
Algorithmica (2018) 80:1804–1833
https://doi.org/10.1007/s00453-017-0390-5

Discovering Small Target Sets in Social Networks: A
Fast and Effective Algorithm

Gennaro Cordasco1 · Luisa Gargano2 ·
Marco Mecchia2 · Adele A. Rescigno2 ·
Ugo Vaccaro2

Received: 16 April 2016 / Accepted: 14 October 2017 / Published online: 26 October 2017
© Springer Science+Business Media, LLC 2017

Abstract Given a network represented by a graph G = (V, E), we consider a dynam-
ical process of influence diffusion in G that evolves as follows: Initially only the nodes
of a given S ⊆ V are influenced; subsequently, at each round, the set of influenced
nodes is augmented by all the nodes in the network that have a sufficiently large num-
ber of already influenced neighbors. The question is to determine a small subset of
nodes S (a target set) that can influence the whole network. This is a widely studied
problem that abstracts many phenomena in the social, economic, biological, and phys-
ical sciences. It is known that the above optimization problem is hard to approximate
within a factor of 2log

1−ε |V |, for any ε > 0. In this paper, we present a fast and surpris-
ingly simple algorithm that exhibits the following features: (1) when applied to trees,
cycles, or complete graphs, it always produces an optimal solution (i.e, a minimum
size target set); (2) when applied to arbitrary networks, it always produces a solution

A preliminary version of this paper was presented at the 9th Annual International Conference on
Combinatorial Optimization and Applications (COCOA’15), December 18–20, 2015, Houston, Texas,
USA.

B Ugo Vaccaro
uvaccaro@unisa.it

Gennaro Cordasco
gennaro.cordasco@unicampania.it

Luisa Gargano
lgargano@unisa.it

Adele A. Rescigno
arescigno@unisa.it

1 Department of Psychology, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta,
Italy

2 Department of Computer Science, University of Salerno, Fisciano, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-017-0390-5&domain=pdf
http://orcid.org/0000-0003-4085-7300


Algorithmica (2018) 80:1804–1833 1805

of cardinality which improves on previously known upper bounds; (3) when applied
to real-life networks, it always produces solutions that substantially outperform the
ones obtained by previously published algorithms (for which no proof of optimality
or performance guarantee is known in any class of graphs).

Keywords Social networks · Information diffusions · Algorithms

1 Introduction

Social networks have been extensively investigated by student of the social science
for decades (see, e.g., [39]). Modern large scale online social networks, like Face-
book and LinkedIn, have made available huge amount of data, thus leading to many
applications of online social networks, and also to the articulation and exploration of
many interesting research questions. A large part of such studies regards the analysis
of social influence diffusion in networks of people. Social influence is the process by
which individuals adjust their opinions, revise their beliefs, or change their behaviors
as a result of interactions with other people [11]. It has not escaped the attention of
advertisers that the process of social influence can be exploited in viral marketing [31].
Viral marketing refers to the spread of information about products and behaviors, and
their adoption by people. According to Lately [28], “the traditional broadcast model
of advertising-one-way, one-to-many, read-only is increasingly being superseded by
a vision of marketing that wants, and expects, consumers to spread the word them-
selves”. For what interests us, the intent of maximizing the spread of viral information
across a network naturally suggests many interesting optimization problems. Some of
themwere first articulated in the seminal papers [26,27]. The recent monograph [7,37]
contains an excellent description of the area. See also [32,42] In the next section, we
will explain and motivate our model of information diffusion, state the problemwe are
investigating, describe our results, and discuss how they relate to the existing literature.

1.1 The Model

Let G = (V, E) be a graph modeling the network. We denote by �G(v) and by
dG(v) = |�G(v)|, respectively, the neighborhood and the degree of the vertex v in G.
Let t : V → N0 = {0, 1, . . .} be a function assigning thresholds to the vertices of G.
For each node v ∈ V , the value t (v) quantifies how hard it is to influence node v, in
the sense that easy-to-influence elements of the network have “low” threshold values,
and hard-to-influence elements have “high” threshold values [25].

Definition 1 Let G = (V, E) be a graph with threshold function t : V −→ N0 and
S ⊆ V . An activation process in G starting at S is a sequence of vertex subsets
ActiveG [S, 0] ⊆ ActiveG[S, 1] ⊆ . . . ⊆ ActiveG [S, �] ⊆ . . . ⊆ V of vertex subsets,
with ActiveG [S, 0] = S and

ActiveG [S, �] = ActiveG [S, � − 1] ∪
{

u : ∣∣�G(u) ∩ ActiveG [S, � − 1]∣∣ ≥ t (u)
}
, for � ≥ 1.

123



1806 Algorithmica (2018) 80:1804–1833

1

1 1

11 1

3 2

2 1

v4

v1

v7

v8 v9

v2 v3

v5

v6

v10

Fig. 1 A tree with vertex set V = {v1, v2, . . . , v10} where the number inside each circle is the vertex
threshold. A target set is S = {v1, v5, v7}

A target set for G is set S ⊆ V such that ActiveG[S, λ] = V for some λ ≥ 0

In words, at each round � the set of active nodes is augmented by the set of nodes u that
have a number of already activated neighbors greater or equal to u’s threshold t (u). The
vertex v is said to be activated at round � > 0 if v ∈ ActiveG[S, �]\ActiveG[S, �−1].

In the rest of the paper we will omit the subscript G whenever the graph G is clear
from the context.

Example 1 Consider the tree T in Fig. 1. The number inside each circle is the vertex
threshold. A possible target set for T is S = {v1, v5, v7}. Indeed we have

Active[S, 0] = S = {v1, v5, v7},
Active[S, 1] = S ∪ {v2, v3, v4, v6, v8, v9},
Active[S, 2] = Active[S, 1] ∪ {v10} = V .

The problem we study in this paper is defined as follows:

Target Set Selection (TSS).
Instance: A network G = (V, E), thresholds t : V → N0.
Problem: Find a target set S ⊆ V of minimum size for G.

1.2 The Context and Our Results

The Target Set Selection Problem has roots in the general study of the spread of
influence in Social Networks (see [7,22] and references quoted therein). For instance,
in the area of viral marketing [21], companies want to promote products or behaviors
might initially try to target and convince a few individuals who, byword-of-mouth, can

123



Algorithmica (2018) 80:1804–1833 1807

trigger a cascade of influence in the network leading to an adoption of the products by a
much larger number of individuals. Recently, viral marketing has been also recognised
as an important tool in the communication strategies of politicians [4,29,38].

The first authors to study problems of spread of influence in networks from an algo-
rithmic point of viewwere Kempe et al. [26,27]. However, they weremostly interested
in networks with randomly chosen thresholds. Chen [6] studied the following mini-
mization problem: Given a graph G and fixed arbitrary thresholds t (v), ∀ v ∈ V , find
a target set of minimum size that eventually activates all (or a fixed fraction of) nodes
of G. He proved a strong inapproximability result that makes unlikely the existence
of an algorithm with approximation factor better than O(2log

1−ε |V |). Chen’s result
stimulated a series of papers [1–3,5,8–10,12–14,16–19,23,24,34,35,41,43] that iso-
lated interesting cases in which the problem (and variants thereof) become tractable.
A notable absence from the literature on the topic (with the exception of Thang et al.
[36] and Shakarian et al. [20]) are algorithms for the Target Set Selection Problem
that work for arbitrary graphs. This is probably due to the previously quoted strong
inapproximability result of Chen [6], that seems to suggest that the problem is hope-
less. Providing such an algorithm for general graphs, evaluating its performances and
esperimentally validating it on real-life networks, is the main objective of this paper.

Our Results

In this paper, we present a fast and simple algorithm that exhibits the following series
of interesting features:

(1) It always produces an optimal solution (i.e, a minimum size subset of nodes that
influence the whole network) in case G is either a tree, a cycle, or a complete
graph. These results were previously obtained in [6,34] by means of different
ad-hoc algorithms.

(2) For general networks, our algorithmalways produces a target setwhose cardinality

is smaller than
∑

v∈V min
(
1, t (v)

d(v)+1

)
. Our result improves on the corresponding

results of Ackerman et al. [15] and Centeno et al. [1];
(3) In real-life networks our algorithm produces solutions that outperform the ones

obtained using the algorithms presented in the papers [20,36], for which, however,
no proof of optimality or performance guarantee is known in any class of graphs.
The data sets we use, to experimentally validate our algorithm, include those
considered in [20,36].

It is worthwhile to remark that our algorithm, when executed on a graph G for
which the thresholds t (v) have been set equal to the nodes degree d(v), for each
v ∈ V , it outputs a vertex cover of G, (since in that particular case a target set of
G is, indeed, a vertex cover of G). Therefore, our algorithm appears to be a new
algorithm, to the best of our knowledge, to compute the vertex cover of graphs (notice
that our algorithm differs from the classical algorithm that computes a vertex cover by
iteratively deleting a vertex of maximum degree in the graph). We plan to investigate
elsewhere the theoretical performances of our algorithm (i.e., its approximation factor);
computational experiments suggest that it performs surprisingly well in practice.

123



1808 Algorithmica (2018) 80:1804–1833

2 The TSS Algorithm

In this sectionwe present our algorithm for the TSS problem. The strategies commonly
proposed in the literature to solve the TSS problem are mostly additive (e.g., [26,27]),
in that they focus on the addition of very influential nodes (according to somemeasure
of node influence, such as the node degree) to a current solution S until it becomes a
target set. In this work, we study a subtractive algorithm, given in Algorithm 1, which
iteratively prunes nodes from the graph (and therefore, from the set of candidates to
be part of the target set). The pruning is done according to a designed rule that tries to
balance between the capability of a node to influence other nodes and its “easiness”
(or hardness) to be influenced by other nodes.

At each iteration, if no extremal condition (e.g., Case 1 or 2) occurs, then Case 3
holds and a vertex is selected to be discarded; such a vertex is chosen as to maximize a
properly chosen function that, for each node, is directly proportional to its remaining
threshold and inversely proportional to its degree (see line 17). When a node v is
removed from the graph, its neighbors update their degree accordingly (see lines 18–
20). Consequently, during the deletion process, some vertex v in the surviving graph

Algorithm 1: TSS(G)
Input: A graph G = (V, E) with thresholds t (v) for v ∈ V .
Result: S, a target set for G.

1 S = ∅
2 U = V
3 foreach v ∈ V do
4 δ(v) = d(v)

5 k(v) = t (v)

6 N (v) = �(v)

7 while U 
= ∅ do // Select one vertex and eliminate it from the graph as specified in the following
cases.

8 if there exists v ∈ U s.t. k(v) = 0 then // Case 1: The vertex v is activated by the influence of its
neighbors in V − U only; it can then influence its neighbors in U .

9 foreach u ∈ N (v) do
10 k(u) = max(k(u) − 1, 0)

11 else
12 if there exists v ∈ U s.t. δ(v) < k(v) then // Case 2: The vertex v is added to S, since no

sufficient neighbors remain in U to activate it; v can then influence its neighbors in U .
13 S = S ∪ {v}
14 foreach u ∈ N (v) do
15 k(u) = k(u) − 1

16 else // Case 3: The vertex v will be influenced by some of its neighbors in U .

17 v = argmaxu∈U

{
k(u)

δ(u)(δ(u)+1)

}

18 foreach u ∈ N (v) do
19 δ(u) = δ(u) − 1
20 N (u) = N (u) − {v}
21 U = U − {v}
22 return S

123



Algorithmica (2018) 80:1804–1833 1809

Table 1 An example of
execution of TSS(G) on the
graph T in Fig. 1

Iteration 1 2 3 4 5 6 7 8 9 10

Selected vertex v10 v9 v8 v7 v6 v5 v4 v3 v2 v1

Case 3 3 3 2 3 2 1 3 3 2

may remain with less neighbors than its threshold (Case 2); in such a case v must be
necessarily added to the current solution set S (see line 13) since there is no possibility
to activate v through its neighbors. Coherently, its neighbors’ thresholds are decreased
by 1, since they receive v’s influence (see lines 14–15). Once a node is added to S, it
is deleted from the graph, like in the Case 3 above.
It can also happen that the surviving graph contains a vertex v whose threshold has
been decreased down to 0 (which means that the current set of nodes in S are able
to activate v); in such a case (Case 1), v is deleted from the graph and its neighbors’
thresholds are decreased by 1, since they will receive v’s influence once v activates
(see lines 9–10).

A possible execution of the algorithm TSS on the graph in Fig. 1 is described
below and summarized in Table 1. Before starting the deletion process, the algorithm
initializes the target set S to the empty set and a set U (used to keep the surviving
nodes of G) to V , moreover it also exploits three variables for each node:

– δ(v) which is initialized to the degree of node v,
– k(v) which is initialized to threshold of node v, and
– N (v) which is initialized to the set of neighbors of node v.

The algorithm proceeds as follows:

Iteration 1 If no node in U has threshold either equal to 0 or larger than the degree,
then Case 3 of the algorithm occurs and a node is selected according to condition
at line 17 of the algorithm. All the leaves of the tree in Fig. 1 satisfy this condition,
therefore the algorithm arbitrary chooses one of them.1 Let v10 be the selected vertex.
Hence, v10 is removed. As a consequence v6 will not count on v10 for being influenced
in the future (the value δ(v6), which denotes the degree of v6 restricted to the nodes
belonging to the residual graph, is decreased by 1).

Iteration 2 and 3 Case 3 is applied to nodes v9 and v8 and the value δ(v7) is updated
accordingly.

Iteration 4 In the residual graph, node v7 has fewer neighbors than its threshold (i.e.,
δ(v7) = 1 < 2 = k(v7)) and Case 2 of the algorithm occurs (notice that no node
has threshold equal to 0). Hence, v7 is selected and added to the target set S. As a

1 Notice that in each of Cases 1, 2, and 3 ties are broken at random.

123



1810 Algorithmica (2018) 80:1804–1833

consequence, v7 is removed and the threshold of its neighbor v1 is decreased by 1
(since it will receive v7’s influence).

Iteration 5 Case 3 applies to node v6.

Iteration 6 Case 2 applies to node v5.

Iteration 7 The residual threshold of node v4 is now 0 (e.g., the nodes which are
already in S see Case 2 suffice to activate v4). Hence, Case 1 occurs and v4 is removed
from the graph, the threshold of its neighbor v1 is decreased by 1 (since once v4
activates, v1 will receive v4’s influence).

Iteration 8 and 9 Case 3 applies to nodes v3 and v2.

Iteration 10 Case 2 applies to node v1.
The algorithm outputs the set S which contains the nodes that were selected on the
occurrences of Cases 2. In our example the output is S = {v1, v5, v7}which, as showed
in Example 1, is a target set for T .

In the rest of the paper, we use the following notation. We denote by n the number
of nodes in G, that is, n = |V |. Moreover we denote:

– By vi the vertex that is selected during the n − i + 1th iteration of the while loop
in TSS(G), for i = n, . . . , 1;

– by G(i) the graph induced by Vi = {vi , . . . , v1}
– by δi (v) the value of δ(v) as updated at the beginning of the (n − i +1)th iteration
of the while loop in TSS(G).

– by Ni (v) the set N (v) as updated at the beginning of the (n − i + 1)th iteration of
the while loop in TSS(G), and

Algorithm 2: GREEDY-TSS(G)
Input: A graph G = (V, E) with thresholds t (v) for v ∈ V .
Result: S, a target set for G.

1 S = ∅
2 U = V
3 foreach v ∈ V do
4 δ(v) = d(v)

5 k(v) = t (v)

6 N (v) = �(v)

7 while U 
= ∅ do
8 v = argmaxu∈U {k(u)}
9 if k(v) > 0 then

10 v = argmaxu∈U {δ(u)}
11 S = S ∪ {v}
12 foreach u ∈ N (v) do
13 k(u) = max{0, k(u) − 1}
14 δ(u) = δ(u) − 1
15 N (u) = N (u) − {v}
16 U = U − {v}
17 return S

123



Algorithmica (2018) 80:1804–1833 1811

– by ki (v) the value of k(v) as updated at the beginning of the (n − i +1)th iteration
of the while loop in TSS(G).

For the initial value i = n, the above values are those of the input graph G, that is:
G(n) = G, δn(v) = d(v), Nn(v) = �(v), kn(v) = t (v), for each vertex v of G.

We start with two technical Lemmata which will be useful in the rest of the paper.

Lemma 1 Consider a graph G. For any i = n, . . . , 1 and u ∈ Vi , it holds that

�G(i)(u) = Ni (u) and dG(i)(u) = δi (u). (1)

Proof For i = n wehave dG(n)(u) = dG(u) = δn(u) and�G(n)(u) = �G(u) = Nn(u)

for any u ∈ Vn = V .
Supposenow that the equalities hold for some i ≤ n. ThegraphG(i−1) corresponds

to the subgraph of G(i) induced by Vi−1 = Vi − {vi }. Hence

�G(i−1)(u) = �G(i)(u) − {vi },

and

dG(i−1)(u) =
{

dG(i)(u) − 1 if u ∈ �G(i)(vi ),

dG(i)(u) otherwise.

We deduce that the desired equalities hold for i −1 by noticing that the algorithm uses
the same rules to get

Ni−1(u) = Ni (u) − {vi }

and

δi−1(u) =
{

δi (u) − 1 if u ∈ Ni (vi ) = �G(i)(vi ),

δi (u) otherwise.

�
Lemma 2 For any i > 1, if S(i−1) is a target set for G(i −1) with thresholds ki−1(u),
for u ∈ Vi−1, then

S(i) =
{

S(i−1) ∪ {vi } if ki (vi ) > δi (vi )

S(i−1) otherwise
(2)

is a target set for G(i) with thresholds ki (u), for u ∈ Vi .

Proof Let us first notice that, according to the algorithm T SS, for each u ∈ Vi−1 we
have

ki−1(u) =
{
max(ki (u) − 1, 0) if u ∈ Ni (vi ) and (ki (vi ) = 0 or ki (vi ) > δi (vi ))

ki (u) otherwise.

(3)

123



1812 Algorithmica (2018) 80:1804–1833

(1) If ki (vi ) = 0, then vi ∈ ActiveG(i)[S(i), 1] whatever S(i) ⊆ Vi − {vi }. Hence, by
the Eq. (3), any target set S(i−1) for G(i − 1) is also a target set for G(i).

(2) If ki (vi ) > δi (vi ) then S(i) = S(i−1) ∪ {vi } and ki−1(u) = ki (u) − 1 for each
u ∈ Ni (vi ). It follows that for any � ≥ 0,

ActiveG(i)[S(i−1) ∪ {vi }, �] − {vi } = ActiveG(i−1)[S(i−1), �].

Hence, ActiveG(i)[S(i), �] = ActiveG(i−1)[S(i−1), �] ∪ {vi }.
(3) Let now 1 ≤ ki (vi ) ≤ δi (vi ). We have that ki−1(u) = ki (u) for each u ∈ Vi−1.

If S(i−1) is a target set for G(i − 1), by definition there exists an integer λ such
that ActiveG(i−1)[S(i−1), λ] = Vi−1. We then have Vi−1 ⊆ ActiveG(i)[S(i−1), λ]
which implies ActiveG(i)[S(i−1), λ + 1] = Vi . �

We can now prove the main result of this section.

Theorem 1 For any graph G and threshold function t, the algorithm TSS(G) outputs
a target set for G.

Proof Let S be the output of the algorithm T SS(G). We show that for each i =
1, . . . , n the set S ∩ {vi , . . . , v1} is a target set for the graph G(i), assuming that each
vertex u in G(i) has threshold ki (u). The proof is by induction on the number i of
nodes of G(i).
If i = 1 then the unique vertex v1 in G(1) either has threshold k1(v1) = 0 and
S ∩ {v1} = ∅ or the vertex has positive threshold k1(v1) > δ1(v1) = 0 and S ∩ {v1} =
{v1}.
Consider now i > 1 and suppose the algorithm be correct on G(i − 1), that is,
S ∩ {vi−1, . . . , v1} is a target set for G(i − 1) with threshold function ki−1. We
notice that in each among Cases 1, 2 and 3, the algorithm updates the thresholds and
the target set according to Lemma 2. Hence, the algorithm is correct on G(i) with
threshold function ki . The theorem follows since G(n) = G. �

It is possible to see that the TSS algorithm can be implemented in such a way to
run in O(|E | log |V |) time. Indeed we need to process the nodes v ∈ V according to
the metric t (v)/(d(v)(d(v) + 1)), and the updates that follow each processed node
v ∈ V involve at most the d(v) neighbors of v.

3 Estimating the Size of the Solution

In this section we prove an upper bound on the size of the target set obtained by the
algorithm TSS(G) for any input graph G. Our bound, given in Theorem 2, improves

on the bound
∑

v∈V min
(
1, t (v)

d(v)+1

)
given in [1,15]. Moreover, the result in [1] is

based on the probabilistic method and an effective algorithm results only by applying
suitable derandomization steps.

123



Algorithmica (2018) 80:1804–1833 1813

Theorem 2 Let G be a connected graph with at least 3 nodes and threshold function
t : V → N0. The algorithm TSS(G) outputs a target set S of size

|S| ≤
∑

v∈{u | u∈V (2) ∨ t (u) 
=1}
min

(
1,

t (v)

d(2)(v)+1

)
, (4)

where V (2) = {v | v ∈ V, d(v) ≥ 2} and d(2)(v) = |{u ∈ �(v) | u ∈ V (2) ∨ t (u) 
=
1}|.
Proof For each i = 1, . . . , n, define

(a) δ
(2)
i (v) = |{u ∈ Ni (v) | u ∈ V (2) ∨ t (u) 
= 1}|;

(b) Ii = {
v | v ∈ Vi − V (2), ki (v) > δi (v)

}
,

(c) W (G(i)) = ∑
v∈Vi ∩V (2) min

(
1, ki (v)

δ
(2)
i (v)+1

.

)
+ |Ii |.

We prove that

|S ∩ Vi | ≤ W (G(i)), (5)

for each i = 1, . . . , n. The bound (4) on S follows recalling that G(n) = G and

In =
{
v | v /∈ V (2), t (v) = k(v) > δ(v) = d(v) = 1

}
.

The proof is by induction on i . If i = 1, the claim follows noticing that

|S ∩ {v1}| =
{
0 if k1(v1) = 0
1 if k1(v1) ≥ 1

and W (G(1)) =
{
0 if k1(v1) = 0 and v1∈V (2)

1 otherwise.

Assume now (5) holds for i − 1 ≥ 1, and consider G(i) and the node vi . We have

|S ∩ {vi , . . . , v1}| = |S ∩ {vi }| + |S ∩ {vi−1, . . . , v1}| ≤ |S ∩ {vi }| + W (G(i − 1)).

We show now that

W (G(i)) ≥ W (G(i − 1)) + |S ∩ {vi }|.

We first notice that W (G(i)) − W (G(i − 1)) can be written as

∑

v∈Vi ∩V (2)

min

(
1,

ki (v)

δ
(2)
i (v) + 1

)
+ |Ii | −

∑

v∈Vi−1∩V (2)

min

(
1,

ki−1(v)

δ
(2)
i−1(v) + 1

)
− |Ii−1|

We notice that ki (v) − 1 ≤ ki−1(v) ≤ ki (v) and δi (v) − 1 ≤ δi−1(v) ≤ δi (v), for
each neighbor v of vi in G(i), and that threshold and degree remain unchanged for
each other node in G(i − 1). Therefore, we get

123



1814 Algorithmica (2018) 80:1804–1833

W (G(i)) − W (G(i − 1)) ≥ |Ii | − |Ii−1|

+
∑

v∈Ni (vi )∩V (2)

ki (v)≤δ
(2)
i (v)

(
ki (v)

δ
(2)
i (v) + 1

− ki−1(v)

δ
(2)
i−1(v) + 1

)

+
⎧⎨
⎩
min

(
1, ki (vi )

δ
(2)
i (vi )+1

)
if d(vi ) ≥ 2

0 otherwise.
(6)

We distinguish three cases according to those in the algorithm TSS(G).

(I) Suppose that Case 1 of the Algorithm TSS holds; i.e. ki (vi ) = 0. Recall that the
Algorithm TSS(G) updates the the values of δ(u) and k(u) for each node in Vi

as follows:

δi−1(u)=
{

δi (u)−1 if u∈N (vi )

δi (u) otherwise,
ki−1(u)=

{
ki (u)−1 if u∈N (vi ), ki (u)>0
ki (u) otherwise.

(7)

By (b), (7) and being ki (vi ) = 0, we immediately get Ii−1 = Ii . Hence, from
(6) we have

W (G(i)) − W (G(i − 1)) ≥
∑

v∈Ni (vi )∩V (2)

ki (v)≤δ
(2)
i (v)

(
ki (v)

δ
(2)
i (v) + 1

− ki−1(v)

δ
(2)
i−1(v) + 1

)
≥ 0,

where the last inequality is implied by (7). Since we know that in Case 1 the
selected node vi is not part of S, we get the desired inequality W (G(i)) −
W (G(i − 1)) ≥ |S ∩ {vi }|.

(II) Suppose that Case 2 of the algorithm holds; i.e. ki (vi ) ≥ δi (vi )+1 and k(v) > 0
for each v ∈ Vi . The Algorithm TSS(G) updates the values of δ(u) and k(u) for
each node u ∈ Vi−1 as in (7). Hence, we have

Ii−1 =
{

Ii if d(vi ) ≥ 2

Ii − {vi } otherwise

and, using this case assumption, Eq. (6) becomes

W (G(i)) − W (G(i − 1)) ≥ 1 +
∑

v∈Ni (vi )∩V (2)

ki (v)≤δ
(2)
i (v)

(
ki (v)

δ
(2)
i (v) + 1

− ki−1(v)

δ
(2)
i−1(v) + 1

)
≥ 1.

Since in Case 2 vi is part of the output S, we get W (G(i)) − W (G(i − 1)) ≥
1 = |S ∩ {vi }|.

123



Algorithmica (2018) 80:1804–1833 1815

(III) Suppose that Case 3 of the algorithm holds. We know that:
(i) 1 ≤ ki (v) ≤ δi (v), for each v ∈ Vi ;
(ii) Ii = ∅—by (i) above;
(iii) ki (vi )

δi (vi )(δi (vi )+1) ≥ ki (v)
δi (v)(δi (v)+1) , for each v ∈ Vi ;

(iv) for each v ∈ Vi−1, ki−1(u) = ki (u) and δi−1(u) =
{

δi (u)−1 if u∈N (vi )

δi (u) otherwise.

We distinguish three cases on the value of d(vi ) and δi (vi ):

• Suppose first d(vi ) ≥ δi (vi ) ≥ 2. We have δi (v) ≥ 2, for each v ∈ Vi . Otherwise,
by (i) we would get δi (v) = ki (v) = 1 and, as a consequence

ki (v)

δi (v)(δi (v) + 1)
= 1/2, while

ki (vi )

δi (vi )(δi (vi ) + 1)
≤ 1

δi (vi ) + 1
≤ 1/3,

contradicting (iii). Therefore, by (b) Ii−1 = ∅ and δ
(2)
i (v) = δi (v), for each v ∈ Vi .

This, (ii), and (6) imply

W (G(i)) − W (G(i − 1)) ≥
∑

v∈Ni (vi )

ki (v)≤δi (v)

(
ki (v)

δi (v) + 1
− ki (v)

δi (v)

)
+ ki (vi )

δi (vi ) + 1

= ki (vi )

δi (vi ) + 1
−

∑
v∈Ni (vi )

ki (v)≤δi (v)

ki (v)

δi (v)(δi (v) + 1)
.

As a consequence, by using (iii) and recalling that vi /∈ S we get

W (G(i)) − W (G(i − 1)) ≥ ki (vi )

δi (vi ) + 1
− ki (vi )

δi (vi ) + 1
= 0 = |S ∩ {vi }|.

• Assume now d(vi ) ≥ 2 and δi (vi ) = 1. Let u be the neighbor of vi in G(i).
If d(u) ≥ 2, then u /∈ Ii−1 and, by (ii), Ii−1 = Ii = ∅. By (6), we obtain

W (G(i))−W (G(i − 1)) ≥
(

ki (u)

δ
(2)
i (u) + 1

− ki−1(u)

δ
(2)
i−1(u) + 1

)

+min

(
1,

ki (vi )

δ
(2)
i (vi ) + 1

)

=
(

ki (u)

δ
(2)
i (u) + 1

− ki (u)

δ
(2)
i (u)

)
+1/2

= 1/2 − ki (u)

δ
(2)
i (u)(δ

(2)
i (u) + 1)

≥ 1/2 − 1

δ
(2)
i (u) + 1

≥ 0 = |S ∩ {vi }|.

123



1816 Algorithmica (2018) 80:1804–1833

If d(u) = 1 then by (i) 1 ≤ ki (u) ≤ t (u) ≤ d(u) and we have t (u) = 1.Moreover,
by (iv) δi−1(u) = 0, δ

(2)
i (vi ) = 0 and ki−1(u) = ki (u) ≥ 1. Hence u ∈ Ii−1.

Recalling that Ii = ∅, we get Ii−1 = {u}. As a consequence, (6) becomes

W (G(i)) − W (G(i − 1)) ≥ |Ii | − |Ii−1| + 0 + min

(
1,

ki (vi )

δ
(2)
i (vi ) + 1

)

= 0 = |S ∩ {vi }|.

• Suppose finally d(vi ) = 1. Let u be the unique neighbor of vi in G(i)
If d(u) ≥ 2, then u /∈ Ii−1 and, by (ii), Ii−1 = Ii = ∅. Moreover, by (i) we know
that 1 ≤ ki (vi ) ≤ t (vi ) ≤ d(vi ) and we have t (vi ) = 1. Hence δ

(2)
i (u) = δ

(2)
i−1(u).

By (6), we obtain

W (G(i))−W (G(i−1)) ≥ 0 +
(

ki (u)

δ
(2)
i (u) + 1

− ki−1(u)

δ
(2)
i−1(u) + 1

)
= 0 = |S ∩ {vi }|.

Finally, the case d(u) ≤ 1 can hold only if the input graph G has a connected
component consisting of two nodes. This is excluded by the theorem hypothesis.�

Remark 1 We stress that the bound in Theorem 2 improves on the previously known
bound

∑
v∈V min (1, t (v)/(d(v) + 1)) given in [1,15]. Indeed we can show that that

for any graph it holds that

∑

v∈{u | u∈V (2) ∨ t (u) 
=1}
min

(
1,

t (v)

d(2)(v)+1

)
≤

∑
v∈V

min

(
1,

t (v)

d(v) + 1

)
. (8)

In order to prove (8), we first notice that the difference between the two bounds can
be written as,

∑
v∈V

min

(
1,

t (v)

d(v) + 1

)
−

∑

v∈{u | u∈V (2) ∨ t (u) 
=1}
min

(
1,

t (v)

d(2)(v)+1

)

=
∑

v∈V (2)

min

(
1,

t (v)

d(v)+1

)
+

∑

v /∈V (2)

min

(
1,

t (v)

2

)

−
∑

v∈V (2)

min

(
1,

t (v)

d(2)(v)+1

)
+

∑

v /∈V (2)

t (v)>1

1

=
∑

v∈V (2)

min

(
1,

t (v)

d(v)+1

)
+

∑

v /∈V (2)

t (v)=1

1/2 −
∑

v∈V (2)

min

(
1,

t (v)

d(2)(v)+1

)

≥
∑

v∈V (2)

t (v)≤d(v)

t (v)

d(v) + 1
+

∑

v /∈V (2)

t (v)=1

1/2 −
∑

v∈V (2)

t (v)≤d(v)

min

(
1,

t (v)

d(2)(v) + 1

)

123



Algorithmica (2018) 80:1804–1833 1817

≥
∑

v∈V (2)

t (v)≤d(v)

(
t (v)

d(v) + 1
+ d(v) − d(2)(v)

2

)
−

∑

v∈V (2)

t (v)≤d(v)

min

(
1,

t (v)

d(2)(v) + 1

)
,

where the last inequality is due to the fact that

∑

v /∈V (2)

t (v)=1

1/2 =
∑

v∈V (2)

d(v) − d(2)(v)

2
≥

∑

v∈V (2)

t (v)≤d(v)

d(v) − d(2)(v)

2

that is, we are aggregating the contribution of each node, having both degree and
threshold equal to 1, to that of its unique neighbor.

Now let us consider the contribution of each v ∈ V (2), such that t (v) ≤ d(v), to
the equation above. If d(v) = d(2)(v), then clearly the contribution of v is zero. If
d(v) − d(2)(v) ≥ 2 then the contribution of v is

t (v)

d(v) + 1
+ d(v) − d(2)(v)

2
− min

(
1,

t (v)

d(2)(v) + 1

)
≥ t (v)

d(v) + 1
+ 1 − 1 ≥ 0

Finally, if d(v) − d(2)(v) = 1 we have

t (v)

d(v) + 1
+ 1/2 − min

(
1,

t (v)

d(v)

)
= t (v)

d(v) + 1
+ 1/2 − t (v)

d(v)

= 2(d(v) − t (v))

2d(v)(d(v) + 1)
≥ 0.

In each case the contribution of v is non negative and (8) holds.
Furthermore, it is worth to notice that our bound can give a dramatic improvement

with respect to one in [1,15]. As an example, consider the star graph on n nodes with
center c given in Fig. 2. The node thresholds are equal equal to 1 for each leaf node
and equal to t (c) ≤ n for the center node c. The ratio of the bound in [1,15] to the one
in this paper is

∑
v∈V min

(
1, t (v)

(d(v)+1)

)

∑
v∈{u | u∈V (2) ∨ t (u) 
=1} min

(
1, t (v)

d(2)(v)+1

) =
t (c)

n + n−1
2

1 + 0
≥ n − 1

2
.

4 Optimality Cases

In this section, we prove that our algorithm TSS provides a unified setting for several
results, obtained in the literature by means of different ad hoc algorithms. Trees,
cycles and cliques are among the few cases known to admit optimal polynomial time
algorithms for the TSS problem [6,34]. In the following, we prove that our algorithm
TSS provides the first unifying setting for all these cases.

123



1818 Algorithmica (2018) 80:1804–1833

Fig. 2 A star graph with n
nodes. The bound in [1,15]
provides a target set of size
t (c)

n + n−1
2 while the bound in

Theorem 2 is 1. In this specific
case the bound of Theorem 2 is
tight, the optimal target set
consists of the center node c

Theorem 3 The algorithm TSS(T ) returns an optimal solution whenever the input
graph T is a tree.

Proof Let T = (V, E) and n = |V |. We recall that for i = 1, . . . , n: vi denotes the
node selected during the n − i + 1th iteration of the while loop in TSS, T (i) is the
forest induced by the set Vi = {vi , . . . , v1}, and δi (v) and ki (v) are the degree and
threshold of v, for v ∈ Vi . Let S be the target set produced by the algorithm TSS(T ).
We prove by induction on i that

|S ∩ {vi , . . . , v1}| = |S∗
i |, (9)

where S∗
i represents an optimal target set for the forest T (i) with threshold function

ki . For i = 1, it is immediate that for the only node v1 in F(1) one has

S ∩ {v1} = S∗
1 =

{
∅ if k1(v1) = 0

{v1} otherwise.

Suppose now (9) true for i − 1 and consider the tree T (i) and the selected node vi .

1. Assume first that ki (vi ) = 0. We get

|S ∩ {vi , . . . , v1}| = |S ∩ {vi−1, . . . , v1}| = |S∗
i−1| ≤ |S∗

i |

and the equality (9) holds for i .
2. Assume now that ki (vi ) ≥ δi (vi ) + 1. Clearly, any solution for T (i) must include

node vi , otherwise it cannot be activated. This implies that

|S∗
i | = 1 + |S∗

i−1| = 1 + |S ∩ {vi−1, . . . , v1}| = |S ∩ {vi , . . . , v1}|

and (9) holds for i .
3. Finally, suppose that vi = argmaxi≥ j≥1

{
ki (v j )/(δi (v j )(δi (v j ) + 1))

}
(cfr. line

21 of the algorithm). In this case each leaf v j in T (i) has

ki (v�)

δi (v�)(δi (v�) + 1)
= 1

2

while each internal node v� has

ki (v�)

δi (v�)(δi (v�) + 1)
≤ 1

δi (v�) + 1
≤ 1

3
.

123



Algorithmica (2018) 80:1804–1833 1819

Hence, the node vi must be a leaf in T (i) and has ki (vi ) = δi (vi ) = 1. Hence
|S ∩ {vi , . . . , v1}| = |S ∩ {vi−1, . . . , v1}| = |S∗

i−1| ≤ |S∗
i |. �

Theorem 4 The algorithm TSS(C) outputs an optimal solution whenever the input
graph C is a cycle.

Proof If the first selected node vn has threshold 0 then clearly vn /∈ S∗ for any optimal
solution S∗.
If the threshold of vn is larger than its degree then clearly vn ∈ S∗ for any optimal
solution S∗. In both cases vn ∈ Active[S∗, 1] and its neighbors can use vn’s influence;
that is, the algorithm correctly sets kn−1 = max(kn − 1, 0) for these two nodes.
If threshold of each node v ∈ V is 1 ≤ t (v) ≤ d(v), we get that during the first iteration
of the algorithm TSS(C), the selected node vn satisfies Case 3 and has t (vn) = 2 if at
least one of the nodes in C has threshold 2, otherwise t (vn) = 1. Moreover, it is not
difficult to see that there exists an optimal solution S∗ for C such that S∗ ∩ {vn} = ∅.
In each case, the result follows by Theorem 3, since the remaining graph is a path on
nodes vn−1, . . . , v1. �
Theorem 5 Let K = (V, E) be a clique with V = {u1, . . . , un} and t (u1) ≤ · · · ≤
t (un−m) < n ≤ t (un−m+1) ≤ · · · ≤ t (un). The algorithm TSS(K ) outputs an optimal
target set of size

m + max
1≤ j≤n−m

max(t (u j ) − m − j + 1, 0). (10)

Proof It is well known that there exists an optimal target set S∗ consisting of the |S∗|
nodes of higher threshold [34]. Being S∗ a target set, we know that each node in the
graph K must activate. Therefore, for each u ∈ V there exists some iteration i ≥ 0
such that u ∈ Active[S, i]. Assume V = {u1, . . . , un} and

t (u1) ≤ · · · ≤ t (un−m) < n ≤ t (un−m+1) ≤ · · · ≤ t (un).

Since the thresholds are non decreasing with the node index, it follows that:

– for each j ≥ n − m + 1, the node u j has threshold t (u j ) ≥ n and u j ∈ S∗ must
hold. Hence, |S∗| ≥ m;

– for each j ≤ n −|S∗|, the node u j activates if it gets, in addition to the influence of
its m neighbors with threshold larger than n −1, the influence of at least t (u j )−m
other neighbors, hence we have that

t (u j ) − m ≤ j − 1 + (|S∗| − m)

must hold;
– for each j = n − |S∗| + 1, . . . , n − m, we have

t (u j ) − m − j + 1 ≤ (n − 1) − m − (n − |S∗| + 1) + 1 = |S∗| − m + 1.

123



1820 Algorithmica (2018) 80:1804–1833

Summarizing, we get,

|S∗| ≥ m + max
1≤ j≤n−m

max
(
t (u j ) − m − j + 1, 0

)
.

Weshownow that the algorithmTSS outputs a target set S whose size is upper bounded
by the value in (10). Notice that, in general, the output S does not consist of the nodes
having the highest thresholds.

Consider the residual graph K (i) = (Vi , Ei ), for some 1 ≤ i ≤ n. It is easy to see
that for any u j , us ∈ Vi it holds

(1) δi (u j ) = i ;
(2) if j < s then ki (u j ) ≤ ki (us);
(3) if t (u j ) ≥ n then ki (u j ) ≥ i ,
(4) if t (u j ) < n then ki (u j ) ≤ i .

W.l.o.g. we assume that at any iteration of algorithm TSS if the node to be selected is
not unique then the tie is broken as follows (cfr. point 2) above):

(i) If Case 1 holds then the selected node is the one with the lowest index,
(ii) if either Case 2 or Case 3 occurs then the selected node is the one with the largest

index.

Clearly, this implies that K (i) contains i nodes with consecutive indices among
u1, . . . , un , that is,

Vi = {
u�i , u�i +1, . . . , uri

}
(11)

for some �i ≥ 1 and ri = �i + i − 1.
Let h = n − m. We shall prove by induction on i that, for each i = n, . . . , 1, at the

beginning of the n − i + 1th iteration of the while loop in TSS(K ), it holds

|S ∩ Vi | ≤
{

(ri − h) + max�i ≤ j≤h max(ki (u j ) − (ri − h) − j + �i , 0) if ri > h,

max�i ≤ j≤ri max(ki (u j ) − j + �i , 0) if ri ≤ h.

(12)

The upper bound (10) follows when i = n; indeed K (n) = K and |S| = |S ∩ V (n)|.
For i = 1, K (1) is induced by only one node, let say u, and

|S ∩ {u}| =
{
1 if k1(u) ≥ 1,

0 if k1(u) = 0.

proving that the bound holds in this case.
Suppose now (12) true for some i − 1 ≥ 1 and consider the n − i + 1th iteration of
the algorithm TSS. Let v be the node selected by algorithm TSS at the n − i + 1th
iteration. We distinguish three cases according to the cases of the algorithm TSS(G).

123



Algorithmica (2018) 80:1804–1833 1821

Case 1: ki (v) = 0 By (i) and (11), one has v = u�i , �i−1 = �i + 1 and ri−1 = ri .
Moreover, ki (u j ) = ki−1(u j ) + 1 for each u j ∈ Vi−1. Hence,

|S ∩ Vi | = |S ∩ Vi−1|

≤
{

(ri−h) + max�i +1≤ j≤h max(ki−1(u j )−(ri−h)− j + �i+1, 0) if ri > h,

max�+1≤ j≤r max(ki−1(u j ) − j + � + 1, 0) if ri ≤ h,

=
{

(ri − h) + max�i ≤ j≤h max(ki (u j ) − (ri − h) − j + �i , 0) if ri > h,

max�≤ j≤r max(ki (u j ) − j + �, 0) if r ≤ h.

Case 2: ki (v) > δi (v) By (ii) and (11) we have v = uri , �i = �i−1, ri−1 = ri − 1.
Moreover, ki (u j ) = ki−1(u j ) + 1 for each u j ∈ Vi−1. Recalling relations (3) and (4),
we have

|S ∩ Vi | = 1 + |S ∩ Vi−1|

≤ 1+
{

(ri−1 − h)+max�i−1≤ j≤h max(ki−1(u j ) − (ri−1 − h) − j + �i−1, 0) if ri−1 ≤ h,

max�i−1≤ j≤ri−1 max(ki−1(u j ) − j + �i−1, 0) if ri−1≤h,

=
{

(ri−h) + max�i ≤ j≤h max(ki−1(u j ) + 1 − (ri − h) − j + �i , 0) if ri − 1 ≤ h,

max�≤ j≤ri −1 max(ki−1(u j ) + 1 − j + �i , 1) if ri − 1 ≤ h.

=
{

(ri − h) + max{0,max�i ≤ j≤h ki (u j ) − (ri − h) − j + �i } if ri > h,

max{0,max�i ≤ j≤ri ki (u j ) − j + �i } if ri ≤ h.

Case 3: 0 < ki (v) ≤ δi (v) By (ii) and (11) we have v = uri , �i = �i−1, ri−1 = ri −1.
Moreover, ki (u j ) = ki−1(u j ) for each u j ∈ Vi−1. Recalling that by (3) and (4) we
have t (ur ) < n, which implies ri ≤ h, we have

|S ∩ Vi | = |S ∩ Vi−1| ≤ max
�i−1≤ j≤ri−1

max(ki−1(u j ) − j + �i−1, 0)

≤ max
�i ≤ j≤ri −1

max(ki (u j ) − j + �i , 0)

≤ max
�i ≤ j≤ri

max(ki (u j ) − j + �i , 0).

�

5 Computational Experiments

We have extensively tested our algorithm TSS(G) both on random graphs and on
real-world data sets, and we found that our algorithm performs surprisingly well in
practice. This seems to suggest that the otherwise important inapproximability result
of Chen [6] refers to rare or artificial cases.

123



1822 Algorithmica (2018) 80:1804–1833

0

1

2

3

4

5

6

Probability

T
S

S
 C

ar
di

na
lit

y
30 nodes

Exact
TSS

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
0

2

4

6

8

Probability

T
S

S
C

ar
di

na
lit

y

50 nodes
Exact
TSS

(b)(a)

Fig. 3 Experiments for random graphs G(n, p) on n nodes (any possible edge occurs independently with
probability 0 < p < 1). a n = 30, b n = 50 with p ∈ {10/100, 20/100, . . . , 90/100}. For each node the
threshold was fixed to a random value between 1 and the node degree

5.1 Random Graphs

The first set of tests was done in order to compare the results of our algorithm to
the exact solutions, found by formulating the problem as an 0-1 Integer Linear Pro-
gramming (ILP) problem. Although the ILP approach provides the optimal solution,
it fails to return the solution in a reasonable time (i.e., days) already for moderate size
networks. We applied both our algorithm and the ILP algorithm to random graphs
with up to 50 nodes. Figure 3 depicts the results on Random Graphs G(n, p) on n
nodes (any possible edge occurs independently with probability 0 < p < 1). The two
plots report the results obtained for n = 30 and n = 50. For each plot the value of
the p parameter appears along the X-axis, while the size of the solution appears along
the Y-axis. Results on intermediates sizes exhibit similar behaviors. Our algorithm
produced target sets of size close to the optimal (see Fig. 3); for several instances it
found an optimal solution.

5.2 Large Real-Life Networks

We performed experiments on several real social networks of various sizes from the
Stanford Large Network Data set Collection (SNAP) [30] and the Social Computing
Data Repository at Arizona State University [40]. The data sets we considered include
both networks for which small target sets exist and networks needing larger target sets
(due to the existence of communities, i.e., tightly connected disjoint groups of nodes
that appear to delay the diffusion process).

Test Network Experiments have been conducted on the following networks:

– BlogCatalog [40]: a friendship network crawled from BlogCatalog, a social blog
directory website which manages the bloggers and their blogs. It has 88,784 nodes
and 4,186,390 edges. Each node represents a blogger and the network contains an
edge (u, v) if blogger u is friend of blogger v.

123



Algorithmica (2018) 80:1804–1833 1823

– BlogCatalog2 [40]: a friendship network crawled from BlogCatalog. It has 97,884
nodes and 2,043,701 edges.

– BlogCatalog3 [40]: a friendship network crawled from BlogCatalog. It has 10,312
nodes and 333,983 edges.

– BuzzNet [40]: BuzzNet is a photo, journal, and video-sharing social media net-
work. It has 101,168 nodes and 4,284,534 edges.

– CA-AstroPh[30]: A collaboration network of Arxiv ASTRO-PH (Astro Physics).
It has 18,772 nodes and 198,110 edges. Each node represents an author and the
network contains an edge (u, v) if an author u co-authored a paper with author v.

– ca-CondMath [30] A collaboration network of Arxiv COND-MAT (Condense
Matter Physics). It has 23,133 nodes and 93,497 edges.

– ca-GrQc [30]: A collaboration network of Arxiv GR-QC (General Relativity and
Quantum Cosmology), It has 5,242 nodes and 14,496 edges.

– ca-HepPh [30]: A collaboration network of Arxiv HEP-PH (High Energy Physics-
Phenomenology), it covers papers from January 1993 to April 2003. It has 10,008
nodes and 118,521 edges.

– ca-HepTh [30]: A collaboration network of HEP-TH (High Energy Physics-
Theory) It has 9,877 nodes and 25,998 edges.

– Delicious [40]: A friendship network crawled on Delicious, a social bookmarking
web service for storing, sharing, and discovering web bookmarks. It has 103,144
nodes and 1,419,519 edges.

– Douban [40]: A friendship network crawled on Douban.com, a Chinese website
providing user review and recommendations for movies, books, and music. It has
154,907 nodes and 654,188 edges.

– Lastfm [40]: Last.fm is a music website, founded in UK in 2002. It has claimed
over 40million active users based in more than 190 countries. It has 108,493 nodes
and 5,115,300 edges.

– Livemocha [40]: Livemocha is the world’s largest online language learning com-
munity, offering free and paid online language courses in 35 languages to more
than 6 million members from over 200 countries around the world. It has 104,438
nodes and 2,196,188 edges.

– YouTube2 [30]: is a data set crawled fromYouTube, the video-sharingweb site that
includes a social network. In the Youtube social network, users form friendship
each other and users can create groups which other users can join. It contains
1,138,499 users and 2,990,443 edges.

Themain characteristics of the studied networks are shown in Table 2. In particular,
for each network we report the maximum degree, the diameter, the size of the largest
connected component (LCC), the number of triangles, the clustering coefficient and
the network modularity [33].

The competing algorithms We compare the performance of our algorithm TSS toward
that of the best, to our knowledge, computationally feasible algorithms in the literature.
Namely, we compare toAlgorithmTIP_DECOMP recently presented in [36], inwhich
nodes minimizing the difference between degree and threshold are pruned from the
graph until a “core” set is produced. We also compare our algorithm to the VirAds

123



1824 Algorithmica (2018) 80:1804–1833

Ta
bl
e
2

N
et
w
or
ks

pa
ra
m
et
er
s

N
am

e
#
of

no
de
s

#
of

ed
ge
s

M
ax

de
g

D
ia
m

L
C
C
si
ze

T
ri
an
gl
es

C
lu
st
C
oe
ff

M
od

ul
.

B
lo
gC

at
al
og

[4
0]

88
,7
84

4,
18

6,
39

0
94

44
–

88
,7
84

51
,1
93

,3
89

0.
45

78
0.
31

82

B
lo
gC

at
al
og

2
[4
0]

97
88

2,
04

3,
70

1
27

,8
49

5
97

,8
84

40
,6
62

,5
27

0.
68

57
0.
32

82

B
lo
gC

at
al
og

3
[4
0]

10
,3
12

33
3,
98

3
39

92
5

10
,3
12

5,
60

8,
66

4
0.
47

56
0.
23

74

B
uz
zN

et
[4
0]

10
1,
16

8
4,
28

4,
53

4
64

,2
89

–
10

1,
16

3
30

,9
19

,8
48

0.
25

08
0.
31

61

ca
-A

st
ro
Ph

[3
0]

18
,7
72

19
8,
11

0
50

4
14

17
,9
03

1,
35

1,
44

1
0.
67

68
0.
30

72

ca
-C

on
dM

at
h
[3
0]

23
,1
33

93
,4
97

27
9

14
21

,3
63

17
,3
36

1
0.
70

58
0.
58

09

ca
-G

rQ
c
[3
0]

52
42

14
,4
96

81
17

41
58

48
,2
60

0.
68

65
0.
74

33

ca
-H

ep
Ph

[3
0]

10
,0
08

11
8,
52

1
49

1
13

11
,2
04

3,
35

8,
49

9
0.
61

15
0.
50

85

ca
-H

ep
T
h
[3
0]

98
77

25
,9
98

65
17

86
38

28
,3
99

0.
59

94
0.
61

28

D
el
ic
io
us

[3
0]

10
3,
14

4
1,
41

9,
51

9
32

16
–

53
6,
10

8
48

7,
97

2
0.
07

31
0.
60

2

D
ou

ba
n
[4
0]

15
4,
90

7
65

4,
18

8
28

7
9

15
4,
90

8
40

,6
12

0.
04

8
0.
57

73

L
as
t.f
m

[4
0]

10
8,
49

3
5,
11

5,
30

0
51

40
–

1,
19

1,
80

5
3,
94

6,
21

2
0.
13

78
0.
13

78

L
iv
em

oc
ha

[4
0]

10
4,
43

8
2,
19

6,
18

8
29

80
6

10
4,
10

3
33

6,
65

1
0.
05

82
0.
36

Y
ou

tu
be
2
[4
0]

1,
13

8,
49

9
2,
99

0,
44

3
28

,7
54

–
1,
13

4,
89

0
3,
05

6,
53

7
0.
17

23
0.
65

06

123



Algorithmica (2018) 80:1804–1833 1825

1 2 3 4 5 6 7 8 9 10
0

164

328

492

656

820

984

1148

1312

1476

1640

1804

1968

Thresholds

T
S

S
 C

ar
di

na
lit

y

BlogCatalog1

VirAds
TSS
TIP DECOMP
Greedy

Fig. 4 BlogCatalog [40]

1 2 3 4 5 6 7 8 9 10
0

4

8

12

16

20

24

28

32

36

40

44

48

Thresholds

T
S

S
C

ar
di

na
lit

y

BlogCatalog2

VirAds
TSS
TIP DECOMP
Greedy

Fig. 5 BlogCatalog2 [40]

algorithm presented in [20]. Finally, we compare to an (enhanced) Greedy strategy
(given in Algorithm 2), in which nodes of maximum degree are iteratively inserted in
the target set and pruned from the graph. Nodes that remains with zero threshold are
simply eliminated from the graph, until no node remains.

The worst case computational complexities of the four considered algorithms are
similar. TSS, Greedy, and TIP_DECOMP require O(|E | log |V |) time, while VirAds
requires O(|V |2×(|V |+|E |) time.Wedo not report here the actual running timesmea-
sured during the experiments since they are very much machine-and-implementation

123



1826 Algorithmica (2018) 80:1804–1833

1 2 3 4 5 6 7 8 9 10
0

9

18

27

36

45

54

63

72

81

90

99

Thresholds

T
S

S
 C

ar
di

na
lit

y

BlogCatalog3

VirAds
TSS
TIP DECOMP
Greedy

Fig. 6 BlogCatalog3 [40]

1 2 3 4 5 6 7 8 9 10
0

139

278

417

556

695

834

973

1112

1251

1390

Thresholds

T
S

S
 C

ar
di

na
lit

y

BuzzNet

VirAds
TSS
TIP DECOMP
Greedy

Fig. 7 BuzzNet [40]

dependent. However, we observed that all algorithms are computationally feasible and
require comparable times.

Thresholds values According to the scenario considered in [36], in our experiments
the thresholds are constant among all vertices (precisely the constant value is an integer
in the interval [1, 10] and for each vertex v the threshold t (v) is set as min{t, d(v)}
where t = 1, 2, . . . , 10.

123



Algorithmica (2018) 80:1804–1833 1827

1 2 3 4 5 6 7 8 9 10
0

526

1052

1578

2104

2630

3156

3682

4208

4734

5260

5786

Thresholds

T
S

S
 C

ar
di

na
lit

y

Ca-AstroPh

VirAds
TSS
TIP DECOMP
Greedy

Fig. 8 CA-Astro-Ph [30]

1 2 3 4 5 6 7 8 9 10
0

1188

2376

3564

4752

5940

7128

8316

9504

10692

11880

Thresholds

T
S

S
 C

ar
di

na
lit

y

Ca-CondMat

VirAds
TSS
TIP DECOMP
Greedy

Fig. 9 Ca-CondMat [30]

Results Figures 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17 depict the experimental
results on large real-life networks. For each network the results are reported in a
separated plot. For each plot the value of the threshold parameter appears along the
X-axis, while the size of the solution appears along the Y-axis. For each dataset, we
compare the performance of our algorithm TSS to the algorithm TIP_DECOMP [36],
to the algorithm VirAds [20], and to the Greedy strategy.

All test results consistently show that the TSS algorithm we introduce in this paper
presents the best performances on all the considered networks, while none among
TIP_DECOMP, VirAds, and Greedy is always better than the other two.

123



1828 Algorithmica (2018) 80:1804–1833

1 2 3 4 5 6 7 8 9 10
0

290

580

870

1160

1450

1740

2030

2320

2610

2900

Thresholds

T
S

S
 C

ar
di

na
lit

y

Ca-GrQc

VirAds
TSS
TIP DECOMP
Greedy

Fig. 10 CA-GR-QC [30]

1 2 3 4 5 6 7 8 9 10
0

471

942

1413

1884

2355

2826

3297

3768

4239

4710

Thresholds

T
S

S
 C

ar
di

na
lit

y

Ca-HepPh

VirAds
TSS
TIP DECOMP
Greedy

Fig. 11 CA-HepPh [30]

Additional analysis of the performance of theTSS algorithmand someof its variants
has been presented in [19]. There, it has also shown that the algorithm performances
are good even in complex scenarios, namely with random or degree-proportional
thresholds.

123



Algorithmica (2018) 80:1804–1833 1829

1 2 3 4 5 6 7 8 9 10
0

526

1052

1578

2104

2630

3156

3682

4208

4734

5260

5786

Thresholds

T
S

S
C

ar
di

na
lit

y

Ca-HepTh

VirAds
TSS
TIP DECOMP
Greedy

Fig. 12 Ca-HepTh [30]

1 2 3 4 5 6 7 8 9 10
0

10739

21478

32217

42956

53695

64434

75173

85912

96651

107390

118129

Thresholds

T
S

S
 C

ar
di

na
lit

y

Delicious

VirAds
TSS
TIP DECOMP
Greedy

Fig. 13 Delicious [40]

123



1830 Algorithmica (2018) 80:1804–1833

1 2 3 4 5 6 7 8 9 10
0

1425

2850

4275

5700

7125

8550

9975

11400

12825

14250

15675

Thresholds

T
S

S
C

ar
di

na
lit

y

Douban

VirAds
TSS
TIP DECOMP
Greedy

Fig. 14 Douban [40]

1 2 3 4 5 6 7 8 9 10
0

6537

13074

19611

26148

32685

39222

45759

52296

58833

65370

Thresholds

T
S

S
 C

ar
di

na
lit

y

Lastfm
VirAds
TSS
TIP DECOMP
Greedy

Fig. 15 Lastfm [40]

6 Concluding Remarks

We presented a simple algorithm to find small sets of nodes that influence a whole
network,where the dynamic that governs the spread of influence in the network is given
in Definition 1. In spite of its simplicity, our algorithm is optimal for several classes
of graphs, it improves on the general upper bound given in [1] on the cardinality of a
minimal influencing set, and outperforms, on real life networks, the performances of
known algorithms for the same problem. There are many possible ways of extending
our work. We would be especially interested in discovering additional interesting

123



Algorithmica (2018) 80:1804–1833 1831

1 2 3 4 5 6 7 8 9 10
0

349

698

1047

1396

1745

2094

2443

2792

3141

3490

Thresholds

T
S

S
 C

ar
di

na
lit

y

Livemocha

VirAds
TSS
TIP DECOMP
Greedy

Fig. 16 Livemocha [40]

1 2 3 4 5 6 7 8 9 10
0

32415

64830

97245

129660

162075

194490

226905

259320

291735

324150

Thresholds

T
S

S
 C

ar
di

na
lit

y

Youtube

VirAds
TSS
TIP DECOMP
Greedy

Fig. 17 YouTube2 [30]

classes of graphs for which our algorithm is optimal (we conjecture that this is indeed
the case).

Acknowledgements We are grateful to the reviewers for their careful reading of the paper and for their
helpful comments.

References

1. Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds for target set selection.
Theor. Comput. Sci. 411(44–46), 4017–4022 (2010)

123



1832 Algorithmica (2018) 80:1804–1833

2. Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F.: Parameterized approximability of maximizing the
spread of influence in networks. J. Discrete Algorithms 27, 54–65 (2014)

3. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target
set selection. Discrete Optim. 8(1), 87–96 (2011)

4. Bond, R.M., Fariss, C.J., Jones, J.J., Kramer, A.D.I., Marlow, C., Settle, J.E., Fowler, J.H.: A 61-
million-person experiment in social influence and political mobilization. Nature 489, 295–298 (2012)

5. Centeno, C.C., Dourado, M.C., Penso, L.D., Rautenbach, D., Szwarcfiter, J.L.: Irreversible conversion
of graphs. Theor. Comput. Sci. 412(29), 3693–3700 (2011)

6. Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete Math. 23(3),
1400–1415 (2009)

7. Chen, W., Lakshmanan, L.V., Castillo, C.: Information and Influence Propagation in Social Networks.
Morgan & Claypool, San Rafael (2013)

8. Chiang, C.-Y., Huang, L.-H., Li, B.-J., Jiaojiao, W., Yeh, H.-G.: Some results on the target set selection
problem. J. Comb. Optim. 25(4), 702–715 (2013)

9. Chiang, C.-Y., Huang, L.-H., Yeh, H.-G.: Target set selection problem for honeycomb networks. SIAM
J. Discrete Math. 27(1), 310–328 (2013)

10. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can make target set
selection tractable. Theory Comput. Syst. 55(1), 61–83 (2014)

11. Christakis, N.A., Fowler, J.H.: Connected: The Surprising Power of Our Social Networks and How
They Shape Our Lives—How Your Friends’ Friends’ Friends Affect Everything You Feel, Think, and
Do. Back Bay Books (reprint edition) (2011)

12. Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Peters, J., Vaccaro, U.: Spread of influence in
weighted networks under time and budget constraints. Theor. Comput. Sci. 586, 40–58 (2015)

13. Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Vaccaro, U.: Latency-bounded target set selection
in social networks. Theor. Comput. Sci. 535, 1–15 (2014)

14. Coja-Oghlan, A., Feige, U., Krivelevich, M., Reichman, D.: Contagious sets in expanders. In: Proceed-
ings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1953–1987
(2015)

15. Cordasco, G., Gargano, L., Mecchia, M., Rescigno, A.A., Vaccaro, U.: A fast and effective heuristic
for discovering small target sets in social networks. In: Proceedings of International Conference on
Combinatorial Optimization and Applications, COCOA 2015, vol. 9486, pp. 193–208 (2015)

16. Cordasco, G., Gargano, L., Rescigno, A.A., Vaccaro, U.: Optimizing spread of influence in social
networks via partial incentives. In: Structural Information and Communication Complexity: 22nd
International Colloquium, SIROCCO 2015, pp. 119–134 (2015)

17. Cordasco, G., Gargano, L., Rescigno, A.A., Vaccaro, U.: Brief announcement: active information
spread in networks. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Com-
puting, PODC, vol. 16, pp. 435–437 (2016)

18. Cordasco, G., Gargano, L., Rescigno, A.A., Vaccaro, U.: Evangelism in social networks. In: Proceed-
ings of Combinatorial Algorithms—27th International Workshop, IWOCA 2016, pp. 96–108 (2016)

19. Cordasco, G., Gargano, L., Rescigno, A.A.: On finding small sets that influence large networks. Soc.
Netw. Anal. Min. SNAM 6(94), 2016 (2016)

20. Dinh, T.N., Zhang, H., Nguyen, D.T., Thai, M.T.: Cost-effective viral marketing for time-critical
campaigns in large-scale social networks. IEEE/ACM Trans. Netw. 22(6), 2001–2011 (2014)

21. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the Seventh
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’01, pp.
57–66 (2001)

22. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected
World. Cambridge University Press, New York (2010)

23. Fan, L., Weili, W., Zhai, X., Xing, K., Lee, W., Ding-Zhu, D.: Maximizing rumor containment in social
networks with constrained time. Soc. Netw. Anal. Min. 4(1), 214 (2014)

24. Gargano, L., Hell, P., Peters, J.G., Vaccaro, U.: Influence diffusion in social networks under time
window constraints. Theor. Comput. Sci. 584(C), 53–66 (2015)

25. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)
26. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network.

In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’03, pp. 137–146, New York, NY, USA (2003)

123



Algorithmica (2018) 80:1804–1833 1833

27. Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model for social networks.
In: Proceedings of the 32nd International Conference on Automata, Languages and Programming,
ICALP’05, pp. 1127–1138, Berlin, Heidelberg (2005)

28. Lately, D.: An Army of Eyeballs: The Rise of the Advertisee. The Baffler, Chicago (2014)
29. Leppaniemi, M., Karjaluoto, H., Lehto, H., Goman, A.: Targeting young voters in a political campaign:

empirical insights into an interactive digital marketing campaign in the 2007 finnish general election.
J. Nonprofit Public Sect. Market. 22(1), 14–37 (2010)

30. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network Dataset Collection (2015). http://
snap.stanford.edu/data

31. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Trans. Web
1(1), 5 (2007)

32. Lu, Z., Wu, W.: Influence maximization. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms. Springer,
Berlin (2014)

33. Mark, E.J.: Newman modularity and community structure in networks. Proc. Natl. Acad. Sci. USA
(PNAS) 103(23), 8577–8582 (2006)

34. Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of target set selection.
Soc. Netw. Anal. Min. 3(2), 233–256 (2013)

35. Reddy, T.T., PanduRangan,C.:Variants of spreadingmessages. J. Gr.AlgorithmsAppl. 15(5), 683–699
(2011)

36. Shakarian, P., Eyre, S., Paulo, D.: A scalable heuristic for viral marketing under the tipping model.
Soc. Netw. Anal. Min. 3(4), 1225–1248 (2013)

37. Sorokin, A., Murphey, R., Thai, M.T., Pardalos, P. (eds.): Dynamics of Information Systems: Mathe-
matical Foundations. Springer, Berlin (2012)

38. Tumulty, K.: Obama’s Viral Marketing Campaign. TIME Magazine, New York (2007)
39. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University

Press, Cambridge (1994)
40. Zafarani, R., Liu, H.: Social computing data repository at ASU (2009). http://socialcomputing.asu.edu
41. Zaker, M.: On dynamic monopolies of graphs with general thresholds. Discrete Math. 312(6), 1136–

1143 (2012)
42. Zhang,H.,Mishra, S., Thai,M.T.:Recent advances in informationdiffusion and influencemaximization

in complex social networks. In: Wu, J., Wang, Y. (eds.) Opportunistic Mobile Social Networks. CRC
Press, Boca Raton (2014)

43. Zhu, Y.,Weili,W., Bi, Y., Lidong,W., Jiang, Y.,Wen, X.: Better approximation algorithms for influence
maximization in online social networks. J. Comb. Optim. 30(1), 97–108 (2015)

123

http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://socialcomputing.asu.edu

	Discovering Small Target Sets in Social Networks: A Fast and Effective Algorithm
	Abstract
	1 Introduction
	1.1 The Model
	1.2 The Context and Our Results
	Our Results


	2 The TSS Algorithm
	3 Estimating the Size of the Solution
	4 Optimality Cases
	5 Computational Experiments
	5.1 Random Graphs
	5.2 Large Real-Life Networks 

	6 Concluding Remarks
	Acknowledgements
	References




