
Algorithmica (2018) 80:2106–2131
https://doi.org/10.1007/s00453-017-0365-6

Compact Representation of Graphs of Small
Clique-Width

Shahin Kamali1

Received: 6 July 2016 / Accepted: 10 August 2017 / Published online: 1 September 2017
© Springer Science+Business Media, LLC 2017

Abstract The notion of clique-width for graphs offers many research topics and has
received considerable attention in the past decade. A graph has clique-width k if it can
be represented as an algebraic expression on k labels associated with its vertices.Many
computationally hard problems canbe solved in polynomial time for graphs of bounded
clique-width. Interestingly also, many graph families have bounded clique-width. In
this paper, we consider the problem of preprocessing a graph of size n and clique-width
k to build space-efficient data structures that support basic graph navigation queries.
First, by way of a counting argument, which is of interest in its own right, we prove
the space requirement of any representation is Ω(kn). Then we present a navigation
oracle which answers adjacency query in constant time and neighborhood queries in
constant time per neighbor. This oracle uses O(kn) space (i.e., O(kn) bits). We also
present a degree query which reports the degree of each given vertex in O(k log∗(n))

time using O(kn log∗(n)) bits.

Keywords Clique-width · Navigation oracles · Compact representation

1 Introduction

Graphs of very-large sizes have become increasingly important sources of data in
recent years. A natural question is how to represent and store these graphs efficiently.
Ideally, a graph is stored in a compressed form and, at the same time, it is possible
to run queries about it. A data structure is said to be compact if it represents a family
of data objects (here, graphs) using space O(χ), where χ is the information theory

B Shahin Kamali
shahin.kamali@umanitoba.ca

1 Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-017-0365-6&domain=pdf

Algorithmica (2018) 80:2106–2131 2107

lower bound for representing members of such family, i.e., a minimum number of bits
required to distinguishmembers of this familymodulo their isomorphism.Meanwhile,
a compact data structure should make possible to answer certain queries about the
data object without decompressing it. A compact structure is succinct if it represent a
member of the family in χ + o(χ) bits.

Random graphs are highly incompressible: the information theory lower bound for
representing a random graph with n vertices and at least m edges is Θ(m log(n2/m)),
which is quite high and can be matched by different adjacency lists [3,22]. One impor-
tant observation is that the graphs that appear in practice have certain structures which
distinguish them from random graphs. Therefore, one can hope to provide compact
data structures to represent real-world graphs. Toward this goal, space-efficient rep-
resentation of graphs with various combinatorial structures has been the subject of
research studies in the past decades (see [9, Chapter 5] for a review). Blelloch and
Farzan [4] present a compact representation of separable graphs which supports adja-
cency, degree and neighborhood queries in constant time. The storage requirement is
optimal for all monotone class of these graphs (a monotone class of graphs is defined
by a monotone property, i.e., a property that holds for every subgraph of a graph which
has that property). Similarly, there are succinct representations for partially ordered
set (posets) which answer basic queries in constant time [10,18]. One approach for
compact representation of graphs is to consider graphs with certain combinatorial
or structural properties, e.g., chromatic number or tree-width, and represent graphs
in a space that depends on the size of the graph and its given parameter. For exam-
ple, there is a succinct representation of graphs of size n and tree-width k which
needs kn + o(kn) bits and supports navigation and distance queries in constant time
[11].

In this paper, we consider the clique-width parameter for graphs. A graph has
clique-width k if it can be denoted by an algebraic expression using k labels (a formal
definition can be found in Sect. 2). A complete graph can be constructed with two
labels and hence has clique-width two. A complete bipartite graph also has clique-
width two. Interestingly, trees have clique-width three and any graph of tree-width k
has clique-width at most 3 ·2k−1 [5]. This implies that graphs of bounded clique-width
include a large spectrum of sparse and dense graphs, which include bounded-treewidth
graphs and other graph families such as cographs [7], distance-hereditary graphs [13]
and partner-limited graphs [21]. Many problems that are generally NP-hard can be
solved in polynomial time for graphs of bounded clique-width [6]. For example, every
graph property that can be expressed in monadic second-order logic has a linear-
time algorithm for graphs of bounded clique-width, assuming the clique-width term
is given [6]. This makes graphs of bounded clique-width particularly interesting for
further studies.

Implicit representations of graphs of bounded clique-width are previously studied
[8,16,20]. In these representations, vertices are assigned labels which encode the
structure of the graph. The adjacency of any two vertices can be checked by looking
at these labels. More complicated lables enable answering distance queries and in
general deciding any graph property expressible in a fixed monadic second order logic
taking as argument a fixed number of sets of vertices [8]. Unfortunately, in these

123

2108 Algorithmica (2018) 80:2106–2131

representations, the total space is not linear for graphs of bounded clique-width and
the time complexity of answering queries is not constant either.

In this paper, we consider the problem of preprocessing a graph of size n and
clique-width k to build space-efficient encodings to efficiently answer the following
queries:

– Adjacency query: given two vertices, indicate whether they are neighbors.
– Neighborhood query: given a vertex, report the set of its neighbors.
– Degree query: given a vertex, report the number of its neighbors.

By way of a counting argument, we show that Ω(kn) bits are required to represent
graphs of size n and clique-width at most k (up to isomorphism). Then we present
navigation oracles which can be stored in asymptotically optimal space. These oracles
answer adjacency queries in constant time. Reporting the set of neighbors of any given
vertex can be done in constant time per neighbor. For thementioned queries, our oracle
has size O(kn). Reporting the degree of each vertex can be done in O(k log∗(n)) time
with an oracle of size O(kn log∗(n)). We assume the standard word RAM model
where a word is Ω(log(n)) bits wide. This is a realistic assumption commonly made
in word RAM algorithms and succinct data structures [17]. We essentially assume that
a word of RAM is wide enough so that a vertex can be distinguished by a label that
fits in a word and can be read in constant time. Graphs that we consider are unlabeled,
unweighted, and undirected. We note that our oracles still work for directed graphs
with the exception that reporting outgoing/ingoing neighbors of a given node might
take more than constant time per neighbor.

2 Preliminaries

2.1 Clique-Width Decomposition and Union Trees

We formally define the notion of clique-width of a graph and introduce some basic
concepts associated with it.

Definition 1 [15] The clique-width of a graph G is the minimum number of labels
needed to construct G using the following operations:

– Creation of a new vertex v with label i (denoted by i(v))
– Disjoint union of two labeled graphs G and H (denoted by G ⊕ H)
– Joining by an edge every vertex labeled i to every vertex labeled j (denoted by

η(i, j)), where i �= j
– Renaming label i to label j (denoted by ρi→ j)

Throughout, we assume k denotes an upper bound for the clique-width of an input
graph. Every graph of clique-width at most k can be defined by an algebraic expression
using k labels. As an example, consider graph G of Fig. 1a which has clique-width
three. One algebraic expression for G is P = η1,3(η1,2(P1 ⊕ P2)), where

P1 = ρ3→1(ρ3→2(η2,3(η1,3(η1,2(1(a) ⊕ 2(b)) ⊕ 3(c)))) ⊕ 3(d)), and

P2 = ρ1→3(η2,3(η2,3(η1,3(η1,2(1(e) ⊕ 2(f)) ⊕ 3(g))) ⊕ 3(h)))

123

Algorithmica (2018) 80:2106–2131 2109

(a) (b)

Fig. 1 A graph G of clique-width k = 3 and a union tree associated with it. a Graph G, b a union tree of
G

The algebraic expression of a graph can be mapped to a rooted binary tree in which
each leaf corresponds to a vertex of the graph and each internal node is associated
with a union, join, or rename operation. Note that internal nodes associated with union
operations have two children while others have one child. For our purpose, we let each
internal vertex x correspond to a union operation, and associate with it a sequence S(x)
of join and rename operations that are performed before the next union operation. We
call this tree a union tree of the graph, and define the width of such tree to be the
number of labels used in the expression. Note that each internal node in a union
tree has exactly two children and is associated with a (possibly empty) sequence of
rename/join operations that follow the union operation. Figure 1b shows a union tree
of the algebraic expression of the graph of Fig. 1a.

Consider a union tree T for a graphG. We say T is proper if the following holds for
any vertex a ∈ T . Consider the graph Ga formed by the operations in the subtree Ta
rooted at a (including the operations in S(a)). If T is a proper tree forG, thenGa is the
same as the subgraph of G induced by vertices that are created in Ta . As an example,
consider the union tree of the graph of Fig. 1. This tree is not proper because in the
graph formed by the operations in the left subtree of the root, vertex d is isolated. On
the other hand, in the subgraph induced by the vertices created in the same subgraph
(a, b, c, d), d is connected to b and c.

Lemma 1 Any union tree T of a graph can be modified to become a proper union
tree of the same graph without increasing its width.

Proof For a node x ∈ T , let Tx denote the subtree of T rooted at x and let Gx denote
the subgraph of G formed by operations in the subtree rooted at x . Assume there are
two vertices u and v created in Tx that are connected in G but not in Gx . Let lu and
lv be labels of u and v after applying all operation in Tx (including the ones in S(x)).
We add operation ηlu ,lv

at the end of the sequence S(x). Clearly, this adds the missing

123

2110 Algorithmica (2018) 80:2106–2131

(a) (b)

Fig. 2 Converting a union tree to a proper union tree. Let x be the left child of the root in (a). Note that
d is connected to b and c in G while it is isolated in Gx . Since b, c have label 2 and d has label 1 at the
end of S(a), we add a join operation η1,2 at the end of S(x) in the new tree in (b). Similarly, we add a new
operation at the end of the sequence associated with the right child of the root so that induced by (e, f, g, h)
be the same as the graph created by operations in the right subtree of the root. The added operations are
highlighted in (b). a The union tree of Fig. 1, b the equivalent proper union tree

edge between u and v. Moreover, this does not change the graph that is eventually
formed by the operations in T . This is because all vertices of label lu are connected to
all vertices of label lv in G. This holds since u and v are connected in G and at some
ancestor node of x in T they are joined. As a result, adding the join operation will
create edges between vertices that will be eventually connected in G. This way, we
update T so that the join operation is applied a bit earlier to some of the neighboring
vertices in G. Figure 2 illustrates this for the union tree of Fig. 1. ��

2.2 Succinct Structures

Consider a string S of length n over an alphabetΣ of cardinality σ . Query rankS(i, c)
asks for the number of occurrences of c before position i , while selectS(i, c) asks for
the index of the i th occurrence of c in S (c ∈ Σ). There are succinct data structures
for rank/select that store the sequence in n log(σ)+ o(n) bits and supports rank/select
in constant time, assuming that σ is constant [2,14].

A balanced parentheses sequence is a sequence in which each opening symbol
has a corresponding closing symbol and the pairs of parentheses are properly nested.
Such sequence can be created using a formal grammar with production rules P →
(P) | PP | ε. An ordered tree of n nodes is equivalent to a balanced parenthesis
sequence of length 2n. These trees can be stored in a succinct manner using 2n+o(n)

bits in a way that many queries are supported in constant time. In particular, we are
interested in the following queries:

– rank(i,’(’), rank(i,‘)’), select (i,‘(’), select (i,‘)’): rank/select operations on
parenthesis (as defined before)

– pre-rank(i): pre-order rank of a given node at index i

123

Algorithmica (2018) 80:2106–2131 2111

– pre-select (i): selecting a node with a given pre-order rank
– parent (i): parent of a given node
– lca(i, j): least common ancestor of two nodes
– depth(i): distance of a node from root
– level-ancestor(i, d): ancestor of a node at a given depth
– child(i, q): the qth child of a node i
– child-rank(i): the number of siblings to the left of node i
– lea f -select (i): the i th leaf of the tree
– lea f -rank(i): the number of leaves that appear before node i
– lmost-lea f (i)/rmost-lea f (i): the leftmost/rightmost leaf of node i

Lemma 2 [19] It is possible to store a balanced parenthesis sequence of length 2n,
equivalently an ordered tree on n nodes, in 2n+o(n) bits so that all above operations
can be performed in constant time.

Multiple parenthesis sequences are a generalization of balanced parenthesis
sequences in which there are more than one parenthesis types; for example ([]([]()))
is a balanced parenthesis sequence with two parenthesis types. In this paper, we are
interested only in multiple parenthesis with two types, which are equivalent to ordered
trees in which each node is given a label of ‘0’ or ‘1’. Let m-enclose(i, k) denote a
query which gives the position of the closest matching parenthesis of type k which
encloses i . We use the following result:

Lemma 3 [1] A multiple parenthesis sequence of 2n parenthesis of two types can be
stored using 4n + o(n) bits to support m-enclose(i, k) in constant time.

3 Lower Bound

To the best of our knowledge, there is no result that concerns the number of graphswith
n vertices and of clique-width at most k. In this section, we present such result and use
it to prove a lower bound for the number of bits required for any navigation oracle to
represent such graphs. Here, we do not distinguish between isomorphic graphs, and by
‘representing’ a graphG, wemean representing all graph that are isomorphic toG. It is
known that at least q(n−o(n)−q/2) bits are required to represent graphs of size n and
tree-width q, modulo their isomorphism [11]. Any of these graphs have a clique-width
of at most 3 · 2q−1 [5]. We conclude that Ω(n log(k)) bits are required to represent a
graph of clique-width at most k. Here we improve this lower bound to Ω(kn).

We introduce a family of graphs named layer graphs and use a counting argument
to prove a lower bound for the number of these graphs. Meanwhile, we show that
the clique-width of these graphs is bounded and hence deduce a lower bound for
the number of graphs of a given clique-width. Layer graphs are formed by smaller
components named ‘shell graphs’.

Definition 2 A shell graph of size m is constructed by connecting a single vertex to
all vertices but one endpoint of a path of size m − 1. The vertex of degree m − 1 is
called the hub; the vertex of degree 1 is called the dangling vertex; all other vertices
are called layer vertices.

123

2112 Algorithmica (2018) 80:2106–2131

Fig. 3 A layer graph G of width a = 5 and length b. The center is vertex C . Shell graphs are ordered
from 1 to b. Vertices of these shell graphs are distinguished by their unique colors. A layer vertex in a shell
graph of order i is connected to either all or none of layer vertices of the same color in shell graphs of order
j < i , e.g., u is connected to all vertices of color c1 and u′ is connected to all vertices of color c5 (Color
figure online)

Note that no two vertices are isomorphic in a shell graph, i.e., any vertex can be
uniquely distinguished from other vertices: the center and dangling vertex can be
distinguished by their degree while other vertices are distinguished by their distance
from the dangling vertex when the center is removed. As a result, we can assume an
implicit coloring of vertices in a shell graph which gives unique colors to all vertices.

Definition 3 A layer graph Gl of width a and length b (b ≥ a) is constructed by
connecting a single vertex, called the center, to the hubs of b shell graphs of size
a + 2. These shell graphs are ordered from 1 to b and there is an edge between hubs
of the shell graphs of order i and i − 1. In addition to the above structure which is
fixed among all layer graphs, there can be edges between layer vertices in shell graphs
of different orders which distinguishes them. Let u and v be two layer vertices in the
shell graphs of respectively orders i and j so that j ≤ i . There is an edge between
u and v in Gl if and only if there is an edge between u and any layer vertex z of the
same color as v in a shell graph of order j ′ < i . In other words, u is connected to all
or none of vertices of the same color which belong to shell graphs of order less than i .

Figure 3 illustrates the definition of layer graphs. Note that a layer graph has a
‘fixed’ component formed by b shell graphs of size a and extra edges connecting the
center and hubs of these shell graphs. In addition, there is a ‘varying’ component which
defines edges between layer vertices of shell graphs of different orders. Because of this
component, there are many shell graphs of a given width and length. The following
lemma provides a lower bound for the number of layer graphs.

Lemma 4 There are at least f (a, b) = 2(b−1)a2−1 layer graphs of width a and height
b, up to isomorphism.

Proof Consider layer graphs which share a fixed component formed by b shell graphs
of size a and extra edges connecting the center vertex and hubs of these shell graphs.
We count the number layer graphs which share this fixed component. In these graphs,

123

Algorithmica (2018) 80:2106–2131 2113

each layer vertex u in a shell graph of order i ≥ 2 is connected to all or none of
the layer vertices of the same color and in shell graphs of order less than i . Since
there are a colors for layer vertices, there are a possibilities for edges between u and
layer vertices in shell graphs of order less than i . This gives a total of a2 possibilities
between vertices of shell graph of order i and those of smaller orders. Summing over
all values of i ≥ 2, the number of possibilities for edges between layer vertices is
(b − 1)a2. This gives a total number of 2(b−1)a2 graphs. So, given a fixed center and
an ordering of shell subgraphs, there are at least 2(b−1)a2 different layer graphs.

In a layer graph, it is possible to distinguish the center from other vertices as the
only vertex of degree at least a (note that b ≥ a). Moreover, there are two ways to
order shell subgraphs (from one endpoint to another endpoint of the path induced by
hubs of these graphs). So, the total number of shell graphs of width a and height b is
at least 2((b−1)a2)−1.

Lemma 5 Any layer graph G of width a and length b has clique-width at most a+ 6.

Proof Let G ′ be a copy of G that excludes the center. We show that G ′ can be con-
structed using a+5 labels. At the end of the construction for G ′, there is a label h p so
that all hubs, and only hubs, have label h p. The center is created using a single label
c and a join operation which connects the center to all hubs.

To constructG ′, we use an inductive procedure. In the i th iteration of the induction,
vertices in the shell graphof order i are added toG ′ (1 ≤ i ≤ b). In this construction,we
use a+2 permanent labels 1p, 2p, . . . , ap, h p, d. When a vertex receives a permanent
label, its label remains unchanged till the end of construction.

At the beginning of iteration i , each layer vertex of color cq and order j < i has
permanent label qp. Moreover, all hubs and dangling vertices of order less than i have
labels h p and d, respectively. The a + 2 vertices in the shell graph of order i are
created using three temporary labels 1t , 2t , and ht . At the beginning of iteration i , the
hub is created using label ht . Other vertices of order i are added one by one, starting
from the dangling vertex followed by vertices of colors c1, . . . , ca ordered by their
distance from the dangling vertex in their induced path. In this ordering, a new vertex
u is created with label 1t , while the vertex v that is added just before u (in case it
exists) has label 2t ; vertices appearing before v have permanent labels, i.e., a dangling
vertex has label d and a layer vertex of color x has label xp. After generating u, two
operations η1t ,ht and η1t ,2t join u with the hub and v. The remaining neighbors of u
appear in shell graphs with order less than i . Recall that each layer vertex in a shell
graph of order i is connected to all or none of vertices of the same color in shell graphs
of order less than i . Therefore, if there is an edge between u and a vertex of color y in a
shell graph of order j < i , we can use the join operation η1t ,yp to create edges between
u and all vertices of color y which appeared earlier. At this point, edges between u and
other added vertices are created. We apply the following rename operations. First, we
change the label of v from 2t to its permanent label. So, if v is a layer vertex of color
x , its label is changed from 2t to xp (i.e., ρ2t→xp); if v is a dangling vertex, its label
is changed from 2t to d (i.e, ρ2t→d). Next, we change the label of u: if u is the last
vertex in the shell graph of order i , we change its label from 1t to its permanent label
ap (i.e., ρ1t→ap). Otherwise, we change the label of u from 1t to 2t (i.e., ρ1t→2t). At

123

2114 Algorithmica (2018) 80:2106–2131

the end of the iteration, the hub’s label is changed from ht to hp (i.e., ρht→hp). This
way, all vertices in shell graph of order i receive permanent labels at the end of the i th
iteration, and the temporary labels remain unused for the next iteration.

The above procedure uses a + 2 permanent labels, three temporary labels, and one
label for the center. The total number of labels is a + 6. ��
Theorem 1 For large values of n and any value of k ≥ 9, there are at least
2(k−8)(n−k+3) graphs of size n and of clique-width at most k.

Proof Consider layer graphs of width a = k − 6 and height b = �(n − 1)/(k − 4).
These graphs have size m = ab + 2b + 1, where n − k + 4 < m ≤ n. We add
n − m isolated vertex to achieve size n. By Lemma 4, the number of such graphs
is at least 2(b−1)a2−1. For large values of n, we have 4b > a2 and we can write
ba2 − a2 > ba2 − 4b = (a − 2)(ab + 2b) ≥ (k − 8)(n − k + 3) > (k − 8)n − k2.
So, the number of layered graphs of width a and length b is at least 2(k−8)(n−k+3). ��
Corollary 1 Consider graphs of size n and clique-width at most k ≥ 9, where k is a
constant independent of n. To represent these graphs at least (k − 8)n − o(n) bits are
required.

4 Compact Data Structure

In this section, we present navigation oracles for graphs of size n and clique-width at
most k using a space of size O(kn). In Sect. 4.1, we show how to update a union tree of
G to aproper-k-balanced treewith properties that facilitate encoding the graph. InSect.
4.2, we encode this proper-k-balanced union tree using succinct structures presented
in Sect. 2.2 and show how to answer navigation queries using the encoded structures.

4.1 Proper-k-Balanced Union Trees

Let T be an arbitrary union tree of a graph G. We define the weight of a node x ∈ T
as the number of leaves in the sub-tree of T rooted at x . We use |x | to denote the
the weight of x . For our oracles, we are particularly interested in k-balanced union
trees. Given a tree T , a node x ∈ T is said to be k-balanced if either |x | < 3k or
both children of x have weight at least k. The tree T is k-balanced if all its internal
nodes are k-balanced. Note that this definition of k-balanced trees does not imply a
logarithmic-depth for them; it basically facilitates partitioning vertices of the graph
into groups of ‘balanced’ sizes in the range [k, 3k) as will be described in Sect. 4.2.

Lemma 6 Any union tree T of width k for a graph G can be transformed to a k-
balanced union tree of width at most 2k.

Proof We start from T and modify it to achieve the desired k-balanced tree T ′ of
width at most 2k. Let 1, 2, . . . , k denotes the labels used in T . In T ′, there are labels of
two classes: labels 1, 2, . . . , k which have class 1 and labels 1′, 2′, . . . , k′ which have
class 2. We start T ′ as a copy of T in which all labels have class 1. We process nodes

123

Algorithmica (2018) 80:2106–2131 2115

(a) (b)

Fig. 4 An illustration of the process to turn node x into a k-balanced node. For the tree in (a), we have
|x | ≥ 3k and |y1| < k. In the new tree in (b), vertices created in the subtree T ∗

x have distinct labels of class
2. These labels are added in order to avoid operations of S(xq−1) . . . S(x1) in node x affecting vertices in
T ∗
x after the union operation at node x . a The original tree T , b the updated tree T ′

in T ′ in pre-order and update the tree to ensure that visited node is k-balanced (and
remains so after any future update). Consider the first node x ∈ T ′ in the pre-order
traversal of T ′ which is not k-balanced. W.l.o.g. assume that he subtree on the left of
x has weight at least equal to that of the right subtree. We update the tree using the
following procedure.

Let x1, x2, . . . , xm be the nodes on the path from x to the left-most leaf in the
subtree rooted at x . Let yi denote the right sibling of xi (1 ≤ i ≤ m). We form a
set R that initially includes vertices in the subtree rooted at y1. So we have |R| < k.
We repeatedly add vertices to R until |R| becomes at least k: first we add vertices
introduced in the subtree rooted at y2; this increases |R| by |y2|. In case |R| < k, we
add vertices introduced in subtree of y3 to R and continue accordingly. Since T ′ is
a full binary tree and |x | ≥ 3k, there is q ≤ m so that after adding vertices in the
subtrees of y1, . . . , yq , the weight of R becomes at least k.

Provided with R, we update T ′ in the following manner. The subtree rooted at xq
replaces x1 as the left child of x . The right child of x becomes a new node y which
has the subtree rooted at yq as one of its children. The other child of y is a complete
binary tree T ∗

x ; leaves of T
∗
x are associated with members of R excluding those in the

subtree rooted at yq . Note that there are less than k leaves in T ∗
x (since |R| is smaller

than k before adding vertices of yq). We map vertices of R to labels of class 2, i.e.,
each leaf of T ∗

x creates a vertex u with a separate label L(u) of class 2. There is no
sequence of join/rename operation on y and nodes of T ∗

x . The labels and sequence of
join/rename operations for nodes other than x in T ′ remain the same as T . For node
x , the sequence of join/rename operations is S(xq−1) S(xq−2) . . . S(x1) S(T ∗

x) S(x).
Here S(T ∗

x) is a sequence starting with join operations that connect vertices of R with
their neighbors in G; since each vertex in R is mapped to a separate label (and only

123

2116 Algorithmica (2018) 80:2106–2131

vertices of R have labels of class 2 at node x) a join operation can be associated with
each neighboring edge of vertices in R. After these join operations, S(T ∗

x) ends with
renaming each label L(u)with the label of u in T at node x after applying S(x). Figure
4 provides an illustration of the above process.

Claim 1 The updated tree is a valid decomposition tree for G.

Proof We show that all vertices have the same neighbors in the graphs created by
the tree before and after the update. We start with vertices in R, i.e., leaves of the
trees rooted at y1, . . . , yq . In the updated tree, each of these vertices is created with
a separate label of type 2. We know that such vertex is connected to all or none of
vertices of the same label in node xq−1 of the original tree (this holds by the definition
of clique-width decomposition and union trees). Moreover, vertices of the same label
at node xq−1 of the original tree are of the same label at node x of the new tree; this
is because the same sequence S(xq) ⊕ S(yq) of operations are applied on them when
they appear for the first time in both trees. Hence, at the time T ∗

x joins vertices of
R with vertices of type 1 in the new tree, any vertex x ∈ R is connected to all or
none of vertices of the same label of type 1 in G. In other words, the explicit join
operations between vertices of labels of type 1 and 2 in T ∗

x connects vertices of R to
their neighbors inG created in xq and yq . Moreover, the join operations between labels
of type 2 explicitly connects each vertex in R with its neighbors in T ∗

x (it is possible
since there is one label of type 2 for each vertex). So, vertices of R are connected to
their neighbors in G in the graph created by the subtree of rooted at node x of the new
tree. Note that T ∗

x ends by changing the labels of type 2 to their labels at node x of
the original tree. Hence, the subsequent operations result in the same graphs in both
trees. We conclude that vertices of R have the same neighbors in the graphs associated
with the original and new trees. For edges between vertices created at nodes xq and
yq , we note that the same sequence of operations are applied on these vertices in both
trees, namely (S(xq)⊕S(yq))S(xq−1) . . . S(x1)S(x). Note that this sequence does not
affect vertices in R as they have labels of type 2. We conclude that the updated tree is
a valid decomposition tree for G.

Claim 2 After the above update, x is k-balanced in T ′.

Proof We prove that both children of x have weight at least k. The right subtree has
weight |R| ≥ k (by definition of R). For the left subtree, we have |x | ≥ 3k (since x
was not k-balanced in T), i.e., |xq |+|yq |+(|R|−|yq |) ≥ 3k; moreover |R|−|yq | < k
(by the way we construct R), and |xq | ≥ |yq | (by the assumption that the left subtree
has larger weight). So we get |xq | ≥ k, i.e., the left subtree has weight at least k.

We apply the above procedure on all internal nodes of T ′ in pre-order to ensure
that they are k-balanced. Claim 1 implies that tree the remains a valid decomposition
tree after each update, and Claim 2 ensures that the visited node becomes k-balanced
after an update. Note that when vertices in a left subtree are transferred to a right
subtree, the original labels of vertices in the right subtree are ignored since they are
re-introduced with labels of class 2. For example, in Fig. 4a, after processing x , if y is
not k-balanced (which happens when |y| ≥ 3k), in our next update, we must transfer

123

Algorithmica (2018) 80:2106–2131 2117

some vertices from yq to T ∗
x . In this case, the labels of vertices in T

∗
x , which have type

2, are ignored and new labels of class 2 are used. Regardless, the number of labels of
class 2 is no more than k. ��

To encode a graphG of clique-width at most k, represented by a union tree of width
k, we first apply Lemma 6 to achieve a k-balanced union tree ofG of width at most 2k.
Then we apply Lemma 1 to convert this tree into a proper tree. The result is a proper,
k-balanced union tree of width at most 2k. We call this tree a proper-k-balanced union
tree. Being balanced is useful for storing the tree efficiently, while being proper is
essential for answering queries in constant time. We conclude the following theorem.

Theorem 2 Each graph G of size n and clique-width at most k can be represented by
a proper-k-balanced union tree of width at most 2k.

In the following sections, in order to represent a graph G, we assume it is described
by a proper-k-balanced union tree T , and each vertex inG is represented by its address
in T . More precisely, leaves of T are ranked from 1 to n in the pre-order traversal
of T , and each vertex is identified by its rank in this order. Therefore, the input to
neighborhood and degree queries is a number between 1 and n that identifies a leaf of
T . Similarly, the input to an adjacency query is two integers between 1 and n.

4.2 Graph Encoding

In this section, we describe how to store a graph G of width at most 2k using O(kn)

bits. For that, we introduce an abstract structure called partition tree which can be
created from the proper-k-balanced tree T of G. In this section, we show that each
proper-k-balanced tree can be represented by a partition tree. Later, we will show that
a partition tree can be represented by a few succinct components.

Definition 4 A (n, k)-partition tree P is a complete binary tree in which each node
is associated with 3k labeled ‘spots’ as well as a ‘join graph’ of size 3k. Furthermore,
there are n ‘vertices’ which appear in P in the following manner:

– Each spot of a node of P is a (possibly empty) set of vertices.
– Each vertex in V appears in exactly one spot of one leaf of P .
– Let V (a) denote the set of vertices appearing in all spots of a node a ∈ P . We
have:
– |V (a)| ≥ k.
– For the two children b and c of (internal node) a, V (a) = V (b) ∪ V (c) and

V (b) ∩ V (c) = Φ (empty set).
– If two vertices appear in the same spot in node a ∈ P , they appear in the same
spot in the parent of a.

Intuitively, the partition tree P is a copy of T in which groups of leaves are clustered
to form a smaller graph. The join graphs in P reflect how labels are joined in T while
spots of nodes in P keep track of rename operations in T .

Lemma 7 Any graph G of size n and clique-width at most k can be represented by a
(n, k)-partition tree.

123

2118 Algorithmica (2018) 80:2106–2131

Proof By Theorem 2, G can be represented by a proper-k-balanced tree of width at
most 2k. We describe how to create the desired partition tree P from T . Intuitively,
P is a copy of T where vertices of the same label in a node c of T are placed in the
spot of the same label in the projected node cp of P; join graph of cp indicate the join
operations applied between vertices of different labels in c. In addition, in the partition
tree, groups of leaves are clustered to form a smaller graph of size in the range [k, 3k).

Recall that weight |a| of a node a ∈ T is the number of leaves in the subtree rooted
at a. Consider any path from the root to a leaf of T . The weight of nodes in this path
is strictly decreasing from the root to the leaf. Consider the first node c of weight less
than 3k in this path. So, the parent of c has weight at least 3k and since T is k-balanced,
the weight of c is at least k. This implies that for any path from the root to a leaf of T ,
there is a node c such that k ≤ |c| < 3k. In the partition tree P , the vertices created
in the subtree rooted at c are presented in a single leaf cp. Any of these vertices have
a label at node c of T . If a vertex has label i in that node, we include it in the spot
with label i in cp (i ≤ 2k). This way, all vertices are placed in a spot of exactly one
leaf of P . Moreover, cp has a join graph of size 3k which precisely indicates whether
any two vertices introduced in the tree rooted at c in T are neighbors in G (note that
3k − |c| vertices of this graph will be isolated).

After creating the leaves of P as indicated above, the remaining structure of P is
copied from T , i.e., any internal node of P is projected to an internal node of T . In
what follows, we describe how spots and join graphs of these nodes in P are defined
from the join/rename sequences of the projected nodes in T . Let x be an internal node
x ∈ T which has a projection xp in P . Recall that S(x) (x ∈ T) indicates the sequence
of join/rename operations which is applied on vertices created in the subtree rooted at
x before the next union operation. Regardless of the order of the operations in S(x), we
can represent it by indicating, for each label i , the labels that i is joined with in S(x),
and the eventual label after applying S(x). To be more precise, we interpret S(x) in a
way that all join operations precede the rename operations (e.g., ρ3→1 η1,2 becomes
η1,2 η3,2 ρ3→1). In the partition tree, the join operations in S(x) are represented by the
join graph in xp where vertices represent labels in T . There are 3k spots in these join
graphs, out of which 2k spots are associated with the 2k labels in T . The remaining
k vertices in the join graph are isolated. For any join operation between two labels,
there is an edge between the associated vertices in the join graph. This way, we keep
track of all join operations in T . Next, assume that a vertex v has label i in a node
y ∈ T , and after the sequence S(y) is applied, its label becomes j in the parent of y.
To capture this in P , v will appear in the spot j in the parent of yp. Figure 5 illustrates
how a partition tree is constructed from a proper-k-balanced union tree.

It is straightforward to verify that P is indeed a partition tree. First, by the way we
selected node c ∈ T for forming the leaves of P , we know that each vertex appears in
exactly one spot of a leaf of P , and for any projected leaf cp of P , we have |cp| ≥ k.
Moreover, for any vertex v ∈ G, there is a path from the root to a leaf of P so that
v appears in (a spot of) all nodes on this path. Moreover, since spots are associated
with labels in T , if two vertices appear in some spot in node ap ∈ P (i.e., they have
the same label in the associated node a ∈ T), they will appear in the same spot in the
parent of ap (i.e., they will have the same label in the parent of a in T). ��

123

Algorithmica (2018) 80:2106–2131 2119

(a) (b)

Fig. 5 A proper-k-balanced union tree T of width at most 2k, where k = 3 (a) and a partition tree P
for T (b). Each internal node in P has 3k = 9 spots and a join graph of the same size. Here, we only
depict non-empty spots and non-isolated vertices in the join graphs. a A proper-k-balanced union tree T , b
a partition tree P of T

By the above lemma, to encode a graph G of size n and clique-width at most k, it
suffices to encode a (n, k)-partition tree. As mentioned earlier, the partition tree is an
abstract structure. In what follows, we describe how to encode a partition tree. First,
we bound the number of nodes in a partition tree:

Lemma 8 The number of nodes in a (n, k)-partition tree is less than 2�n/k�.
Proof By definition of partition trees, there are at least k vertices in each node of the
tree. Since each vertex appears in exactly one leaf of the tree, there will be at most
�n/k� leaves in the tree. Since the tree is a complete binary tree, the number of internal
nodes is at most �n/k� − 1. ��

We store a partition tree P using three succinct components: the ‘main tree’ which
stores the structure of P , the ‘join sequence’ which stores the join graphs associated
with nodes of P , and the ‘layer trees’ which keep track of vertices in each labeled spot
of P . In what follows, we describe these components in details.

– Main Tree The main tree of P , denoted by M stores the structure of the partition
tree. Internal nodes ofM form the same tree as the partition tree (in which the spots
and join graphs are omitted). For each leaf x ∈ P , therewill be |x | leaves inM each
representing one of the |x | vertices created in the subtree associated with x in the
proper-k-balanced union tree. So,M has n leaves, one associated with every vertex
in the graph (see Fig. 6 for an illustration). There are O(n) leaves and O(n/k)
internal nodes in M (Lemma 8). As a result, the balanced parenthesis sequence
associated with the tree has length O(n) and can be stored in linear space using the
structure of Lemma 2. We assume each vertex is addressed through its opening
parenthesis in the main tree. Recall that the input to navigation queries is the rank
of the involved vertices in the pre-order traversal of the proper-k-balanced union
tree. Since vertices appear in the same order in the balanced parenthesis sequence,

123

2120 Algorithmica (2018) 80:2106–2131

Fig. 6 The main tree M for the
partition tree P of Fig. 5b. M
stores the binary structure of P;
there is a leaf in M for each
vertex in the graph

we can use select((i) on this sequence to find the address of a queried vertex i in
constant time.

– Join Sequence For eachnode x ∈ P ,we store the join graphof x using an adjacency
matrix structure of O(k2) bits. Be Lemma 8, the partition tree has O(n/k) nodes.
The join graph for each node has size O(k2). So, the total space is O(kn). To be
more precise, we use the pre-order traversal of P to sequentially store blocks of
fixed size 9k2 for any node in P . Note that P is a (n, k)-partition tree and hence
the size of the join graph in each node is less than 3k, which we represent with
an adjacency matrix of size 9k2. We call the resulting structure the join sequence.
Since each block has a fixed length, given the pre-order index of an internal node
in the main tree, we can find the block associated with the node in constant time.

– Label Trees We use label trees to store the spots in which every vertex appears in
nodes of P . Recall that each vertex v ∈ G appears in some labeled spot in every
node of a path from a leaf to the root of P . Define the type of a vertex as its eventual
label in the algebraic expression, i.e., the label of its spot in the root of the partition
tree. Note that there are 3k possible types for vertices. For each type i , we store a
tree, named the label tree of type i , that keeps track of labels (spots) of vertices of
type i . Each internal node of such tree is associatedwith a spot in an internal node a
in the partition tree and has a value that indicates the label of that spot right after the
union operation in a. Similarly to the main tree, leaves of label trees are associated
with vertices of the graph (see Fig. 7 for an illustration). Note that label trees are
not necessarily binary and might have a different structure from that of the main
tree. We store each label tree using the balanced parenthesis structure of Lemma
2 to store the structure of the tree and a succinct rank/select structure to store the
values of the internal nodes in pre-order. The number of leaves in all label trees is
n and the number of internal nodes is equal to the number of spots in the partition
tree, i.e., O(n). So, the total size of the structures associated with the label trees is
O(n) for storing all trees and O(n log(k)) for storing the values of internal nodes.

Lemma 9 It is possible to represent a graph G of size n and clique-width at most k
using a main tree of size O(n), a join sequence of size O(kn), and 3k label trees of
total size O(n log(k)).

Proof By Lemma 7, it is possible to represent G as a (n, k)-partition tree P . As
described above, this partition tree can be encoded using a main tree which keeps

123

Algorithmica (2018) 80:2106–2131 2121

(a) (b) (c)

Fig. 7 Label trees of the partition tree P of Fig. 5b. Numbers in an internal node x indicate the label of
vertices in the associated spots of P for x . Each vertex in the graph appears as a leaf in exactly one of the
label trees. a Type 1, b type 2, c type 3

track of the structure of P , a join sequence which stores join graphs of P , and 3k label
trees which represent the spots in which vertices of G appear in nodes of P . ��

The main tree, join sequence, and label trees are sufficient to represent a partition
tree (and consequently the graph associated with it). However, in order to facilitate
answering queries, we include two more structures:

– Type-Lookup Sequences consider the pre-order traversal of the partition tree (i.e.,
pre-order traversal of internal nodes in the main tree M). Each node is associated
with k spots in the partition tree. We write down the eventual label of these spots
(i.e., their labels in the root). In a separate sequence, we write down the type of
the leaves of the main tree in the order they appear in the pre-order traversal.
The result will be two sequences Uinner and Uleaves , each of length O(n) over
an alphabet of size k, which are associated with the types of internal nodes and
leaves, respectively. These two sequences can be stored in O(n log(k)) bits with
constant-time support of rank/select operations. Provided withUinner andUleaves ,
given a leaf or a spot in the main tree, it is possible to locate the node associated
with it in a label tree in constant time, as will be described later.

– Skip Trees for every label tree, we store the same tree but with binary values
on nodes which indicate whether there is an edge between vertices in the spot
associated with the node and vertices of another spot in the partition tree. There
are k skip trees of size O(n) with binary labels on nodes; we store them using
multiple balanced parenthesis sequence of Lemma 3 in linear space. Skip trees
facilitate reporting neighbors of each vertex in constant time per neighbor.

Table 1 provides a summary of the above structures which together form an oracle
of size O(kn) which supports adjacency and neighborhood queries in constant time
as will be described.

Recall that, in our navigation queries, vertices are addressed via the index of their
opening parenthesis in the main tree M . In addition to M , each vertex u of type u-type
is also present at a leaf of the label tree Lu-type. In order to answer queries in constant
time, we should be able to retrieve address of u in the label tree from its address in the
main tree and vice versa:

123

2122 Algorithmica (2018) 80:2106–2131

Table 1 Components that form our compact oracle for supporting adjacency and neighborhood queries

Name Notation Succinct representation Size

Main tree M Balanced parenthesis (Lemma 2) O(n)

Join sequence J Succinct rank/select seq. (e.g., [2,14]) O(kn)

3k Label trees L1, ..., L3k (structure) Balanced parenthesis (Lemma 2) O(n)))

V1, ..., V3k (values) Succinct rank/select sequence O(n log(k))

Type look-up sequences Uinner ,Uleaves Succinct rank/select sequence O(n log(k))

Skip trees P1, . . . , P3k Multiple parenthesis seq. (Lemma 3) O(n)

Lemma 10 Let u be the index of (the parenthesis representing) a vertex of type u-type
in the main tree M. Let u-p be the index of (the parenthesis representing) the same
vertex in the label tree Lu-type. Provided with u, one can retrieve the pair (u-type, u-p)
in constant time. Similarly, provided with (u-type, u-p), one can retrieve u in constant
time.

Proof Consider we are given index u in the main tree. Using the lea f -rank operation
on the main tree M , we can find the pre-order rank u-lr of u among all vertices. We
retrieve the type of u by checking the type-lookup sequence Uleaves at index u-lr .
Provided with u-t ype, we can find its pre-order rank ust among vertices of the same
type by applying the rank operation on type-lookup sequence Uleaves . Note that u-p
is the address of the ust th leaf in Lu-type; so we can retrieve it using lea f -select
operation. Algorithm 1 illustrates the above procedure.

Next, assume we are given (u-type, u-p). We use lea f -rank on tree Lu-type to
retrieveust , which is the pre-order index ofu amongvertices of the same type. Provided
with ust we apply the select operation on the type-lookup tableUleaves to retrieve the
pre-order u-lr index of u among all vertices. Provided with u-lr , we use lea f -select
operation on M to retrieve u. Algorithm 2 illustrates this procedure.

By Lemma 2 all above operations on M and Tu-t ype can be performed in constant
time. ��

Algorithm 1 projectM→L

Input: index u of the parenthesis representing a leaf u (a vertex in G) in the main tree M
Output: pair (u-t ype, u-p) where u-t ype is the type of u and u-p is the projection of u in Lu-t ype , i.e., the

parenthesis representing the leaf associated with u in Lu-t ype .
u-lr ← lea f -rankM (u) /* u-lr is the index of u among leaves of the main tree M */
u-t ype ← Uleaves [u-lr] /* querying the type-lookup table to find the type of u. */
u-st ← rankUleaves (u-lr, u-t ype) /* querying the type-lookup sequence to set u-st , which is the index of u among

leaves of the same type. */
u-p ← lea f -selectLu-type /* returning the st th leaf in the label tree of u */

return (u-type, u-p)

4.3 Adjacency Queries

Given two vertices u and v, we describe how to report whether there is an edge between
them in constant time. First, we illustrate a big picture based on the partition tree and

123

Algorithmica (2018) 80:2106–2131 2123

then describe the details based on the succinct structures that form our oracle. First,
we find the lowest common ancestor of u and v in P . Let lca denote such ancestor; lca
represents the first time that u and v appear in the same graph when building the graph
according to the algebraic expression. Recall that the algebraic expression associated
with the partition tree is proper-k-balanced and hence proper (Lemma 1). Therefore,
if there is an edge between u and v, the spots associated with them are joined in
lca. In other words, it suffices to check whether there is an edge between the vertices
representing labels ofu andv in the joinedgraph stored for lca.We show that this canbe
done in constant time. Inwhat follows,wedescribe the aboveprocedure inmore details.

Algorithm 2 projectL→M

Input: pair (u-t ype, u-p) where u-t ype is the type a vertex u and u-p is the projection of u in Lu-t ype ,
i.e., the parenthesis representing the leaf associated with u in Lu-t ype .

Output: index of u in the main tree M
u-st ← lea f -rankLu-type (u-p)/* u-st is the index of u among leaves of the same type. */

u-lr ← selectUleaves (ust, u-t ype) /* Quering lookup table to find the st th leaf of type u-st ; this gives u-lr , which is
the index of u among leaves of the main tree M */

u ← lea f -selectM (u-lr)
return u

Lemma 11 Given any two vertices u and v, we can report whether there is an edge
between u and v in constant time.

Proof Note that u and v are given with their addresses (the indices of their opening
parentheses) in the main tree M . First, we use the parent operation on M to see if u
and v have the same parent. If they do, we just need to check the join graph associated
with their common parent p; this graph is stored in the join sequence J . We find
the pre-order index of p among internal nodes of M using pre-rank and lea f -rank
operations. We use this index to find the block associated with p in the join sequence
J . Note that each internal node in the partition tree is associated with a join graph of
size 3k represented by a block of fixed size 9k2. The entry associated with indices of
u and v among children of p in this block indicates whether they are neighbors. We
use child-rank operation on M to find such entry in constant time.

Next, assume u and v do not have a common parent. First, we find the lowest
common ancestor lca of u and v in the main tree M . Next, we find the depth d
of lca in the main tree. On the side, we find the projections and types of u and
v in their respective label trees using projectM→L operation of Lemma 11. Using
level-ancestor and pre-rank queries in the label trees, we find the labels of u and
v at depth d of their respective label trees; the results will be the spot at which these
vertices are located at node lca of the partition tree. Provided with labels of the two
vertices, checking the neighborhood becomes equivalent to checking an entry in the
table associated with lca in the join sequence J , which can be done in constant time
(again, because of the fixed size 3k of the blocks associated with join graphs in J).

By Lemmas 2, 11, all above operations take constant time. Algorithm 3 illustrates
the adjacency query as described above. ��

123

2124 Algorithmica (2018) 80:2106–2131

Algorithm 3 Adjacency Query

Input : Integers u and v which are indices of two vertices in the main tree M
Output: ‘1’ if u and v are neighbors and ‘0’ otherwise
if parentM (u) = parentM (v) then

/* check the join block associated with the common parent of u and v */
p ← parentM (u)
/* p is the index of the common parent in M */

p-rank ← pre-rankM (p) − lea f -rankM (p)
/* p-rank is the pre-order rank of p among internal nodes of M */

add ← p-rank · 9k2
/* add is the address of the block associated with p in the join sequence J */

u-chr ← child-rankM (u); v-chr → child-rankM (v)
/* u-chr and v-chr are ranks of u and v among children of their common parent */

result ← J [add + u-chr · 3k + v-chr]
/* probing the index which indicates whether u and v are joined in parent p */

else
lca ← lcaM (u, v)

/* lca is the index of the least common ancestor of u and v in M */
d → depthM (lca)

/* d is the depth of the lca in the main tree M */
(u-t ype, u∗) ← projectM→L (u) ; (v-t ype, v∗) ← projectM→L (v) /* setting the label and projected

nodes of u and v in their respective label tree */
Tu ← Lu-t ype; Tv ← Lv-t ype

/* Tu and Tv are the label trees associated with types of u and v */
u-pr ← pre-rankTu (level-ancestorTu (u, d)); v-pr ← pre-rankTv (level-ancestorTv (v, d))

/* u-la and v-la are the pre-order indices of ancestors of u and v at level d of their respective label trees */
u-spot = Vu-t ype[u-pr]; v-spot = Vv-t ype[v-pr]

/* u-spot and v-spot are the values stored in label trees of u and v at level d, i.e., their spot at level d of the partition
tree. */

add ← (pre-rankM (lca) − lea f −rankM (lca)) · 9k2
/* the address of the block associated with lca in the join sequence */

result ← J [add + u-spot · 3k + v-spot]
/* probing the index which indicates whether u and v are joined in their lca. */

end
return result

Example 1 Assume we need to find whether there is an edge between vertices a and
g in the graph represented by the proper-k-balanced union tree of Fig. 5. The lowest
common ancestor lca of the two vertices in the main tree is the left child of the root in
Fig. 6. Note that lca has depth d = 2 in the main tree. Reading from the label lookup
sequenceUleaves , we see that a has type 1 and g has type 2. Using the level-ancestor
query on label trees of types 1 and 2, we see that a and g respectively have values 1 and
3 at depth d of their label trees (see Fig. 7). This implies that they are at spotswith labels
1 and 3 of lca. Using the entry associated with lca in the join table, we realize that the
two labels 1 and 3 are not connected. Consequently, there is no edge between a and g.

4.4 Neighborhood Queries

Given a vertex u, we describe how to report the set of its neighbors in constant time per
neighbor. Recall that u is addressed via its position in the main tree. We visit ancestors
of u in that tree one by one.Weuse the skip-tree (of the same type as u) to skip ancestors
in which there is no join operation between the spot of u and another spot. For each

123

Algorithmica (2018) 80:2106–2131 2125

visited ancestor, we visit spots that u is joined to. The vertices in that spot are connected
to u and we should report them. In doing so, we skip vertices that are reported earlier;
it is possible since the reported vertices form a consecutive block among members of
the visited spot. In the following lemma, we illustrate the above procedure in details.

Lemma 12 Given any vertex u, we can report neighbors of u in constant time per
neighbor.

Proof First, we report ‘close neighbors’ of u, which are the neighbors with the same
parent as u in the partition tree. Let p denote the parent of u in the main tree.We locate
the block B associated with the join graph of p in the join sequence J . For that, we use
pre-rank and lea f -rank operations to find the pre-order index of p among internal
nodes of M . Since the join blocks of internal nodes have fixed size 9k2, we can use
this index to locate B in constant time. Next, we locate the address at which the row
associated with u starts in B. For that, we need the index of u among children of p,
which can be found using child-rank operation onM . This way, we find the address of
the row associated with u in in the join block (matrix) of p in the join sequence J . Note
that this row has length 3k. Using the select operation in this row, we report the siblings
of u which are connected to it in constant time per sibling. For that, we use child-
rank operation to locate those children of p which have non-zero entries in the row
associated with u. Algorithm 4 illustrates the details in reporting close neighbors of u.

Algorithm 4 Neighborhood Query - Reporting Close Neighbors

Input : Integer u which is the index of a vertex in the main tree M
Output: Neighbors of u which have the same parent as u in the partition tree.
p ← parentM (u) /* the parent of u in M */

start-add ← ((pre-rankM (p) − lea f -rankM (p)) · 9k2 + child-rankM (u) · 3k /* starting address of the
row associated with u in the join graph of p */

next-address ← selectJ (start-add,‘1’)
/* the next non-zero entry in the join sequence associated with an edge in the join graph */

while next-address < start-add + 3k do
/* In this loop, we iterate over leaves which are joined with u at their common parent in the partition tree */
i ← next-index − start-address /* the next neighbor of i among children of their common parent */
v ← child-selectM (p, i) /* the entry associated with (u, v) in the join graph of the common parent of u and v is

1; so we report v */
report v as a neighbor of u
next-index ← selectJ (next-index + 1,‘1’) /* iterating to the next non-zero entry */

end

Next, we describe how to report ‘far neighbors’ of u, i.e., those with different parent
than u in the partition tree. First, we use Lemma 11 to find the type of u, the label tree
L∗ of this type, and the index of its projected vertex u∗ of u in L∗.

Our procedure for reporting far neighbors has three nested loops: in the first (outer-
most) loop, we locate ‘critical ancestors’ of u, which are those ancestors for which the
spot of u is joinedwith at least one other spot. Note that u has some non-reported neigh-
bors in critical ancestors.We use the enclose operation on the skip tree of the same type
as u to locate (the depths of) critical ancestors in constant time per ancestor. Note that
skip trees encode different parenthesis-types for critical and non-critical ancestors and

123

2126 Algorithmica (2018) 80:2106–2131

hence we can locate the critical ancestors using Lemma 3. Given a critical ancestor A
of u at depth d of the partition tree, we locate the spot of u in A: we use level-ancestor
query to find the ancestor of u∗ at depth d of L∗; the value of that ancestor indicates
the spot u-spot of u at A. Provided with u-spot , in the second nested loop, we visit all
‘critical spots’ of A. A critical spot is a spot that is joined with u-spot at A. Critical
spots can be located in a similar way that we report close neighbors: we locate the row
associated with u-spot in the join sequence and use the select operation to locate the
non-zero entries in that row.Eachnon-zero entry indicates a critical spot foru-spot . For
each critical spot cs, we can read the lookup sequenceUinner to read the type cs-t ype
of vertices in that spot. For that, we use pre-rank and lea f -rank operations to find
the number of spots in the internal nodes that precede A in the main tree; note that each
internal node has a fixed number of 3k spots, and we can find the rank cs-rank of cs
among all spots in the partition tree in constant time. The value stored inUinner at index
cs-rank indicates the type cs-t ype of spot cs.Weuse cs-t ype to locate a node tn, called
‘target node’, in the label tree Lcs-t ype which is associated with the spot cs. For that, we
use the rank operation onUinner to find the index of cs among spots of the same type,
and pre-select operation to find the node tn of that rank in the tree Lcs-t yp. Leaves of
the subtree rooted at tn are all connected to u (they are joined at the node associated
with A in the main/partition tree). In the third (innermost) nested loop, we go through
these leaves to report vertices which are not already reported. Using, lmost-child
and rmost-child operations on Tcs-t ype, we locate the range of these leaves and visit
them one by one using the lea f -select operation. Note that neighbors that are already
reported are among the leaves of the tree rooted at the ancestor of u at depth d+1 in the
main tree. So, we can set a ‘skip-range’ in themain tree which includes indices of these
leaves (and no other leaf) in themain tree.Whenwe visit a leaf of Lcs-t ype which is pro-
jected to the skip-range in themain tree,we skip to the next nodewhose projection is not
in the skip-range. This can be done using rank operation onUinner (to find the number
of vertices of type cs-t ype that precede the right-boundary of the skip-range) and lea f -
select operation (to find the next vertex of type cs-t ypewhich is out of the skip-range).

In a nutshell, to report far vertices of u, we visit critical ancestors of u in the main
tree one by one (first nested loop). In each critical ancestor, we visit critical spots one
by one (second nested loop). For a given critical spot, we report neighbors which are
outside of the skip-range one by one (third nested loop). Be definition, all critical nodes
include at least one critical spot, and all critical spots include at least one non-reported
neighbor of u. All operations take constant time. Hence, neighbors of u are reported
in constant time per neighbor. Algorithm 5 illustrates the above procedure in details.

��

Algorithm 5 Neighborhood Query - Reporting Far Neighbors

Input : Integer u which is the index of a vertex in the main tree M
Output: Indices of neighbors of u in the main tree M
(u-t ype, u∗) ← projectM→L (u) /* the label and projected node of u in its label tree */
L∗ ← Lu-t ype; P∗ ← Pu-t ype /* L∗ and P∗ are respectively the label tree and the skip-tree associated with the type
of u */

123

Algorithmica (2018) 80:2106–2131 2127

next-node ← u∗
do

/* We iterate on the path from u to the root of the partition tree; in each iteration, we report neighbors joined with u

in an ancestor on this path. */
d ← depthP∗ (m-encloseP∗ (u∗,‘1’)) /* The depth of the next ancestor of u represented by a parenthesis of

type ‘1’ in P∗; u is connected to at least one vertex at the node associated with this ancestor in the partition tree. */
A ← level-ancestorM (u, d) /* A is a critical ancestor of u in the main tree, i.e., it is joined to at least one vertex
at this node of the partition tree */

u-spot ← Vu-t ype[pre-rankL∗ (level-ancestorL∗ (u∗, d))] /* u-spot is the label (spot) of u at depth d of
the partition tree */

start-add ← (pre-rankM (A) − lea f -rankM (A)) · 9k2 + u-spot · 3k;
end-add ← start-add + 3k /* [start-add,end-address] is the range of entries in the row associated with
u-spot in the join sequence J . */

B ← level-ancestorM (u, d + 1))/* neighbors in the subtree rooted at this node are already reported */
lch ← lea f -rankM (lmost-lea fM (B)

rch ← lea f -rankM (rmost-lea fM (B)

skip-range ← [pre-rankM (lmost-lea fM (B), pre-rankM (rmost-lea fM (B)] /* vertices with leaf-
rank in the skip − range should be skipped since neighbors of u in this range are reported */

next-address ← selectJ (start-add,‘1’) /* the next non-zero entry in the join sequence associated with an
edge in the join graph */

while next-address < start-add + 3k do
/* In this loop, we iterate over the spots which are joined with the spot of u among spots of A of the partition tree

*/
cs ← next-index − start-address /* cs is the index of a critical spot at node A; u is connected to vertices

at this spot of A. */
cs-rank ← (pre-rankM (A) − lea f -rankM (A)) · 3k + cs

/* cs-rank is the rank of the spot of cs among all spots (of internal nodes) in the partition tree (we find the
number of internal nodes preceding A in pre-order; each of them has 3k spots.) */

cs-t ype ← Uinner [cs-rank] /* querying the label-lookup sequence for the type of cs (vertices in cs have
this label in the root of partition tree) */

T s ← Lcs-t ype /* the label tree associated with cs-t ype */
cs-rank-same ← rankUinner (cs-rank, cs-t ype) /* cs-rank-same is the rank of the spot of cs among

spots of the same type in the partition tree */
tn ← pre-selectT s (cs-rank-same) /* tn is the ‘target node’ in tree T s ; all leaves of the tree rooted at tn

in are neighbors to u */
begin-lea f -rank ← lea f -rankT s (lmost-childT s (tn))

end-lea f -rank ← lea f -rankT s (rmost-childT s (tn)) /* the ranks of the left-most and right-most
children of tn in T s among leaves of T s ; leaves in this range are neighbors of u */

q ← begin-lea f -rank /* counter */
while q < end-lea f -rank do

/* we loop through all children of tn, skipping once to avoid reporting neighbors that are reported in previous
iterations of the outer loop */

v ← projectL→M (cs-t ype, lea f -selectT s (q)) /* v is a neighbor of u; if it is reported earlier, we
should skip it and other reported vertices */

if pre-rankM (v) ∈ skip-range then
/* find the next node to be reported: */
q ← lea f -selectT s (rankU -inner (rch, cs-t ype) + 1) /* the next vertex of type cs-t ype which

is not in the skip range */

else
report v as a neighbor of u
q ← q + 1

end
end

end
next-index ← selectJ (nexti ndex + 1,‘1’)

while next-node �= Null;
return result

123

2128 Algorithmica (2018) 80:2106–2131

Example 2 Assume we want to report neighbors of vertex a in the graph represented
by the proper-k-balanced union tree of Fig. 5. First, we probe the join sequence J
to report the close neighbors of a, i.e., b and c. Next, we locate a in the label/skip
tree of type 1 (Fig. 7). Using the m-enclose operation on the skip-tree, we locate the
first ancestor in which a is joined to some other vertices. This ancestor would be the
left child of root in Fig. 7a, and has depth d = 2 in the label/skip tree. Locating the
ancestor A of a at depth 2 in the main tree and checking the non-zero entries of the
join table associated with the row of u in A’s block in the join sequence J , we realize
that a is connected (joined) to vertices at spot cp = 2 of A. Checking the lookup
sequenceUleaves , we figure these vertices have type cs-t ype = 2. Let A′ be the vertex
associated with spot 2 of A in the label tree T s of type 2 (the left child of the root in
Fig. 7a). Note that all leaves in the tree rooted at A′, namely b, c and f , are joined to
a. Let B ∈ M be the ancestor of a which is a child of A (the left child of A in Fig. 6).
When reporting children of A′ in T s , we skip reporting vertices which are created in
the subtree of M rooted at B, namely, we skip reporting b and c as they are reported
earlier.

From the discussions above, we conclude the following theorem:

Theorem 3 Given a graph of size n and constant clique-width in the form of an
algebraic expression on at most k labels where k is a constant with respect to n, an
oracle is constructed to answer adjacency queries in constant time. The neighborhood
queries are also supported in constant time, i.e., the neighbors of a given vertex are
reported in constant time per neighbor. The space requirement of the oracle is O(kn)

bits.

4.5 Degree Queries

For the degree queries, we apply a more explicit representation. We decompose the
partition tree intoΘ(n/ log(n)) subtrees of size 2�log(n)�, using the following lemma
with L = �log(n)� (see Fig. 8 for an illustration of the lemma):

Lemma 13 [12] A tree with n nodes can be decomposed into O(n/L) subtrees of
size at most L, where L is an arbitrary integer. These are pairwise disjoint aside from
the subtree roots, i.e., if a node x is present in two subtrees, then x is the root of both
subtrees. Furthermore, aside from edges stemming from the component root nodes,
there is at most one edge per component leaving a node of a component to its child in
another component.

For each subtree in the above partitioning, there will be at most two nodes which are
connected to nodes in other subtrees, one being the root of the subtree and potentially
another node that we refer to as the lower hub of the subtree. Neighbors of a vertex v

can be partitioned into three groups: group 1 are those created in the same subtree as
v in the partition tree, group 2 are those that will be disconnected from the partition
tree if we remove the lower hub, and group 3 are the rest of vertices. In what follows,
we show how to report the number of neighbors of any vertex in groups 2 and 3

123

Algorithmica (2018) 80:2106–2131 2129

Fig. 8 Decomposition of a tree
into subtree for value L = 4.
Subtrees have size at most
2L = 8. Note that the left child
of B is present in two subtrees
and hence is the root of both
subtrees. The highlighted nodes
are those which are connected to
other subtrees. The numbers on
leaves indicate the group of
vertices in the leaf with respect
to node v

provided with as structure of size O(kn) and in time O(k). Later we bootstrap the
same decomposition to report neighbors in group 1.

Consider the node B in another subtree of the partition tree which is adjacent to the
lower hub of a subtree T . Vertices introduced in the subtree rooted at B are partitioned
into k spots, each representing a label in the algebraic expression. This implies that,
these vertices have the same neighborhood with respect to vertices introduced in T
(because vertices of T are joined to the tree ‘later’). In other words, each vertex v in
T is connected to all or none of vertices in each spot of B. For each vertex v, we store
a bitstring of size k which indicates whether v is connected to vertices in spots of B.
We store this sequence using a rank/select structure. This requires O(kn) bits for all
vertices. Moreover, for each lower hub, we explicitly store the number of vertices in
each spot in the neighboring node B in O(log(n)) bits; since there are O(n/ log(n))

lower hubs, that requires O(kn) bits. To report the number of neighbors of each vertex
among vertices of group 2, we check the bitstring associated with the vertex and for
each bit with value 1 (for each spot connected to v) add up the number of vertices
in the spot to the answer. Note that we can find the bits with value 1 using select
operation in constant time. There are k spots and hence it takes O(k) time.

We report the number of replicas in group 3 in a similar manner of group 2. We
note that vertices in the same spot as a vertex v in the root of the subtree have the
same neighborhood among vertices which are introduced later as non-descendants
of the root of the subtree. For each spot in the root, we store the number of these
neighboring vertices in O(log(n)) bits; this sums up to O(kn) for all O(n/ log(n))

trees. For each vertex, we store its index (spot) in the root; that requires O(n log(k))
bits for all vertices. To report the number of neighbors of v in group 3, we check its
index in the root and report the stored number for that spot in constant time.

It remains to report the number of neighbors in group 1. If we decompose each
tree of size L1 = �log(n)� into O(L1/L2) subtrees of size L2 = �log(L1)�, the
neighbors of each vertex in group 1 can be partitioned in groups 11, 12 and 13, defined
in a similar fashion as above. Neighbors in group 12 and 13 can be reported with

123

2130 Algorithmica (2018) 80:2106–2131

an additional structure defined in a similar way with size O(kn) and in time O(k).
To report neighbors in group 11, we recursively decompose trees of size Li into
O(Li/Li+1) trees of size Li+1 = �log(Li)�. When the depth of recursion becomes
Θ(log∗ n), the number of vertices in Li will be a constant, and the number of neighbors
of vertices within each subtree can be explicitly stored in Θ(n). The total size of
structures used for reporting neighbors in each level of recursion is O(kn), which
sums up to O(kn log∗ n) for all levels. Similarly, reporting neighbors in each level
requires O(k) which sums up in total time complexity of Θ(k log∗ n).

Theorem 4 Given a graph of size n and clique-width at most k, an oracle is con-
structed to answer degree queries in O(k log∗ n) time. The space requirement of the
oracle is O(kn log∗ n) bits.

5 Concluding Remarks

Wepresented a compact data structure for graphs of clique-width atmost k that answers
adjacency and neighborhood queries in constant time using O(kn) space.Our structure
supports degree query in time O(k log∗ n) using O(kn log∗ n) bits. We also proved an
information theory lower boundof kn−o(n) for the number of bits required to represent
graphs of size n and clique-width at most k up to isomorphism. Presenting a succinct
structure that represents graphs in kn + o(kn) bits or improving this lower bound
remains an open question. Removing the log∗ n factor for the structure used for the
degree queries is another question to investigate. We note that ideas and constructions
used in this paper are expected to be useful in presenting compact structures based on
other graph width parameters, and leave this as a topic for future research.

Acknowledgements The author would like to thank the anonymous reviewers for their careful reading of
the paper and for their valuable comments and suggestions which resulted in substantial improvement of
the paper.

References

1. Barbay, J., Aleardi, L.C., He, M., Munro, J.I.: Succinct representation of labeled graphs. Algorithmica
62(1–2), 224–257 (2012)

2. Barbay, J., Gagie, T., Navarro, G., Nekrich, Y.: Alphabet partitioning for compressed rank/select
and applications. In: Proceedings of 21st International Symposium on Algorithms and Computation
(ISAAC), pp. 315–326. (2010)

3. Blandford, D.K., Blelloch, G.E., Kash, I.A.: Compact representations of separable graphs. In: Pro-
ceedings of 14th Symposium on Discrete Algorithms (SODA), pp. 679–688. (2003)

4. Blelloch, G.E., Farzan, A.: Succinct representations of separable graphs. In: Proceedings of 21st Com-
binatorial Pattern Matching Conference (CPM), pp. 138–150. (2010)

5. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput.
34(4), 825–847 (2005)

6. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of
bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)

7. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1–3),
77–114 (2000)

8. Courcelle, B., Vanicat, R.: Query efficient implementation of graphs of bounded clique-width. Discrete
Appl. Math. 131(1), 129–150 (2003)

123

Algorithmica (2018) 80:2106–2131 2131

9. Farzan, A.: Succinct representation of trees and graphs. PhD thesis, School of Computer Science,
University of Waterloo, (2009)

10. Farzan, A., Fischer, J.: Compact representation of posets. In: Proceedings of 22nd International Sym-
posium on Algorithms and Computation (ISAAC), pp. 302–311. (2011)

11. Farzan, A., Kamali, S.: Compact navigation and distance oracles for graphs with small treewidth.
Algorithmica 69(1), 92–116 (2014)

12. Farzan, A., Munro, J.I.: A uniform paradigm to succinctly encode various families of trees. Algorith-
mica 68(1), 16–40 (2014)

13. Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes. Int. J. Found. Comput.
Sci. 11(3), 423–443 (2000)

14. Golynski, A., Munro, J.I., Srinivasa Rao, S.: Rank/select operations on large alphabets: a tool for text
indexing. In: Proceedings of 17th Symposium on Discrete Algorithms (SODA), pp. 368–373. (2006)

15. Kaminski, M., Lozin, V.V., Milanic, M.: Recent developments on graphs of bounded clique-width.
Discrete Appl. Math. 157(12), 2747–2761 (2009)

16. Meer, K., Rautenbach, D.: On the OBDD size for graphs of bounded tree- and clique-width. Discrete
Math. 309(4), 843–851 (2009)

17. Munro, J.I.: Succinct data structures. Electr. Notes Theor. Comput. Sci. 91, 3 (2004)
18. Munro, J.I., Nicholson, P.K.: Succinct posets. Algorithmica 76(2), 445–473 (2016)
19. Navarro, G., Sadakane, K.: Fully functional static and dynamic succinct trees. ACMTrans. Algorithms

10(3), 16:1–16:39 (2014)
20. Spinrad, J.P.: Efficient Graph Representations. The Fields Institute for Research in Mathematical

Sciences, Toronto (2003)
21. Vanherpe, J.-M.: Clique-width of partner-limited graphs. Discrete Math. 276(1–3), 363–374 (2004)
22. Witten, I.H.,Moffat,A.,Bell, TimothyC.:ManagingGigabytes:Compressing and IndexingDocuments

and Images, 2nd edn. Morgan Kaufmann Publishers Inc., Burlington (1999)

123

	Compact Representation of Graphs of Small Clique-Width
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Clique-Width Decomposition and Union Trees
	2.2 Succinct Structures

	3 Lower Bound
	4 Compact Data Structure
	4.1 Proper-k-Balanced Union Trees
	4.2 Graph Encoding
	4.3 Adjacency Queries
	4.4 Neighborhood Queries
	4.5 Degree Queries

	5 Concluding Remarks
	Acknowledgements
	References

