = xα for α > 0), we set the codomain of the function f
to be the set of nonnegative real numbers. We assume that we can compare p · f (i) and q · f ( j) in constant
time for any p, q ∈ Q and i, j ∈ Z≥0.
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In what follows, we summarize our results for both the cases where f is convex
and where f is concave.

The case of convex f We first describe our results for the case where f is convex. A
function f : Z≥0 → R≥0 is said to be convex if f (x) − 2 f (x + 1) + f (x + 2) ≥ 0
holds for any x ∈ Z≥0. We first prove the NP-hardness of f -DS with a certain convex
function f by constructing a reduction from DamkS. Thus, for f -DS with convex
function f , there is no hope to have a polynomial-time exact algorithm.

Alternatively, we propose a min
{

f (2)/2
f (|S∗|)/|S∗|2 ,

2 f (n)/n
f (|S∗|)− f (|S∗|−1)

}
-approximation

algorithm, where S∗ ⊆ V is an optimal solution to f -DS with convex function f .
Our algorithm consists of the following two procedures, and outputs the better solu-
tion found by them. The first one is based on the brute-force search, which obtains an

f (2)/2
f (|S∗|)/|S∗|2 -approximate solution in O(m+n) time. The second one adopts the greedy

peeling,whichobtains a 2 f (n)/n
f (|S∗|)− f (|S∗|−1) -approximate solution inO(m+n log n) time.

Thus, the total running time of our algorithm is O(m + n log n). Our analysis on the
approximation ratio of the second procedure extends the analysis by Charikar [7] for
the densest subgraph problem.

At the end of our analysis, we observe the behavior of the approximation ratio of
our algorithm for three concrete size functions. We consider size functions between
linear and quadratic because, as we will see later, f -DS with any super-quadratic size
function is a trivial problem; indeed, it only produces constant-size optimal solutions.
The first example is f (x) = xα (α ∈ [1, 2]). We show that the approximation ratio
of our algorithm is 2 · n(α−1)(2−α), where the worst-case performance of 2 · n1/4 is
attained at α = 1.5. The second example is f (x) = λx + (1 − λ)x2 (λ ∈ [0, 1)).
For this case, the approximation ratio of our algorithm is (2 − λ)/(1 − λ), which is a
constant for a fixed λ. The third example is f (x) = x2/(λx + (1 − λ)) (λ ∈ [0, 1]).
Note that this size function is derived from density function λ

w(S)
|S| + (1−λ)

w(S)

|S|2 . The
approximation ratio of our algorithm is 4/(1 + λ), which is at most 4.

The case of concave f We next describe our results for the case where f is concave.
A function f : Z≥0 → R≥0 is said to be concave if f (x)−2 f (x +1)+ f (x +2) ≤ 0
holds for any x ∈ Z≥0. Unlike the above convex case, f -DS in this case can be solved
exactly in polynomial time.

Indeed, we present an LP-based exact algorithm, which extends Charikar’s
exact algorithm for the densest subgraph problem [7] and Khuller and Saha’s 2-
approximation algorithm for DalkS [17]. It should be emphasized that our LP-based
algorithm obtains not only an optimal solution to f -DS but also some useful subsets
of vertices.We illustrate this advantage of our algorithm by using an example in Fig. 1.
The graph consists of 8 vertices and 11 unweighted edges (i.e., w(e) = 1 for every
e ∈ E). For this graph, we plot all the points contained inP = {(|S|, w(S)) | S ⊆ V }.
We refer to the extreme points of the upper convex hull of P as the dense frontier
points. The (largest) densest subgraph is a typical subset of vertices corresponding
to a dense frontier point. Our LP-based algorithm obtains a subset of vertices corre-
sponding to every dense frontier point. It should be noted that the algorithm SSM
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Fig. 1 An example graph and the corresponding points in P = {(|S|, w(S)) | S ⊆ V }. The diamond-
shaped points, i.e., (0, 0), (4, 6), (7, 10), and (8, 11), are dense frontier points

designed by Nagano et al. [20] can also be used to obtain a corresponding subset of
vertices for every dense frontier point. The difference between their algorithm and
ours is that their algorithm is based on the computation of a minimum norm base of a
submodular polyhedron, whereas ours solves linear programming problems.

Moreover, in this concave case, we design a combinatorial exact algorithm for
unweighted graphs. Our algorithm is based on a standard technique for fractional
programming. By using the technique, we can reduce f -DS to a sequence of submod-
ular function minimizations. However, a direct application of a submodular function
minimization algorithm leads to a computationally expensive algorithm that runs in
O(n3(m+n) log3 n+n4 polylog(n)) time. To reduce the computation time,we replace
a submodular function minimization algorithm with a much faster flow-based algo-
rithm that substantially extends a technique of Goldberg’s flow-based algorithm for
the densest subgraph problem [14]. The total running time of our algorithm is O(n3).

Modifying this algorithm, we also present an O
(

n3
log n · log

(
log n

ε

))
-time (1 + ε)-

approximation algorithm for weighted graphs.
Although our flow-based algorithm is much faster than the reduction-based algo-

rithm, the running time is still long for large-sized graphs. To design an algorithm
with much higher scalability, we adopt the greedy peeling. As mentioned above, this
algorithm runs in O(m + n log n) time for weighted graphs and O(m + n) time for
unweighted graphs. We prove that the algorithm yields a 3-approximate solution for
any instance.

1.2 Related Work

Tsourakakis et al. [21] introduced a general optimization problem to find dense sub-
graphs, which is referred to as the optimal (g, h, α)-edge-surplus problem. In this
problem, given an unweighted undirected graph G = (V, E), we are asked to find
S ⊆ V that maximizes edge-surplusα(S) = g(|E(S)|) − αh(|S|), where g and h
are strictly monotonically increasing functions, and α > 0 is a constant. The intuition
behind this optimization problem is the same as that of f -DS. Indeed, the first term
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g(|E(S)|) prefers S ⊆ V that has a large number of edges, whereas the second term
−αh(|S|) penalizes S ⊆ V with a large size. Tsourakakis et al. [21] were motivated
by finding near-cliques (i.e., relatively small dense subgraphs), and they derived the
function OQCα(S) = |E(S)| − α

(|S|
2

)
, which is called the OQC function, by setting

g(x) = x and h(x) = x(x − 1)/2. For OQC function maximization, they adopted the
greedy peeling and a simple local search heuristic.

Recently, Yanagisawa and Hara [22] introduced density function |E(S)|/|S|α for
α ∈ (1, 2], which they called the discounted average degree. For discounted average
degree maximization, they designed an integer-programming-based exact algorithm,
which is applicable only to graphs with a maximum of a few thousand edges. They
also designed a local search heuristic, which is applicable to web-scale graphs but has
no provable approximation guarantee. As mentioned above, our algorithm for f -DS
with convex function f runs in O(m + n log n) time, and has an approximation ratio
of 2 · n(α−1)(2−α) for f (x) = xα (α ∈ [1, 2]).

2 Convex Case

In this section, we investigate f -DS with convex function f . A function f : Z≥0 →
R≥0 is said to be convex if f (x) − 2 f (x + 1) + f (x + 2) ≥ 0 holds for any x ∈ Z≥0.
We remark that f (x)/x is monotonically non-decreasing in x since we assume that
f (0) = 0. It should be emphasized that any optimal solution to f -DS with convex
function f has a size smaller than or equal to that of any densest subgraph. To see this,
let S∗ ⊆ V be any optimal solution to f -DS and S∗

DS ⊆ V be any densest subgraph.
Then we have

f (|S∗|)
|S∗| = w(S∗)/|S∗|

w(S∗)/ f (|S∗|) ≤ w(S∗
DS)/|S∗

DS|
w(S∗

DS)/ f (|S∗
DS|)

= f (|S∗
DS|)

|S∗
DS|

. (1)

This implies that |S∗| ≤ |S∗
DS| holds because f (x)/x ismonotonically non-decreasing.

2.1 Hardness

We first prove that f -DS with convex function f contains DamkS as a special case.

Theorem 1 For any integer k ∈ [2, n], a subset of vertices S ⊆ V is optimal
to DamkS if and only if S is optimal to f -DS with (convex) function f (x) =
max
{
x, w(V )

w(e)/2 (x − k) + k
}
, where e is an arbitrary edge.

Proof Since the maximum of linear functions is convex, the function f is convex. We
remark that

f (x) =
{
x if x ≤ k,
w(V )
w(e)/2 (x − k) + k otherwise.
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Algorithm 1: Brute-force search
1 for i ← 2, . . . , k do
2 Find S∗

i ∈ argmax{w(S) | S ⊆ V, |S| = i} by examining all the candidate subsets;

3 return S ∈ {S∗
2 , . . . , S∗

k } that maximizes w(S)/ f (|S|);

For any S ⊆ V with |S| ≤ k, we have w(S)/ f (|S|) = w(S)/|S|. On the other hand,
for any S ⊆ V with |S| > k, we have

w(S)

f (|S|) = w(S)

w(V )
w(e)/2 (|S| − k) + k

<
w(S)

w(V )
w(e)/2

≤ w(e)

2
,

which implies that S is not optimal to f -DS. Thus, we have the theorem. ��

2.2 Our Algorithm

In this subsection, we provide an algorithm for f -DS with convex function f . Our
algorithm consists of the following two procedures, and outputs the better solution
found by them. Let S∗ ⊆ V be an optimal solution to the problem. The first procedure
is based on the brute-force search, which obtains an f (2)/2

f (|S∗|)/|S∗|2 -approximate solution
in O(m + n) time. The second one adopts the greedy peeling [3], which obtains
a 2 f (n)/n

f (|S∗|)− f (|S∗|−1) -approximate solution in O(m + n log n) time. Combining these
results, both of which will be proved later, we have the following theorem.

Theorem 2 Let S∗ ⊆ V be an optimal solution to f -DS with convex function f . For
the problem, our algorithm runs in O(m + n log n) time, and has an approximation
ratio of

min

{
f (2)/2

f (|S∗|)/|S∗|2 ,
2 f (n)/n

f (|S∗|) − f (|S∗| − 1)

}

.

2.2.1 Brute-Force Search

As will be shown below, to obtain an f (2)/2
f (|S∗|)/|S∗|2 -approximate solution, it suffices to

find the heaviest edge (i.e., argmax{w(e) | e ∈ E}), which can be done in O(m + n)

time. Here we present a more general algorithm, which is useful in some case. Our
algorithm examines all the subsets of vertices of size at most k, and then returns an
optimal subset among them, where k is a constant that satisfies k ≥ 2. For reference,
we describe the procedure in Algorithm 1. This algorithm can be implemented to
run in O(nk(m + n)) time because the number of subsets with at most k vertices is∑k

i=0

(n
i

) = O(nk) and the value of w(S)/ f (|S|) for each S ⊆ V can be computed in
O(m + n) time.

We analyze the approximation ratio of the algorithm. Let S∗
i ⊆ V denote a max-

imum weight subset of size i ≥ 2, i.e., S∗
i ∈ argmax{w(S) | S ⊆ V, |S| = i}.
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We refer to w(S∗
i )/
(i
2

)
as the edge density of i vertices. For S ⊆ V and v ∈ S,

let dS(v) denote the weighted degree of v in the induced subgraph G[S], i.e.,
dS(v) =∑u∈V : {u,v}∈E(S) w({u, v}). The following lemma gives a fundamental prop-
erty of the edge density.

Lemma 1 The edge density ismonotonically non-increasing in the number of vertices,
i.e., w(S∗

i )/
(i
2

) ≥ w(S∗
j )/
( j
2

)
holds for any 2 ≤ i ≤ j ≤ n.

Proof It suffices to show that w(S∗
i )/
(i
2

) ≥ w(S∗
i+1)/

(i+1
2

)
holds for any positive

integer i ∈ [2, n− 1]. Take a vertex u ∈ argmin{dS∗
i+1

(v) | v ∈ S∗
i+1}. Then we obtain

dS∗
i+1

(u) ≤ 1
i+1

∑
v∈S∗

i+1
dS∗

i+1
(v) = 2

i+1 · w(S∗
i+1). Hence, we have

w(S∗
i )
(i
2

) ≥ w(S∗
i+1\{u})
(i
2

)

= w(S∗
i+1) − dS∗

i+1
(u)

(i
2

) ≥
(
1 − 2

i+1

)
· w
(
S∗
i+1

)

(i
2

) = w(S∗
i+1)

(i+1
2

) ,

as desired. ��
Using the above lemma, we can provide the approximation ratio.

Lemma 2 Let S∗ ⊆ V be an optimal solution to f -DS with convex function f . If
|S∗| ≤ k, then Algorithm 1 obtains an optimal solution. If |S∗| ≥ k, then it holds that

w(S∗)
f (|S∗|) ≤ 2 · f (k)/k2

f (|S∗|)/|S∗|2 · w(S∗
k )

f (k)
.

Proof If |S∗| ≤ k, then Algorithm 1 obtains an optimal solution because S∗ ∈
{S∗

2 , . . . , S
∗
k }. If |S∗| ≥ k, then we have

w(S∗)
f (|S∗|) ≤ w(S∗)

f (|S∗|) · w(S∗
k )/
(k
2

)

w(S∗)/
(|S∗|

2

) = f (k)/
(k
2

)

f (|S∗|)/(|S∗|
2

) · w(S∗
k )

f (k)

= 1 − 1/|S∗|
1 − 1/k

· f (k)/k2

f (|S∗|)/|S∗|2 · w(S∗
k )

f (k)
≤ 2 · f (k)/k2

f (|S∗|)/|S∗|2 · w(S∗
k )

f (k)
,

where the first inequality follows from Lemma 1, and the last inequality follows from
k ≥ 2. ��

From this lemma, we see that Algorithm 1 with k = 2, which returns a heaviest
edge in O(m + n) time, has an approximation ratio of f (2)/2

f (|S∗|)/|S∗|2 .

2.2.2 Greedy Peeling

Here we adopt the greedy peeling. Our algorithm iteratively removes the vertex with
the smallest weighted degree in the currently remaining graph, and then returns S ⊆
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Algorithm 2: Greedy peeling
1 Sn ← V ;
2 for i ← n, . . . , 2 do
3 Find vi ∈ argminv∈Si dSi (v) and Si−1 ← Si\{vi };
4 return S ∈ {S1, . . . , Sn} that maximizes w(S)/ f (|S|);

V with maximum w(S)/ f (|S|) over the iterations. For reference, we describe the
procedure inAlgorithm 2. This algorithm can be implemented to run in O(m+n log n)

time for weighted graphs and O(m + n) time for unweighted graphs.
The following lemma provides the approximation ratio.

Lemma 3 Let S∗ ⊆ V be an optimal solution to f -DS with convex function f .
Algorithm 2 returns S ⊆ V that satisfies

w(S∗)
f (|S∗|) ≤ 2 f (n)/n

f (|S∗|) − f (|S∗| − 1)
· w(S)

f (|S|) .

Proof Choose an arbitrary vertex v ∈ S∗. By the optimality of S∗, we have

w(S∗)
f (|S∗|) ≥ w(S∗\{v})

f (|S∗| − 1)
.

By using the fact that w(S∗\{v}) = w(S∗) − dS∗(v), the above inequality can be
transformed to

dS∗(v) ≥ ( f (|S∗|) − f (|S∗| − 1)) · w(S∗)
f (|S∗|) . (2)

Let l be the smallest index that satisfies Sl ⊇ S∗, where Sl is the subset of vertices of
size l appeared in Algorithm 2. Note that vl (∈ argminv∈Sl dSl (v)) is contained in S∗.
Then we have

w(Sl)

f (l)
=
∑

u∈Sl dSl (u)

2 f (l)
≥ l · dSl (vl)

2 f (l)
≥ dS∗(vl)

2 f (l)/ l

≥ f (|S∗|) − f (|S∗| − 1)

2 f (l)/ l
· w(S∗)
f (|S∗|) ≥ f (|S∗|) − f (|S∗| − 1)

2 f (n)/n
· w(S∗)
f (|S∗|) ,

where the first inequality follows from the greedy choice of vl , the second inequality
follows from Sl ⊇ S∗, the third inequality follows from inequality (2), and the last
inequality follows from the monotonicity of f (x)/x . Since Algorithm 2 considers Sl
as a candidate subset of the output, we have the lemma. ��

2.3 Examples

Herewe observe the behavior of the approximation ratio of our algorithm for three con-
crete convex size functions. We consider size functions between linear and quadratic
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because f -DS with any super-quadratic size function is a trivial problem. For any
super-quadratic size function f , there exists some positive integer k∗ such that
f (k)/k2 > f (2)/2 for any k > k∗. By Lemma 2, we have f (2)/2

f (|S∗|)/|S∗|2 ≥ 1 (i.e.,

f (|S∗|)/|S∗|2 ≤ f (2)/2) and hence |S∗| ≤ k∗, which means that any instance of
f -DS with the function f has a constant-size optimal solution.
(i) f (x) = xα (α ∈ [1, 2]) The following corollary provides an approximation

ratio of our algorithm.

Corollary 1 For f -DS with f (x) = xα (α ∈ [1, 2]), our algorithm has an approxi-
mation ratio of 2 · n(α−1)(2−α).

Proof Let s = |S∗|. By Theorem 2, the approximation ratio is

min

{
f (2)/2

f (s)/s2
,

2 f (n)/n

f (s) − f (s − 1)

}

= min

{

2α−1 · s2−α,
2nα−1

sα − (s − 1)α

}

≤ min

{

2 · s2−α,
2nα−1

sα−1

}

≤ 2 · n(α−1)(2−α).

The first inequality follows from the fact that sα −(s−1)α = sα −(s−1)α−1(s−1) ≥
sα − sα−1(s − 1) = sα−1. The last inequality follows from the fact that the first term
and the second term of the minimum function are, respectively, monotonically non-
decreasing and non-increasing in s, and they have the same value at s = nα−1. ��

Note that an upper bound on 2 ·n(α−1)(2−α) is 2 ·n1/4, which is attained at α = 1.5.
(ii) f (x) = λx + (1 − λ)x2 (λ ∈ [0, 1)) The following corollary provides an

approximation ratio of Algorithm 1, which is a constant for a fixed λ.

Corollary 2 For f -DS with f (x) = λx + (1 − λ)x2 (λ ∈ [0, 1)), Algorithm 1 with
k = 2 has an approximation ratio of (2 − λ)/(1 − λ). Furthermore, for any ε > 0,
Algorithm 1 with k ≥ 2

ε
· λ
1−λ

has an approximation ratio of 2 + ε.

Proof Let s = |S∗|. By Lemma 2, the approximation ratio is

2 · f (k)/k2

f (s)/s2
= 2 · λ/k + (1 − λ)

λ/s + (1 − λ)
≤ 2 · λ/k + (1 − λ)

1 − λ
= 2 + 2λ

(1 − λ)k
.

Thus, by choosing k = 2, the approximation ratio is at most (2− λ)/(1− λ). For any
ε > 0, by choosing k ≥ 2

ε
· λ
1−λ

, the approximation ratio is at most 2 + ε. ��

(iii) f (x) = x2/(λx + (1 − λ)) (λ ∈ [0, 1]) This size function is derived from
density function λ

w(S)
|S| + (1 − λ)

w(S)

|S|2 . The following corollary provides an approxi-
mation ratio of our algorithm, which is at most 4.

Corollary 3 For f -DS with f (x) = x2/(λx + (1 − λ)) (λ ∈ [0, 1)), our algorithm
has an approximation ratio of 4/(1 + λ).
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Proof Let s = |S∗|. By Theorem 2, the approximation ratio is

min

{
f (2)/2

f (s)/s2
,

2 f (n)/n

f (s) − f (s − 1)

}

= min

⎧
⎨

⎩

2(λs + (1 − λ))

1 + λ
,

2n
λn+(1−λ)

s2
λs+(1−λ)

− (s−1)2
λ(s−1)+(1−λ)

⎫
⎬

⎭

≤ min

{
2(λs + (1 − λ))

1 + λ
,

2n
λn+(1−λ)

s
λs+(1−λ)

}

≤ 2

1 + λ

(

λ · (1 + λ)n

λn + (1 − λ)
+ (1 − λ)

)

≤ 2

1 + λ

(

λ · 1 + λ

λ
+ (1 − λ)

)

= 4

1 + λ
,

where the second inequality follows from the fact that the first term and the second
term of the minimum function are, respectively, monotonically non-decreasing and
non-increasing in s, and they have the same value at s = (1+λ)n

λn+(1−λ)
. ��

3 Concave Case

In this section, we investigate f -DS with concave function f . A function f : Z≥0 →
R≥0 is said to be concave if f (x)−2 f (x +1)+ f (x +2) ≤ 0 holds for any x ∈ Z≥0.
We remark that f (x)/x is monotonically non-increasing in x since we assume that
f (0) = 0. It should be emphasized that any optimal solution to f -DS with concave
function f has a size larger than or equal to that of any densest subgraph. This follows
from inequality (1) and the monotonicity of f (x)/x .

3.1 Dense Frontier Points

Here we define the dense frontier points and prove some basic properties. We denote
by P the set {(|S|, w(S)) | S ⊆ V }. A point in P is called a dense frontier point
if it is a unique maximizer of y − λx over (x, y) ∈ P for some λ > 0. In other
words, the extreme points of the upper convex hull of P are dense frontier points.
The (largest) densest subgraph is a typical subset of vertices corresponding to a dense
frontier point. We prove that (i) for any dense frontier point except for (0, 0), there
exists some concave function f such that any optimal solution to f -DS with the
function f corresponds to the dense frontier point, and conversely, (ii) for any strictly
concave function f (i.e., f that satisfies f (x) − 2 f (x + 1) + f (x + 2) < 0 for any
x ∈ Z≥0), any optimal solution to f -DS with the function f corresponds to a dense
frontier point.

We first prove (i). Note that each dense frontier point can be written as (i, w(S∗
i ))

for some i ∈ {0, 1, . . . , n}, where S∗
i ⊆ V is a maximum weight subset of size i .

Let (k, w(S∗
k )) be a dense frontier point with k ≥ 1 and assume that it is a unique
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x

y

O k − 1 k k + 1

w(S∗
k)

f(k) · f(k − 1)

w(S∗
k)

w(S∗
k)

f(k) · f(k + 1) y = w(S∗
k)

f(k) · f(x)

y = λ̂(x − k) + w(S∗
k)

w(S∗
k)− λ̂k

Fig. 2 A relationship between a dense frontier point and concave functions

maximizer of y − λ̂x over (x, y) ∈ P for some λ̂ > 0. Consider the concave function
f such that f (x) = λ̂(x − k) + w(S∗

k ) for x > 0 and f (0) = 0 (see Fig. 2).
The concavity of f follows from w(S∗

k ) − λ̂k ≥ w(S∗
0 ) − λ̂ · 0 = 0 = f (0).

Then, any optimal solution S∗ ⊆ V to f -DS with the function f corresponds to
the dense frontier point (i.e., (|S∗|, w(S∗)) = (k, w(S∗

k )) holds) because w(S)/ f (|S|)
is greater than or equal tow(S∗

k )/ f (k) (= 1) if and only ifw(S)− λ̂|S| ≥ w(S∗
k )− λ̂k

holds.
We next prove (ii). Let f be any strictly concave function. Let S∗

k ⊆ V be any
optimal solution to f -DS with the function f , and take λ̂ that satisfies ( f (k) − f (k −
1)) · w(S∗

k )

f (k) > λ̂ > ( f (k +1)− f (k)) · w(S∗
k )

f (k) (see Fig. 2). Note that the strict concavity

of f guarantees the existence of such λ̂. Since f is strictly concave, we have that for
any S ⊆ V ,

λ̂(|S| − k) + w(S∗
k ) ≥ w(S∗

k )

f (k)
· f (|S|) ≥ w(S)

f (|S|) · f (|S|) = w(S),

and the inequalities hold as equalities only when (|S|, w(S)) = (k, w(S∗
k )). Thus,

(k, w(S∗
k )) is a unique maximizer of y − λ̂x over (x, y) ∈ P , and hence is a dense

frontier point.

3.2 LP-Based Algorithm

We provide an LP-based polynomial-time exact algorithm. We introduce a variable xe
for each e ∈ E and a variable yv for each v ∈ V . For k = 1, . . . , n, we construct the
following linear programming problem:
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Algorithm 3: LP-based algorithm
1 for k ← 1, . . . , n do
2 Solve LPk and obtain an optimal solution (xk , yk );
3 Compute r∗

k that maximizes w(Sk (r))/ f (|Sk (r)|);
4 return S ∈ {S1(r∗

1 ), . . . , Sn(r∗
n )} that maximizes w(S)/ f (|S|);

LPk : maximize
∑

e∈E
w(e) · xe

subject to
∑

v∈V
yv = k,

xe ≤ yu, xe ≤ yv for all e = {u, v} ∈ E,

xe, yv ∈ [0, 1] for all e ∈ E, v ∈ V .

For an optimal solution (xk, yk) to LPk and a real parameter r , we define a sequence
of subsets Sk(r) = {v ∈ V | ykv ≥ r}. For k = 1, . . . , n, our algorithm first solves
LPk to obtain an optimal solution (xk, yk), and then computes r∗

k that maximizes
w(Sk(r))/ f (|Sk(r)|). Note here that to find such r∗

k , it suffices to check all the distinct
sets Sk(r) by simply setting r = ykv for every v ∈ V . The algorithm returns S ∈
{S1(r∗

1 ), . . . , Sn(r∗
n )} that maximizes w(S)/ f (|S|). For reference, we describe the

procedure in Algorithm 3. Clearly, the algorithm runs in polynomial time.
In what follows, we demonstrate that Algorithm 3 obtains an optimal solution to

f -DS with concave function f . The following lemma provides a lower bound on the
optimal value of LPk .

Lemma 4 For any S ⊆ V , the optimal value of LP|S| is at least w(S).

Proof For S ⊆ V , we construct a solution (x, y) of LP|S| as follows:

xe =
{
1 if e ∈ E(S),

0 otherwise,
and yv =

{
1 if v ∈ S,

0 otherwise.

Then we can easily check that (x, y) is feasible for LP|S| and its objective value is
w(S). Thus, we have the lemma. ��

We prove the following key lemma.

Lemma 5 Let S∗ ⊆ V be an optimal solution to f -DS with concave function f , and
let k∗ = |S∗|. Furthermore, let (x∗, y∗) be an optimal solution to LPk∗ . Then, there
exists a real number r such that Sk

∗
(r) is optimal to f -DS with concave function f .

Proof For each e = {u, v} ∈ E , we have x∗
e = min{y∗

u , y
∗
v } from the optimality

of (x∗, y∗). Without loss of generality, we relabel the indices of (x∗, y∗) so that
y∗
1 ≥ · · · ≥ y∗

n . Then we have
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∫ y∗
1

0
w(Sk

∗
(r))dr =

∫ y∗
1

0

⎛

⎝
∑

e={u,v}∈E
w(e) · [y∗

u ≥ r and y∗
v ≥ r ]

⎞

⎠ dr

=
∑

e={u,v}∈E

∫ y∗
1

0

(
w(e) · [y∗

u ≥ r and y∗
v ≥ r ]) dr

=
∑

e={u,v}∈E
w(e) · min{y∗

u , y
∗
v } =

∑

e∈E
w(e) · x∗

e ≥ w(S∗), (3)

where [y∗
u ≥ r and y∗

v ≥ r ] denotes the function of r that takes 1 if the condition in the
square bracket is satisfied and 0 otherwise, and the inequality follows from Lemma 4.
Moreover, we have

∫ y∗
1

0
f (|Sk∗

(r)|)dr =
n∑

h=1

f (h) · (y∗
h − y∗

h+1) =
n∑

h=1

( f (h) − f (h − 1)) · y∗
h

≤
k∗
∑

h=1

( f (h) − f (h − 1)) = f (k∗) − f (0) = f (k∗), (4)

where y∗
n+1 is defined to be 0 for convenience, and the inequality holds by the concavity

of f (i.e., f (h + 2) − f (h + 1) ≤ f (h + 1) − f (h)),
∑n

h=1 y
∗
h = k∗, and y∗

h ≤ 1.
Let r∗ be a real number r ∈ [0, y∗

1 ] that maximizes w(Sk
∗
(r))/ f (|Sk∗

(r)|). Using
inequalities (3) and (4), we have

w(S∗)
f (k∗)

≤
∫ y∗

1
0 w(Sk

∗
(r))dr

∫ y∗
1

0 f (|Sk∗
(r)|)dr

=
∫ y∗

1
0

(
w(Sk

∗
(r))

f (|Sk∗ (r)|) · f (|Sk∗
(r)|)
)
dr

∫ y∗
1

0 f (|Sk∗
(r)|)dr

≤
∫ y∗

1
0

(
w(Sk

∗
(r∗))

f (|Sk∗ (r∗)|) · f (|Sk∗
(r)|)
)
dr

∫ y∗
1

0 f (|Sk∗
(r)|)dr

= w(Sk
∗
(r∗))

f (|Sk∗
(r∗)|) .

This completes the proof. ��
Algorithm 3 considers Sk

∗
(r∗) as a candidate subset of the output. Therefore, we

have the desired result.

Theorem 3 Algorithm 3 is a polynomial-time exact algorithm for f -DS with concave
function f .

By Lemma 5, for any concave function f , an optimal solution to f -DS with the
function f is contained in {Sk(r) | k = 1, . . . , n, r ∈ [0, 1]} whose cardinality is at
most n2. As shown in Sect. 3.1, for any dense frontier point, there exists some concave
function f such that any optimal solution to f -DS with the function f corresponds
to the dense frontier point. Thus, we have the following result.

Theorem 4 We can find a subset of vertices corresponding to every dense frontier
point in polynomial time.
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3.3 Flow-Based Algorithm

We provide a combinatorial exact algorithm for unweighted graphs (i.e.,w(e) = 1 for
every e ∈ E). We first show that using a standard technique for fractional program-
ming, we can reduce f -DS with concave function f to a sequence of submodular
function minimizations. The critical fact is that maxS⊆V w(S)/ f (|S|) is at least β

if and only if minS⊆V (β · f (|S|) − w(S)) is at most 0. Note that for β ≥ 0, the
function β · f (|S|)−w(S) is submodular because β · f (|S|) and−w(S) are submodu-
lar [12]. Thus, we can calculate minS⊆V (β · f (|S|)−w(S)) in O(n3(m + n) log2 n+
n4 polylog(n)) time using the submodular function minimization algorithm by Lee et
al. [18], which implies that we can determine maxS⊆V w(S)/ f (|S|) ≥ β or not in the
same time complexity. Hence, we can obtain the value of maxS⊆V w(S)/ f (|S|) by
binary search. Note that the objective function of f -DS on unweighted graphs have at
most O(mn) distinct values since w(S) is a nonnegative integer at most m. Thus, the
procedure yields an optimal solution in O(log(mn)) = O(log n) iterations. The total
running time is O(n3(m + n) log3 n + n4 polylog(n)).

To reduce the computation time, we replace the submodular function minimization
algorithm [18] with a much faster flow-based algorithm that substantially extends a
technique of Goldberg’s flow-based algorithm for the densest subgraph problem [14].
The key technique is to represent the value of minS⊆V (β · f (|S|) − w(S)) using the
cost of minimum cut of a certain directed network constructed from G and β ≥ 0.

For a given unweighted undirected graph G = (V, E, w) (i.e., w(e) = 1 for
every e ∈ E) and a real number β ≥ 0, we construct a directed network (U, A, wβ) as
follows. Note that for later convenience, we discuss the procedure on weighted graphs.
The vertex set U is defined by U = V ∪ P ∪ {s, t}, where P = {p1, . . . , pn}. The
edge set A is given by A = As ∪ At ∪ A1 ∪ A2, where

As = {(s, v) | v ∈ V }, At = {(p, t) | p ∈ P},
A1 = {(u, v), (v, u) | {u, v} ∈ E}, and A2 = {(v, p) | v ∈ V, p ∈ P}.

The edge weight wβ : A → R≥0 is defined by

wβ(e) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d(v)/2 (e = (s, v) ∈ As),

β · k · ak (e = (pk, t) ∈ At ),

1/2 (= w({u, v})/2) (e = (u, v) ∈ A1),

β · ak (e = (v, pk) ∈ A2),

where d(v) is the (weighted) degree of vertex v, and

ak =
{
2 f (k) − f (k + 1) − f (k − 1) (k = 1, . . . , n − 1),

f (n) − f (n − 1) (k = n).

Note that ak ≥ 0 holds since f is a monotonically non-decreasing concave function.
For reference, Fig. 3 depicts the network (U, A, wβ).
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s t

...
u

...
v

...

p1

...
pk

...
pn

V P

β · ak

β · ak

d(u)
2

d(v)
2

β · 1 · a1

β · k · ak
1
2 (= w({u,v})

2 ) 1
2 (= w({u,v})

2 )

β · n · an

Fig. 3 The network (U, A, wβ) constructed from G and β ≥ 0

The following lemma reveals the relationship between a minimum s–t cut in
(U, A, wβ) and the value of minS⊆V (β · f (|S|) − w(S)). Note that an s–t cut in
(U, A, wβ) is a partition (X,Y ) of U (i.e., X ∪ Y = U and X ∩ Y = ∅) such that
s ∈ X and t ∈ Y , and the cost of (X,Y ) is defined to be

∑
(u,v)∈A: u∈X,v∈Y wβ(u, v).

Lemma 6 Let (X,Y ) be any minimum s–t cut in the network (U, A, wβ), and let
S = X ∩ V . Then, the cost of (X,Y ) is equal to w(V ) + β · f (|S|) − w(S).

Proof We first show that for any positive integer s (≤ n), it holds that

n∑

i=1

min{i, s} · ai = f (s). (5)

By the definition of ak , we get

n∑

j=i

a j = ( f (n) − f (n − 1)) +
n−1∑

j=i

(2 f ( j) − f ( j + 1) − f ( j − 1))

= ( f (n) − f (n − 1)) −
n−1∑

j=i

(( f ( j + 1) − f ( j)) − ( f ( j) − f ( j − 1)))

= f (i) − f (i − 1).
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Algorithm 4: Flow-based algorithm for unweighted graphs
1 Let {β1, . . . , βr } = {p/ f (q) | p = 0, 1, . . . ,m, q = 2, 3, . . . , n} such that β1 < · · · < βr ;
2 imin ← 1 and imax ← r ;
3 while True do
4 i ← �(imax + imin)/2�;
5 Compute a minimum s–t cut (X, Y ) in (U, A, wβi );
6 if the cost of (X, Y ) is larger than w(V ) then imax ← i − 1;
7 else if the cost of (X, Y ) is less than w(V ) then imin ← i + 1;
8 else return X ∩ V ;

Thus, we have

n∑

i=1

min{i, s} · ai =
s∑

i=1

n∑

j=i

a j =
s∑

i=1

( f (i) − f (i − 1)) = f (s) − f (0) = f (s).

We are now ready to prove the lemma. Note that pk ∈ X if |S| > k and pk ∈ Y if
|S| < k. Therefore, the cost of the minimum cut (X,Y ) is

∑

v∈V \S

d(v)

2
+

∑

{u,v}∈E : u∈S, v∈V \S

w({u, v})
2

+ β ·
n∑

i=1

min{i, |S|} · ai

=
∑

v∈V \S

d(v)

2
+

∑

{u,v}∈E : u∈S, v∈V \S

w({u, v})
2

+ β · f (|S|)

=
∑

{u,v}∈E
w({u, v}) −

∑

{u,v}∈E(S)

w({u, v}) + β · f (|S|)

= w(V ) + β · f (|S|) − w(S),

where the first equality follows from equality (5). ��
From this lemma, we see that the cost of a minimum s–t cut is w(V )+minS⊆V (β ·

f (|S|) − w(S)). Therefore, for a given value β ≥ 0, we can determine whether there
exists S ⊆ V that satisfiesw(S)/ f (|S|) ≥ β by checking the cost of aminimum s–t cut
is at most w(V ) or not. Our algorithm applies binary search for β within the possible
objective values of f -DS (i.e., {p/ f (q) | p = 0, 1, . . . ,m, q = 2, 3, . . . , n}). For
reference, we describe the procedure in Algorithm 4. The minimum s–t cut problem
can be solved in O(N 3/ log N ) time for a network with N vertices [8]. Thus, the
running time of our algorithm is O( n3

log n · log(mn)) = O(n3) since |U | = 2n + 2. We
summarize the result in the following theorem.

Theorem 5 Algorithm 4 is an O(n3)-time exact algorithm for f -DS with concave
function f on unweighted graphs.

For f -DS with concave function f on weighted graphs, the binary search used
in Algorithm 4 is not applicable because there may be exponentially many possible
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Algorithm 5: Flow-based algorithm for weighted graphs

1 β
(0)
lb ← w(S∗

2 )/ f (2), β(0)
ub ← w(V )/ f (2), and i ← 0;

2 while β
(i)
ub > (1 + ε) · β

(i)
lb do

3 β(i) ←
√

β
(i)
lb · β

(i)
ub ;

4 Compute a minimum s–t cut (X (i), Y (i)) in (U, A, w
β(i) );

5 if the cost of (X (i), Y (i)) is larger than w(V ) then β
(i+1)
lb ← β

(i)
lb and β

(i+1)
ub ← β(i);

6 else β
(i+1)
lb ← β(i) and β

(i+1)
ub ← β

(i)
ub ;

7 i ← i + 1;

8 Compute a minimum s–t cut (X (i), Y (i)) in (U, A, w
β

(i)
lb

) and return X (i) ∩ V ;

objective values in the weighted setting and we cannot compute the values explic-
itly in polynomial time. To overcome this issue, we can use Meggido’s parametric
search technique [19]. Assume that we have an algorithm that computes a minimum
s–t cut in (U, A, wβ) within O(p(|A|, |U |)) comparisons and O(q(|A|, |U |)) addi-
tions/subtractions. Then, using the parametric search technique, we can solve f -DS on
weighted graphs exactly in O(p(|A|, |U |)(p(|A|, |U |)+q(|A|, |U |))) time. However,
this algorithm is computationally expensive.

Alternatively, we present an algorithm that employs another binary search strategy
(Algorithm 5). We have the following theorem.

Theorem 6 Algorithm 5 is an O
(

n3
log n · log

(
log n

ε

))
-time (1 + ε)-approximation

algorithm for f -DS with concave function f .

Proof Let i∗ be the number of iterations executed by Algorithm 5, and let Ŝ = X (i∗) ∩
V . Then we have maxS⊆V w(S)/ f (|S|) ≤ β

(i∗)
ub , β(i∗)

ub ≤ (1 + ε) · β
(i∗)
lb , and β

(i∗)
lb ≤

w(Ŝ)/ f (|Ŝ|). Combining these inequalities, we have maxS⊆V w(S)/ f (|S|) ≤ (1 +
ε) · w(Ŝ)/ f (|Ŝ|), which means that Ŝ is a (1 + ε)-approximate solution.

In what follows, we analyze the time complexity of the algorithm. For each i ∈
{0, 1, . . . , i∗ − 1}, it holds that

β
(i+1)
ub

β
(i+1)
lb

≤ max

{
β

(i)
ub

β(i)
,

β(i)

β
(i)
lb

}

= max

⎧
⎨

⎩

β
(i)
ub√

β
(i)
lb · β

(i)
ub

,

√

β
(i)
lb · β

(i)
ub

β
(i)
lb

⎫
⎬

⎭
=
√
√
√
√β

(i)
ub

β
(i)
lb

.

Since β
(0)
ub /β

(0)
lb = w(V )/w(S∗

2 ) ≤ m, we have β
(i)
ub /β

(i)
lb ≤ m1/2i for i = 1, . . . , i∗.

Note that i∗ is the minimum index i that satisfies β
(i)
ub /β

(i)
lb ≤ 1 + ε. Thus, we see

that i∗ is upper bounded by O
(
log
(

log n
log(1+ε)

))
. Therefore, the total running time is

O
(

n3
log n · log

(
log n

log(1+ε)

))
= O

(
n3
log n · log

(
log n

ε

))
, where the equality follows from

the fact that limε→+0
ε

log(1+ε)
= 1 holds. ��
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3.4 Greedy Peeling

Finally, we provide an approximation algorithm with much higher scalability. Specif-
ically, we prove that the greedy peeling (Algorithm 2) has an approximation ratio of 3
for f -DS with concave function f . As mentioned in Sect. 2.2.2, the algorithm runs in
O(m + n log n) time for weighted graphs and O(m + n) time for unweighted graphs.

We prove the approximation ratio. Recall that Sn, . . . , S1 are the subsets of vertices
produced by the greedy peeling. We use the following fact, which implies that there
exists a 3-approximate solution for DalkS in Sn, . . . , Sk .

Fact 1 (Theorem 1 in Andersen and Chellapilla [1]) For any integer k (≤ n), it holds
that

max
S⊆V : |S|≥k

w(S)

|S| ≤ 3 · max
k≤i≤n

w(Si )

i
.

Theorem 7 The greedy peeling (Algorithm 2) has an approximation ratio of 3 for
f -DS with concave function f .

Proof Let S∗ ⊆ V be an optimal solution to f -DS with concave function f , and let
s∗ = |S∗|. Let S ⊆ V be the output of the greedy peeling for the problem. Then we
have

w(S∗)
f (s∗)

= w(S∗)/s∗

f (s∗)/s∗ ≤ max
S′⊆V : |S′|≥s∗

w(S′)/|S′|
f (s∗)/s∗

≤ 3 · max
s∗≤i≤n

w(Si )/ i

f (s∗)/s∗ ≤ 3 · max
s∗≤i≤n

w(Si )/ i

f (i)/ i
≤ 3 · w(S)

f (|S|) ,

where the second inequality follows from Fact 1, and the third inequality follows from
the monotonicity of f (x)/x . ��
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