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Abstract The maximum cut problem in graphs and its generalizations are fundamen-
tal combinatorial problems. Several of these cut problems were recently shown to be
fixed-parameter tractable and admit polynomial kernels when parameterized above
the tight lower bound measured by the size and order of the graph. In this paper we
continue this line of research and considerably improve several of those results:

— We show that an algorithm by Crowston et al. (Algorithmica 72(3):734-757,
2015) for (SIGNED) MAX- CUT ABOVE EDWARDS—ERDOS BOUND can be imple-
mented so as to run in linear time 8*- O (m); this significantly improves the previous
analysis with run time 8. 0(n*).

— We give an asymptotically optimal kernel for (SIGNED) MAX- CUT ABOVE
EDWARDS—ERDGS BOUND with O (k) vertices, improving a kernel with 0 (k)
vertices by Crowston et al. (Theor Comput Sci 513:53-64, 2013).

— We improve all known kernels for parameterizations above strongly A-extendible
properties (a generalization of the MAX- CUT results) by Crowston et al. (Proceed-
ings of FSTTCS 2013, Leibniz international proceedings in informatics, Guwahati,
2013) from O (k3) vertices to O (k) vertices.

Dedicated to the 60th birthday of Gregory Gutin.

Supported by ERC Starting Grant 306465 (BeyondWorstCase). An extended abstract of this work
appeared in the Proc. of ISAAC 2016 [14].

B Matthias Mnich
mmnich @uni-bonn.de; m.mnich@maastrichtuniversity.nl

Michael Etscheid
etscheid @cs.uni-bonn.de

Institut fiir Informatik, Universitit Bonn, Bonn, Germany

Department of Quantitative Economics, Maastricht University, Maastricht, The Netherlands

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-017-0388-z&domain=pdf

Algorithmica (2018) 80:2574-2615 2575

— Therefore, MAX ACYCLIC SUBDIGRAPH parameterized above Poljak—Turzik
bound admits a kernel with O (k) vertices and can be solved in 20®) . O
time; this answers an open question by Crowston et al. (Proceedings of FSTTCS
2012, Leibniz international proceedings in informatics, Hyderabad, 2012).

All presented kernels can be computed in time O (km).
Keywords Max-cut - Kernelization - Linear-time algorithms

Mathematics Subject Classification 05C85 - 68R10 - 68W05

1 Introduction

A recent paradigm in parameterized complexity is to not only show a problem to be
fixed-parameter tractable, but indeed to give algorithms with optimal run times in both
the parameter and the input size. Ideally, we strive for algorithms that are linear in
the input size, and optimal in the dependence on the parameter k assuming a standard
hypothesis such as the Exponential Time Hypothesis [22]. New results in this direc-
tion include linear-time fixed-parameter algorithms for GRAPH BIPARTIZATION [23],
PLANAR SUBGRAPH ISOMORPHISM [10], DAG PARTITIONING [36], PLANAR INDE-
PENDENT SET [11] and SUBSET FEEDBACK VERTEX SET [27].

Here, we consider the fundamental MAX- CUT problem from the view-point of
linear-time fixed-parameter algorithms. In this classical NP-complete problem [24],
the task is to find a bipartite subgraph of a given graph G with the maximum num-
ber mc(G) of edges. We refer to the survey [33] for an overview of the research
area.

We focus on MAX- CUT parameterized above Edwards—Erdds bound. This param-
eterization is motivated by the classical result of Edwards [12,13] that any connected
graph on n vertices and m edges admits a cut of size at least

m/2+ (n —1)/4 . (1)

This lower bound is known as the Edwards—Erdds bound, and it is tight for cliques of
every odd order n. Ngoc and Tuza [31] gave a linear-time algorithm that finds a cut of
size at least (1).

Parameterizing MAX- CUT above Edwards—Erd6s bound means, for a given con-
nected graph G and integer k, to determine if G admits a cut that exceeds (1) by an
amount of k: formally, the problem MAX- CUT ABOVE EDWARDS—ERDOS BOUND
(MAX- Cut AEE) is to determine if mc(G) > |E(G)|/2 + (|[V(G)| — 1 + k) /4 for
a given pair (G, k). It was asked in a sequence of papers [5,17,28,29] whether MAX-
Cut AEE is fixed-parameter tractable, before Crowston et al. [8] gave an algorithm
that solves instances of this problem in time 8¢ - O(n*), as well as a kernel of size
O (k3). Their result inspired a lot of further research on this problem, leading to smaller
kernels of size O (k) [7] and fixed-parameter algorithms for generalizations [30] and
variants [9].
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In the SIGNED MAX- CUT problem, we are given a graph G whose edges are
labelled by (+4) or (—), and we seek a maximum balanced subgraph H of G, where
balanced means that each cycle has an even number of negative edges. MAX- CUT is
the special case where all edges are negative. SIGNED MAX- CUT finds applications in,
e.g., modelling social networks [19], statistical physics [2], portfolio risk analysis [20],
and VLSI design [4]. The dual parameterization of SIGNED MAX- CUT by the number
of edge deletions was also shown to be fixed-parameter tractable [21].

Poljak and Turzik [32] showed that the property of having a large cut (i.e., a
large bipartite subgraph) can be generalized to many other classical graph properties,
including properties of oriented and edge-labelled graphs. They defined the notion
of “A-extendible” properties [T and generalized the lower bound (1) to tight lower
bounds for all such properties; we refer to these lower bounds as the Poljak—Turzik
bound for IT. Well-known examples of such properties include bipartite subgraphs,
g-colourable subgraphs for fixed ¢, or acyclic subgraphs of oriented graphs. Mnich
et al. [30] considered the problem ABOVE POLJAK—TURZIK(/T) of finding subgraphs
in IT with k edges above the Poljak—Turzik bound; they gave fixed-parameter
algorithms for this problem on all “strongly” A-extendible properties I7, thereby gen-
eralizing the algorithm for MAX- CUT. A subclass of these properties, requiring certain
technical conditions, was later shown to admit polynomial kernels [9].

Gregory Gutin is one of the most prominent researchers in parameterized algorithms
and complexity. In particular, he was one of the first researchers to recognise the
importance of parameterizing above polynomial-time computable lower bounds on
the optimal solution for maximization problems. His first result in this area, about
MINIMUM LINEAR ARRANGEMENT parameterized above lower bound [16], stimulated
much further research. He later contributed influential results about above-guarantee
parameterizations for systems of linear equations [5], satisfiability problems [1], and
constraint satisfaction [15]. In particular, he worked on fixed-parameter algorithms
for finding large cuts in graphs [7,8, 17], the very topic of this article. We thus happily
dedicate this work to Gregory Gutin on the occasion of his 60th birthday.

1.1 Our Contributions

Linear-Time FPT Our first result shows that the fixed-parameter algorithm by Crow-
ston et al. [7] for the SIGNED MAX- CUT AEE problem can be implemented so as to
run in linear time:

Theorem 1 (SIGNED) MAX- CUT AEE can be solved in time 8 - O(m).

Theorem 1 considerably improves the earlier run time analysis [7,8], which shows
a run time of 8¢ . O(n*). At the same time, our algorithm improves the very
involved algorithm by Bollobds and Scott [3] that considers the weaker lower bound
m/2+ (/8m + 1 —1)/8 instead of (1). Third, Theorem 1 generalizes the linear-time
algorithm by Ngoc and Tuza [31] for the special case of MAX- CUT with k = 0. Note
that MAX- CUT AEE cannot be solved in time 2°® . n (1) assuming the Exponential
Time Hypothesis [8].

@ Springer



Algorithmica (2018) 80:2574-2615 2577

Linear Vertex Kernels Our second contribution is a kernel with a linear number O (k)
of vertices for MAX- CUT AEE and its generalization SIGNED MAX- CUT AEE.

Theorem 2 The (SIGNED) MAX- CUT AEE problem admits a kernel with O (k) ver-
tices, which can be computed in time O (km).

These results considerably improve the previous best kernel bound of O (k?) vertices
by Crowston et al. [7]. Moreover, the presented kernel completely resolves the asymp-
totic kernelization complexity of (SIGNED) MAX- CUT AEE, since a kernel with o(k)
vertices would again contradict the Exponential-Time Hypothesis, as the MAX- CUT
problem can be solved by checking all vertex bipartitions. On top of that, our kernel-
ization is also fast. In fact, we only need to compute O (k) DFS/BFS trees. The rest of
the algorithm runs in time O (m).

Extensions to Strongly A-Extendible Properties As mentioned, the property of
graphs having large bipartite subgraphs can be generalized to A-extendible prop-
erties as defined by Poljak and Turzik [32] (we defer the formal definitions to
Sect. 2). For a given A-extendible property I1, we consider the following problem:

ABOVE POLJAK- TURZIK(IT)
Input: A connected graph G and an integer k.

Question: Does G have a spanning subgraph H € IT s.t. |[E(H)| > A - |E(G)| +
2 (v -1 +k?

MaX- CUT AEE is a special case of this problem with A = % Note the slight
change in the definition of k compared to (SIGNED) MAX- CUT AEE, where k was
divided by 4 = % for A = 1.

Crowston et al. [7] gave polynomial kernels for ABOVE POLJAK—TURZIK(IT), for
all strongly A-extendible properties IT on possibly oriented and/or labelled graphs
satisfying at least one of the following properties:

(P1) A # 3;or
(P2) G € IT for all graphs G whose underlying simple graph is K3; or
(P3) [T is a hereditary property of simple or oriented graphs.

Their kernels have O (k%) or O (k?) vertices, depending on the exact problem.
Our third result improves all these kernels for strongly A-extendible properties to
asymptotically optimal O (k) vertices:

Theorem 3 Let I1 be any strongly A-extendible property of (possibly oriented and/or
labelled) graphs satisfying (P1), or (P2), or (P3). Then ABOVE POLJAK—TURZIK(IT)
admits a kernel with O (k) vertices, which is computable in time O (km).

Consequences for Acyclic Subdigraphs Theorem 3 has several applications. For
instance, Raman and Saurabh [34] asked for the parameterized complexity of the MAX
ACYCLIC SUBDIGRAPH problem above the Poljak—Turzik bound: Given a weakly con-
nected oriented graph G on n vertices and m arcs, does it have an acyclic sub-digraph
of at least m/2 + (n — 1)/4 + k arcs? For this problem, Crowston et al. [6] gave an
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algorithm with run time 20®10g%) . , O and showed a kernel with O (k?) vertices.
They explicitly asked whether the kernel size can be improved to O (k) vertices, and
whether the run time can be improved to 29® . , (D Here, we answer their questions
in the affirmative by using Theorem 3 and then applying an O*(2")-time algorithm
by Raman and Saurabh [35, Thm. 2] to our kernel with O (k) vertices.

Corollary 1 MAX ACYCLIC SUBDIGRAPH parameterized above Poljak—Turzik
bound admits a kernel with O (k) vertices and can be solved in time 2°0® . p 0,

Again, assuming the Exponential Time Hypothesis, the run time of this algorithm
is asymptotically optimal (by a standard reduction from VERTEX COVER).

This work is organized as follows. After the Preliminaries in Sect. 2, we discuss
in Sect. 3 that SIGNED MAX- CUT AEE can be solved in linear time, i.e., we show
Theorem 1. Section 4 is dedicated to SIGNED MAX- CUT AEE kernelization resulting
in Theorem 2. Section 5 turns to the generalization to A-extendible properties, showing
Theorem 5. A short discussion in Sect. 6 concludes the paper.

2 Preliminaries

We use W to denote the disjoint union of sets. The term “graph” refers to finite undi-
rected graphs without self-loops, parallel edges, edge directions, or labels. For a graph
G, let V(G) denote its set of vertices and let E(G) denote its set of edges. In an
oriented graph, each edge e = {u, v} has one of two directions, 7 = (u, v) and
e = (v, u); thus, an oriented graph is a digraph without 2-cycles and loops. Distinct
vertices a, b, ¢ are said to induce a triangle (a, b, c) if they form a complete subgraph.
In a labelled graph, each edge in E(G) receives one of a constant number of labels.
For an oriented and/or labelled graph G, let (G) denote the underlying simple graph
obtained from omitting orientations and/or labels. Throughout the paper, we assume
graphs to be encoded as adjacency lists.

A graph is connected if there is a path between any two of its vertices. A connected
component of G is a maximal connected subgraph of G. A cut vertex of a graph G is
a vertex whose removal increases the number of connected components. A graph is
2-connected if it does not contain any cut vertices. A maximal 2-connected subgraph
of a graph G is called a block of G. A block that contains at most one cut vertex of G is
called a leaf block of G. A clique tree is a connected graph whose blocks are cligues,
where a clique is a complete subgraph of a graph. A clique forest is a graph whose
connected components are clique trees.! For an oriented and/or labelled graph G we
say that G has one of the above-defined properties if (G) does.

Let G be a graph. For a vertex subset X C V(G), the (vertex-)induced sub-
graph G[X] is the graph with vertex set X whose edge set consists of all the edges
of G with both endpoints in X. Similarly, we define G — X = G[V(G) \ X] for a
vertex subset X € V(G) and G — x = G — {x} for a vertex x € V(G).

For a vertex v € V(G), let Ng(v) = {u € V(G) | {u, v} € E(G)}. For signed
graphs G, we define N (v) = N(g)(v). For a vertex set V' C V(G), let Ng(V') =

1 Clique forests are sometimes called block graphs; however, there are competing definitions for this term
in the literature and so we refrain from using it.
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(Uypey NG (v))\ V' For disjoint vertex sets Vi, Vo € V(G), let E(Vy, V,) denote the
set of edges with one endpoint in V; and the other endpoint in V;. For a signed graph G,
let ET(G) C E(G) be the edges with positive labels, and E~(G) = E(G) \ ET(G)
be the edges with negative labels. Define Ng(v) ={u e V(G| {v,u} € EY(G)}
and N5 (v) = {u € V(G) | {v,u} € E7(G)} for all v € V(G). A sequence of
vertices (vo, v1, ..., U¢) is a path in G if vg, v1, ..., vg are distinct vertices of G and
{vi, Vit1 (mod 0)} € E(G) fori =0, ..., L. For vertices u, v € V(G), a [u, v]-path is
a path in G between u and v. A path is induced if additionally {v;, v;} ¢ E(G) for
i=0,...,0and j # i+ 1 (mod £). The length of a path is the number of edges it
contains, and an £-path is a path of length ¢.

A graph property I is simply a set of graphs. For a graph G, a IT-subgraph is a
subgraph of G that belongs to I1. A graph property 1 is hereditary if for any G € IT
also all vertex-induced subgraphs of G belong to I7. Poljak and Turzik [32] defined
the notion of “A-extendibility” for graph properties I7, and proved a lower bound
on the size of any I7-subgraph in arbitrary graphs. A related notion of “strong A-
extendibility” was introduced by Mnich et al. [30]; any strongly A-extendible property
is A-extendible, but it is unclear whether the other direction holds.

Definition 1 Let G be a class of (possibly labelled and/or oriented) graphs and let
A € (0,1). A (graph) property IT is strongly A-extendible on G if it satisfies the
following properties:

(1) inclusiveness: {G € G| (G) € K|, K} C I1.
(ii) block additivity: G € G belongs to IT if and only if each block of G belongs to
II.
(iii) extendibility: For any G € G and any partition U & W of V(G) for which
G[U], G[W] € II thereis aset F € E(U, W) of size |F| > A E(U, W)| for
which G — (E(U, W) \ F) € II.

The set of all bipartite graphs ITyipariite 1S a strongly %—extendible property. Thus,
MAX- CUT AEE is equivalent to ABOVE POLJIAK—TURZIK BOUND(ITyipartite)-

Poljak and Turzik [32] showed that, given a (strongly) A-extendible property I7,
any connected graph G contains a subgraph H € [T with at least A|E(G)| +
l_T)‘(W(G)l — 1) edges. We denote this lower bound by pt(G). Further, we define
the excess of G over this lower bound with respect to /T as ex(G) = max{|E(H)| —
pt(G) | H € G, H € IT}. When considering properties of labelled and/or oriented
graphs, we denote by ex(K;) the minimum value of ex(G) over all labelled and/or
oriented graphs G with (G) = K;; here, K; denotes the complete graph of order 7.

A strongly A-extendible property I1 diverges on cliques if €X(K ;) > 1_7)‘ for some
Jj € N. For example, every strongly A-extendible property with A # % diverges on
cliques [9]. We recall the following fact about diverging properties:

Proposition 1 [9, Lemmas 7-8] Let I1 be a strongly \-extendible property diverging
on cligues, and let j € N, a > 0 be such that eX(K ;) = % + a. Then ex(K;) > ra
forallr e Nandi > rj.

We need the following proposition in all sections. For SIGNED MAX- CUT, we will
apply it with A = %
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Proposition 2 [9, Lemma 6] Let I1 be a strongly \-extendible property, let G be a
connected graph and let U1 WU, be a partition of V (G) into non-empty sets U1, Uj. For
i € {1, 2} let c; be the number of connected components of G[U;]. If ex(G[U;]) > k;
for some ki € Randi € {1,2}, then ex(G) > k1 + k» — %(cl +c —1).

3 A Linear-Time Fixed-Parameter Algorithm for Signed Max-Cut AEE

In this section we consider the SIGNED MAX- CUT AEE problem. We show that
the fixed-parameter algorithm given by Crowston et al. [7] can be implemented so
as to run in time 8% - O(|E(G)|). That is, given a connected graph G whose edges
are labelled either positive (4) or negative (—), and an integer k, we can decide in
time 8¢ - O(|E(G)|) whether G has a balanced subgraph with at least |E(G)|/2 +
(JV(G)| — 1 + k) /4 edges. This will prove Theorem 1.

We build on the following classical characterization of signed graphs:

Proposition 3 (Harary [18]) A signed graph G is balanced if and only if there exists
a partition Vi W Vo = V(G) such that all edges in G[ V1] and G[V>] are positive and
all edges E(Vy, V) between Vi and V> are negative.

The algorithm by Crowston et al. [7] starts by applying the following seven reduction
rules. We restate them here, as they are crucial for our results. A reduction rule is /-
safe if, on input (G, k) it returns a pair (G', k") such that (G, k) is a “yes”-instance
for SIGNED MAX- CUT AEEif (G', k') is. (Note that the converse direction does not
have to hold). In a signed graph G we call a triangle positive if its number of negative
edges is even. In the description of the rules, G is always a connected signed graph
and C is always a clique without positive triangles.

We initialize an empty set S of marked vertices. (Note: In previous work the term
selected vertices was also used, so we stick to the set name §).

Reduction Rule 1 If(a, b, c) is apositive triangle such that G—{a, b, c} is connected,
add a, b, c to S and delete them from G, and set k' = k — 3.

Reduction Rule 2 [f (a, b, ¢) is a positive triangle such that G —{a, b, c} has exactly
two connected components C and Y, then add a, b, c to S and delete them from G,
delete C, and set k' =k — 2.

Reduction Rule 3 Let C be a connected component of G — v for some vertex v €
V(G). If there exist a,b € V(C) such that G — {a, b} is connected and there is
an edge {a, v} but no edge {b, v}, then add a, b to S and delete them from G, and
setk! =k — 2.

Reduction Rule 4 Let C be a connected component of G — v for some vertex v €
V(G). If there exist a,b € V(C) such that G — {a, b} is connected and (a, b, v) is a
positive triangle, then add a, b to S and delete them from G, and set k' = k — 4.

Reduction Rule 5 [f there is a vertex v € V(G) such that G — v has a connected
component C such that G[V(C) U {v}] is a clique without positive triangles, then
delete C. If |V (C)| is odd, set k' = k — 1; otherwise, set k' = k.
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Reduction Rule 6 Ifa, b, c € V(G) induce a 2-path (a, b, ¢) such that G — {a, b, c}
is connected, then add a, b, c to S and delete them from G, and set k' = k — 1.

Reduction Rule 7 Let C, Y be the connected components of G—{v, b} for some v, b €
V(G) such that {v,b} ¢ E(G). If G[V(C) U {v}] and G[V(C) U {b}] are cliques
without positive triangles, then add v, b to S and delete them from G, delete C, and
setk! =k — 1.

Note: Rules 1/2/4 require positive edges. Hence, the other four rules suffice to
handle the classical MAX- CUT AEE problem, where all edges are negative. We will
make use of this in Sect. 5.

We will call the vertex v of Rule 5 the anchor of the removed vertex set V(C).

We slightly changed Rule 5. Crowston et al. [7] always set k' = k, whereas we
setk’ = k — 1 when |V (C)| is odd. In this case, pt(G[V (C) U {v}]) cannot be integral
because |V (C)U{v}|is even, and thus ex(G[V (C)U{v}]) > ‘1—‘. Therefore, our change
for k is 1-safe by the following result.

Proposition 4 [7, Lemma 2] Let G be a connected signed graph and let Z be a
connected component of G — v for some v € V(G). Then ex(G) = ex(G — Z) +
ex(G[V(Z2) U {v}]).

We subsume the results by Crowston et al. [7] in the following proposition.

Proposition 5 [7] Rules 1-7 are I-safe. To any connected signed graph G with at
least one edge, one of these rules applies and the resulting graph is connected. For
the set S of vertices marked during the exhaustive application of Rules 1-7, G — S is
a clique forest. If |S| > 3k, then (G, k) is a “yes”-instance for SIGNED MAX- CUT
AEE.

Following Crowston et al. [7, Corollary 3], we assume—without loss of generality—
from now on that the resulting clique forest G — S does not contain positive edges.

Lemma 1 Let G be a signed graph for which (G) is a complete graph. Then in
time O (|E(G)|), we either find a positive triangle in G or decide that none exists.

Proof Let H = (V(G), ET(G)), where ET(G) are the positive edges in G. As a
positive triangle has either exactly zero or exactly two negative edges, our task is to
find either a triangle in H or an edge {a, b} € E(H) and a vertex ¢ € V(H) such
that {a, c}, {b, ¢} ¢ E(H) (remember that (G) is a complete graph). In order to achieve
this, we try to find a 2-colouring, i.e., a bipartition, of H using breadth-first search [26].

— If this succeeds, then we have found a bipartition A W B of V(H) such that
H[A], H[B] are edgeless. If H is a complete bipartite graph or E(H) = {,
then G does not contain a positive triangle. Otherwise, we can assume, without
loss of generality, that there is a vertex a € A with § # Ny (a) # B, i.e., there
are vertices b € Ny (a) and c € B\ Ny(a). Then (a, b, ¢) is a positive triangle.

— If it fails, then we have found an odd cycle C = (xy, ..., x¢, x1), i.e., £ is odd.
If {x1,x3} € E(G), then (x1, x2, x3) is a positive triangle in G. Otherwise, if
{x1,x3} ¢ E(G) and {x, x4} ¢ E(G), then (x1, x3, x4) is a positive triangle in G.
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Otherwise, (x1, X4, ..., X¢, Xx1) is an odd cycle in H with length smaller than C.
Repeat this procedure until a triangle is found. Note that every iteration can be
performed in constant time.

Hence, in linear time we either find a positive triangle or decide that none exists. O

Definition 2 Let 7" be a DFS tree of a graph G rooted at a vertex r € V(G). For two
vertices v, w € G, we say that v is lower than w if its distance to » with respect to T
is larger than the distance from w to r with respect to 7. For a vertex v, we denote
by T, the subtree of T rooted at v. A child tree of a vertex v is the subtree T, of a
child w of v.

Lemma 2 Let G be a 2-connected graph and let r € V(G) such that G — r is not
2-connected. Then in time O (|E(G)|), we can find an induced 2-path P in G —r such
that G — V (P) is connected.

Proof Note thatr € V(G — V(P)).
We first state the algorithm before we discuss why it is well-defined and correct.

1. Compute a cut vertex v of G—r andlet Z1, Z, be 2-connected components of G —r
containing v.

2. Fori € {1, 2}, find a vertex u; of V(Z;) \ {v} with minimum distance to r with
respect to G — v, and let P; be a shortest [r, u;]-path in G — v.

3. Fori € {1, 2}, let T; be a DFS tree of Z; rooted at v such that u; is a child of v
in T; if {v, u;} € E(G).

4. Fori € {1, 2}, let w; be a lowest (w.r.t. T;) neighbour of v in Z;.

5. Return the induced 2-path P = (wy, v, wa).

Because G — r is not 2-connected, a cut vertex v and thus also Z; and Z, exist.
The paths P; and P, exist because G is 2-connected, i.e., G — v is still connected.
As w and wy are in different 2-connected components of G — r, they are in different
connected components of G — {r, v} and therefore not adjacent. Hence, P is indeed
an induced path and the algorithm is well-defined.

We now prove that G — V (P) is connected by showing that for every x € V(G) —
V(P) there is an [x, r]-path in G — V (P). Note that r is still contained in G — V (P)
because it is by definition of Z; and Z; not contained in either of them.

— First look at the case that x € V(Z;) (the case x € V(Z) is analogous). This
implies |V (Z1)| > 3 because two vertices of Z| are contained in P. Because Z
is 2-connected, the vertex v is adjacent to at least two vertices of V(Z;) \ {v}. It
follows that # 1 cannot be the lowest neighbour of v in Z; by construction of 77 and
thus u; is contained in G — V (P). Because v is a cut vertex of G — r, every path
from r to Z; that uses a vertex from Z, must also use v. But Py € G — v, i.e., P
cannot use vertices from Z; and thus it does not contain w;. Hence, P € G—V (P)
and therefore r is connected to a vertex from Z; — {v, w1} (namely, u).
Because w is the lowest (w.r.t. 1) neighbour of v in Z1, every child tree of w; is
not adjacent to v. But because Z; is 2-connected, every child tree of w is adjacent
to a vertex that is higher than w; as otherwise w; would be a cut vertex of Zy. This
shows that Z1 — {v, w;} is connected and thus there is an [x, r]-pathin G — V (P)
via u;.
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— Now consider the remaining case that x is neither contained in Z; nor in Z5.
As G is 2-connected, there are two [x, r]-paths Q1, Q> in G that do not share
an internal vertex. Let y be the vertex of V(Z;) U V(Z,) that is nearest to x
with respect to G — r. Because G — r is not 2-connected and Z; as well as Z»
are 2-connected components of G — r, the vertex y is a cut vertex of G — r
separating x from V(Z1) U V(Z) \ {y}. This means that every [x, r]-path that
uses vertices from V(Z1) U V(Z,) must also contain the vertex y. Hence, as Q;
and Q7 do not share internal vertices, only at most one of these two paths can use
vertices from V (Z1) U V (Z>) and thus one of the paths Q1, Q> is fully contained
inG — V(P).

Finally we show that the algorithm runs in linear time. The vertex v and
the 2-connected components Zi, Z, can be found in time O(|E(G)|) using any
linear-time algorithm for finding 2-connected components in undirected graphs. The
vertices u1, up and the paths Py, P> can be found via breadth-first search in G — v,
starting in r. The DFS trees T, 7> can also be computed in linear time. The restric-
tion that u; shall be the direct child of v if these two vertices are adjacent, can easily
be followed by selecting the edge {v, u;} as the first traversed edge in the depth-first
search. In linear time, we can find the neighbour w; of v that is the lowest with respect
to 7;, i € {1, 2}. This completes the proof. O

Lemma 3 Let G be a connected signed graph, let X be a leaf block of G, and letr €
V(G) such that V(X) \ {r} does not contain any cut vertex of G. Then we can always
apply one of Rules 1-7 to G such that only vertices from X are marked and deleted,
in time O(|E(X)]).

Proof Let us first argue why we may assume for this proof that the edges of X are
given in form of an adjacency matrix (this is a standard argument):

Letvy, ..., v, betheverticesandey, . . ., ¢, bethe edges of X. Create an array L of
size m’ and a 2-dimensional array M of size n’ x n’, both of which are not initialized
and therefore need only constant construction time. For every edge ¢; = {v,, vp},
where a < b, set L[i] to (a, b) and set M[a][b] to i. This takes O (m’) time in total.
After it, L is completely and M is partly initialized.

In order to check now in constant time whether an edge {a, b}, a < b, exists in X,
try to read the integer i that is stored in M [a][b]. Then M[a][b] is initialized and thus
the edge {a, b} exists if and only if L[i] is set to (a, b).

Having this construction, we can check in time O (| E(X)|) whether a subset X’ C
V(X) induces a clique in G in the following way: We test for the O (|X’|*) many pairs
of vertices of X’ in lexicographically ascending order whether the corresponding edge
exists in X. We stop at the first vertex pair that does not exist as edge. This way we
check at most |E(X)| + 1 = O(JE(X)|) pairs and every check can be processed in
constant time.

Let us now turn to the proof of the lemma. We consider the following cases:

1. If X is a clique, then we can find with Lemma 1 in time O(|E(X)]|) a positive
triangle (a, b, c) in X or decide that none exists. If none exists, then Rule 5 applies
to X —r and r. If G — {a, b, ¢} is connected, then Rule 1 applies to (a, b, c).
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If G — {a, b, c} is not connected, then Rule 2 applies if r ¢ {a, b, c}, and Rule 4
applies if r € {a, b, c}.

2. If X is not a clique, but X — r is a clique, then again try to find a positive trian-
gle (a, b, c) in X — r. If this fails, then Rule 3 applies. Otherwise, r ¢ {a, b, c}
and thus Rule 1 or Rule 2 applies.

3. If X is not a clique, Nx (r) = {x, y} for some vertices x, y € V(X) with {x, y} ¢
E(X), and X — {r, x} as well as X — {r, y} are cliques, then again try to find a
positive triangle (a, b, c) in X — {r, x} or X — {r, y}. If this fails, then Rule 7
applies. Otherwise, r ¢ {a, b, c} and thus Rule 1 or Rule 2 applies.

4. Now assume that none of the previous cases applies. If X — r is not 2-connected,
then we can find with Lemma 2 a path P in X thatdoes notuse » such that X —V (P)
and thus also G — V (P) is connected. Hence, Rule 6 applies to P. From now on
we assume that X — r is 2-connected.

We perform a breadth-first search on X starting in r to compute the distance from r
to all vertices x € V(X) \ {r}. Fori > 1,let L; C V(X) \ {r} be the set of vertices
with distance i to r.

Find vertices x, y € V(X) \ {r} such that {x, y} ¢ E(X), L1 # {x, y}, and the
distance from r to x is minimum. We do this again by testing all possible vertex
pairs in lexicographically ascending order. After at most | E(X)| tested pairs, two
non-adjacent vertices must have been found. Note that these vertices must exist,
as otherwise one of the previous cases would be applicable.

Find a shortest path Q from r to x; by breadth-first search, this can be done in
time O (|E(X)]). The length of Q is at most 2, because if L3 7~ @, then every pair
of vertices from L1 and L3 is non-adjacent.

Then we try to find via breadth-first search in time O(]E(X)]|) a shortest path P
from x to yin X — (V(Q) \ {x}). If P exists, then P is an induced path. Let P’
be the unique connected subgraph of P containing x with |V (P’)| = 3 (i.e., P’
contains the “first” three vertices of P).

If P’/ exists and G — V(P’) is connected, then Rule 6 applies. Otherwise,

we have found a (not necessarily induced) path (py, ..., p¢) of vertices from
X[V(Q)UV (P")]with p; = rsuchthat G[X —{p1, ..., p¢}]isnot connected. By
construction, it holds that £ < 6. As X is 2-connected, thereisani € {0, ..., £—1}

such that X:=X \ {p1, ..., pi} is 2-connected, but X’ \ {p;y} is not. Using
Lemma 2, we can find a vertex-induced path P’ in X’ that does not use p; 4 such
that X’ — V(P’) is connected. In particular, every vertex is reachable from p;;
and thus from p; = r in X — V(P"). It follows that G — V (P’) is connected and
Rule 6 applies to P’. a

Given an instance (G, k), we can thus compute in time O (k - |E(G)]) a vertex set S
that either proves that (G, k) is a “yes”-instance or G — S is a clique forest. We now
show that, if a partition for the vertices in S is already given, we can in time O (|E(G)|)
compute an optimal extension to G. We use the following problem, which goes back
to Crowston et al. [8]:
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MaX- CUT EXTENSION
Input: A clique forest G g and weight functions wg, w; : V(Ggs) — Np.

Task: Find an assignment ¢ : V(Gs) — {0,1} maximizing
1
Z{x,y}eE(GS) lpx) — ()| + Zi:O Zx: o(x)=i w; (x).

Lemma 4 MAX- CUT EXTENSION can be solved in time O(|V (Gs)| + |E(Ggs)|) on
clique forests G g.

Proof Inorder to solve MAX- CUT EXTENSIONon Ggintime O(|V(Gg)|+|E(Gs))),
we use the natural approach suggested by Crowston et al. [8], and argue why it
runs in the desired time. We provide a transformation that replaces an instance
I = (Gs, wo, w;) with an equivalent instance I’ = (G, wy, w}) such that G
has fewer blocks than G g, and that we can recover an optimal solution for / from an
optimal solution for I’. By repeatedly applying the transformation we obtain a trivial
instance, and thus the optimal solution for /.

We may assume that G g is connected, as otherwise we can handle each connected
component of G g separately. Let X U{r} be the vertices of aleaf block in G, with r a cut
vertex of G s (unless G g consists of a single block, in which case let r be an arbitrary
vertex and X = V(Gyg) \ {r}). Recall that by definition of a clique forest, X U {r} is a
clique. For each possible assignment to r, we will calculate the optimal extension to
the vertices in X. (This optimal extension depends only on the assignment to r, since
no other vertices are adjacent to vertices in X.) We can then remove all vertices in X,
and change the values of wq(r) and w1 (r) to reflect the optimal extension for each

assignment.
Suppose we assign r the value 1. Let e(x) = wi(x) — wo(x) for each x €
X. Now arrange the vertices of X in order xi, x,...,x|x|, such that if i < j

then (x;) > &(x;). Observe that there is an optimal assignment for which x; is
assigned 1 for every i < ¢, and x; is assigned O for every i > ¢, for some
t € {0,...,]X]}. (Consider an assignment for which ¢(x;) = 0 and ¢(x;) = 1,
for i < j, and observe that switching the assignments of x; and x; will increase
Sy o(x)=i Wi(x) by an amount of e(x;) — e(x;) while >\, 1 p Gy l9(X) —
¢(y)| stays the same.) So we only need to try | X| + 1 different assignments to the
vertices in X in order to find the optimal colouring when ¢(r) = 1. Let V| be the
value of this optimal assignment over X U {r}. By the same method we can find the
optimal assignment when r is assigned 0, whose value we denote by V. Now remove
the vertices in X from Gg, and change w; (r) to V; fori =0, 1.

Let us now analyse the run time of this procedure. If ¢(v) > |X]| for a ver-
tex v € X, then ¢(v) must be 1 in an optimal assignment. Similarly, ¢(v) = 0 if
e(v) < —|X]|. Hence, we only have to sort at most |X| vertices according to their
value {—|X], ..., |X|}, which we can do in time O(|X|) using counting sort.

The value of the first tested single assignment ¢ can be computed in time
O(|E(Gs[X U {r}])|. The next assignment ¢’ we want to test differs in only one
vertex v from the last assignment. Hence, the only differences between ¢ and ¢’ are
in E({v}, X U{r}\ {v}). Therefore we can compute the value of ¢’ in time O (| N (v)}).
This way, we can check all | X| 4 1 assignments in time O (|E(Gs[X])]). Since each
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edge of E(Gyg) belongs to exactly one block of G g, the entire procedure runs in time
O(E(Gs)D. O

We now give a proof for Theorem 1. Given a connected signed graph G on m edges,
by Lemma 3 we find the set S from Proposition 5 in time O (km) (the case that k is
not decreased can only take O (m) total time). Guess one of the at most 23k partitions
on S and solve the corresponding MAX- CUT EXTENSION problem with Lemma 4.

Proof of Theorem 1 Let (G, k) be an instance of SIGNED MAX- CUT AEE. Compute
the 2-connected components of G and apply Lemma 3 to a leaf block X of G to obtain
an instance (G’, k’). Repeat this procedure exhaustively or until k" < 0.

If Rule 5 was applied, the only remaining vertex of X in G’ is the cut vertex in X.
Thus we do not need to recompute the 2-connected components of G and we can use
Lemma 3 immediately again. This way, all applications of Rule 5 take time O (| E(G)|)
in total. For every other rule, it holds k€’ < k — 1. This means that the other rules are
applied at most k times and thus the whole procedure runs in time O (k - |E(G)|).

Let S be the set of marked vertices. If ¥’ < 0, then (G, k) is a “yes”-instance.
Otherwise, | S| < 3k. We guess a 2-colouring ¢gs: S — {0, 1} for the vertices in S;
there are 2!5! < 23k — 8k such 2-colourings. For ¢g, we solve MAX- CUT EXTENSION
on the clique forest G — S, where we try to extend ¢g to a maximum cut in G.

Formally, for an assignment ¢: § — {0,1}let S; = {v € S| ¢(v) = i} for
i =0,1.Foravertex v e V(G) \ S, define the weight functions wo(v):leg(v) N
Sol + |Ng (v) N Sy| and wl(v):=|N§(v) N Sil + [Ng () N Sol. Then remove the
vertices of S from G. By Proposition 5, the resulting graph Gg = G — S is a clique
forest. Let p be the number of edges within G[S] that are satisfied by the restriction
of ¢ to G[S]. Then for any assignment to the vertices of G g, the maximum number
of satisfied edges in G is exactly equal to

1
Pt Y e —eMI+Y D win),

{x,y}€E(Gs) i=0 x: p(x)=i

where ¢ : V(Gg) — {0, 1} is the desired bipartition. Thus, (G, k) is a “yes”’-
instance if and only if the instance of MAX- CUT EXTENSION has optimal value at
least |E(G)|/2 + (|]V(G)| — 1 + k)/4 — p. We can test this in time O (m) for every
assignment ¢g according to Lemma 4. O

4 A Linear Vertex Kernel for Signed Max-Cut AEE

In this section we will show how to obtain a kernel with O (k) vertices and thus prove

Theorem 2. Let G° be the original graph, let S be the set of marked vertices during

the exhaustive application of Rules 1-7 on G°, and let G” be the resulting graph after

the exhaustive application of our kernelization Rules 8-9 (to be defined later) on G°.
Let C be a block in the clique forest G — S. Define

Cine ={v € V(C) | Ng-s(v) € V(O)}
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as the interior of C, and Cex; = V (C) \ Cin as the exterior of C. The block C is called
special if Cine N NG (S) is non-empty. Let BB be the set of blocks in G — S and let B*
be the set of special blocks in G" — S. A A-block is a non-special block C on exactly
three vertices for which |Cey| < 2.

If there is a (unique by Proposition 5) remaining vertex v left after the exhaustive
application of Rules 1-7, then add an induced 2-path (v, w, x) to G, i.e., define
G' = (VG U{w, x}, E(G" U {{v, w}, {w, x}}). Then (G’, k + 2) is an instance of
MaAX- CUT AEE, that by Proposition 4 is equivalent to (G, k) because the excess of an
induced 2-path equals 2/4. Therefore, we can assume that every vertex gets removed
during the exhaustive application of the reduction rules because we can assume that
Rule 6 removes the path (v, w, x) in the last iteration. Furthermore, as Rule 5 can then
not be applied last, we can assume that at least one of the vertices that are removed in
the last iteration is contained in S.

We will now use two-way reduction rules to reduce the size of G° — § by shrinking
or merging blocks that satisfy certain conditions. These rules are similar to the two-
way reduction rules by Crowston et al. [7]. However, our two-way reduction rules
have the property that connected components of G — S cannot “fall apart”, i.e., two
blocks in G" — S are reachable from each other if and only if the corresponding blocks
in GO — S are reachable from each other. We can then show that Rules 1-7 can behave
“equivalently” on G” as on GO (Lemma 7), i.e., that the same set S of vertices can also
be marked in G”. This is the crucial idea which allows us to obtain better kernelization
results than previous work, as it allows the following analysis.

To show size bounds for our kernel G”, we first argue that (G”, k) is a “yes”-instance
if there are many special blocks. Intuitively, if there are many special blocks in G" — S,
we can find large pairwise vertex-disjoint stars Y for every s € S, whose leaves are
internal vertices of blocks of G" — S. The excess of such a star Y grows linearly in its
size because a star is a bipartite graph. We then (hypothetically) modify Rules 1-7 in
such a way that whenever a vertex s € § is about to be removed, we additionally remove
the associated star Y. We can distribute the internal vertices of blocks from G" — S in
such a way to the different stars Y; that the generated intermediate graphs during the
exhaustive application of these rules are all still connected. Therefore we can conclude
with Proposition 2 that the excess of G” can only be by O(]S|) smaller than the total
excess of all the stars Y. Hence, we can show that there are only O (k) special blocks
or (G", k) is a “yes”-instance (Lemma 10).

Next we limit the total number of blocks in G" — § by O (k). On a high level, Rule 8
deletes two internal vertices of a block and Rule 9 merges two A-blocks. There can
only be O (k) blocks in G" — § with an even number of vertices (Lemma 12) because
every block corresponds to an application of Rules 1-7 where k was decreased (every
application of a rule can “generate” only one block of G — S and the only case in
which k is not decreased is when Rule 5 removes an even number of vertices, which
together with their anchor form a block of odd order).

On the other hand, non-special blocks of odd order can be shrinked by Rule 8. If
they have only at most two external vertices, they eventually become A-blocks. There
cannot be more A-blocks than non-A-blocks (Lemma 11) because Rule 9 merges
adjacent A-blocks. We conclude in Lemma 13 that the total number of blocks is
in O (k).
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The total number of external vertices in blocks of G" — S, i.e., the number of
cut vertices, is of course bounded by the total number of blocks in G" — S. Due to
Rule 8, every non-special block in G — S contains at most as many internal as external
vertices. This is why the total number of vertices in non-special blocks is also bounded
by O (k). In order to bound the number of vertices in special blocks (Lemma 15), we
reuse the approach of Lemma 10. The difference is that we do not take only single
vertices from special blocks in order to build stars Y5, s € S, but larger sets of internal
vertices from each block. The idea will be described in more detail before Lemma 14.
This will complete the proof.

4.1 Kernelization Rules

We now give our two-way reduction rules, which on an input (G, k) produce an
instance (G', k) of SIGNED MAX- CUT AEE. Note that the parameter k does not
change. We call a rule 2-safe if (G, k) is a “yes”-instance if and only if (G, k) is.
The first rule is again due to Crowston et al. [7], who showed it to be 2-safe; here we
contribute its improved run time analysis. Recall our assumption that (without loss of
generality) G — S does not contain any positive edges.

Reduction Rule 8 Ler C be a block in G — S. If there exists X C Ciy such that
x| > ORI ~ 4 NEx)NS = NF(X)NSand NG (x)NS = NG (X)NS
forall x € X, then delete two arbitrary vertices x1, x» € X.

Reduction Rule 9 Let Cy, Cy be A-blocks in G — S which share a common vertex v.
Make a block out of V(C1) U V(Cr), i.e., add negative edges {{u, w} |u € V(C1) \
{vh w e V(C) \ {v}} 10 G.

The combination of these two rules is a powerful tool to eliminate non-special blocks
of odd order: Rule 8 ensures that in every non-special block C it holds |Ciyt| < |Cextl
(otherwise, set X to Cjp, then | X| > IV(ZC)I = 'Ci“tlg‘cﬁ“ > 1, where the lastinequality
holds because every non-special block contains at least two vertices). This means that
Rule 8 reduces non-special blocks C of odd order with |Cex¢| < 2 to blocks of order 1
(i.e., deleting the block if C was a leaf block of odd order) or order 3. In the latter
case, C becomes a A-block.

Rule 9 combines two adjacent A-blocks to a block of order 5. If the common external
vertex of the A-blocks is not adjacent to S, the resulting block is also non-special and
can therefore again be shrinked by Rule 8. We can therefore contract arbitrarily large
chains of non-special blocks.

Lemma 5 Rules 8-9 are 2-safe. If they are applied to a connected graph G, then the
resulting graph G’ is also connected.

Proof For Rule 8 we have nothing to show because it is Rule 8 from Crowston et
al. [7]. Rule 9 does not destroy connectivity, as nothing is deleted. It remains to show
that Rule 9 is 2-safe.

Let C = V(C1) U V(C3). Consider a partition Vi W V5 of V(G). This partition
induces balanced subgraphs H in G and H’ in G’ (see Proposition 3). Let us first
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assume that neither V(Cy) nor V(C3) is completely contained in either V| or V.
Then also |V1 NC| <3 and |V, N C| < 3. Because G[C] is the union of two triangles
and G'[C] is a clique of size 5, the partition induces subgraphs H[C] and H'[C] with
exactly four and exactly six edges, respectively. Hence, |E(H')| = |E(H)| + 2. Tt
also holds that pt(G") = pt(G) + 2, as G’ is equal to G with four additional edges.
It remains to show that there always is a partition which induces maximum balanced
subgraphs for G and G’ such that neither V (Cy) nor V(C3) is completely contained
in one of the sides of the partition.

Therefore, let us assume w.l.0.g. that V(C1) be completely contained in V;. Let b
be an internal vertex of Cj. Because b is in G as well as in G’ only adjacent to
vertices in C, it holds |Ngy (b)| = 0 and |Ng/(b)| < 2. As it also holds |[Ng(b)| = 2
and |Ng/(b)| = 4, the partition (Vi \ {b}) W (V> U {b}) induces balanced subgraphs
of G and G’ that cannot be smaller than H and H’, respectively. This completes the
proof. O

Lemma 6 Given S, Rules 8-9 can be applied exhaustively to G° in total time O (m).

Proof First observe that we can compute the blocks of G® — § in time O (m) using
any linear-time algorithm for detecting 2-connected components. Then we can store
for every cut vertex the list of A-blocks it belongs to. An update of this list after an
application of one of the rules can be done in constant time. As Rule 9 can be applied
O (n) times and merging two A-blocks takes constant time, all applications of this rule
can be done in total time O (n).

We now discuss the run time of Rule 8. Let B be a block in G — S. Let S be
the vertices from S adjacent to B, i.e., Spg = S N Ngo(B). Consider the auxiliary
graph Hp:=(Sp U Bint, E(Sp, Bint)). We use partition refinement to find the parti-
tion Vi W ... WV, = Bjy of the internal vertices of B such that two vertices v, w
are in the same set V; if and only if N;“O (v) = N;O(w) and N(;O(v) = NEO (w). To
be more precise, let P be a partition of Bjy. Initially, P = {Biy}. Then for every
v € V, werefine P by N(v), i.e., we split every set X € P into three sets X N N*t(),
X NN~ (v),and X \ N (v). Using appropriate data structures [25], this refinement can
be executed in time O (| N (v)|) in every iteration. Thus, we can compute V1 W... WV,
in time O(|V(Hp)| + |E(Hp)|). As every edge of G° is in at most one auxiliary
graph and every vertex s € S is in at most | Nso(s)| auxiliary graphs, we can do these
computations for all blocks of GY — S in total time O (m).

For a block B, we can find the biggest class V;= in linear time. Then, as long as B
does not get merged due to Rule 9, V;= is the only class from which Rule 8 can delete
vertices. (This is a bit subtle, as | V;«| can be % after deleting vertices from V;x,
but then N0 (Vi+) NS = @; hence, every other V; has a neighbour in S and would thus
need size strictly larger than w in order to meet the requirements of Rule 8).

It is trivial to compute the number of possible applications of Rule 8§ to V;«. This
means that we can apply Rule 8 exhaustively (without allowing Rule 9 to be applied
in the meantime) on G° — S in total time O (m).

Now observe that every block newly created by Rule 9 has constant size. Hence,
if we have also computed a partition according to the neighbourhoods for the whole
graph G° — § (in time O (m)), we can check in constant time whether we can apply
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Rule 8 again on a newly created block. As this happens O(n) times, the total time
required for all applications of Rule 8 is O (m). O

Lemma 7 Rules 1-7 can be applied exhaustively to the graph G” in such a way that
the set S' of marked vertices is equal to S. Moreover, if only the Rules 3/5/6/1 are
applied to G°, the same set of rules is applied to G .

The last part of the lemma will be needed later in Sect. 5.2. It can easily be seen by the
fact that the mentioned rules are the only rules applicable to an instance of MAX- CUT
AEE (where all edges are negative).

Proof of Lemma 7 1t suffices to show the following: Let G be a connected graph and
let G’ be the resulting graph after a single application of Rule 8 or Rule 9 to G. Then
Rules 1-7 can be applied exhaustively to G’ in such a way that the same vertices are
marked as during the exhaustive application of these rules to G.

Let (G = Gy, G1, ..., Gy) be the sequence of graphs generated by the exhaustive
application of Rules 1-7 to G and let S be the set of marked vertices. Let X;:=V (G;) \
V(Gi41) fori < g be the set of vertices removed in the i-th application of one of the
rules (we start counting at O here for convenience).

— We first consider the case that G’ resulted from an application of Rule 8.
Let C, X, x1, x2 be defined like in this rule. Furthermore, let i and j be the indices
such that x; € X; and x; € X;. Wlo.g.,i < j. Because x; ¢ S, the set X; is
removed by one of the Rules 2/5/7. The only possible neighbour of x| remaining
in G4 is either contained in S or an external vertex in G — S. Because x3 is by
the definition of Rule 8 an internal vertex of G — S, it follows that i = j.
Consider now the sequence of graphs (G" = G, G|, ..., G,) defined by G}, =
Gy —{x1, xo} forevery index i’. Note that G;’+1 = G, — X,/ foreveryindexi’ # i,
and G b= G: — (X; \ {x1, x2}). We show that the exhaustive application of
Rules 1-7 can yield this sequence of graphs.

Consider first the iteration i’ = i. Because X; contains vertices that are not in S,
this set must be removed from G; by one of the Rules 2/5/7. If Rule 2 removes X;
from G, then Rule 1 or Rule 2 can remove X; \ {x1, x2} from G, depending on
whether X; \ {x1,x2} C S. If Rule 5 removes X; from Gj;, then either the same
rule can remove X; \ {x1, x2} from G} or G; = G/, due to |X;| = 2. If Rule 7
removes X; from G;, then |X| > 3 by the definition of Rule 8§ and therefore the
same rule can remove X; \ {x1, x} from G;.

For every other iteration we just have to ensure that connectivity is preserved, i.e.,
it suffices to show that for every ¥ C V(G/,) and two vertices a, b € V(G},) \ Y,
the vertices a, b are in the same connected component of G;, — Y if and only if
they are in the same connected component of G;» — Y.

Let P be a shortest a-b-path in G; — Y (if one exists). If P does not contain x|
and xp, then P also exists in G;,. Otherwise, P contains exactly one of these
two vertices because they share the same closed neighbourhood. Let w.l.o.g. x1
be the vertex contained in P. Because x; is an internal vertex in G — S, the
predecessor and the successor of x; in P must be contained in Cex¢ U S. This
means that |V(C)| + |[Ng(X) N S| > |{x1, x2}| + 2 > 4 and thus | X| > 3, i.e.,
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there is a vertex x3 € V(G) with the same closed neighbourhood as x;. With
the same arguments as for x, one can conclude that also x3 € X;. Therefore, x3
is contained in G;, and thus we can replace x; by x3 in P. Hence, a and b are
in the same connected component of G}, — Y if they are in the same connected
component of G;/. The converse direction holds trivially.

— Now consider the case that G’ resulted from an application of Rule 9. Let v, Cy, C;
be defined like in this rule. Because C; and C, are both A-blocks and hence
not special, the following is well-defined: Let i be the index such that X; <
V(C1) U V(C>) and X; is removed by Rule 5 using v as anchor, and let j be the
index such that v € X; and X ; is removed by Rule 5 using some anchor w. Let £
be the index such that w € X/.

We define the sequence of graphs (G’ = Gy, G}, ..., G,) in the following way:
In iteration i, do nothing, i.e., G;H = G/.Initeration j, remove X; U X ; from G’j.
In all other iterations i’, remove X;s from G,. We show again that this sequence
can be generated by the exhaustive application of Rules 1-7 to G'.

Consider first the j-th iteration. Obviously Rule 5 can remove X; U X ; from G’j
using w as anchor. For every other iteration, observe that w is the only vertex
in V(G) \ (X; U X;) with Ng(w) # Ng/(w). Hence, one can easily check for
every single rule and every iteration i’ # ¢ that whenever a rule removes X/
from Gy, it can also remove the same set from G;, (intuitively because the rule
cannot “see” the difference between G;. and G;). It remains to look at iteration £.
Because G;, = Gy for every index i’ > j, it follows G}, = G, and thus also
the ¢-th iteration is safe. This completes the proof. O

4.2 Bounding the Kernel Size

After having shown Lemma 7, we can now turn to the task of showing a linear kernel
size. We first show some auxiliary lemmas, which will be useful in the proofs of the
main Lemmas 10/15.

For the whole section, let (G" = Gy, ..., G,) be the sequence of graphs generated
by the exhaustive application of Rules 1-7 to G” such that the set of marked vertices
is S, and let X;:=V (G;) \ V(G;4+1) be the set of vertices removed in the (i + 1)-th
application. Recall that we assumed, without loss of generality, that G, is the empty
graph, i.e., Ui<q X; covers V(G").

Definition 3 Let Int be the set of internal vertices in G — S. Furthermore we call
a vertex v fixed if it is removed as the only vertex in an application of Rule 5 with
anchor in S, but v is not an isolated vertex in G — S. Denote by F the set of all fixed
vertices. Let Cand:=Int \ F be the set of candidate vertices.

Fixed vertices play a special role in our clique forest. If a block B contains a
fixed vertex v, then V(B) \ {v} is removed by Rule 5 using v as anchor, before in a
later iteration {v} is removed by Rule 5 as the last vertex of its connected component
of G" — §. As a consequence, the number of blocks in G — § does not increase when
Rule 5 removes a fixed vertex. In other words, the total number of applications of
Rules 2/5/7 is equal to the number of blocks in G — S minus | F|. It is also clear that
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there can only be at most k fixed vertices or (G”, k) is a “yes”-instance. The name
“fixed” stems from the fact that later in the proofs of Lemma 10 and Lemma 15 we
do not want to “reattach” these fixed vertices.

Lemma 8 Ler G be a connected signed graph, and let X be a vertex set from G such
that G[X] is a clique containing only negative edges. If Rule 5 can remove X using
some anchorw € V(G), thenex(G) > eX(G—X)—i—min{lXﬂNg(w)L [IXNNg (w)l}.

Proof Leta::min{lXﬂNa’(w)L X NN (w)}. Order the vertices {xi, ..., x¢} = X
in such a way that there is an index i* such that the edge wx; is positive if
and only if i < i*. Because G[X] is a clique containing only negative edges,

the partition ({x1,...,x[¢/2j}, {X|¢/2]+1, ..., X¢}) induces a balanced subgraph of
size pt(G[X]) + ex(G[X]). Now we add the vertex w to the left-hand side.
Ifi* < L%J, then @ = i* and ({w, x1, ... ,ng/zj}, {XI_Z/ZJ—H’ ..., X¢}) induces a

balanced subgraph of size
Pt(GIX]) + ex(G[X]) +i* + (¢ — [£/2]) = pt(GIX]) + ex(G[X]) + [¢/2] + c.

If i* > f%], then o = £ —i* and ({w, x1, ..., x[¢/21}, {Xre/2141, - - -, X¢} induces a
balanced subgraph of size

Pt(GIX]) + ex(G[X]) + [€/2] + (¢ —i*) = pt(G[X]) + ex(G[X]) + [¢/2] + c.

Because G[X U {w}] contains ¢ edges and one vertex more than G[X], it follows
that pt(G[X U {w}]) = pt(G[X]) + ¢/2 + 1/4 and thus

exX(GIXU{w}D) = ex(GIXD+[£/21+a—£/2-1/4> «a,

where the last inequality follows from the fact that ex(G[X]) = }‘ if £ is even. The
lemma now follows from Proposition 4. O

Lemma 9 Let (G, k') be an instance of SIGNED MAX- CUT AEE that arises during
the exhaustive application of Rules 1-7 to (G", k). If in the next step Rule 5 removes a
vertex set X from G with an anchor s € S, and if the connected component of G" — S
that contains X consists of a single block, then ex(G) > ex(G — X) + 411'

Proof Let C be the block of G" — S containing X. For a better understanding, we
first point out the relation between C and X: Either V(C) = X or the single vertex
in X was the anchor of V(C) \ X in a previous iteration and now this single vertex is
removed by Rule 5.

We now turn to the proof. If | X| is odd, then the lemma follows immediately from
Proposition 5. Otherwise | X | iseven, X = V(C)and Ng (x)NS = {s}foreveryx € X.

If Nz;r(s) NX = @or N;(s) N X = ¢, then Rule 8 would have eliminated X,
as X is an isolated block in G" — S, i.e., it contains only internal vertices, which
have all the same neighbourhood Hence, min{|X N N(J;“(w)|, [X N Ng(w)} > 1.
Because G" — S contains only negative edges, in particular G[ X ] contains only negative
edges. Therefore we can use Lemma 8. O
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Fig. 1 An example where 9
putting the fixed vertex x|

into Y5 disconnects the graph 1

s1  S2  S3 sS4 S5 S6

The following lemma is dedicated to bounding the number of special blocks to O (k).
Our approach is the following. Let G be a connected vertex-induced subgraph of G”
and let s € V(G) N S. Furthermore, let Y be a subgraph of G that contains s and
internal vertices of blocks from G” — S that are all adjacent to s. If all these vertices are
from different blocks, then Yy is a star, that is, it is a bipartite graph. Hence, if G — Y
is connected, it holds ex(G) = ex(G — V(¥y)) + ex(¥;) — 1 = ex(G — V(¥y)) +
(IE(¥s)|—1D/4

The idea is now to apply Rules 1-7 again to G in a modified way: Whenever a
vertex from § is removed, then at the same time also the star Y is removed, resulting in
a decrease of k by roughly |E(Y;)|. If there are more than ® (k) many special blocks,
i.e., blocks with internal vertices that are adjacent to S, then we should be able to
identify G” as a “yes”-instance.

In order to make this approach work, we make sure that the following properties
hold:

e All resulting graphs should be connected. In particular, we do not want to add
fixed vertices to Y. For an illustration of the arising problem, take a look at the
graph G depicted in Fig. 1, in which Rule 6 can remove the sets X1 = {s1, 52, 53}
and X4 = {s4, 55, ¢} from the graph, whereas Rule 5 removes X» = {x>} using x;
as anchor, and X3 = {x;} using s4 as anchor. By definition the vertex x| is a
fixed vertex. If we added x; to Y, then G’l = G[{x2, s4, ss5, s¢}] would not be
connected.

e Whenever a set X gets removed by Rule 5 during the “original application” and
we want to remove the set X’ C X in our modified setting, then X’ should also be
removable by Rule 5. This means that, if s € § is the anchor of X, then Y cannot
contain a vertex w € X, as otherwise both s and w would be in the neighbourhood
of X', contradicting the conditions of Rule 5.

Lemma 10 If G" — S has more than 11k special blocks, then (G", k) is a “yes”-
instance of SIGNED MAX- CUT AEE.

Proof For a vertex s € S, let W, be the union of all vertex sets X; such that s is
the anchor when Rule 5 removes X; from G;. Furthermore, let I":=¢ be the set of
reattached vertices.

For everyi = g — 1, ..., 0 in decreasing order, do the following procedure suc-
cessively for every s € X; N S: Let Yy € G[(Cand \ Wy) U {s}] be a maximum
vertex-induced star centred in s. Add V (Ys) \ {s} to I".

We define a sequence of graphs (G" = Gy, ..., G;) in the following way: For
everyi € {0,...,qg—1},let X[:=(X;\I") UlUsex;ns V(¥s), and let G, =G} - X].
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Claim 1 Foreveryi =0, ...,q — 1, the following properties hold.

1. The graph G/, is a vertex-induced subgraph of G; with G; — Cand = G, — Cand.
2. Both G"[X]] and G’ are connected.

Proof of the claim Lets € S and w € V(Y) \ {s}. As w is not contained in S, it
originally got removed by Rule 2/5/7 and this happened not before s got removed
(by the definitions of these rules). Hence, every vertex of I" cannot be removed later
than originally, which is why G must be fully contained in G;. Furthermore, as only
candidate vertices of G — S get reattached, the claim G; —Cand = G; — Cand follows
trivially.

For the second part, first note that the subgraphs G [X l/ NS]and Y foralls € X;NS
are connected. If Rule 5 removes X; from G;, then X; NS = @, i.e., G" [le] is a vertex-
induced subgraph of the clique G"[X;] and thus connected. If Rule 2/7 removes X;
from G;, then Ng,(X; \ §) € X; N S, i.e., each vertex s € SN Xjforj>iis
non-adjacent to X; \ S in G". Hence, at least one star Y, s € X; N S, contains a
vertex v from X; \ S. The graph G"[(X; N X;) \ S] is a vertex-induced subgraph
of the clique G"[X; \ S] and thus connected. Hence, every vertex of X/ is adjacent
to X; NS = X; N S ortov. Thus, G"[X]] is connected.

Regarding G, we show that for every v, v’ € V(G)) there is a [v, v']-path in G..
The vertices v and v’ are also contained in G; because G is a subgraph of G;.
Because G; is connected, there is a path v = py, ..., pg = v/ in G;. If this path is
not fully contained in G/, let j, j’ € {1, ..., £} be indices such that p;, p; € V(G})
and pjy1,....pjr—1 ¢ V(G}). We show that there are vertices w, w’ € V(G}) for
which G"[{p;, w, w’, pj:}] is connected. This suffices to show the claim, as G’ is a
vertex-induced subgraph of G”.

Because G; — Cand = G; — Cand, the vertices pji1, ..., pjy—1 must all be non-
fixed internal vertices, and because they form a path, they must all belong to the same
block C of G" — S. There are now two possibilities for p; and p;/: Each of the two
is either an external vertex of C or contained in S. If p; is adjacent to every internal
vertex of C, we can set w:=pj.

Otherwise p; € S. Let d be the index such that p; € X,. Because p; € V(G)), it
holds d > i. Furthermore, as p;y1 ¢ V(G}), itholds p;;1 € X; forsomer <i <d.
This means that Y, ; contains a vertex w from Cjy, for otherwise p;;| could have
been added to Y. In the same way we can find a vertex w’ € (Cine N Y,,]_,) Uipj}

In any case, w, w' € V(C) N V(G)), and {w, w'} € E(G}). This shows the claim. ¢
Claim 2 [f|I"| > 5k, then (G", k) is a “yes”-instance.

Proof of the claim Leti € {0,...,q — 1}. If X; = ¢, then trivially ex(G} ;) =
ex(G?}). Therefore we assume X # ¢ from now on.

IfX is removed by Rule 5, then XiNnsS=49y,ie, X C X; and thus NG/(X ) C
Ng,;(X;) = {v} for some anchor v. Because an anchor cannot be a candidate vertex
by definition, and because G} — Cand = G; — Cand, the vertex v is also contained
in G!. This means that Rule 5 can remove X' from G/ with the same anchor v. Thus,
ex(G ) > ex(Gi ).

C0n51der now the case that a rule different to Rule 5 removes X; from G;. Then
X! NS # . For every vertex s € X; N S, the subgraph Y; is a star, and thus by
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Proposition 4 it holds ex(Yy) = |E(4ﬂ' Furthermore, if X":=X] \ Usex;ms V(Yy) is
non-empty, then X” is a clique (removed by Rule 2/5/7) and thus connected.

Hence, repeated applications of Proposition 2 in appropriate order (such that all
generated intermediate graphs are connected) then yields

E(Y, X/ns E(Yy)| — 1

seXins seXins

A further application results in
1 |[E(Y)|—1 1
ex(G)) = ex(Gl, ) + ex(G}[X/]) — 1= ex(Gi )+ Y. ST -7
seX/ns

It holds |I"| = Y s IV(Y) \ {s}| = X g |E(Yy)|. Because |S| < 3k and only
at most k times a rule different to Rule 5 is applied (otherwise, (G", k) would be a
“yes”’-instance), it follows that

|E(Ys)| —1
4

| —3k—k || — 4k
> >

/ /
ex(Gp) = ex(G)) + Y > Z =0

sesS

k
4

which is larger than ﬂ—i if |I"| > 5k. Therefore, (G", k) is a “yes”-instance if |I"| > 5k.
This shows the claim. <o

Up to now we have already shown that at most 5k special blocks contribute a vertex
to I or (G, k) is a “yes”-instance. It remains to find a bound for the number of special
blocks C that do not share a vertex with I".

Let C be such a special block, and let i be the largest index such that X; NV (C) # @.
If C contains a fixed vertex, then X; consists of this fixed vertex and k was decreased
by 1 when Rule 5 removed X;. If the intersection Ngr(Cry) N S would contain a
vertex s’ that is not the anchor of X;, then the star Yy could be enhanced by a vertex
from Cjp. Hence, Ngr(Cry) N S consists of a single vertex s, which is the anchor
of X;. In particular, X; got removed by Rule 5.

Let Z be the connected component of G” — § containing the block C. We now
consider the following two cases:

1. If Z contains another special block C’, then one vertex of C’ is contained in I.
This is because in every connected component of G" — S only at most one block
can have an anchor in S (namely, the one that is removed last) and only these
blocks can contain fixed vertices. Hence, the number of such blocks C is bounded
by |

2. Now let Z not contain another special block. If | X;| is odd, then k is decreased
by 1 during the application of Rule 5. If C is an isolated block in G" — S, then
Lemma 9 assures that ex(G;) > ex(G;_ ) + %.

It remains the case that C is not an isolated block, but all other blocks of Z are
not special. Let C’ # C be a leaf block of Z. As C’ has not been eliminated
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by Rule 8, it must contain exactly two vertices, namely an internal vertex and an
external vertex w. Then V(C’) \ {w} got removed by Rule 5 using w as anchor.
Because |V (C’) \ {w}| = 1is odd, k was decreased by 1 in that iteration.

Combining these two observations yields that the case that Z does not contain
another special block can only occur at most k times or (G”, k) is a ““yes”-instance.

Hence, the number of special blocks that do not share a vertex with I" is bounded
from above by |I"| 4 k. This means that in total there are at most 2|I"| 4+ k special
blocks. As we already pointed out that (G”, k) is a “yes”-instance if |I"| > 5k, the
lemma follows. m|

Now that we have bounded the number of special blocks in G" — S, we can turn to
the task of bounding the total number of blocks in G" — S. In the following lemmas
we show that a constant fraction of all blocks is special.

Lemma 11 The number of A-blocks in G" is at most the number of non-A-blocks
in G".

Proof Assume the contrary. By Rule 8, any leaf block C of G" — S cannot be a A-
block, as otherwise one could set X = Cjy¢ with | X| =2 > % = w
Hence, there are two A-blocks Cy, C» which share a common vertex v. Then Rule 9
applies. O

Definition 4 We define ablock forest F of G" — S in the following way. For a connected
component Z of G" — S, let Cr be an arbitrary block in Z. For every block C in Z,
there is a vertex vc in F. Add an edge {vcy, vc} for every block C sharing a vertex
with Cg. Additionally, add an edge {vc,, vc,} if Ci and C share a vertex and every
path from a vertex in Cg to a vertex in C; contains at least two vertices from Cj.

It is easy to verify that any block forest is actually a forest.

Lemma 12 [f more than k non-special blocks in G" — S have an even number of
vertices, then (G”, k) is a “yes”-instance of SIGNED MAX- CUT AEE.

Proof Let B be a non-special block of G" — S, and let w be the external vertex of B.
Then Rule 5 removed V (B)\{w} using w as anchor. If |V (B)|is even, then |V (B)\{w}|
is odd and hence k was decreased by 1 in that iteration. O

Lemma 13 If G" — S has more than 48k blocks, then (G", k) is a “yes”-instance of
SIGNED MAX- CUT AEE. Otherwise, G" — S has at most 48k external vertices, and

> e | Bext| < 96k.

Proof Consider a leaf block C of G” — § that is not special. Then C cannot have at
least three vertices due to Rule 8. Every block with exactly one vertex must be special.
Hence, every leaf block is either special or it has exactly two vertices, i.e., due to
Lemma 10 and Lemma 12 there are at most 12k blocks that are leaf blocks or have an
even number of vertices.

Let F be a block forest of G" — S. Every leaf of F' corresponds to a leaf block
in G" — S and every block C in G" — § with |Cex| > 3 corresponds to a vertex with
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degree at least three in F. Because in every forest the number of leaves is at least the
number of vertices with degree at least three, there are at most 12k such blocks.

Now consider one of the remaining blocks C. Then C is not special, contains at
most two external vertices, and |V (C)] is odd. Because it cannot be shrunk by Rule 8,
it holds that |V (C)| = 3 and thus C is a A-block. This means that with the above
arguments we bounded the number of blocks that are not A-blocks by 24k. Lemma 11
yields that there can only be up to 24k A-blocks. From this the bound of 48k blocks
follows.

Let U be the set of external vertices in G" — §. Every external vertex in G" — S
which is in ¢(v) blocks induces ¢ — 1 > 1 edges in F. Because F is a forest, it holds
|E(F)| < |[V(F)| < 48k. Thus, > pc |Bext| < 3 ey c(v) < [E(F)| + |U| < 96k.

O

Now we have bounds for the total number of blocks and the number of external
vertices in G” — S. The number of internal vertices of non-special blocks is easily
upper-bounded by the number of external vertices (otherwise apply Rule 8). So the
remaining challenge is to find an upper bound for the number of internal vertices in
special blocks.

We use the same approach as for Lemma 10, which already bounded the number
of special blocks. There we generated a vertex-induced star Y for every s € S, which
contained internal vertices of G" — S that were all adjacent to s. Intuitively speaking,
every special block adjacent to s contributed a leaf to Yy, which lead to a constant
gain in our bounds for the excess of G". Now a constant gain per special block is
not enough for our purposes. Instead we need a gain that grows proportionally to the
number of internal vertices in a block.

Let B be a special block of G" — S. First note that due to Rule 8 at most | Bex¢| +
| Bint|/2 vertices of Bine can be non-adjacent to S, i.e., it suffices to find a bound
for |[Ngr(S) N Bin|. Let s € S be a vertex that is adjacent to Biy. Select subsets
UT S NG ()N V(Bin), U™ S Ng:(s) NV (Bin), and U € V(Bin) \ Ngr (s) with
the following properties:

- |UT U U™ is maximal.
- lUf1=1u~|| =10]+ 1.

We will show that we can cover a constant fraction of all internal vertices of Bjp; if
we repeat this procedure for every vertex in S. Then we follow the lines of the proof
of Lemma 8: We can subdivide U into to sets UT and U~ such that|{Ut U U™T| =
|U~UU~|— 1. This means that (Ut UU, U~ UU ™) induces a maximum balanced
subgraph of G"[U* U U~ U U]. Then we add the vertex s to the left-hand side
of the partition and increase thereby the number of edges in the induced subgraph
by |[UT U U~ |, whereas the Poljak—Turzik bound only increases by roughly the half
of it. Thus the excess bound grows linearly in |U+ U U~ | and thus in | Ngr (s) N Bin|-

Lemma 14 Let G be a connected signed graph with a cut vertex s € V(G) such that
for every connected component C of G — s the following properties hold:

— C is a clique containing only negative edges.
~ [INF ) N V(O] = ING () N V(O] = IV(C)\ Ng(s)] + L.
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Then ex(G) > WM.

Proof Let C be a connected component of G — s. Furthermore, let UT = V(C) N
NE($), U™ =V(C)NNg(s),and U = V(C) \ Ng(s).

First note that C is an odd clique, i.e., ex(C) = 0. Because ||U+| — |U’|} =|U|+1
and G — s only contains negative edges, there is a partition U™ & U~ of U such
that Ut UUT| = |U-UU | —1,ie, (Ut UUT, U~ UU") induces a balanced
subgraph of size pt(C) in C. Then ({s} U UT U U™, U~ U U™) induces a balanced
subgraph of size pt(C) + |Ng(s) N V(C)|, whereas pt(G[V (C) U {s}]) = pt(C) +
w + 4]'1' Therefore,

INg(s)N VO] 1 _ [V(O)

ex(G[V(C) U {s}]) > 3 1 1

where the last equality holds because |V (C) N Ng(s)| = |[V(C) \ Ng(s)| + 1. By
Proposition 4, we conclude that ex(G) > W(GA‘M. O

Lemma 15 [f there are more than 111k internal vertices in special blocks in G" — S,
then (G", k) is a “yes”-instance of SIGNED MAX- CuT AEE.

Proof For notational simplicity, all neighbourhoods in this proof are with respect
to G".

For a vertex s € S, let W, be the union of all vertex sets X; such that s is the anchor
when Rule 5 removes X; from G;. Let W:=J, ¢ W;. Furthermore, let I":={ be the
set of reattached vertices, and let Y;:={s} for every s € S. (Note that Ys is a set as
opposed to a subgraph in the proof of Lemma 10, but this is merely a technical issue.)

For all blocks B of G" — S and everyi = ¢ — 1, ..., 0 in decreasing order, run the
following procedure successively for every s € X; N S: Let X:=Bjy \ (F U T U Wy).
Let U C XNN(s), Ut € XNNt@)and U € X \ N(s) with |[U~ U UT|
maximal such that [|[U~| — |UT|| = |U| + 1. If such sets exist, i.e., if X N N(s) # @,
thenadd U" UUT U U to Yy and to I'.

We define a sequence of graphs (G" = G, ..., G;) in the following way: For
everyi € {0,...,q — 1}, let X:=(X; \ N U UseX,-mS Y,, and let G;H::G; - X

Claim 3 Foreveryi =0,...,q — 1, the following properties hold.

1. The graph G/ is a vertex-induced subgraph of G; with G; — Cand = G/ — Cand.
2. Both G"[X]] and G’ are connected.

Proof of the claim The proof is identical to the proof of the corresponding claim in
Lemma 10. For completeness we repeat it here.

Lets € Sand w € V(Y) \ {s}. As w is not contained in S, it originally got
removed by Rule 2/5/7 and this happened not before s got removed (by the definitions
of these rules). Hence, every vertex of I" cannot be removed later than originally,
which is why G/ must be fully contained in G;. Furthermore, as only candidate vertices
of G" — § get reattached, the claim G; — Cand = G; — Cand follows trivially.

For the second part, first note that the subgraphs G"[X l/ N ST and G[Ys] for all
s € X; N S are connected. If Rule 5 removes X; from G;, then X; NS = @, i.e.,
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G’[le] is a vertex-induced subgraph of the clique G"[X;] and thus connected. If
Rule 2/7 removes X; from G, then Ng, (X;\S) € X; NS, i.e.,eachvertex s’ € SNX;
for j > i is non-adjacent to X; \ S in G". Hence, at least one set Y;,s € X; N S,
contains a vertex v from X; \ S. The graph G” [(Xl’. N X;) \ S]is a vertex-induced
subgraph of the clique G”[X; \ S] and thus connected. Hence, every vertex of X! is
adjacent to X; N S = X N S or to v. Thus, G"[X/] is connected.

Regarding G/, we show that for every v, v’ € V(G!) there is a [v, v']-path in G.
The vertices v and v’ are also contained in G; because G/ is a subgraph of G;.
Because G; is connected, there is a path v = py, ..., py = v’ in G;. If this path is
not fully contained in G/, let j, j* € {1, ..., £} be indices such that p;, p;» € V(G})
and pjy1,...,pj—1 ¢ V(G}). We show that there are vertices w, w’ € V(G}) for
which G"[{p;, w, w’, pj}] is connected. This suffices to show the claim, as G; is a
vertex-induced subgraph of G".

Because G; — Cand = G; — Cand, the vertices Pj+1s ..., pj—1 must all be non-
fixed internal vertices, and because they form a path, they must all belong to the same
block C of G" — S. There are now two possibilities for p; and p;: Each of the two
is either an external vertex of C or contained in S. If p; is adjacent to every internal
vertex of C, we can set w:=p;.

Otherwise p; € S. Let d be the index such that p; € X4. Because p; € V(G)), it
holds d > i. Furthermore, as p;y1 ¢ V(G)), itholds p;,1 € X; forsomet <i <d.
This means that Y, i contains a vertex w from Cjy, for otherwise p;;1 could have
been added to ij. In the same way we can find a vertex w’ € (Cip N ij,) Uipj}
In any case, w, w’ € V(C) N V(G}), and {w, w'} € E(G}). This shows the claim. ©

Claim 4 The following inequalities hold for everyi € {0, ...,q — 1}.

L IfX; NS # 0, then ex(G}) = ex(G}, ) + Ysexrns T — 1.

2. If Rule 5 removes X; from G; with an anchor w € V(G;), then
ex(G}) > eX(G’.+1) +min{| X, NN, [ X, NN ()]} .

1

In particular; €x(G;) > ex(G}_ ) for the case that w ¢ .

1

Proof of the claim 1. First of all we know from Lemma 14 that ex(G[Y]) > Zsisll
for every vertex s € le N S. Furthermore, every subgraph G[Ys],s € le ns,
is connected by construction. The set X} \ (I" U S) is also connected because it
is a vertex-induced subgraph of X; \ S, which is a clique by the definitions of
Rules 2/7. Hence, there is an ordering Zi, ..., Z4 of the sets le \(I"US) and
(Ys)ses such that every graph (G[Z1 U...U Z;]);<4 is connected. We can deduce
from the definitions of Rules 1-7 that d < 4. Hence, a (d — 1)-fold application of
Proposition 2 results in

- Yo\ {s}l 3
ex@GiIX[D= Y, — -
seXNS

Another application of the same proposition yields the first part of the claim.
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2. Like in the proof of Lemma 10, we use the fact that G is a vertex-induced subgraph
of G; with G;. — Cand = G; — Cand. This means that the anchor w of X; is also
contained in G/ and that X; C X; cannot have any other neighbours than w. Then
Rule 5 can remove X/ from G/ using w as anchor. The second part of the claim
follows now from Lemma 8. o

For an index i such that X/ is removed by Rule 5 from G/ using an anchor s € S,
define o;:=min{|X; N N*(s)|, X/ N N~ (s)|} and B;:=max{| X, N NT(s)|, [X] N
N7~ (s)|}. Furthermore, let oy be the sum of all «; such that s is the anchor of X l’ and
leto:=) go.

Because X; NS # ¥ for at most k many indices i (otherwise, (G, k) is a “yes”-
instance), the previous claim now shows that

ex(G’):ex(Gg)zZm:J—k+a:?Jra—k.

ses

Hence, if o > % orif |I'| > 5k, then ex(G") > § and (G", k) is a “yes”-instance.

It remains to show that the total number of internal vertices in special blocks is
bounded by ® (|I"|+«). Let B be aspecial blockof G" — S andlet X = By \(I"UF) =
(BintNCand) \ I" be the remaining candidate vertices in B. Let i be the smallest index
such that V(B) N X; # @. There are the following possibilities.

1. The vertex set X; is removed by Rule 2/7 from G; or X; is removed by Rule 5 using
an anchor that is an external vertex of G" —S. Then V(B) = BextU (Binn NN UX,
because if B contains a fixed vertex, then this vertex must be an external vertex
of G" — §.

Suppose there were x1, xo € X such that thereis a vertexs € (N (x1)\NT(x2))N
S. Then x; and x; could have been added to Y,. (Note that x; and x> cannot be
contained in Wy because the anchor of X; is not in S.) The same argument for
negative edges yields N7 (x) = N7 (X) and N~ (x) = N~ (X) forall x € X.
Because Rule 8 cannot delete vertices from B, it now holds that

IX| < VB +ING) N S| _ [Bext| + [Bine N I + [ X[+ [N(X) N S|
=< 5 5 )

i.e., | X| < |Bext| + |Binc N I'| + |N(X) N S|. Now for every s € N(X) N S there
is a vertex of Bjy in Y (otherwise we could add an arbitrary vertex of N(s) N X
toit). Hence, |[N(X) N S| < | Bin¢ N I"| and the bound simplifies to | X| < | Bex(| +
2B NI

2. The vertex set X; is removed by Rule 5 using a vertex w € Bjp; N F as anchor.
The only difference to the case before is that Bj,; now contains a (single) fixed
vertex and thus |V (B)| = |Bext| + |Bint N | + | X | + 1. The same reasoning results
in the bound | X| < |Bext| + 2 - |Bint N I'| + 1. Note that this case occurs only at
most | F| < k times.

3. The vertex set X; is removed by Rule 5 using a vertex s € S as anchor. Then B
does not contain a fixed vertex because we chose i as the smallest index such
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that X; contains vertices from B, and an anchor from s means that G;1; cannot
contain vertices from V (B) any more.

The difference to the cases before is that edges from s to X can be positive or
negative, i.e., not all vertices of X have the exactly same neighbourhood. But with
the same arguments one shows that N7 (x)\ {s} = NT(X)\ {s}and N~ (x)\ {s} =
N7 (X) \ {s} for all x € X. Furthermore, because X; does not contain vertices
from S, the set X is identical to X/, which has size | X|| = o; + f;.

Again due to Rule 8 we see that

B < VBI+INX) OS] _ |Bextl + [Bine N I + i + Bi + IN(X) N S|
= — ’
2 2

ie., Bi < |Bext| + |Bine NI +a; + IN(X) N S| < [Bexe| + 2+ |Bine N I'| + ;.
Then |X| = a; + Bi < |Bext| +2 - |Bine N I'| + 2¢;.

Putting these bounds together shows that the number of internal vertices in special
blocks can be bounded by

> 1Bl =Y (BN F|+ B N | + |Bin \ (F U T)))
BeB* BeB*

<k+I|T+ Y |Bu\ (FUD)|
BeB*

<k+IT1+ Y (1Bex| +2 B N T +k + 20
BeB*

= > |Bewl + 2+ II'| + 2k + 20
BeBB*

Lemma 13 showed that ) gepr |Bextl < 96k. Furthermore, we discussed already

that o < % and |I"| < S5k or (G”, k) is a “yes”-instance. Thus, the total number of

internal vertices in special blocks is bounded from above by 96k + 10k + 2k + % <

111k. O
We are now ready to prove Theorem 2.

Proof of Theorem 2 Let (G°, k) be an instance of SIGNED MAX- CUT AEE. Like in
Sect. 3, apply Rules 1-7 exhaustively to (G°, k) in time O (k - |E(G?)), producing an
instance (G’, k") and a vertex set S of marked vertices. If ¥’ < 0, then (G’, k") and
thus also (G, k) is a “yes”-instance.

Now apply Rules 8-9 exhaustively to (GY, k) in time O(|E(G)]) (Lemma 6) to
obtain an equivalent instance (G”, k). Check whether (G”, k) is a “yes”-instance due
to Lemma 13 or Lemma 15. If this is not the case, then there are at most 3k vertices
in S, at most 48k external vertices in G" — S and at most 111k internal vertices in special
blocks. If there were more internal than external vertices in a non-special block, we
could apply Rule 8 to this block. Thus, the number of internal vertices in non-special
blocks is bounded by 96k according to Lemma 13. Hence, the total number of vertices
in G” is bounded by 3k + 48k + 111k 4 96k = 258k. O
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5 Linear Vertex Kernels for A-Extendible Properties

In this section we extend our linear kernels for SIGNED MAX- CUT to all strongly
A-extendible properties satisfying (P1), or (P2), or (P3). Henceforth, fix a strongly A-
extendible property /7, and let (G, k) be an instance of ABOVE POLJIAK—TURZ{K(IT).
For notational brevity, we assume the empty graph to be in I7.

As in the previous section, we use a set of 1-safe reduction rules to find a set S such
that G° — S is a clique forest; the difference compared to SIGNED MAX- CUT is the
different change of k. These rules were initially devised by Mnich et al. [30]; for sake
of completeness, we list them here. Every rule takes an instance (G, k) and produces
an instance (G', k") such that (G, k) is a “yes”-instance if (G’, k') is. Initially, S:=0.

Reduction Rule 10 Let v € V(G) and C be a connected component of G — v such
that G[V (C) U {v}] is a clique. Delete C from G and set k' = k.

Reduction Rule 11 Suppose Rule 10 does not apply. Let C1, . . ., Cq be the connected
components of G — v for some vertex v € V(G). If at least one of the C;s is a clique,
and at most one of them is not a clique, then add v to S, delete v and all the C;s which
are cliques from G, and setk’' = k—d - %, where d is the number of deleted cliques.

Reduction Rule 12 For vertices a,b,c € V(G) inducing a path (a, b, c) such
that G — {a, b, ¢} is connected, add a, b, c to S, delete them from G, and set k' =
1—)

A
Reduction Rule 13 Suppose Rule 12 does not apply. Let v,b € V(G) such
that {v, b} ¢ E(G). Let Cq, ..., Cy be the connected components of G — {v, b}. If
there is at least one C; such that both G[V (C;) U {v}] and G[V (C;) U{v}] are cliques,
and there is at most one C; for which this does not hold, then add v, b to S, delete
them from G, delete all the C;s which satisfy the conditions, and set k' = k — 1%)‘

Proposition 6 [30, Lemmas 6-8] Rules 10-13 are I-safe and can each be applied
in polynomial time. To any connected graph with at least one edge, one of these rules
applies and the resulting graph is connected. The exhaustive application of the rules
10 (GY, k) either decides that ex(G®) > k, or finds a set S of at most % vertices such
that G° — S is a clique forest. This also holds for all strongly A-extendible properties
of oriented and/or labelled graphs.

The detection which of the reduction rules can be applied to a graph G is completely

analogous to the SIGNED MAX- CUT reduction rules. Hence, it follows immediately
from Lemma 3 that the rules can be applied exhaustively in time O (km).

5.1 Linear Kernel for Properties Diverging on Cliques
We first show that ABOVE POLJAK—TURZIK BOUND(IT) admits kernels with O (k)

vertices for all strongly A-extendible properties I7 that are diverging on cliques and
for which ex(K;) > O foralli > 2.
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For this subsection, let (G = Gy, ..., G,) be the sequence of graphs generated
by the exhaustive application of Rules 10-13 to (G, k), let S be the set of marked
vertices, and let Xo, ..., X, be vertex sets such that G; — X; = G; foralli < g.

Definition 5 Let i < g be an index such that Rule 10 removes X; from G;. Let w €
V(Gi4+1) be anchor of X;. We call the vertices from X; bad if ex(G[X; U {w}]) = 0.
We also call the block of G® — S containing X; bad.

Lemma 16 Let I1 be a strongly \-extendible property diverging on cliques, and
let (G, k) be an instance of ABOVE POLJAK—TURZIK(II). Let I" be the set of
bad vertices resulting from an exhaustive application of Rules 10-13 to (G", k).
Then |V(GO)\ I'| = O(k) or (G”, k) is a “yes”-instance.

As a consequence, if eX(K;) > 0 foralli > 2, then ABOVE POLJIAK—TURZIK(IT)
admits a kernel with O (k) vertices.

Proof We know already that |S| = O (k) or (G° k) is a “yes”-instance. If ex(K;) > 0
for all i > 2, then there are no bad vertices, i.e., |I'| = 0. In the following we show
that there is a constant ¢ > 0 such that ex(G;) > ex(G;3+1) +¢ - |X; \ (SU )|
for every index i < ¢g. This implies that |[V(G) \ (SU I')| = O(k) or (G% k) is a
“yes”-instance, showing the lemma.

Because IT diverges on cliques, there is by definition an integer j € N and a
constant a > 0 such that ex(K ;) = % + a. Note that j only depends on /7 and not
the instance (G, k). Hence, we can treat j as constant for a given property /7. Let

p .| ex(G) .
t:=min{ ——— | eX(G) > 0and (G) = K; forsome 2 <i < j;.
IV(G)I

Then 7’ is well-defined, since j is constant; moreover, it can be computed in polynomial
time by computing the excess of all graphs G such that (G) is a clique of size up to j.
Furthermore, t/ > 0 holds by definition.

Let T:=min{7/, ij} > 0.

Claim 5 Let C be a clique with |V (C)| > (a+3~1%)-(‘7’.—7:)_1=:M. Thenex(C) >
T V(O] +3- 132

Proof Leti:=|V(C)|, and let r:=L§J. Then Proposition 1 assures that ex(C) > r - a.
This means that

i 1—A )
eX(C)Zraz 7'0_6123'—+‘L’°l,
J 2
where the last inequality holds if

) (a ) 1—x
i-|-—7t)=>a+3- —— .
j 2

This is exactly the bound for i = |V (C)| given in the claim. Note that % —17>0by
the definition of 7. o
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Let now e:=min{2 2M} > 0.
Claim 6 Foreveryi < q, it holds ex(G;) > exX(Git+1) +¢€ - |X; \ S|.

Proof of the claim Leti < g. We consider the following different cases.

1. Rule 12 removes X; from G;. Then there is nothing to show, as X; \ S = .

2. Rule 10 removes X; from G;. Let C and v be defined like in Rule 10, i.e., X; =
V(C), C is a connected component of G; — v, and B:=G;[V (C) U{v}] is a clique
of size at least 2. If C contains bad vertices, there is again nothing to show. Assume
therefore from now on that V(C) N I" = (. This means that ex(B) > 0.
Because |X; \ S| = |V(B)| — 1 > |V(B)|/2 and because B is a block of G;, by
the block additivity of I7 it suffices to show that ex(B) > t - |V (B)].

If|V(B)| < j, this is immediately clear. Otherwise, let r:= LMJ. Proposition 1
assures that ex(B) > r - a, whereas |V(B)| < (r + 1) - j. Because r > 1, we
therefore obtain \G:i(((g))l > G if) = zi > T,

3. Rule 13 removes X; from G;. Let v,b € X; N S. Mnich et al. [30, Observa-
tion 19] showed that X; consists of v, b, and a single clique C. If |V (C)| > M,
thenex(C) > 7 -|V(C)|+3- 1%)‘ Proposition 1 then shows

11— 11—
ex(Gi[X;]) = ex(Gi[X; \ {v}]) — — = ex(Gi[Xi \ {v, b}]) —2- >

1—A
>7-|\V(O)|+ ——.
2
Another application yields
1—A
ex(G;) — ex(Gi+1) = ex(Gi[X;]) — — ZT V(O] =e- V(O] .
Otherwise, |V (C)| < M. Because Rule 13 is 1-safe, it holds

-2 1-—4
— > > — >
ex(Gi) — ex(Git1) = T, VO ze- VO .

4. Rule 11 removes X; from G;. Let Cy, ..., Cy be the connected components
of Gi[X; \ S]. Then every C; is a clique. Note that d is exactly the variable
named d in the definition of Rule 11.

Order the cliques so that |V(C;)| > M if and only if j < p for some p €
{0,...,d}.
If p = 0, then, as Rule 11 is 1-safe, it holds

1—A
ex(Gi) —ex(Giy) zd - ——=d- W [Xi\ S| =¢&-1X;\ S| .
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Consider now the case p > 0. The graph G":=G — j<p V(C ;) is still connected.
Then the previous claim together with Proposition 2 yields

P P
1—A 1—x
!/ /
ex(G;) = ex(G )+j§—1 T‘IV(C,')I—i—2p~—2 > ex(G )+,§_1 f~|V(Cj)|+—2 .

NowifCy, ..., Cp did notexist, then Rule 11/13 could stillremove Cp 11, ..., Cq,

decreasing k by (d — p) - 1% >e- Zj>p |V (C;)|. Now observe that

1—A

ex(Gi = (Xi\ 8)) z ex(Giy1) = ——.
because X; N S consists of a single vertex. Putting these bounds together yields
the desired result ex(G;) > ex(G;;1) +¢ - |X; \ S|. o
The lemma follows now immediately from the previous claim. O

Theorem 4 Let IT be a strongly A-extendible property. If & # % or G € II for
every G with (G) = K3, then ABOVE POLIAK—TURZIK(I1) admits a kernel with

O (k) vertices.

Proof Crowston et al. [9, Lemmas 24-26] show that if A # % or K3 € I, then I
diverges on cliques and ex(K;) > O for alli > 2. Therefore, we can apply Lemma 16.
]

5.2 Strongly 5 1_Extendible Properties on Oriented Graphs

We now turn to strongly %-extendible properties IT on oriented graphs. We can now
use a subset of Rules 1-7 again, to be more precise, exactly the rules that are applicable
to signed graphs with only negative edges. This has the advantage that we will be able
to reuse Lemma 7.

We restate the rules here because the parameter k is scaled by a factor of % due to
the different problem definitions. Let G always be a connected graph.

Reduction Rule 14 Let C be a connected component of G — v for some vertex v €
V(G) such that G[V (C) U {v}] is a clique. Delete C and set k' = k.

Reduction Rule 15 Let C be a connected component of G — v for some vertex v €
V(G) such that C is a clique. If there exist a,b € V(C) such that G — {a, b} is
connected and {a, v} € E(G) but {b, v} ¢ E(G), thenadd a, b to S and delete them
from G, and setk' =k — 5

Reduction Rule 16 Let (a, b, ¢) be an induced 2-path for some a, b, ¢ € V(G) such
that G — {a, b, ¢} is connected. Add a, b, c to S and delete them from G, and set k' =
k— 1.

1
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Reduction Rule 17 Let v,b € V(G) such that {v, b} ¢ E(G) and G — {v, b} has
exactly two connected components C, Y. If G[V(C) U {v}] and G[V(C) U {b}] are
cliques, then add v, b to S and delete them from G together with C, and setk' = k — zlt

Rules 14-17 are exactly Rules 5/3/6/7 for SIGNED MAX- CUT AEE with all edges
negative.

Note that the concept of bad vertices translates naturally to vertices removed by
Rule 14, which is equivalent to Rule 10.

Lemma 17 Rules 14-17 are 1-safe. To any connected graph with at least one edge,
one of the rules applies and the resulting graph is connected. If S is the set of marked
vertices, then G — S is a clique forest. If |S| > 12k, then (G, k) is a “yes”-instance.

Proof First note that we cannot deduce 1-safeness from the fact that these rules are
1-safe for SIGNED MAX- CUT AEE. But Rules 14/16/17 are 1-safe because they
are equal to or special cases of Rules 10-13, which were shown to be 1-safe for all
A-extendible properties.

Now we show that Rule 15 is 1-safe. Let G, a, b, v and C like in the description
of the rule, and let G’ be the resulting graph. Let H’ be a IT-subgraph of G'. We
extend H' to a IT-subgraph H of G by adding the vertices a, b, the edge {a, b}, and
at least (Wl edges between {a, b} and V(G’). We can do this due to the
extendibility property of IT. Now observe that | E ({a, b}, V (G"))| is odd because every
vertex of V(G’) \ {v} is adjacent to a if and only if it is adjacent to b. Therefore, we
can guarantee that

2
|E({fa, b}, V(G")| + 1
5 :

|E(H)| > |E(H)| + 1+ PE({a,b}, V(G ))W

=|EH +1+

As pt(G) = pt(G') + 2 + 1 4 [EULLLVIG iy follows that ex(G) = ex(G') + 1,
i.e., Rule 15 is 1-safe.

Now we argue that one of the rules applies to any connected graph G with at least
one edge. Let G’ be the signed graph that results from adding a negative sign to every
edge of (G). We know from Proposition 5 that one of the Rules 1-7 applies to G'. To
be more precise, Rule 3/5/6/7 applies to G’ because all other rules require at least one
positive edge. But the mentioned rules correspond exactly to Rules 14—17, i.e., one of
these rules must apply to G.

Let H be the resulting graph after applying one of the Rules 14—17 to G, and let H’
be the resulting graph after applying the corresponding rule of the Rules 3/5/6/7 to G’.
Then (G’) = (H') and the same set of vertices has been marked. Therefore, we can
follow from Proposition 5 that H is connected and that G — § is a clique forest.

The last claim simply follows from the fact that Rules 14-17 decrease k by at
least % for every vertex that is added to S. Note that the change from |S| > 3k
to | S| > 12k stems from the different meanings of k: in the SIGNED MAX- CUT AEE
problem the question is whether ex(G) > ]‘—‘p whereas ABOVE POLJAK—TURZIK(IT)
asks whether ex(G) > k. O
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Like Crowston et al. [9], we restrict ourselves to hereditary properties. Let }3
be the orientation of K3 which is an oriented cycle, and let E3 be the only (up to
isomorphisms) other orientation of K3. Crowston et al. [9] showed that if I_()3E 11,
then also ;53 € I1, and thus Theorem 4 applies. We now consider the case that E3 ¢ Il
together with ;536 II.

Proposition 7 [9] Let IT be a hereditary strongly %—extendible property on oriented
graphs with ;36 I1. Then ex(K;) > O for alli > 4 and II diverges on cliques.

Following Proposition 7, Lemma 16 shows a “kernel” with O (k) + |I"| vertices,
where I is the set of bad vertices of an input graph The only oriented clique with

at least two vertices, but without positive excess is K 3, because ex(K»p) = 1 for 1 5"
extendible properties. Therefore, a vertex is bad if and only if it belongs to a set X

removed from G by Rule 14 using an anchor w such that G[X U {w}] 21_()3. Hence,
we only need reduction rules to bound the number of blocks B in a clique forest with

B EI_()g. (Note: If the anchor w is contained in S, then the resulting block in the clique
forest has only two vertices, but this can happen only once per connected component
of G" — §, the number of which is dominated by other tractable terms.)

Let IT be a hereditary strongly %-extendible property on oriented graphs with

Ege IT. Let (G°, k) be an instance of ABOVE POLJIAK—TURZ{K(IT). Lemma 17
either proves that (G, k) is a “yes”-instance, or it finds a set S of at most 12k vertices
such that G — § is a clique forest. Starting with (G, k), we apply the following
reduction rules, which on input (G, k) produce an equivalent instance (G, k).

Reduction Rule 18 Leta,b € V(G)\ S and w € V(G) \ {a, b} such that Ng(a) =
{w, b}, Ng(b) = {w, a}, and G[{w, a, b}] =K 3. Delete a and b from G.

Reduction Rule 19 Let By, By, B3 be non-leaf-blocks in G — S and let vy, ..., v4 €
V(G) be such that

— Vi, Vit1 € (B)ext foralli € {1,2,3};
— B; =K3 foralli € {1,2,3}; and
— Ng({v2, v3, wy, w2, w3}) = {v1, va}, where w; is the internal vertex of B;.

Delete v3, w3, and add edges {v>, v4} and {w», v4} to G.

Intuitively speaking, Rule 19 takes three blocks in G — S that form a “path” and are

N
all isomorphic to K 3. If all vertices except the “endpoints” v and v4 are not adjacent
to S and not contained in other blocks from G — §, then it is safe to delete one block.
For an illustration, see Fig. 2.

Lemma 18 Let IT be a hereditary strongly > L_extendible property on oriented graphs
with K 3€ I1. Then Rules 18-19 are 2-safe. The resulting graphs are connected.
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w1 wy W3 w1 w2
MA - M
V1 V2 V3 V4 V1 V2 V4

Fig. 2 Illustration of Rule 19

. - e . -

v1 U2 U3 V4 U1 v2

—--w
V4

Fig.3 The [1-subgraph Y in G and the I7-subgraph Y’ in G’ are highlighted by thick edges. At least half
of the dotted edges between H and Y or Y’, respectively, can be added to a IT-subgraph

Proof Let G’ be the resulting graph. Then G’ is clearly connected. Rule 18 is 2-
safe because ex(G) is additive on 2-connected components and G[{a, b, w}] is a
2-connected component of G.

To show that Rule 19 is 2-safe, let G=G- {va, v3, w, wa, wi}. Let X:=V (B1)U
V(B2) U V(B3) and X":=X N V(G’). First note that |E(H[X])| < 6 for any IT-
subgraph H of G and |E(H[X'])| < 4 for any IT-subgraph H of G’, for otherwise
there would be a block B; with |E(H[V (B;)])| = 3. This is a contradiction, as I7 is

hereditary and ;3§é I1. Also note that pt(G) = pt(G’) + 2.

As IT is hereditary, it holds that H[V(G)] € IT and H'[V(G)] € IT for all I1-
subgraphs H and H’ "of G and G’. Hence, it suffices to show that we can extend every
IT-subgraph HofGtoIl- subgraphs H and H' of G and G’ such that |E(H[X])| = 6
and |E(H[X’ D| =4.

Let H bea IT- -subgraph of G.LetY = G[X \ {v1, v4}] — {vpv3}and Y’ = G'[ X"\
{v1, v4}]. Examine Fig. 2 again for an illustration. Then ¥ and Y’ both are trees with
4 and 2 edges, respectively, and hence Y, Y’ € IT; see Fig. 3.

By the extendibility of strongly %—extendible properties, there is a IT-subgraph H
of G which contains all edges of H,all edges of Y and at least half of the edges between
them. There are exactly 4 edges between them H and Y, at most two of which can be

contained in H as otherwise E3 would be a subgraph of H. Hence, |E(H[X])| = 6.
With the same arguments we obtain a IT-subgraph H’ of G’ with |[E(H'[X'])| = 4;
this completes the proof. O

From now on, let G” be the resulting graph after the exhaustive application of
Rules 18-19 on G°. Furthermore, let (G" = Gy, ..., G ) be the sequence of graphs
generated by the exhaustive application of Rules 14-17 to (G, k), let S be the set of
marked vertices, and let Xo, ..., X,_1 be the vertex sets such that G; — X; = G4
forevery i < q.

Rules 18-19 are special cases of Rules 8-9. As Rules 14-17 are Rules 5/3/6/7
for SIGNED MAX- CUT AEE with all edges negative, the next lemma follows from
Lemma 7.
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Lemma 19 Rules 1417 can be applied exhaustively on the graph G” in such a way
that the set S" of vertices removed by their application is equal fo S.

Let B~ be the set of bad blocks in G” — S and let BT be the set of all other blocks
in G" — S. Let B be the set of bad special blocks, i.e., the set of blocks B € B
with Bip N Ngr (S) # @. Furthermore, let R be the set of vertices r € V(G") \ S such
that

1. r is contained in exactly two blocks By, B> of G" — S,
2. both blocks By and B, are bad,

3. (BDint # ¥ # (B2)int, and
4. Bj and B; are not special.

Lemma 20 It holds |B~| = O(|1B*| + |B| + |R)).

Proof Let V™=, <5- V (B) be the set of vertices contained in bad blocks (i.e., the
bad vertices together with anchors that are not in S and used to removed bad vertices),
and let H:=G[V~]. Because V~ C V(G") \ S and because G" — S is a clique forest,
also the graph H is a clique forest.

Consider now a block forest F of H (see Definition 4). For a block B of H, denote
the corresponding vertex in F by fp. Let ny, na, and n>3 be the number of vertices
in F with degree 1, 2, and at least 3, respectively. Every leaf fp of F corresponds to
a leaf block B in H, i.e., ny is at most the number of leaf blocks in H. Therefore we
first bound the number of leaf blocks in H.

Claim 7 The number of leaf blocks in H is bounded by O (|B*| + |l§|).

Proof of the claim Let B be a leaf block of H. Then there are the following possibil-
ities:

— B is an isolated block in G" — S. Let i be the index such that X; contains two

vertices of B. Then X; was removed by Rule 14 using an anchor w € V(G)

with G"[V(B) U{w}] 2;3. Because B did not get eliminated by Rule 18, it must
hold that Ngr(V (B)) \ {w} # . This means that B is special. There can only be
at most |Z§ | many of these blocks.

— |V(B)| = 2 and B is isolated in H, but not in G" — S. This means that B shares a
vertex v with a block from B™. This vertex v is not contained in any other block
from B~. Therefore, there can only be at most |B" | many of these blocks.

— |V(B)| = 2 and B is not isolated in H. Then B shares an external vertex with a
block B’ in H. Because every connected component of H can only contain at most
one block with exactly two vertices (namely, the block removed last), the number
of such blocks B is bounded by the number of blocks in H with three vertices.

— |V(B)| = 3. Then B contains three vertices u, v, w such that Ny (1) = {v, w}
and Ny (v) = {u, w}. Because u and v did not get eliminated by Rule 18, there
must be a vertex z € V(G) such that z € Ngr({u,v}). If z € S, then B is
special. Otherwise, B shares a vertex with a block from B, and this vertex is not
contained in any other block from B~. Therefore the total number of blocks B
with |V (B)| = 3 is bounded by |B| + |B*]. o
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Because F is a forest, it holds n>3 < nj. It now suffices to bound n; because the
number of blocks in H is equal to n| 4+ nz + n>3.
Let fp, and fp, be two adjacent vertices in F. There are the following possibilities.

— The degrees of both fp, and fp, are not equal to 2. The number of such pairs is
already bounded by O (n1).

— |Nu(fB,)| =2 and [Ny (fB,)| = 1. There are at most n; such pairs.

— |Nu(fB)| =2and |[Ny(fp,)| > 3. There are at most ny +n>3 < 2n such pairs.
One can easily see this by contracting all vertex sets X of F such that X is a path
and [Ny (x)| =2 forall x € X.

— |[Ng(fB)| =2and [Ny (fB,)| = 2. The number of cases where B; or B> is a leaf
block (this can happen if this block is selected as root of the connected component
of F in the definition of block forests) is bounded by the number of leaf blocks
in H.

The number of cases that By or B, contains only two vertices is bounded by the
number of connected components of H, which is in turn bounded by the number
of leaf blocks in H.

It remains the case that By and B are not leaf blocks and B and B> both contain
exactly 3 vertices. Then both blocks each contain exactly one internal vertex. The
number of cases where B or B3 is special is bounded by 1B|.

If this is not the case, let w be the external vertex shared by By and B,. Thenw € R.
Hence, the number of these remaining pairs is bounded by |R|.

This concludes the proof. O
Lemma 21 It holds |B*| + |B| = O(k) or (G", k) isa “yes”-instance.

Proof Let B € B and let i < ¢ be the index that generates B. If Rule 15-17
removes X; from G;, then ex(G;) > ex(Gi4+1) + % because these rules are 1-safe.

On the other hand, if Rule 14 removes X; from G; using an anchor w € V(Gj),
then ex(G;[X; U {w}]) > O because B is not a bad block. Because A = %, the
term 4 - eX(G) must be integral for every graph G. It follows from the block additivity
of IT that ex(G;) — ex(Gi41) = ex(G;[X; U {w}]) > Zl;- Hence, |B1| < 4k.

We now turn to the number of bad special blocks. Because Rules 14-17 is exactly
the subset of Rules 1-7 applicable to signed graphs without positive edges, and because
the kernelization Rules 8-9 for SIGNED MAX- CUT AEE and Rules 18—-19 for ABOVE
POLJAK—TURZIK(IT) do not change the number of special blocks, we can derive from
Lemma 10 that the number of special blocks in G" — S is bounded by O (k) or (G, k)
is a “yes”-instance. O

Lemma 22 It holds |R| = O (IR N Ngr(S)|). Furthermore, it holds |R N Ngr (S)| =
O(IBT| + |B| + k) or (G", k) is a “yes”-instance.

Proof For the first part of the proof, let r1, 72 € R be adjacent in G”. Then there
are by the definition of R three blocks By, B>, By € B~ such that r; € V(By),
ri,rp € V(By), and r, € V(B3), such that By, By, B3 are bad and each have an
internal vertex thatis not adjacent to S. Furthermore, there are no other blocks of G" — §
containing rq or r».
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Fig. 4 An example for the

sets T and U. The vertices t, to
are in T, the

vertices tl’ , tl” , té, té’ are the
corresponding internal vertices
in U, and s1, 57 are in S. Edges
contained in G[U] are bold

If both 71 and > were not adjacent to S, then all conditions of Rule 19 would be
met (r; and rp would correspond to v> and v3 in the definition of this rule). Hence, at
least one of r1 and r; is adjacent to S. Because every vertex of R is adjacent to at most
two other vertices from R, this means that |[R| = O(|R N Ngr(S)]).

Now we turn to the second part of the lemma. Let 7 be a maximum independent
set in G[R N Ngr(S)]. Again, as every vertex of R is adjacent to at most two other
vertices from R, it holds |T| > 1 - |R N Ngr (S)].

Every vertex t € T < R is by definition of R adjacent to exactly two internal
vertices ¢/, t” of G" — S, and these two vertices are not adjacent to S. Fort € T,
let Uy = {r,¢', 1"}, and let U:=J,7{t, 1", t"}. Then G"[U] is a forest, becaue if
there was an internal vertex x from G” — S adjacent to two vertices #1, t» € T, then #;
and 7, would be adjacent. See Fig. 4 for an illustration.

Because every vertex of T is adjacent to S, there is a set (¥)secs of stars with the
following properties:

— Every star Y is a vertex-induced subgraph of G” centered in s and its leafs are
from T.
= Uses V(Yy) covers T

Now we enhance the stars Y by replacing every leaf ¢ with Uy, i.e., we define Z; to

be the subgraph of G” induced by s and U; for every ¢t € T that is a leaf of Y. Then

every Z;, s € S,is aforest with |E(Z5)| =3 |E(Ys)| = 3|V (¥Ys) N T| many edges.

By the block additivity of 17, it follows ex(Z,) = *1YE0 for every s € S.
Repeated application of Proposition 2 yields

3AVE)NT] IS| 31T 18|

ex(GIZ) = ) 1 . YR

seS

where Z:=|J;cg V(Z;). This means that

c+1 3T|—|S|—c—1
>

ex(G") > ex(G[Z]) — > 1 ,
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where ¢ is the number of connected components of G':=G — Z. Now it suffices to
show that ¢ < |T| + |B™| + |B|, since then

2-|T|—|B*| - Bl — 0(k)

ex(G") >
(G") = n

ie., |T|=O0(BY|+|B|+k) or (G k)isa “yes”’-instance.

Let us first bound the number of connected components of G — S. It is clear
that G" — S can only have |B"| many connected components that contain a block
that is not bad. Let now W be a connected component of G" — S that contains only
bad blocks. If W contains only one block, then this block is special. Otherwise, W
contains at least two leaf blocks, and because only one of the (bad) blocks of W
can have size 2, there is a leaf block B in W with |V (B)| = 3. Because B was not
eliminated by Rule 18, it must be special. Hence, the number of connected components
of G" — S containing only bad blocks is bounded by |B] and thus the total number of
connected components of G — S is bounded by |B*| + |B].

Because every vertex from U \ T is an internal vertex in G" — S, the removal of
these vertices from G” — S cannot increase the number of connected components.
Furthermore, as every vertex from 7 is contained in exactly two blocks of G" — S,
its removal can increase the number of connected components by at most 1. Hence,
the number ¢ of connected components of G — Z is at most the number of connected
components of G — § plus |T|. This completes the proof. O

Theorem 5 Let IT be a hereditary strongly %-extendible property on oriented graphs

with K3€ I1. Then ABOVE POLIJAK—TURZIK(IT) admits a kernel with O (k) vertices.

Proof Let (G°, k) be an instance of ABOVE POLIAK—TURZ{K(IT). Apply Rules 14—
17 exhaustively, producing an instance (G’, k') and a vertex set S. If ¥’ < 0, then
(G’, k) and thus also (GY, k) is a “yes”-instance. Otherwise, |S| = O (k).

Now apply Rules 1819 exhaustively on (G, k) to obtain an equivalent instance
(G", k). Let I' be the set of bad vertices of G". Lemma 16 shows that |V (G")\ I'| =
O (k) or (G", k) is a “yes”-instance. Because every bad vertex is in a bad block and
every bad block contains at most three vertices, it holds |I'| = O(|B~|). Using
Lemma 20, Lemma 21, and Lemma 22, we can bound this cardinality by

IB™| = O(BT| +|B|+ |R]) = 0BT+ |B| + k) = O(k)

or (G", k) is a “yes”-instance. This shows the theorem. O
We are ready to complete the proof of Theorem 3.

Proof of Theorem 3 Let A € (0, 1) and let IT be a strongly A-extendible property of
(possibly oriented and/or labelled) graphs. If A # % or G € II for every G with
(G) = K3, we can use Theorem 4. Otherwise, we only have to consider the case
that I7 is a hereditary property of simple or oriented graphs.

— — —
Consider the case that K3€ IT or K3€ I1.1If K3€ IT, then Crowston et al. [9] show
that K3€ I1, i.e., we can use Theorem 4. And if K3€ I1, we use Theorem 5.
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Now we may suppose that G ¢ I1 for every G with (G) = K3. Then Crowston
et al. [9] show that [T is the set of all bipartite graphs. Hence, in the case of simple

graphs as well as if I—(>3, ;3¢ IT for oriented graphs, we can use Theorem 2 to obtain
a linear vertex kernel.

Itis easy to see that Rules 18—19 can be applied exhaustively in time O (m). As X is
constant and we can apply every other reduction rule in linear time, it follows a total
run time of O (A - km) = O (km). O

6 Discussion

For the classical (SIGNED) MAX- CUT problem, and its wide generalization to strongly
L-extendible properties, parameterized above the classical Poljak—Turzik bound, we
improved the run time analysis for a known fixed-parameter algorithm to 8% - O (m).
We further improved all known kernels with O (k3) vertices for these problems to
asymptotically optimal O (k) vertices. We did not try to optimize the hidden constants,
as the analysis is already quite cumbersome.

A natural question to ask is whether this problem admits faster algorithms and
smaller kernels, say with run time 2% - O (m) and 2k vertices respectively, or whether
such results can be ruled out assuming a standard hypothesis.

It remains an interesting question whether all positive results presented here extend
to edge-weighted graphs, where each edge receives a positive integer weight and the
number m of edges in the Edwards—Erd&s bound (1) is replaced by the total sum of
the edge weights.

Further, Mnich et al. [30] showed fixed-parameter tractability of ABOVE POLJAK—
TURZIK(IT) for all strongly A-extendible properties /7. However, the polynomial ker-
nelization results by Crowston et al. [9] as well as in this paper do not seem to apply
to the special case of non-hereditary %-extendible properties. Such properties I7 exist;
e.g., I[1 = {G € G| C 2 Kj3 for all 2-connected components C of G}. Also, for %-
extendible properties on labelled graphs we only showed a polynomial kernel for the
special case of SIGNED MAX- CUT. It would be desirable to avoid these restrictions.
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