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Abstract In this paper, we consider the non-negative submodular function minimiza-
tion problem with covering type linear constraints. Assume that there exist m linear
constraints, and we denote by Δi the number of non-zero coefficients in the i th con-
straints. Furthermore, we assume that Δ1 ≥ Δ2 ≥ · · · ≥ Δm . For this problem,
Koufogiannakis andYoung proposed a polynomial-timeΔ1-approximation algorithm.
In this paper, we propose a new polynomial-time primal-dual approximation algorithm
basedon the approximation algorithmofTakazawaandMizuno for the covering integer
program with {0, 1}-variables and the approximation algorithm of Iwata and Nagano
for the submodular function minimization problem with set covering constraints. The
approximation ratio of our algorithm is max{Δ2,min{Δ1, 1 + Π}}, where Π is the
maximum size of a connected component of the input submodular function.

Keywords Submodular function minimization · Primal-dual approximation
algorithm

1 Introduction

Assume that we are given a finite set U . Then a function f : 2U → R is said to be
submodular, if

f (X) + f (Y ) ≥ f (X ∪ Y ) + f (X ∩ Y )

for every pair of subsets X, Y of U , where R is the set of real numbers. Submodular
functions play an important role in many fields, e.g., combinatorial optimization,
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machine learning, and game theory. One of the most fundamental problems related
to submodular functions is the submodular function minimization problem. In this
problem, we are given a submodular function f : 2U → R, and the goal is to find a
subset X ofU minimizing f (X) among all subsets ofU , i.e., to find a minimizer of f .
It is known [5,6,8,20] that this problem can be solved in polynomial time (we assume
the oracle model).

In this paper, we consider constrained variants of the submodular function min-
imization problem. Constrained variants of the submodular function minimization
problem have been extensively studied in various fields [4,7,9–15,21,23]. For exam-
ple, Iwata and Nagano [9] considered the submodular function minimization problem
with vertex covering constraints, set covering constraints, and edge covering con-
straints, and gave approximability and inapproximability. Goel, Karande, Tripathi, and
Wang [4] considered the vertex cover problem, the shortest path problem, the perfect
matching problem, and theminimum spanning tree problemwith amonotone submod-
ular cost function. Svitkina and Fleischer [21] also considered several optimization
problems with a submodular cost function. Especially, Svitkina and Fleischer [21]
proved that for the submodular function minimization problem with cardinality lower
bound, there does not exist a polynomial-time o(

√
n/ ln n)-approximation algorithm.

Iyer and Bilmes [10] and Kamiyama [14] considered the submodular function min-
imization problem with submodular set covering constraints. Furthermore, Jegelka
and Bilmes [13] considered the submodular function minimization problem with cut
constraints. Koufogiannakis and Young [15] considered the monotone submodular
function minimization problemwith general covering constraints. Hochbaum [7] con-
sidered the submodular minimization problem with linear constraints having at most
two variables per inequality. Zhang and Vorobeychik [23] considered the submodular
function minimization problem with routing constraints.

In this paper,we consider the non-negative submodular functionminimization prob-
lemwith covering type linear constraints. Assume that there exist m linear constraints,
andwe denote byΔi the number of non-zero coefficients in the i th constraints. Further-
more, we assume that Δ1 ≥ Δ2 ≥ · · · ≥ Δm . For this problem, Koufogiannakis and
Young [15] proposed a polynomial-time Δ1-approximation algorithm. In this paper,
we propose a new polynomial-time primal-dual approximation algorithm based on the
approximation algorithm of Takazawa and Mizuno [22] for the covering integer pro-
gram with {0, 1}-variables and the approximation algorithm of Iwata and Nagano [9]
for the submodular function minimization problem with set covering constraints. The
approximation ratio of our algorithm is

max{Δ2,min{Δ1, 1 + Π}},

where Π is the maximum size of a connected component of the input submodular
function (see the next section for its formal definition). It is not difficult to see that the
approximation ratio of our algorithm is at most Δ1. Furthermore, if Π is small (i.e.,
the input submodular function is close to a linear function) and Δ2 is also small, then
our approximation can improve the algorithm of Koufogiannakis and Young [15]. For
example, in the minimum knapsack problem with a forcing graph (see, e.g., [22] for
its formal definition), Δ1 is large, but Δ2 is small.
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2 Preliminaries

We denote by R and R+ the sets of real numbers and non-negative real numbers,
respectively. For each finite set U , each vector v in R

U , and each subset X of U , we
define v(X):= ∑

u∈X v(u).
Throughout this paper, we are given finite sets N and M = {1, 2, . . . , m} such that

m ≥ 2, and a non-negative submodular function ρ : 2N → R+ such that ρ(∅) = 0.
We assume that for every subset X of N , we can compute ρ(X) in time bounded by
a polynomial in |N |. Furthermore, we are given vectors a in R

M×N+ and b in R
M+ . For

each subset X of N , we define the vector χX in {0, 1}N by

χX ( j):=
{
1 if j ∈ X

0 if j ∈ N \ X.

Then we consider the following problem SCIP.

Minimize ρ(X)

subject to
∑

j∈N

a(i, j)χX ( j) ≥ b(i) (i ∈ M)

X ⊆ N .

Without loss of generality, we assume that for every element i in M ,

∑

j∈N

a(i, j) ≥ b(i). (1)

Otherwise, there does not exist a feasible solution of SCIP.
For each element i in M , we define Δi as the number of elements j in N such that

a(i, j) 
= 0. Without loss of generality, we assume that Δ1 ≥ Δ2 ≥ · · · ≥ Δm .
A subset X of N is said to be separable, if there exists a non-empty proper subset

Y of X such that
ρ(X) = ρ(Y ) + ρ(X \ Y ).

Furthermore, a subset X of N is said to be inseparable, if X is not separable. It is
known [1, Proposition 4.4] that N can be uniquely partitioned into non-empty subsets
I1, I2, . . . , Iδ satisfying the following conditions in polynomial time by using the
algorithm of Queyranne [19]. (For completeness, we give an algorithm for computing
I1, I2, . . . , Iδ in Appendix 4.)

1. Ip is inseparable for every integer p in {1, 2, . . . , δ}.
2. For every subset X of N ,

ρ(X) = ρ(X ∩ I1) + ρ(X ∩ I2) + · · · + ρ(X ∩ Iδ).

Define
Π :=max{|I1|, |I2|, . . . , |Iδ|},
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and we call Π the dependency of ρ. In this paper, we propose a polynomial-time
approximation algorithm for SCIP whose approximation ratio is

max{Δ2,min{Δ1, 1 + Π}}.

For SCIP, Koufogiannakis and Young [15] proved that if ρ is monotone, i.e.,
ρ(X) ≤ ρ(Y ) for every pair of subsets X, Y of N such that X ⊆ Y , then there exists
a Δ1-approximation algorithm. (See [9, p.675] for the monotonicity of an objective
function.) Iwata and Nagano [9] considered the case where a(i, j) ∈ {0, 1} and b(i) =
1 for every element i in M and every element j in N , and proposed aΔ1-approximation
algorithm. Notice that if there exists a vector c in R

N+ such that ρ(X) = c(X) holds
for every subset X of N , then the dependency Π is equal to 1. Thus, if we assume
that Δ2 ≥ 2, then the approximation ratio of our algorithm is Δ2. This implies that
our result can be regarded as a generalization of the Δ2-approximation algorithm of
Takazawa and Mizuno [22] for the covering integer program with {0, 1}-variables.

3 Algorithm

For proposing an approximation algorithm forSCIP, we need to introduce a linear pro-
gramming relaxation of SCIP. This approach was proposed by Iwata and Nagano [9]
for the submodular function minimization problem with set covering constraints.

We first define the function ρ̂ : R
N+ → R+ called the Lovász extension of ρ [16].

Assume that we are given a vector v in R
N+ . Furthermore, we assume that for non-

negative real numbers v̂1, v̂2, . . . , v̂s such that v̂1 > v̂2 > · · · > v̂s , we have
{v̂1, v̂2, . . . , v̂s} = {v( j) | j ∈ N }. Then for each integer p in {1, 2, . . . , s}, we
define Np by

Np:={ j ∈ N | v( j) ≥ v̂p}.

Then we define ρ̂(v) by

ρ̂(v):=
s∑

p=1

(
v̂p − v̂p+1

)
ρ(Np),

where we define v̂s+1:=0. It is known [3] that

ρ̂(v) = max
z∈P(ρ)

∑

j∈N

v( j)z( j), (2)

where we define P(ρ) by

P(ρ):={z ∈ R
N | z(X) ≤ ρ(X) for every subset X of N }.
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By considering the dual problem of (2), we can see that for every vector v in R
N+ , ρ̂(v)

is equal to the optimal objective value of the following problem (see, e.g., [9]).

Minimize
∑

X⊆N

ρ(X)ξ(X)

subject to
∑

X⊆N : j∈X

ξ(X) = v( j) ( j ∈ N )

ξ ∈ R
2N

+ .

(3)

It is not difficult to see that for every subset X of N , ρ(X) = ρ̂(χX ). Thus, SCIP
is equivalent to the following problem.

Minimize ρ̂(x)

subject to
∑

j∈N

a(i, j)x( j) ≥ b(i) (i ∈ M)

x ∈ {0, 1}N .

(4)

Define the vectors a in R
M×N×2N

+ and b in R
M×2N

+ by

b(i, A):=max
{
0, b(i) −

∑

j∈A

a(i, j)
}
,

a(i, j, A):=min{a(i, j), b(i, A)}.

Then we consider the following problem.

Minimize ρ̂(x)

subject to
∑

j∈N\A

a(i, j, A)x( j) ≥ b(i, A) (i ∈ M, A ⊆ N )

x ∈ {0, 1}N .

(5)

The constraints of (5) are based on the results of [1,2]. It is known [1,2] that for
every vector x in {0, 1}N , x is a feasible solution of the problem (4) if and only if
x is a feasible solution of the problem (5). We give the proof of this statement for
completeness.

Theorem 1 For every vector x in {0, 1}N , x is a feasible solution of the problem (4)
if and only if x is a feasible solution of the problem (5).

Proof Let us fix a vector x in {0, 1}N and an element i in M . Assume that x is a
feasible solution of the problem (4). Let A be a subset of N . If there exists an element
j∗ in N \ A such that x( j∗) = 1 and a(i, j∗) ≥ b(i, A), then since a(i, j, A) ≥ 0 for
every element j in N ,

∑

j∈N\A

a(i, j, A)x( j) ≥ a(i, j∗, A) = b(i, A).

123



2962 Algorithmica (2018) 80:2957–2971

Assume that a(i, j) < b(i, A) for every element j in N \ A such that x( j) = 1. Since
a(i, j, A) ≥ 0 for every element j in N ,

∑

j∈N\A

a(i, j, A)x( j) ≥ 0.

Furthermore, since ∑

j∈N

a(i, j)x( j) ≥ b(i),

we have ∑

j∈N\A

a(i, j, A)x( j) =
∑

j∈N\A

a(i, j)x( j)

≥ b(i) −
∑

j∈A

a(i, j)x( j)

≥ b(i) −
∑

j∈A

a(i, j).

This implies that x is a feasible solution of the problem (5).
Assume that x is a feasible solution of the problem (5). Then we have

∑

j∈N

a(i, j)x( j) ≥
∑

j∈N

a(i, j,∅)x( j) ≥ b(i,∅) ≥ b(i).

This implies that x is a feasible solution of the problem (4). 
�

We consider the following relaxation problem RP of the problem (5). Notice that
Theorem 1 implies that RP is a relaxation problem of the problem (4).

Minimize ρ̂(x)

subject to
∑

j∈N\A

a(i, j, A)x( j) ≥ b(i, A) (i ∈ M, A ⊆ N )

x ∈ R
N+ .

Since for every vector v in R
N+ , ρ̂(v) is equal to the optimal objective value of the

problem (3), the optimal objective value ofRP is equal to that of the following problem
LP.

Minimize
∑

X⊆N

ρ(X)ξ(X)

subject to
∑

j∈N\A

a(i, j, A)x( j) ≥ b(i, A) (i ∈ M, A ⊆ N )

∑

X⊆N : j∈X

ξ(X) = x( j) ( j ∈ N )

(x, ξ) ∈ R
N × R

2N

+ .
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Notice that we neglect the redundant non-negativity constraint of x . Then the dual
problem of LP can be described as follows.

Maximize
∑

i∈M

∑

A⊆N

b(i, A)y(i, A)

subject to
∑

i∈M

∑

A⊆N : j /∈A

a(i, j, A)y(i, A) = z( j) ( j ∈ N )

(y, z) ∈ R
M×2N

+ × P(ρ).

We call this problem DLP.
Let z be a vector in P(ρ). Define the function ρ − z : 2N → R+ by (ρ −

z)(X):=ρ(X) − z(X). Then ρ − z is submodular, and minX⊆N (ρ − z)(X) =
(ρ − z)(∅) = 0. Furthermore, it is not difficult to see that for every pair of mini-
mizers X, Y of ρ − z, X ∪ Y is a minimizer of ρ − z. Thus, there exists the unique
maximal subset X of N such that ρ(X) = z(X).

We are now ready to propose our algorithm, called Algorithm 1. This algorithm is
based on the approximation algorithm of Takazawa and Mizuno [22] for the covering
integer program with {0, 1}-variables. For each element i in M and each subset S of
N , we define a vector gi,S in R

N+ by

gi,S( j):=
{

a(i, j, S) if j ∈ N \ S

0 if j ∈ S.

Then Algorithm 1 can be described as follows. Notice that y1, y2, . . . , yT are needed
only for the analysis of Algorithm 1.

The following lemmas imply that Algorithm 1 is well-defined and halts in finite
time.

Lemma 1 Assume that we are given an element i in M and a subset S of N such
that b(i, S) > 0. Then there exists an element j in N \ S such that a(i, j, S) > 0.
Furthermore, there exists a subset X of N such that gi,S(X) 
= 0.

Proof The second statement follows from the first statement. Assume that for every
element j in N \ S, a(i, j, S) = 0 (notice that a(i, j, S) ≥ 0). Then for every element
j in N \ S, since b(i, S) > 0, the definition of a(i, j, S) implies that a(i, j) = 0. Thus,
we have

b(i) >
∑

j∈S

a(i, j) =
∑

j∈N

a(i, j),

where the strict inequality follows from the fact that b(i, S) > 0. This contradicts (1).

�

Lemma 2 Assume that we are given an element i in M, a subset S of N , and a vector
z in P(ρ) such that b(i, S) > 0. Furthermore, we assume that S is the unique maximal
subset of N such that ρ(S) = z(S). If we define

α:= min
X⊆N : gi,S(X) 
=0

ρ(X) − z(X)

gi,S(X)
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Algorithm 1:

1 Set t :=1 and r :=m.
2 Define y1, z1 to be the zero vectors in R

M×2N
and R

N , respectively.
3 Define S1 to be the unique maximal subset of N such that ρ(S1) = z1(S1).
4 while r ≥ 1 do
5 while b(r, St ) > 0 do
6 Define the real number αt by

αt := min
X⊆N : gr,St (X) 
=0

ρ(X) − zt (X)

gr,St (X)
.

7 Define the vector yt+1 in R
M×2N

by

yt+1(i, A):=
{

yt (i, A) + αt if i = r and A = St

yt (i, A) otherwise.

8 Define zt+1:=zt + αt · gr,St .
9 Define St+1 to be the unique maximal subset of N such that

ρ(St+1) = zt+1(St+1).
10 Set t :=t + 1.
11 end
12 Define t (r):=t , and set r :=r − 1.
13 end
14 Define T :=t .
15 if t (1) = t (2) then
16 Define Q:=ST .
17 else
18 For each integer 	 in {1, 2, . . . , δ}, we define

Q	:=ST −1 ∪ ((ST \ ST −1) ∩ (I1 ∪ I2 ∪ · · · ∪ I	)).

19 Define β:=min{	 ∈ {1, 2, . . . , δ} | b(1, Q	) = 0} and Q:=Qβ .
20 end
21 Output Q, and halt.

and z′:=z + α · gi,S, then we have

(1) z′ ∈ P(ρ).

Furthermore, we define S′ as the maximal subset of N such that ρ(S′) = z′(S′). Then
we have

(2) S � S′.
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Proof We first prove (1). For every subset X of N such that gi,S(X) = 0, we have
z′(X) = z(X) ≤ ρ(X). Furthermore, for every subset X of N such that gi,S(X) 
= 0,

z′(X) = z(X) + α · gi,S(X) ≤ z(X) + ρ(X) − z(X)

gi,S(X)
· gi,S(X) = ρ(X).

This completes the proof.
Next we prove (2). Since z′( j) = z( j) for every element j in S, ρ(S) = z′(S). The

maximality of S′ implies that S ⊆ S′. Let Z be a subset of N such that gi,S(Z) 
= 0
and

α = ρ(Z) − z(Z)

gi,S(Z)
.

Then ρ(Z) = z′(Z). The maximality of S′ implies that Z ⊆ S′ holds. Furthermore,
since gi,S(Z) 
= 0, we have Z � S, which implies that S � S′. This completes the
proof. 
�

Notice that since Qδ = ST and b(1, ST ) = 0, β is well-defined.

4 Analysis

In this section, we analyze properties of Algorithm 1.
We first prove that Algorithm 1 is a polynomial-time algorithm. It follows from

Lemma 2(2) that T is at most |N | + 1. It is known [18] that αt can be computed in
polynomial time. Furthermore, it is known (see, e.g., [17, Note 10.11]) that we can find
the unique maximal subset St+1 of N such that ρ(St+1) = zt+1(St+1) in polynomial
time. These imply that Algorithm 1 is a polynomial-time algorithm.

Next we evaluate the approximation ratio.

Lemma 3 For every integer t in {1, 2, . . . , T }, (yt , zt ) is a feasible solution of DLP.

Proof We prove this lemma by induction on t . If t = 1, then this lemma follows
from the fact that ρ(X) ≥ 0 for every subset X of N . Assume that this lemma
holds when t = k (≥ 1), and then we consider the case of t = k + 1. Assume
that t (r + 1) < k + 1 ≤ t (r) for an integer r in {1, 2, . . . , m}, where we define

t (m + 1):=0. Since αk ≥ 0 follows from zk ∈ P(ρ), we have yk+1 ∈ R
M×2N

+ .
Furthermore, Lemma 2(1) implies that zk+1 ∈ P(ρ). For every element j in Sk ,
zk+1( j) = zk( j) and

∑

i∈M

∑

A⊆N : j /∈A

a(i, j, A)yk+1(i, A) =
∑

i∈M

∑

A⊆N : j /∈A

a(i, j, A)yk(i, A).

For every element j in N \ Sk , zk+1( j) − zk( j) = a(r, j, Sk) · αk and

∑

i∈M

∑

A⊆N : j /∈A

a(i, j, A)yk+1(i, A) −
∑

i∈M

∑

A⊆N : j /∈A

a(i, j, A)yk(i, A)

= a(r, j, Sk) · (yk+1(r, Sk) − yk(r, Sk))

= a(r, j, Sk) · αk .
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This completes the proof. 
�
Lemma 4 The vector χQ is a feasible solution of the problem (4), i.e., Q is a feasible
solution of SCIP.

Proof Let i be an element in M . Define a subset X of N by

X :=
{

St (i) if i 
= 1

Q if i = 1.

Since b(i, X) = 0, we have
b(i) ≤

∑

j∈X

a(i, j).

Thus, since a(i, j) ≥ 0 for every element j in M and X ⊆ Q, we have

b(i) ≤
∑

j∈X

a(i, j) ≤
∑

j∈Q

a(i, j).

This implies that χQ is a feasible solution of the problem (4). This completes the
proof. 
�
Lemma 5 We have ρ(Q) = zT (Q).

Proof If t (1) = t (2), then Q = ST , and thus this lemma follows from zT (ST ) =
ρ(ST ). In what follows, we assume that t (1) 
= t (2). Since zT ∈ P(ρ),

zT (ST −1 ∩ Ip) ≤ ρ(ST −1 ∩ Ip)

for every integer p in {1, 2, . . . , δ}. Since zT −1(ST −1) = ρ(ST −1) and zT ( j) =
zT −1( j) for every element j in ST −1,

zT (ST −1) = zT −1(ST −1)

= ρ(ST −1)

= ρ(ST −1 ∩ I1) + ρ(ST −1 ∩ I2) + · · · + ρ(ST −1 ∩ Iδ)

≥ zT (ST −1 ∩ I1) + zT (ST −1 ∩ I2) + · · · + zT (ST −1 ∩ Iδ)

= zT (ST −1).

This implies that we have

zT (ST −1 ∩ Ip) = ρ(ST −1 ∩ Ip)

for every integer p in {1, 2, . . . , δ}. In the same way, we can prove that

zT (ST ∩ Ip) = ρ(ST ∩ Ip)
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for every integer p in {1, 2, . . . , δ}. Thus, since

Q = (ST ∩ I1) ∪ · · · ∪ (ST ∩ Iβ) ∪ (ST −1 ∩ Iβ+1) ∪ · · · ∪ (ST −1 ∩ Iδ),

we have

ρ(Q) = ρ(ST ∩ I1) + · · · + ρ(ST ∩ Iβ) + ρ(ST −1 ∩ Iβ+1) + · · · + ρ(ST −1 ∩ Iδ)

= zT (ST ∩ I1) + · · · + zT (ST ∩ Iβ) + zT (ST −1 ∩ Iβ+1) + · · ·
+ zT (ST −1 ∩ Iδ)

= zT (Q).

This completes the proof. 
�

Theorem 2 Algorithm 1 is an approximation algorithm for SCIP whose approxi-
mation ratio is max{Δ2,min{Δ1, 1 + Π}}.

Proof Lemma 4 implies that Algorithm 1 is an approximation algorithm for SCIP.
Let OPT be the optimal objective value of SCIP. Lemma 3 implies that

∑

i∈M

∑

A⊆N

b(i, A)yT (i, A) ≤ OPT. (6)

Furthermore, Lemma 5 implies that

ρ(Q) = zT (Q) =
∑

j∈Q

∑

i∈M

∑

A⊆N : j /∈A

a(i, j, A)yT (i, A)

=
∑

i∈M

∑

A⊆N

∑

j∈Q\A

a(i, j, A)yT (i, A).
(7)

Let i be an element in M . Then we have

∑

A⊆N

∑

j∈Q\A

a(i, j, A)yT (i, A) =
∑

A⊆N

∑

j∈Q\A : a(i, j) 
=0

a(i, j, A)yT (i, A)

≤
∑

A⊆N

∑

j∈Q\A : a(i, j) 
=0

b(i, A)yT (i, A)

≤ Δi ·
∑

A⊆N

b(i, A)yT (i, A).

(8)
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Assume that t (1) 
= t (2). Define Q0:=ST −1. For every subset A of ST −1,

∑

j∈Qβ−1\A

a(1, j, A) ≤
∑

j∈Qβ−1\A

a(1, j)

=
∑

j∈Qβ−1

a(1, j) −
∑

j∈A

a(1, j) (by A ⊆ Qβ−1)

< b(1) −
∑

j∈A

a(1, j)

≤ b(1, A),

(9)

where the strict inequality follows from the definition of β (i.e., b(1, Qβ−1) > 0).
Furthermore, the definition of Algorithm 1 and Lemma 2(2) imply that for every
subset A of N , if yT (1, A) > 0, then A ⊆ ST −1. Thus,

∑

A⊆N

∑

j∈Q\A

a(1, j, A)yT (1, A)

=
∑

A⊆ST −1

∑

j∈Q\A

a(1, j, A)yT (1, A)

=
∑

A⊆ST −1

yT (1, A)
∑

j∈Q\A

a(1, j, A)

=
∑

A⊆ST −1

yT (1, A)
{ ∑

j∈Qβ−1\A

a(1, j, A) +
∑

j∈Q\Qβ−1

a(1, j, A)
}

≤
∑

A⊆ST −1

yT (1, A)
{

b(1, A) +
∑

j∈Q\Qβ−1

b(1, A)
}

(by (9))

≤
∑

A⊆ST −1

yT (1, A)
{

b(1, A) + Π · b(1, A)
}

(by |Iβ | ≤ Π)

= (1 + Π) ·
∑

A⊆ST −1

b(1, A)yT (1, A)

= (1 + Π) ·
∑

A⊆N

b(1, A)yT (1, A).

(10)

Notice that if t (1) = t (2), then yT (1, A) = 0 for every subset A of N . Thus, (6), (7),
(8), and (10) imply that
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ρ(Q) =
∑

i∈M

∑

A⊆N

∑

j∈Q\A

a(i, j, A)yT (i, A)

=
∑

A⊆N

∑

j∈Q\A

a(1, j, A)yT (1, A) +
∑

i∈M\{1}

∑

A⊆N

∑

j∈Q\A

a(i, j, A)yT (i, A)

≤ min{Δ1, 1 + Π} ·
∑

A⊆N

b(1, A)yT (1, A) + Δ2 ·
∑

i∈M\{1}

∑

A⊆N

b(i, A)yT (i, A)

≤ max{Δ2,min{Δ1, 1 + Π}} ·
∑

i∈M

∑

A⊆N

b(i, A)yT (i, A)

≤ max{Δ2,min{Δ1, 1 + Π}} · OPT.

This completes the proof. 
�

A Algorithm for Computing I1, I2, . . . , Iδ

It is known [1, Proposition 4.4] that we can compute I1, I2, . . . , Iδ by greedily parti-
tioning a separable subset in a current partition. Formally speaking, we can compute
I1, I2, . . . , Iδ by using Algorithm 2.

Algorithm 2:
1 Set P :={N }.
2 if there exists a separable member X in P then
3 Find a non-empty proper subset Y of X such that ρ(X) = ρ(Y ) + ρ(X \ Y ).
4 Set P :=(P \ {X}) ∪ {X \ Y, Y }.
5 end
6 Output P , and halt.

For proving that I1, I2, . . . , Iδ can be computed in polynomial time, it suffices to
prove that the following problem can be solved in polynomial time.

Input: A subset X of N .
Task: Decide whether there exists a non-empty proper subset Y of X such that

ρ(X) = ρ(Y ) + ρ(X \ Y ). If there exists such a subset Y , then find Y .

Define ρ : 2X → R by

ρ(Y ):=ρ(Y ) + ρ(X \ Y ) − ρ(X).

Then it is not difficult to see that for every subset Y of X , we can compute ρ(Y ) in time
bounded by a polynomial in |N |. Furthermore, ρ(∅) = ρ(X) = 0, ρ(Y ) = ρ(X \ Y )
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for every subset Y of X . For each pair of subsets Y, Z of X ,

ρ(Y ) + ρ(Z) = ρ(Y ) + ρ(X \ Y ) − ρ(X) + ρ(Z) + ρ(X \ Z) − ρ(X)

≥ ρ(Y ∪ Z) + ρ(Y ∩ Z) + ρ(X \ (Y ∩ Z))

+ ρ(X \ (Y ∪ Z)) − 2ρ(X)

= ρ(Y ∪ Z) + ρ(X \ (Y ∪ Z)) − ρ(X)

+ ρ(Y ∩ Z) + ρ(X \ (Y ∩ Z)) − ρ(X)

= ρ(Y ∪ Z) + ρ(Y ∩ Z).

That is, ρ is a submodular function. For every subset Y of X ,

2ρ(Y ) = ρ(Y ) + ρ(X \ Y ) ≥ ρ(X) + ρ(∅) = 0.

Thus, there exists a non-empty proper subsetY of X such thatρ(X) = ρ(Y )+ρ(X \Y )

if and only if there exists a minimizer Y of ρ such that Y 
= ∅, X . It is known [19] that
we can find a non-empty proper subset Y of X minimizing ρ(Y ) among all non-empty
proper subsets of X in polynomial time. Let Y ∗ be a non-empty proper subset of X
minimizing ρ(Y ∗) among all non-empty proper subsets of X . If ρ(Y ∗) > 0 holds, then
there does exist a non-empty proper subset Y of X such that ρ(X) = ρ(Y )+ρ(X \Y ).
Otherwise, Y ∗ is a solution of the above problem. This complete the proof.
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