
Algorithmica (2018) 80:1710–1731
https://doi.org/10.1007/s00453-017-0360-y

Optimal Mutation Rates for the (1+λ) EA on OneMax
Through Asymptotically Tight Drift Analysis

Christian Gießen1 · Carsten Witt1

Received: 30 September 2016 / Accepted: 8 August 2017 / Published online: 17 August 2017
© Springer Science+Business Media, LLC 2017

Abstract We study the (1+λ) EA, a classical population-based evolutionary algo-
rithm, with mutation probability c/n, where c > 0 and λ are constant, on the
benchmark function OneMax, which counts the number of 1-bits in a bitstring. We
improve a well-established result that allows to determine the first hitting time from
the expected progress (drift) of a stochastic process, known as the variable drift theo-
rem. Using our improved result, we show that upper and lower bounds on the expected
runtime of the (1+λ) EA obtained from variable drift theorems are at most apart by
a small lower order term if the exact drift is known. This reduces the analysis of
expected optimization time to finding an exact expression for the drift. We then give
an exact closed-form expression for the drift and develop a method to approximate it
very efficiently, enabling us to determine approximate optimal mutation rates for the
(1+λ) EA for various parameter settings of c and λ and also for moderate sizes of n.
Thismakes the need for potentially lengthy and costly experiments in order to optimize
c for fixed n and λ for the optimization of OneMax unnecessary. Interestingly, even
for moderate n and not too small λ it turns out that mutation rates up to 10% larger
than the asymptotically optimal rate 1/n minimize the expected runtime. However,
in absolute terms the expected runtime does not change by much when replacing 1/n
with the optimal mutation rate.

Keywords Runtime analysis · Populations · Mutation

A preliminary version of this paper was published at GECCO 2016 [13].

B Christian Gießen
cgie@dtu.dk

Carsten Witt
cawi@dtu.dk

1 DTU Compute, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-017-0360-y&domain=pdf

Algorithmica (2018) 80:1710–1731 1711

1 Introduction

The runtime analysis of randomized search heuristics has made significant progress
over the past twodecades.Abroadvariety of randomized search heuristics, for example
evolutionary algorithms (EAs), ant colony optimization and randomized local search
have been considered for specific artificial functions, and also for combinatorial opti-
mization problems. The analysis of evolutionary algorithmson simple pseudo-Boolean
functions has been tremendously fruitful and led to a wide range of results and tech-
niques. In most cases, runtime analysis is performed in an asymptotic fashion with
respect to the expected optimization time (see [1,15,20] for an overview).

In the past couple of years there has been a surge of interest in non-asymptotic
analyses of EAs, i. e. in determining the runtime exactly, up to lower order terms. For
example, bounds on the expected runtime of the well-known (1+1) EA on the classical
OneMax function have enjoyed a series of improvements. It has been known for a
long time that the expected runtime is Θ(n ln n) and goes back to Droste et al. [9].
The first asymptotically tight bound of (1 ± o(1))en ln n was given by Witt [24]
for the (1+1) EA on general linear pseudo-Boolean functions with positive weights.
Recently, the expected runtime of the (1+1) EA on OneMax has been stated exactly,
up to subconstant terms [14].

For a long time, the optimal mutation rate has not been of particular interest. By a
rule of thumb the mutation rate was set to 1/n in many applications, i. e. every bit is
flipped independently with probability 1/n. At least for linear functions, it is known
that 1/n is asymptotically the optimal mutation rate for the (1+1) EA on all linear
functions [9,24]. Böttcher et al. [3] showed that the optimal mutation rate for the
(1+1) EA on the LeadingOnes problem is in fact ≈1.59/n, way above the common
practice of using 1/n. Doerr and Goldberg [8] showed for the (1+1) EA that the
asymptotic bound ofΘ(n ln n) holds for a mutation rate of c/n for the optimization of
linear pseudo-Boolean functions, where c is an arbitrary constant. Chicano et al. [5]
showed that the optimal mutation rate can be up to 50% higher than the asymptotically
optimal 1/n for small sizes of n for the (1+1) EA on OneMax. Badkobeh et al. [4]
showed for the (1+λ) EA on OneMax that the optimal mutation rate increases with λ

in an adaptive setting.
The exact relationship between the static mutation rate and the runtime of the

(1+1) EA was revealed by Witt in the aforementioned work [24] by showing that the
runtime is (1 ± o(1)) e

c

c n ln n for general linear pseudo-Boolean functions which is

asymptotically tight up to lower order terms.Here, the leading constant e
c

c isminimized
for c = 1, thus justifying the unwritten rule of setting the mutation rate to 1/n in many
applications. This result was refined and extended to populations by GieSSen andWitt
[12], who gave the asymptotically tight bound

(1 ± o(1))

(
ec

c
· n ln n

λ
+ 1

2
· n ln ln λ

ln λ

)

for the number of generations needed by the (1+λ) EA on OneMax with mutation
rate c/n.

123

1712 Algorithmica (2018) 80:1710–1731

The impact of the mutation rate on the lower order term remains unclear though.
Since the lower order term is only known asymptotically, small problem sizes might
benefit from a mutation rate that deviates from 1/n, as seen in [5].

The goal of this paper is to find optimalmutation rates for the (1+λ) EAonOneMax
for constant λ. To this end, a new drift theorem is given that provides away of bounding
the runtime if the exact drift values are known. We then give an exact formula for the
drift by analyzing the distribution of the difference of two binomially distributed
random variables and show how to efficiently approximate it by means of the Poisson
distribution, such that the multiplicative error of the approximation is (1 ± O(1/n)).
By applying our new drift theorem with the approximated drift values, we are able to
give approximate optimal values of c in a computationally efficient way avoiding the
need for empirical investigations.

The paper is structured as follows. In Sect. 2 we state the (1+λ) EA and the drift
theorems used throughout the paper. In particular, a newdrift theorem for lower bounds
is given. In Sect. 3 we present our main result that the lower bounds from the new
drift theorem and the upper bounds on the expected runtime are only apart by a lower
order term, provided the exact drift is known. In Sect. 4 we give an exact closed-form
expression for the drift. Moreover, we show how to approximate it with only small
asymptotic error in a computationally efficient way. Section 5 deals with the practical
implications of our theoretical results. We show that by combining our main result
with the approximated drift we can approximate the expected runtime with only small
relative error. In Sect. 5.1 we exploit our findings by determining approximate optimal
mutation rates for various settings of n and λ. Section 5.2 finally demonstrates in an
empirical analysis of the expected runtime that our approximately optimal results
(whose error provably can only affect a lower order term of the expected runtime) in
fact very well reflect the actual runtimes.

2 Preliminaries

2.1 Algorithm

We consider the (1+λ) EA on pseudo-Boolean functions f : {0, 1}n → R in the
minimization version, defined as Algorithm 1. The case of c = 1 in the mutation
probability was considered in [10,11,16]. The classical (1+1) EA [1] is a special case
of the (1+λ) EA for λ = 1 and c = 1. Throughout the paper, c and λ are for simplicity
assumed to be constant, i. e., they may not depend on n. With minor efforts, our results
can be generalized to larger values, e. g., to c = O(ln n) and λ = O(ln n), at the
expense of additional logarithmic factors in the error bounds.

The runtime of the (1+λ) EA is defined to be the smallest t ∈ N, such that an
individual of minimum f -value is found. These individuals are called optima. This
notion of runtime is identical with the minimum number of iterations (also called
generations). Since each of these offspring has to be evaluated, the number of func-
tion evaluations, which is another classical cost measure, is by a factor of λ larger
than the runtime as defined here. However, assuming a massively parallel archi-
tecture that allows for parallel evaluation of the offspring, counting the number of

123

Algorithmica (2018) 80:1710–1731 1713

Algorithm 1 (1+λ) EA
Select x∗ uniformly at random from {0, 1}n .
for t ← 1, 2, . . . do

for i ← 1, . . . , λ do
Create xi by flipping each bit of x∗ independently
with probability c/n.

xm ← argminxi f (xi) (breaking ties randomly)
if f (xm) ≤ f (x∗) then

x∗ ← xm

generations seems a valid cost measure. In particular, a speed-up on the function
OneMax(x1, . . . , xn) := x1 +· · ·+ xn by increasing λ can only be observed in terms
of the number of generations.

In the rest of the paper we will focus on the minimization of the classical func-
tion OneMax(x1, . . . , xn) := x1 + · · · + xn , which attains its unique optimum, i. e.
minimum, in the all-zero-bitstring.

2.2 Drift Theorems

Our analyses use variable drift analysis, a state-of-the art technique for the analysis of
expected optimization times. We first state a theorem for upper bounds, which is well
known. See [17,19,21]. We use a general version that was proposed in [18].

Theorem 1 (Variable Drift, Upper Bound; [18]) Let (Xt)t≥0 be a stochastic process
adapted to a filtrationFt over some state space S ⊆ {0}∪[xmin, xmax], where xmin > 0.
Let h(x) : [xmin, xmax] → R+ be a monotone increasing function such that 1/h(x)
is integrable on [xmin, xmax] and E(Xt − Xt+1 | Ft) ≥ h(Xt) if Xt ≥ xmin. Then it
holds for the first hitting time T := min{t | Xt = 0} that

E(T | X0) ≤ xmin

h(xmin)
+

X0∫
xmin

1

h(x)
dx .

To prove lower bounds on the hitting time by variable drift, we need additional
assumptions. The first variable drift theorem for lower bounds on the hitting that we
are aware of goes back to [7]. It requires that the process does not make large steps
towards the optimum, more precisely from state x it may only go to states y ≥ c(x)
for some function c(x). This deterministic requirement on the progress is weakened
to a stochastic one in the following lemma. Moreover, the condition in item (v) is
weaker than in [7]. Instead of demanding E(Xt − Xt+1 | Ft) ≤ h(ξ(Xt)), we allow
for h-functions that are step functions. This can be useful for discrete state spaces.
Somewhat simplifying, if the state space is N and the drift at point i equals i , we
can use h(x) := �x� in the new variant, while the original variant would require a
continuous function such as h(x) = x . As

∫
1/�z� dz ≤ ∫

1/z dz, our step function
gives an improved upper bound.

123

1714 Algorithmica (2018) 80:1710–1731

Theorem 2 (Variable Drift, Lower Bound) Let (Xt)t≥0, be a stochastic process
adapted to a filtrationFt over some state space S ⊆ {0}∪[xmin, xmax], where xmin > 0.
Suppose there exist

(i) two functions ξ, h : [xmin, xmax] → R+ such that h(x) is monotone increasing
and 1/h(x) integrable on the interval [xmin, xmax],

(ii) β > 0,

and, using

g(x) := xmin

h(xmin)
+

x∫
xmin

1

h(z)
dz,

suppose it holds for all t ≥ 0 that

(iii) Xt+1 ≤ Xt ,
(iv) Pr(Xt+1 < ξ(Xt)) ≤ 1

βg(Xt)
for Xt ≥ xmin,

(v) E(Xt − Xt+1 | Ft) ≤ limδ↓0 h(ξ(Xt) + δ) for Xt ≥ xmin.

Then it holds for the first hitting time T := min{t | Xt = 0} that

E(T | X0) ≥ β

1 + β
g(X0).

Corollary to the above: If ξ is invertible and differentiable on the domain, with inverse
function ξ−1 and derivative ξ ′, and (iv) and (v) are replaced by the conditions

(iv’) Pr(Xt+1 < ξ(Xt))

≤ 1

β

(
xmin

h(ξ−1(xmin))
+∫ ξ−1(Xt)

ξ−1(xmin)

ξ ′(x)
h(x) dx

) for Xt ≥ xmin,

(v’) E(Xt − Xt+1 | Ft) ≤ limδ↓0 h(Xt + δ) for Xt ≥ xmin

then the bound on E(T | X0) is equivalent to

E(T | X0) ≥ β

1 + β

⎛
⎜⎝ xmin

h(ξ−1(xmin))
+

ξ−1(X0)∫

ξ−1(xmin)

ξ ′(x)
h(x)

dx

⎞
⎟⎠ .

Proof We use the potential function g(x) = xmin
h(xmin)

+ ∫ x
xmin

1
h(z) dz to apply additive

drift analysis w. r. t. to the drift E(g(Xt) − g(Xt+1) | Ft). Note that the first bound on
E(T | X0) given in the theorem follows if we can establish the bound on the drift

E(g(Xt) − g(Xt+1) | Ft) ≤ 1 + 1

β

for Xt ≥ xmin since g(X0) =
(

xmin
h(xmin)

+ ∫ X0
xmin

1
h(x) dx

)
. The second bound on

E(T | X0) is equivalent to the first one as can be shown by a simple substitution.

123

Algorithmica (2018) 80:1710–1731 1715

We are left with the bound on the drift. By the law of total probability,

E(g(Xt) − g(Xt+1) | Ft)

= E(g(Xt) − g(Xt+1) | Ft ; Xt+1≥ξ(Xt))Pr(Xt+1≥ξ(Xt))

+ E(g(Xt) − g(Xt+1) | Ft ; Xt+1<ξ(Xt))Pr(Xt+1<ξ(Xt))

≤ E(g(Xt) − g(Xt+1) | Ft ; Xt+1≥ξ(Xt))

+ g(Xt) · Pr(Xt+1 < ξ(Xt))

≤ E(g(Xt) − g(Xt+1) | Ft ; Xt+1 ≥ ξ(Xt))

+ g(Xt) · 1

βg(Xt)

= E(g(Xt) − g(Xt+1) | Ft ; Xt+1 ≥ ξ(Xt)) + 1

β
,

where the first inequality estimated the drift in the case Xt+1 < ξ(Xt) by g(Xt) and
the second one used the assumption (iv).

We proceed by bounding

E(g(Xt) − g(Xt+1) | Ft ; Xt+1 ≥ ξ(Xt))

≤ E

(∫ Xt

Xt+1

1

h(x)
d(x) | Ft ; Xt+1 ≥ ξ(Xt)

)

≤ E(Xt − Xt+1 | Ft ; Xt+1 ≥ ξ(Xt))

limδ↓0 h(ξ(Xt) + δ)

≤ E(Xt − Xt+1 | Ft)

limδ↓0 h(ξ(Xt) + δ)
,

where the first inequality follows by expanding g, the second one used that Xt ≥
Xt+1 ≥ ξ(Xt) (which uses (i i i)) alongwith the fact that h ismonotone increasing (i. e.,
non-decreasing) (from (i)), and the third one the definition of conditional probability.
Using (v), the last bound simplifies to

E(g(Xt) − g(Xt+1) | Ft) ≤ limδ↓0 h(ξ(Xt) + δ)

limδ↓0 h(ξ(Xt) + δ)
= 1,

so that

E(g(Xt) − g(Xt+1) | Ft) ≤ 1 + 1

β

as desired. ��

123

1716 Algorithmica (2018) 80:1710–1731

3 Bringing Together Lower Bounds and Upper Bounds from Variable
Drift

Weare interested in how far the lower bound fromTheorem2 and the upper bound from
Theorem 1 are apart when an exact expression on the drift E(Xt − Xt+1) is known.
Intuitively, this depends to a great extent on how sharply the progress is concentrated
around its expected value. If large jumps towards the optimum are sufficiently likely,
then the lower bound seems to reflect the truth better. For example, consider the
following artificial process: the fitness function is OneMax and the algorithm is the
(1+1) EAwith the followingmodifiedmutation step:with probability 1/n the optimum
is created, and with probability 1 − 1/n the usual standard-bit mutation operator
with mutation probability 1/n is used. At distance i from the optimum, the drift
towards the optimum isΘ(i/n), resulting in anupper boundO(n log n)on the expected
runtime according to Theorem 1. However, it is easy to see that the actual expected
runtime is O(n). This is a consequence of the possibly large jumps directly into the
optimum, which happen in every step with probability 1/n. Note that such steps are
very unlikely with the unmodified mutation operator unless the algorithm is very close
to the optimum anyway.

We concentrate now on the (1+λ) EA on OneMax, assuming constant c in the
mutation probability and constant λ. Then the following theorem shows using the
right drift function, upper and lower bounds on the expected runtime are only apart
by a term of lower order, which is indeed considerably lower than the expected time
on OneMax.

Theorem 3 Consider the (1+λ) EA on OneMax, choosing c and λ as constants.
Denoting by Xt the number of ones in the search point at time t ≥ 0, the drift
Δ(i) := E(Xt − Xt+1 | Xt = i) for i ∈ {1, . . . , n} is defined. Then it holds for the
expected runtime that

(1 − O(n−1/3(ln n))) · I (X0) ≤ E(T | X0) ≤ I (X0),

where I (X0) = ∑X0
i=1 1/Δ(i).

For its proof, we need a helper lemma, which is concerned with the monotonicity
of the drift.

Lemma 4 Let Δ(i) be defined as in Theorem 3. Then Δ(i + 1) ≥ Δ(i) for any i ≥ 0.

Proof We first prove the result for λ = 1 and show then how to extend it to λ > 1.
Assume search point x(i) with i one-bits at time t and let x ′(i) be its random

offspring (before selection). We represent

Δ(i) =
∑
j≥0

Pr(|x(i)| − |x ′(i)| ≥ j) =
∑
j≥i

Pr(|x ′(i)| ≤ j),

where |z| denotes the number of one-bits in z. If we can prove for all j ≤ i the
inequality

Pr(|x ′(i + 1)| ≤ j + 1) ≥ Pr(|x ′(i)| ≤ j) (1)

123

Algorithmica (2018) 80:1710–1731 1717

the lemma follows. The inequality will be shown by a coupling argument; formally,
we map mutations x ′(i) of x(i) to mutations x ′(i + 1) of x(i + 1) and show that the
mapped mutations are at least as likely. By the symmetry of the mutation operator,
we can assume that x(i + 1) is bitwise non-less than x(i). Let i∗ be the bit that is 1
in x(i+1) but 0 in x(i). We first consider all mutations x ′(i) of x(i)with at most j ≤ i
one-bits in which bit i∗ is not flipped. These mutations map one-to-one to mutations
x ′(i + 1) with at most j + 1 one-bits by flipping the same bits in x(i + 1).

The mutations of x(i) where bit i∗ is flipped to 1 must also flip another bit k to 0
as j ≤ i . We map them to mutations of x(i + 1) by flipping all bits in the same way,
except for that neither i∗ nor k are flipped. Such a mutation has one further one-bit.
Since we use mutation probability c/n = Θ(1/n), the probability of not flipping i∗
and k is by a factor of

(
1 − c/n

c/n

)2

= Θ(n2)

larger than the probability of flipping both of them. Note that the mapping is not
bijective in this case as up to n − 1 different mutations (one for each value of k)
of x(i) are mapped to the same mutation of x(i + 1). Still, by a union bound, the
probability of generating the considered mutation of x(i + 1) is by a factor of Θ(n)

larger, proving (1).
If λ > 1, we represent the drift as a sum of tail probabilities in the same way as

above, except for that the best of the λ offspring of x(i) is considered instead of a
single offspring x ′(i). By independence of the offspring creation, the probability that
the best offspring improves by at least j equals 1− (Pr(|x(i)| − |x ′(i)| < j))λ. Using
(1), this is at most 1 − (Pr(|x(i + 1)| − |x ′(i + 1)| < j))λ, which completes the
proof. ��
Proof of Theorem 3 To prove the upper bound, we use the variable drift theorem for
upper bounds (Theorem 1), using xmin = 1, xmax = n, and h(x) = Δ(�x�) for
x ∈ [xmin, xmax].Note that the theoremallows such a discontinuous h-function.Hence,
we obtain

E(T | X0) ≤ 1

Δ(1)
+

X0∫
xmin

dx

Δ(�x�) = 1

Δ(1)
+ lim

�↓xmin

X0∫
�

dx

Δ(�x�)

=
X0∑
i=1

1

Δ(i)
= I0.

For the lower bound, we define

ξ(x) :=
{

�x� − 1 if x ≤ n1/3,

�x� − �ln(n)� otherwise.

To analyze the probability that Xt+1 < ξ(Xt), given some Xt > 0, we also consider
the two cases. If Xt ≤ n1/3, then it is necessary to flip at least two one-bits to zero to

123

1718 Algorithmica (2018) 80:1710–1731

obtain Xt+1 < ξ(Xt) = Xt − 1. This probability is at most (n1/3 c
n)2 = O(n−4/3),

and this asymptotic bound even holds if the best of λ = O(1) offspring is considered.
The probability of flipping at least ln n bits in at least one of λ = O(1) offspring
is clearly smaller, more precisely n−Ω(ln n). Hence, P(Xt+1 < ξ(Xt)) ≤ O(n−4/3).
Furthermore, we get h(x) ≥ (1 − c/n)n−1cx/n ≥ e−2ccx/n by considering the
expected number of one-bits flipped in an arbitrary offspring, conditioned on that no
zero-bit flips. Hence,

⎛
⎝ xmin

h(xmin)
+

Xt∫
xmin

1

h(x)
dx

⎞
⎠ ≤ O(n) +

n∫
1

ne2c

c�x� ,

which is O(n ln n) as c is constant. This establishes Condition (iv) of Theorem 2 for
β = c′n1/3/(ln n), where c′ is a sufficiently large constant. We also note that a union
bound over λ = O(1) offspring implies h(xmin) = O(λc/n) = O(1/n), hence

I0 ≥ xmin

h(xmin)
= Ω(n),

which we will use later.
Condition (i i i) of Theorem 2 holds trivially due to the selection mechanism of the

(1+λ) EA. To verify the remaining conditions, we set h(x) := Δ(�x�) for x ≤ n1/3

and h(x) := Δ(�x� + �ln(n)�) otherwise. Note that limδ↓0 h(ξ(x) + δ) = Δ(x) if
x ≤ n1/3. Otherwise,

E(Xt − Xt+1 | Ft ; Xt = x) = Δ(�x�) ≤ lim
δ↓0 Δ(�x� + δ)

= lim
δ↓0 h(�x� − �ln(n)� + δ) = lim

δ↓0 h(ξ(�x�) + δ)

since by Lemma 4 Δ(i) is monotone increasing in its argument. This establishes (v).
Also (i) is satisfied by definition of h. Altogether, the drift theorem yields

E(T | X0) ≥ β

1 + β

⎛
⎝ 1

Δ(1)
+

X0∫
1

1

h(x)
dx

⎞
⎠

= β

1 + β

⎛
⎜⎝

n1/3∑
i=1

1

Δ(i)
+

X0∫

n1/3

1

h(x)
dx

⎞
⎟⎠

≥ β

1 + β

⎛
⎝n1/3∑

i=1

1

Δ(i)
+

X0+�ln n�∑
n1/3+�ln n�

1

Δ(i)

⎞
⎠ ,

where the equality used that h(x) := Δ(�x�) for x ≤ n1/3 and the inequality used the
definition of h in the other case along with an index transformation.

123

Algorithmica (2018) 80:1710–1731 1719

We see that the term in parentheses is at least

X0∑
i=1

1

Δ(i)
−

�ln n�∑
i=1

1

Δ(n1/3 + i)
≥ I0 − �ln n� 1

Δ(n1/3)
,

by the monotonicity of Δ. We also know that Δ(n1/3) ≥ n1/3 c
n (1 − c/n)n−1 =

Ω(n−2/3) for any constant choice of c and any λ ≥ 1. Hence

�ln n� 1

Δ(n1/3)
= O(n2/3(ln n)) = O(n−1/3(ln n)I0),

using I0 = Ω(n). This altogether proves the desired inequality

E(T | X0) ≥ (1 − O(n−1/3(ln n)))I0.

��

4 Approximating the Drift

In the following we will give a closed-form exact formula for the drift at fitness k of
the (1+λ) EA with mutation rate c/n for constant c and constant λ. Let Xt denote the
fitness at time t . Then, Xt+1 = Xt + Z , where Z is the difference of two binomially
distributed random variables, namely the number of 1-bits flipped by the mutation and
the number of 0-bits flipped by the mutation. If more 1-bits than 0-bits are flipped,
i. e. if Z is negative, the algorithm progresses towards the optimum. Hence, we are
interested in the exact distribution of the random variable Z .

To this end, we will make use of the ordinary hypergeometric function, also known
as Gaussian hypergeometric function 2F1. Let for each a ∈ Z and b ∈ N denote
a(b) = a(a + 1)(a + 2) · · · (a + b− 1) the rising factorial, which is sometimes called
the Pochhammer symbol. The hypergeometric function 2F1 is defined for x ∈ R as
the following series:

2F1(a, b; c; x) = 2F1

(
a, b

c
; x

)
:=

∞∑
i=0

a(i)b(i)

c(i)
xi .

Note that the infinite series terminates if either a < 0 or b < 0. We refer the reader
to [2] for more information.

Let X ∼ Bin(n1, p1), Y ∼ Bin(n2, p2) and let Z := X − Y . In the following, we
will denote the distribution of Z as Z ∼ BinDiff(n1, n2, p1, p2).

Theorem 5 Let Z ∼ BinDiff(n1, n2, p1, p2). Then, for all z ∈ N:

Pr(Z = z) =
{
pz1(1 − p1)n1−z(1 − p2)n2

(n1
z

)
ϕ1, z ≥ 0

p−z
2 (1 − p2)n1+z(1 − p1)n1

(n2−z

)
ϕ2 z < 0

,

123

1720 Algorithmica (2018) 80:1710–1731

where

ϕ1 = 2F1

(−n2, z − n1
z + 1

; p1 p2
(1 − p1)(1 − p2)

)
,

and ϕ2 = 2F1

(−n1, −(z + n2)

1 − z
; p1 p2
(1 − p1)(1 − p2)

)
.

Proof Let X,Y and Z be defined as stated in the theorem. We have for all z ∈ Z

Pr(Z = z) = Pr(X − Y = z)

=
∑
a,b∈Z
a−b=z

Pr(X = a)Pr(X = b). (2)

Furthermore, let q = p1 p2/((1 − p1)(1 − p2)) and α = pz1(1 − p1)n1−z(1 − p2)n2 .
Consider the case z ≥ 0. Rewriting the sum from above we get

Pr(Z = z) =
n1∑
k=0

Pr(X = k + z)Pr(Y = k)

=
n1∑
k=0

(
n1

k + z

)
pk+z
1 (1 − p1)

n1−k−z
(
n2
k

)
pk2(1 − p2)

n2−k

= α

n1∑
k=0

n1!
(k + z)!(n1 − k − z)! · n2!

k!(n2 − k)! · qk

= α

n1∑
k=0

(n1 − z − k + 1)(z+k)

z!(z + 1)(k)
· (n2 − k + 1)(k)

k! · qk

= α

n1∑
k=0

(−1)2k(−(n1 − z))(k)(n1 − z + 1)(z)(−n2)(k)

z!(z + 1)(k)k! · qk .

Using the fact that (n1 − z + 1)(z)/z! = (n1
z

)
we get

Pr(Z = z) = α

(
n1
z

) n1∑
k=0

(z − n1)(k)(−n2)(k)

(z + 1)(k)
· q

k

k!

= α

(
n1
z

)
2F1

(−n2, z − n1
z + 1

; q
)

.

The case z < 0 can be shown analogously. ��
In the previous theorem we have seen that the discrete probability mass function of

a BinDiff-distributed random variable can be expressed in terms of hypergeometric
functions. The exact terms can also be written as Jacobi polynomials, a class of orthog-
onal polynomials. This relationship to orthogonal polynomials has been elaborated in

123

Algorithmica (2018) 80:1710–1731 1721

connection with the probability distribution of fitness values of a bit string undergoing
uniform bit-flip mutation in [5]. In that work, another class of orthogonal polynomials,
namely Krawtchouk polynomials, were investigated.

In the following we will show that the drift can be computed efficiently. For this
purpose, wewill assume that the computation of 2F1 counts as a single arithmetic oper-
ation using some implementation of 2F1, similar to counting other special functions
like exp.

Corollary 6 Consider the (1+λ) EA, choosing c and λ constant on OneMax. The
drift Δ(k) at fitness k can be computed exactly with O(k) arithmetic operations.

Proof Consider a run of the algorithm as stated above and assume that the OneMax-
value is k. For all i ∈ [λ] let Xi ∼ Bin(n − k, c/n) and Yi ∼ Bin(k, c/n), then
Zi := Xi − Yi is the random variable that denotes the change in fitness of the i-th
offspring individual, i. e. k + min{Zi |i ∈ [λ]} is the fitness of the new parent. Note
that the image of each Zi is {z ∈ Z| − k ≤ z ≤ n − k}.

Using Theorem 5 we can write the cumulative distribution function of Zi as
FZi (x) = ∑x

y=−k Pr(Zi = y). Let Z∗ be defined as the minimum of Z1, . . . , Zλ,

i. e. Z∗ is the minimum order statistic. It is known that FZ∗(z) = 1 − (1 − FZ1(z))
λ,

using Z1 as an arbitrary representative among all Zi since all Zi are independent.
Hence, we get that

Pr(Z∗ = z) = (1 − FZ1(z − 1))λ − (1 − FZ1(z))
λ .

Consider the drift at fitness k which is defined as

Δ(k) := E(Xt − Xt+1 | Xt = k).

We get

Δ(k) = −
−1∑

z=−k

z Pr(Z∗ = z)

= −
−1∑

z=−k

z
(
(1 − FZ1(z − 1))λ − (1 − FZ1(z))

λ
)

= −
−1∑

z=−k

z

((
1 −

z−1∑
y=−k

Pr(Z1 = y)

)λ

−
(
1 −

z∑
y=−k

Pr(Z1 = y)

)λ)
.

The last term involves two nested sums.However,we only need to evaluate Pr(Z1 = y)
for y = −k, . . . ,−1 once, saving all values in a list, in order to compute FZ1(z) for
y = −k, . . . ,−1 which requires a single traversal over that list. Computing the actual

123

1722 Algorithmica (2018) 80:1710–1731

drift only consists of O(k) arithmetic operations now, since we precomputed the
needed values of FZ1 . Hence, the computation of Δ(k) only needs O(k) arithmetic
operations and space O(k). ��

As we have seen in Corollary 6, we need O(k) arithmetic computations of the
probability mass function of a BinDiff-distributed random variable (see Theorem 5).
The computation of the hypergeometric function 2F1 proves to be the bottleneck.
For example, on an Intel i7-4770S CPU, a single computation of the value of
2F1(−750,−249; 2; 4.016·10−6), which is a representative invocation of the function
in this context, takes around 0.02 seconds using the internal function hypergeom
from Matlab R2015b. Different parameter settings yield similar computation times.
In order to compute the expected runtime of the (1+λ) EA, we need to compute a
linear amount of drift values, which can pose a problem for large values of n due to
the computational effort on the hypergeometric function. Hence, we are interested in
approximating the drift with less computational effort.

The idea is to approximate the BinDiff-distribution. It is well-known that a Poi(np)-
distribution yields a good approximation for a Bin(n, p)-distribution for large n and
small p. To this end, we will approximate a BinDiff-distribution with the distribution
of the difference of the corresponding Poisson approximations. A similar approach to
the approximation of the point-wise drift has been pursued by Doerr et al. ([6]). The
distribution of the difference of two independent Poisson-distributed random variables
is known in the literature as Skellam-distribution.Wewill state the definition according
to [22].

Definition 7 Let X ∼ Poi(μ1) and Y ∼ Poi(μ2). The probability mass function of
Z := X − Y is given by

Pr(Z = k) = e−(μ1+μ2)

(
μ1

μ2

) k
2

Ik(2
√

μ1μ2) ,

where Ik is the modified Bessel function of the first kind, defined by

Iν(z) =
(z
2

)ν
∞∑
i=0

(z/2)2i

i !(ν + i)! ,

for ν ∈ N0 and z ∈ R. In the following we will denote the distribution of Z by
Z ∼ Skellam(μ1, μ2).

For more information about the modified Bessel function of the first kind, we refer
the reader to [2].

Instead of the hypergeometric function in the probability mass function of a
BinDiff-distributed random variable, a Skellam-distributed random variable involves
the modified Bessel function of the first kind, which is another special function. How-
ever, computing for example I250(1.73), takes <0.0001 seconds on an Intel i7-4770S
CPU using the internal function besseli from Matlab R2015b. The computation
times are similar for different parameters. This is a big improvement over the time

123

Algorithmica (2018) 80:1710–1731 1723

needed for the computation of the hypergeometric function. Computationally, the use
of the Skellam-distribution instead of the BinDiff-distribution is therefore justified.
In the following we will show that the error from the approximation is small as well.
Again, we will assume that the computation of Iν counts as a single arithmetic oper-
ation.

Theorem 8 Consider the (1+λ) EAwithmutation probability c/n and population size
λ on OneMax where c and λ are constant. Then, the drift Δ(k) can be approximated
up to a factor of 1 ± O(1/n) in O(k) arithmetic operations.

Proof We will first bound the relative error of the approximation of a BinDiff-
distributed random variable by a Skellam-distributed random variable. Let X ∼
Bin(n−k, c/n) andY ∼ Bin(k, c/n), then Z := X−Y ∼ BinDiff(n−k, k, c/n, c/n).
Let X̃ ∼ Poi((n−k)c/n) and Ỹ ∼ Poi(kc/n) be the according Poisson-approximated
random variables. Then, Z̃ := X̃ − Ỹ ∼ Skellam((n − k)c/n, kc/n). The relative
error of the Poisson-approximation with respect to X is

∣∣∣∣∣
Pr(X̃ = m)

Pr(X = m)
− 1

∣∣∣∣∣ ≤ (e(n−k)c/n − 1) cn
m + 1

.

Bounding the exponent by c and omitting the constants, we have Pr(X̃ = m) =
Pr(X = m)(1 ± O(1/(mn))) and Pr(Ỹ = m) = Pr(Y = m)(1 ± O(1/(mn)))

accordingly (see [23] for details about the relative error bounds).
One can obtain different bounds for the relative error, depending on the actual

arithmetic computation of Pr(Z̃ = z), For example, we have that

1 − FZ̃ (z) = 1 −
z∑

�=−k

Pr(Z̃ = �) =
n−k∑

�=z+1

Pr(Z̃ = �).

For small z, the second term involves the computation of fewer probabilities than the
third term. This can lead to different results on the error bound as a consequence of
error propagation. However, due to the triangle inequality we have that the absolute
error

|Pr(Z = z) − Pr(Z̃ = z)| ≤ |Pr(Z = z) − q| + |q − Pr(Z̃ = z)|,
and the last term is 0 for any arithmetic computation q of Pr(Z̃ = z). Thus, we can
compute Pr(Z̃ = z) in the same way as Pr(Z = z) in Eq. 2 in order to derive a bound
on the relative error of Z̃ with respect to Z , instead of using the exact probability mass
function. We have for z ≥ 0 that

Pr(Z̃ = z) =
n−z∑
j=0

(
Pr(X = j + z)Pr(Y = z)

·
(
1 ± O

(
1

(j + z)n

))(
1 ± O

(
1

zn

)))

123

1724 Algorithmica (2018) 80:1710–1731

= (1 ± O(1/n))

n−z∑
j=0

Pr(X = j + z)Pr(Y = z)

= (1 ± O(1/n))Pr(Z = z).

The case z < 0 is analogous and we obtain in total

Pr(Z̃ = z) = (1 ± O(1/n))Pr(Z = z) ,

for all z ∈ {−k,−k + 1, . . . , n − k}.
We can now compute the relative error of the approximated drift Δ̃. By replacing

Z1 with Z̃ in the computation of the exact drift from Corollary 6 we obtain

Δ̃(k) = −
−1∑

z=−k

z

⎛
⎝(

1 −
z−1∑
y=−k

Pr(Z̃ = y)

)λ

−
(
1 −

z∑
y=−k

Pr(Z̃ = y)

)λ
⎞
⎠

= −(1 ± O(1/n))λ
−1∑

z=−k

z

((n−k∑
y=z

Pr(Z = y)

)λ

−
⎛
⎝ n−k∑

y=z+1

Pr(Z = y)

⎞
⎠

λ
⎞
⎟⎠

= (1 ± O(1/n))Δ(k).

Note that in the last step we exploited the fact that λ is a constant.
Since we can use the same arithmetic computation as in Corollary 6, the number of

arithmetic operations in order to compute the approximated drift is O(k) as well. ��

5 Computation of Mutation Rates

In the previous section we showed how to approximate the drift with only a small rela-
tive error. Using the new drift theorem from Sect. 3 we are interested in approximating
the expected runtime.

Corollary 9 Consider the (1+λ) EA on OneMax with mutation probability c/n,
where c and λ are constant. Using the approximation from Sect. 4 the runtime of the
(1+λ) EA can be approximated up to a multiplicative error of 1 ± O(n−1/3(ln n)).

Proof Let Xt denote the OneMax-value at time t > 0 and let furthermore Δ(i) :=
E(Xt − Xt+1 | Xt = i) be the drift at fitness value i .

123

Algorithmica (2018) 80:1710–1731 1725

Theorem 3 states that

(1 − O(n−1/3(ln n))) · I (X0) ≤ E(T | X0) ≤ I (X0),

where I (X0) = ∑X0
i=1 1/Δ(i).

Plugging in the approximate drift values Δ̃(i), as described in Sect. 4 and by weak-
ening the upper bound we obtain

E(T | X0) = (1 ± O(n−1/3(ln n)))

X0∑
i=1

1/Δ̃(i).

Using a Chernoff bound we can see that the probability that the algorithm initializes
in the interval [n/2− n2/3, n/2+ n2/3] is at least 1− 2e−(2/3)n1/3 . The expected time

to advance from a fitness of �n/2 + n2/3� down to �n/2� is
∑�n/2+n2/3�

�n/2� 1/Δ̃(i) ≤
n2/3/Δ̃(�n/2+n2/3�)due to themonotonicity of Δ̃byLemma4. It holds that Δ̃(�n/2+
n2/3�) ≤ (n/2+n2/3)(c/n) = O(1) and thus, we get

∑�n/2+n2/3�
�n/2� 1/Δ̃(i) = Ω(n2/3).

Similarly, we can show that
∑�n/2�

�n/2−n2/3� 1/Δ̃(i) = O(n2/3). Furthermore, we know
that the expected runtime is Θ(n ln n), independent from the actual initialization in
the given interval. Therefore, the relative error by deviating at most n2/3 from n/2 is
of order Θ(n2/3/E(T)) = Θ((ln n)n−1/3), which matches the asymptotic factor.

Conditioning on the event that the algorithm initializes in [n/2− n2/3, n/2+ n2/3]
yields in total:

E(T) = (1 ± O(n−1/3(ln n))

�n/2�∑
i=1

1/Δ̃(i) , (3)

where the error introduced by the Chernoff bound is absorbed by the asymptotic factor.
Hence, we can approximate the runtime of the (1+λ) EA with only small asymptotic
error. ��

5.1 Approximating the Runtime

We implemented the sum from the right-hand side of Equation 3 in order to compute
the approximate expected runtime in Matlab R2015b and computed the approximate
expected runtimes for c = 1.00, 1.01, . . . , 2.0 and λ = 1, . . . , 10 and problem sizes
n = 100, 200, 500, 1000, 2000, 5000. The approximated optimal values of c are given
in Table 1.

As expected, we can see that for fixed λ, the approximated mutation rate param-
eter c is decreasing with n, approaching 1 as predicted by the tight analysis in [12].
Furthermore, the approximate optimal c for n = 100 and λ = 1 is 1.19, which is
only slightly higher than the exact value of 1.17 given in [5], hence justifying that the
approximation does not suffer from large constants in the lower order term that might
corrupt the approximation for small values of n.

123

1726 Algorithmica (2018) 80:1710–1731

Table 1 Approximate optimal c
values

Problem size n

λ 100 200 500 1000 2000 5000

1 1.19 1.16 1.13 1.11 1.10 1.09

2 1.19 1.16 1.13 1.11 1.10 1.09

3 1.19 1.16 1.13 1.12 1.10 1.09

4 1.20 1.17 1.14 1.12 1.11 1.09

5 1.21 1.17 1.14 1.12 1.11 1.10

6 1.21 1.18 1.14 1.13 1.11 1.10

7 1.22 1.18 1.15 1.13 1.12 1.10

8 1.23 1.19 1.15 1.13 1.12 1.10

9 1.23 1.19 1.16 1.14 1.12 1.11

10 1.24 1.20 1.16 1.14 1.12 1.11

Table 2 Ratios of the expected
runtimes for the approximate
optimal mutation rate and the
standard mutation rate 1/n

Problem size n

λ 100 200 500 1000 2000 5000

1 0.9865 0.9901 0.9931 0.9946 0.9957 0.9967

2 0.9861 0.9899 0.9929 0.9945 0.9955 0.9965

3 0.9858 0.9896 0.9927 0.9943 0.9954 0.9964

4 0.9854 0.9893 0.9925 0.9941 0.9952 0.9963

5 0.9850 0.9890 0.9923 0.9939 0.9951 0.9962

6 0.9845 0.9886 0.9920 0.9937 0.9949 0.9960

7 0.9840 0.9882 0.9917 0.9935 0.9947 0.9959

8 0.9835 0.9878 0.9914 0.9932 0.9945 0.9957

9 0.9830 0.9874 0.9911 0.9930 0.9943 0.9956

10 0.9824 0.9869 0.9908 0.9927 0.9941 0.9954

Interestingly, for fixed n the approximate optimal mutation rate grows with λ.
However, this behaviour cannot be explained by the bound from [12] whichmeans that
the reason for this behaviour is hidden in the lower order term. Intuitively, employing
a larger population stabilizes the explorative character of allowing a higher mutation
rate by reducing the chance that none of the individuals makes progress at all.

In order to evaluate the benefit of setting the mutation rate to the approximate
optimal value instead of using the mutation rate 1/n, we provide the corresponding
table of the ratios of the approximated expected runtimes for the optimal mutation
rate and 1/n. As can be seen in Table 2, using the optimal mutation rate compared
to 1/n does not improve the corresponding expected runtime by more than 2% in the
considered ranges of n and λ. This means that a mutation rate of 1/n is a sane choice
for the parameter ranges that we have examined.

For fixed λ, the ratios increase with n, as expected. Interestingly, for fixed n, the
ratios decrease with λ, which means that using the optimal mutation rate has a greater
influence on larger population sizes. Another observation from Fig. 1 is that for fixed

123

Algorithmica (2018) 80:1710–1731 1727

0
20
00

60
00

10
00
0

14
00
0

Mutation parameter c

A
pp
ro
xi
m
at
e
op
tim

iz
at
io
n
tim

e

1.0 1.2 1.4 1.6 1.8 2.0

n = 5000

n = 2000

n = 1000

...

Fig. 1 Approximate expected runtime of the (1+10) EA using the Skellam-approximation for n =
100, 200, 500, 1000, 2000, 5000. The minimal c is marked for each n

n and λ the expected runtime exhibits a certain robustness in the sense that it does not
change by much for values of c in the considered range.

5.2 Comparison with Empirical Results

As shown in the beginning of this section, the results presented in Sect. 5.1 approximate
the expected runtimewith only small error. However, this error is stated asymptotically
and the computed approximations of the expected runtimes might differ greatly from
the actual expected runtimes due to large constants hidden in the asymptotic term,
especially for smaller values of n. However, this is not the case and our approximations
turn out to be surprisingly precise, even for smaller values of n.

We performed experiments in order to compare the empirical optimal values of
the mutation parameter c to the approximate optimal values of c. For this purpose
we implemented the (1+λ) EA in C using the GNU Scientific Library (GSL) for the
generation of pseudo-random numbers and to use the GSL implementations of the
hypergeometric function and modified Bessel function of the first kind.

The results are shown in Fig. 2. The plot displays the empirical optimal values
for the mutation parameter c for n ∈ {100, 200, . . . , 1000, 2000} for the (1+1) EA,
(1+50) EA and (1+100) EA, as dots. The empirical optimal values of c are determined
by taking the empirical minimum of the corresponding runs of the (1+λ) EA for each
pair of n and λ for c ∈ {0.50, 0.52, . . . , 3.0}, averaged over 50,000 runs each. The
approximated optimal value for c using the Skellam-approximation as described in
the beginning of this section is displayed by a dashed line for each setting of n and
λ. Additionally, for illustration, the approximated optimal value for c using the exact
formula for the BinDiff-distribution (see Corollary 6) is displayed by a continuous

123

1728 Algorithmica (2018) 80:1710–1731

0 500 1000 1500 2000

1.0

1.2

1.4

1.6

1.8

λ = 100

λ = 50

λ = 1

n

M
ut
at
io
n
pa
ra
m
et
er

c

Fig. 2 Empirical optimal and approximate optimal mutation parameter c for the (1+λ) EA for n =
100, 200, . . . , 1000, 2000 and λ = 1, 50, 100. The empirical optimal values for c are marked by dots.
The approximate optimal values for c using the exact formula for the BinDiff-distribution are marked
by the continuous line. The approximate optimal values for c using the Skellam-approximation for the
BinDiff-distribution are marked by the dashed line

0 2000 4000 6000 8000 10000

1.0

1.2

1.4

1.6

1.8

λ = 100

λ = 50

λ = 1

n

M
ut
at
io
n
pa
ra
m
et
er

c

Fig. 3 Empirical optimal and approximate optimal mutation parameter c for the (1+λ) EA for n =
100, 200, . . . , 1000, 2000, 5000, 10,000 and λ = 1, 50, 100. The approximate optimal values for c using
the Skellam-approximation for the BinDiff-distribution are marked by the dashed line

line for each setting of n and λ. The approximated values are determined by numerical
optimization for both versions. We can see that for each λ both approximations seem
to reflect the empirical optimal values very well over the whole range of n, producing
only a small absolute error. Note that the empirical optimal values are subject to some
amount of variation, despite the high sample size of 50,000 for each data point. This
is due to the high variance in the distribution of the optimization time, which can also
be observed in Fig. 3 where the interquartile range of the experiments is illustrated.
Moreover, the Skellam-approximation rapidly approaches the BinDiff-approximation
which justifies its use even further.

Due to the fast computation of our approximation we additionally added values for
n = 5000 and n = 10,000 in Fig. 3 to further illustrate the asymptotic behaviour of
the optimal values for c.

As already mentioned in Sect. 5.1 the approximate optimal mutation rate grows
with λ for fixed n which is due to the lower order term in the expected runtime. To
further illustrate the impact of the lower order termwedisplayed the empirical expected
runtimes for several values of λ and fixed n andmarked the empirical and approximate
optimal values for themutation parameters c. The results are shown inFig. 4.Both plots

123

Algorithmica (2018) 80:1710–1731 1729

0.5 1.0 1.5 2.0 2.5 3.0

0

500

1000

1500

2000

0.5 1.0 1.5 2.0 2.5 3.0

0

20000

40000

60000

80000

Mutation parameter c

Fig. 4 Empirical expected runtime of the (1+λ) EA for n = 100 (left) and n = 2000 (right) and
λ = 1, 2, 5, 10, 20, 50 (top to bottom in each plot) over 50,000 runs for each setting of n, λ and
c = 0.5, 0.52, 0.54, . . . , 3.0. The empirical minimal c is marked by a dot for each n. The area between the
first and third quartile is shaded for each λ. The computed approximations of the minimal c are denoted by
the dashed line

display the number of generations needed to optimize the (1+λ) EA for n = 100 (left
plot) and n = 2000 (right plot) for various settings of λ and c. The empirical runtimes
are displayed in each plot for c = 0.5, 0.52, 0.54, . . . , 3.0 and λ = 1, 2, 5, 10, 20, 50
where eachdata point is averagedover 50,000 runs. For illustrationof the highvariance,
the area between the first and third quartile is shaded. One can easily observe that for
higher values of λ both the empirical and the approximate optimal values for c increase
for both values of n. Note that higher values of λ lead to lower runtimes.

Conclusions

We have presented an improved variable drift theorem that weakens the requirement
that no large steps towards the optimum may occur in the process to a stochastic one.
We used this theorem to show that upper and lower bounds on the expected runtime
of the (1+λ) EA with mutation probability c obtained from variable drift theorems are
at most apart by a small lower order term if the exact drift is known and c and λ are
constant. This reduces the analysis of expected optimization time to finding an exact
expression for the drift.

Furthermore, we gave an exact closed-form expression for the drift and presented
a method for approximating it very efficiently with small error. By applying the new
drift theorem and the approximation for the drift, we were able to approximate optimal
mutation rates for the (1+λ) EA for various parameter settings of c and λ and also
for moderate sizes of n and verified experimentally that these approximations reflect
empirical results very precisely.

123

1730 Algorithmica (2018) 80:1710–1731

Our results render the need for costly experiments in order to optimize the parame-
ters unnecessary. Even formoderaten and not too smallλ it turns out thatmutation rates
up to 10% larger than the asymptotically optimal rate of 1/n minimize the expected
runtime. However, the benefit of setting the mutation rate to the optimal value of c,
instead of using mutation rate 1/n is small with respect to the actual expected runtime.

Acknowledgements This work was supported by the Danish Council for Independent Research (DFF),
Grant No. 4002-00542.

References

1. Auger, A., Doerr, B. (ed.): Theory of Randomized Search Heuristics: Foundations and Recent Devel-
opments. World Scientific Publishing, (2011)

2. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables. National Bureau of Standards, Gaithersburg (1964)

3. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the leadingones
problem. In Proceedings of Parallel Problem Solving from Nature (PPSN 2010), vol. 6238, pp. 1–10.
Springer (2010)

4. Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of parallel search. In: Paral-
lel Problem Solving from Nature—PPSN XIII—13th International Conference, Ljubljana, Slovenia,
September 13–17, 2014. Proceedings, pp. 892–901. (2014)

5. Chicano, F., Sutton, A.M., Whitley, L.D., Alba, E.: Fitness probability distribution of bit-flip mutation.
Evolut. Comput. 23(2), 217–248 (2015)

6. Doerr, B., Doerr, C., Yang, J .: Optimal parameter choices via precise black-box analysis. In: Pro-
ceedings of the 2016 on Genetic and Evolutionary Computation Conference, Denver, CO, USA, July
20–24, 2016, pp. 1123–1130. (2016)

7. Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating functions and variable drift. In:
Procedings of the Genetic and Evolutionary Computation Conference (GECCO 2011), pp. 2083–2090.
ACM Press (2011)

8. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65(1), 224–250 (2013)
9. Droste, S., Jansen, T.,Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput.

Sci. 276, 51–81 (2002)
10. Doerr, B., Künnemann, M.: Royal road functions and the (1+λ) evolutionary algorithm: almost no

speed-up from larger offspring populations. In: Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 2013), pp. 424–431. IEEE Press, (2013)

11. Doerr, B., Künnemann, M.: Optimizing linear functions with the (1+λ) evolutionary algorithm - dif-
ferent asymptotic runtimes for different instances. Theor. Comput. Sci. 561, 3–23 (2015)

12. Gießen, C., Witt, C.: Population size versus mutation strength for the (1+λ) EA on OneMax. In:
Proceedings of GECCO ’15, pp. 1439–1446. ACM Press, (2015)

13. Gießen, C., Witt, C.: Optimal mutation rates for the (1+λ) EA on onemax. In: Proceedings of the
2016 on Genetic and Evolutionary Computation Conference, Denver, CO, USA, July 20–24, 2016, pp.
1147–1154, (2016)

14. Hwang, H.-K., Panholzer, A., Rolin, N., Tsai, T.-H., Chen, W.-M.: Probabilistic analysis of the (1+1)-
evolutionary algorithm. Evol. Comput. (2017). doi:10.1162/EVCO_a_00212

15. Jansen, T.: Analyzing Evolutionary Algorithms—The Computer Science Perspective. Natural Com-
puting Series. Springer, Berlin (2013)

16. Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring population size in evolutionary
algorithms. Evolut. Comput. 13(4), 413–440 (2005)

17. Johannsen, D.: Random combinatorial structures and randomized search heuristics. Ph.D. thesis, Uni-
versität des Saarlandes, Germany, (2010)

18. Lehre, P.K., Witt, C.: Concentrated hitting times of randomized search heuristics with variable drift.
In: Proceedings of ISAAC ’14, Volume 8889 of Lecture Notes in Computer Science, pp. 686–697.
Springer, 2014. Full technical report at http://arxiv.org/abs/1307.2559

123

http://dx.doi.org/10.1162/EVCO_a_00212
http://arxiv.org/abs/1307.2559

Algorithmica (2018) 80:1710–1731 1731

19. Mitavskiy, B., Rowe, J.E., Cannings, C.: Theoretical analysis of local search strategies to optimize
network communication subject to preserving the total number of links. Int. J. Intell. Comput. Cybern.
2(2), 243–284 (2009)

20. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization—Algorithms and
Their Computational Complexity. Natural Computing Series. Springer, Berlin (2010)

21. Jonathan, E.: Rowe andDirk Sudholt. The choice of the offspring population size in the (1,λ) evolution-
ary algorithm. Theoretical Computer Science, 545:20–38, 2014. Preliminary version in Proceedings
of GECCO 2012

22. Skellam, J.G.: The frequency distribution of the difference between two poisson variates belonging to
different populations. J. R. Stat. Soc. 109(3), 296–296 (1946)

23. Teerapabolarn, K.: A bound on the poisson-binomial relative error. Stat. Methodol. 4(4), 407–415
(2007)

24. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions.
Comb Prob. Comput. 22(2):294–318, 2013. Preliminary version in Proceedings of STACS ’12

123

	Optimal Mutation Rates for the (1+λ) EA on OneMax Through Asymptotically Tight Drift Analysis
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Algorithm
	2.2 Drift Theorems

	3 Bringing Together Lower Bounds and Upper Bounds from Variable Drift
	4 Approximating the Drift
	5 Computation of Mutation Rates
	5.1 Approximating the Runtime
	5.2 Comparison with Empirical Results

	Conclusions
	Acknowledgements
	References

