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Abstract Space efficient algorithms play an important role in dealing with large
amount of data. In such settings, one would like to analyze the large data using small
amount of “working space”. One of the key steps in many algorithms for analyzing
large data is to maintain a (or a small number) random sample from the data points. In
this paper, we consider two space restricted settings—(i) the streaming model, where
data arrives over time and one can use only a small amount of storage, and (ii) the query
model, where we can structure the data in low space and answer sampling queries. In
this paper, we prove the following results in the above two settings:

– In the streaming setting, we would like to maintain a random sample from the
elements seen so far. We prove that one can maintain a random sample using
O(log n) randombits andO(log n) bits of space,where n is the number of elements
seen so far. We can extend this to the case when elements have weights as well.
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– In the query model, there are n elements with weights w1, . . . , wn (which are
w-bit integers) and one would like to sample a random element with probability
proportional to its weight. Bringmann and Larsen (STOC 2013) showed how to
sample such an element using nw + 1 bits of space (whereas, the information
theoretic lower bound is nw). We consider the approximate sampling problem,
where we are given an error parameter ε, and the sampling probability of an
element can be off by an ε factor. We give matching upper and lower bounds for
this problem.

1 Introduction

Space optimization is becoming more and more important, especially with the rise in
popularity of the mobile devices. Many of these devices have a small workingmemory
and are expected to do many of the operations performed by devices with larger
memory. When the working memory is small and the data is large, space efficiency of
algorithms become crucial. Also, in the fields of data mining, social network analysis
etc., huge amount of data has to be analyzed in a streaming fashion. Randomness
required by the algorithms is also an important factor. The amount of randomness
that need to be generated by the pseudorandom generator plays a role in determining
the power of a device. Power is one of the most important resource to optimize for
computing devices.

In this work, we look at optimizing space and randomness for the basic problem
of discrete random sampling. In discrete sampling, we are given n objects as input. In
uniform discrete sampling, we are required to output an object uniformly at random
from the n input objects. This can be generalized to weighted discrete samplingwhere
the probability of an object being the output is proportional to its weight. From now on,
when we refer to sampling, we mean discrete sampling. We consider these sampling
problems in two different space-restricted settings, the streaming setting and the query
model. In the streaming setting, the objects appear one by one.We do not have access to
all data items simultaneously.A discarded object can never again be accessed.Also,we
do not have a priori knowledge of the total number of objects in the stream.Maintaining
a random sample at all time points in a streaming setting is more challenging than the
classical setting where we have access to all objects simultaneously. In the query
model, we are allowed to preprocess the data and store a representation of it in small
space. The representation should be capable of answering sampling queries with good
enough speed.

1.1 Sampling in the Streaming Setting

In this setting, the data objects appear in a streaming manner. That is, at time i , the i th
object appears. We are required to maintain a uniform sample of the objects seen so far
at all points of time. We will also generalize this to weighted sampling. We want the
sampling algorithm to be one-pass. The algorithm is allowed to store only one object
at a time. Such a scenario occurs when the objects are very large files or packets.
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The most simple way of doing streaming sampling is by reservoir sampling which
works as follows: Let the objects in the stream be O1, O2, . . . and let the storage
space be S. At time t = 1, O1 is stored in S. In all the subsequent time points t , the
element in S is swapped with Ot with probability 1

t . With the remaining probability,
Ot is discarded. It is easy to see that this procedure satisfies the uniform sampling
requirement at all time points. Now, let us estimate the amount of randomness required
by the reservoir sampling. At time t , we need to simulate a probability of 1

t , which
requires at least log t bits.1. This means that when n objects have appeared, we need to

use at least
n∑

t=1

log t = Ω(n log n) random bits.2 Now, compare this with the classical

setting where we need only O(log n) random bits in expectation to sample 1 object
from n objects. It is an interesting question, whether such a gap should exist between
the number of random bits required in the classical and streaming settings. In this
work, we answer this question by showing that there is no gap. We give an algorithm
which can do the streaming sampling with the same order of random bits as in the
classical setting. In the streaming model, we do not have the liberty of repeating
the procedure and give a bound on the expected number of rounds required. Hence,
we consider a model where we define strict bounds on randomness rather than the
expected randomness. In other words, we work with a Monte Carlo model instead of
a Las Vegas model.

First of all, it is not possible to define deterministic upper bounds on randomness
with respect to perfect uniform sampling. This can be shown by considering the case
when n > 1 and n is odd. Suppose r is the number of random bits required to sample
from n objects. This means that there exists function f : {0, 1}r → [n] such that for
all i, j ∈ [n], |{x | f (x) = i}| = |{x | f (x) = j}|. But then 2r is divisible by n, which
is a contradiction to the fact that n is odd. One way to get around this is to allow the
algorithm to output null (which means that it does not output any of the input objects)
with a small probability. We say that an algorithm performs uniform sampling with
ε-error, if the algorithm outputs null(denoted by ⊥) with at most ε probability and
given that it outputs something, each of the input object has the same probability to
be the output. We also extend the definition to the weighted case. We say that an
algorithm performs weighted sampling with ε-error, if the algorithm on given input
objects and weights associated with each of them, outputs null(denoted by ⊥) with at
most ε probability and given that it outputs something, the probability of each of the
input object to be the output is proportional to its weight.

It is easy to show (see Sect. 2) a lower bound ofΩ(log n
ε
) on the number of random

bits required to do uniform sampling with ε-error. Following is a simple algorithm
that does uniform sampling with ε-error in the non-streaming setting using O(log n

ε
)

random bits: First compute the smallest r such that 2r ≥ n and 2r mod n ≤ ε · 2r . It
can be shown that r = O(log n

ε
). Let k = � 2r

n �. Now, let f : {0, 1}r → [n] ∪ {⊥} be

1 It may require more number of bits when t is not a power of 2. But we can say that in expectation we
need O(log t) number of random bits.
2 We will later discuss a sampling algorithm by Vitter which can be adjusted to work with O(log2 n)

random bits.
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a function which maps the first k r -bit strings (in any fixed order) to 1, the next k to
2 and so on. The last 2r mod n bit strings are mapped to ⊥. The sampling algorithm
generates an r -bit random string R and then outputs f (R). Can we extend this simple
algorithm to the streaming setting to get a randomness efficient streaming sampling
algorithm? The answer is negative. The main hindrance in the streaming setting is
that we do not know the value of n in advance and that the uniform sample should be
maintained at all points of time.

1.2 Succinct Sampling

The second space-restricted setting that we consider is the query model used for
example by Bringmann and Larsen [2] in their work. Our work in this model can
be considered to be a natural extension of their work. In this model we need to sample
from the set {1, . . . , n} according to a given distribution. The inputs arew-bit numbers
x1, . . . , xn . We are allowed to preprocess the data and construct suitable data struc-
tures. The data structure should be capable of answering sampling queries quickly. A
sampling query should return i with probability xi∑

j x j
for each i ∈ [n]. The resource

that we are primarily interested in optimizing is the storage space required for the data
structure.

Bringmann and Larsen [2] analyzed the classical Walker’s alias method [12] in the
word RAMmodel (here unit operationsmay be performed onwords of sizew bits) and
observed that the algorithmhasO(n)preprocessing time,O(1)query time and requires
a storage space of size n(w + 2 log n + o(1)) bits. The redundancy of a solution is
defined as the number of bits of storage required in addition to the information theoretic
minimum required for storing the input. This means that Walker’s alias method has a
redundancy of (2n log n + o(n))-bits. Bringmann and Larsen [2] distinguish between
the systematic case , where the given inputs are read only, and the non-systematic
case, where one may represent data in more clever ways than the given sequential
input format. In the systematic case, they give an algorithm with a preprocessing time
of O(n), expected query time of O(1) and a redundancy of n + O(w) and in the non-
systematic case they give an algorithm which has 1 bit of redundancy. Furthermore,
they also proved the optimality of their solutions. But, all their results are for exact
sampling. In our work, we take a look at how this work can be extended to approximate
sampling within the word RAM model.

In many real applications, we may not require to sample exactly as given by the
input distribution. For example, the sampling based algorithms for k-means clustering
such as the PTAS by Jaiswal et al. [5] are robust to small errors in sampling probability.
In fact, this was the starting point of this work. There are many such scenarios where
it is sufficient that the sampling probabilities are close to the probabilities given by the
input distribution x1, x2 . . . xn . We will consider two natural models of closeness. First
one is the additive model, where the sampling probability is allowed to be between(

xi∑
j x j

− ε
)
and

(
xi∑
j x j

+ ε
)
for some given small ε. Second is the Multiplicative

model, where the sampling probability is allowed to be between (1− ε) ·
(

xi∑
j x j

)
and

(1 + ε) ·
(

xi∑
j x j

)
for some given small ε.
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Before stating our results, we point out some differences between approximate
and exact sampling in terms of space usage. In the case of exact sampling from a
distribution given by n w-bit integers, we are limited by an information theoretic lower
bound of nw. 3 But in the case of approximate sampling, the information theoretic
lower bounds could be much lower because we can use some lossy data representation
that saves much space without affecting the sampling probabilities by a lot. Hence, in
the approximate setting, the non-systematic case (where we are allowed to restructure
the input) seems to be more relevant than the systematic case (where the input data has
to be retained as given). So, we only discuss the non-systematic case for approximate
sampling in our work.

We say that an algorithm performs approximate sampling with ε additive error, if
the algorithm on given n w-bit non-negative integers x1, x2, . . . , xn , outputs a z ∈ [n]
such that for all i ∈ [n],

(
xi∑
j x j

− ε
)

≤ Pr [o = i] ≤
(

xi∑
j x j

+ ε
)
. We say that an

algorithm performs approximate sampling with ε multiplicative error, if the algorithm
on given n w-bit non-negative integers x1, x2, . . . , xn , outputs a z ∈ [n] such that for

all i ∈ [n], (1 − ε) ·
(

xi∑
j x j

)
≤ Pr [o = i] ≤ (1 + ε) ·

(
xi∑
j x j

)
. Note that the

probabilities are over the randomness used by the algorithm.

1.3 Our Results

Streaming SamplingWe give an algorithm that we call the Doubling–Chopping algo-
rithm that is optimal in terms of number of random bits used and is also space and time
efficient. Moreover, we show that there is no gap between the classical and streaming
settings as far as randomness is concerned.

Theorem 1 The Doubling–Chopping algorithm (described in Sect. 2.2) performs
uniform sampling with ε-error in the streaming setting using O(log n

ε
) random

bits. Moreover, any algorithm that does uniform sampling with ε-error (even in the
non-streaming setting) requires Ω(log n

ε
) random bits. (See Lemma 1) The doubling–

chopping algorithmuses O(log n
ε
) bits of working space and runs in time O(n+log 1

ε
).

The algorithm requires only O(1) time per object and a preprocessing time of
O(log 1

ε
).

We also extend the results to weighted sampling with ε-error in the streaming setting.

Theorem 2 There exist an algorithm that performs weighted sampling with ε-error
in the streaming setting using O(w + log n

ε
) random bits where we assume each of

the weights is a w-bit positive integer. Moreover, any algorithm that does weighted
sampling with ε-error (even in the non-streaming setting) requires Ω(w + log n

ε
)

random bits. (See Sect. 2.3)

Succinct Sampling For the multiplicative model, we give a lower bound for the space
required and also a sampling algorithm whose space usage matches this lower bound.
See Sect. 3.1 for a comparison of the upper and lower bounds.

3 Note that this is not a trivial observation since x1, x2, . . . , xn and
x1
2 ,

x2
2 , . . . ,

xn
2 both represent the same

probability distribution. See lemma 5.1 in [2].
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Theorem 3 There exists an algorithm which performs approximate sampling with ε

multiplicative error using a space of
(
n logw + n log 2

ε

)
bits. Moreover, any algorithm

which performs approximate sampling with ε multiplicative error requires to use at
least

max
{(

n log
1

ε
− w − log n − n

)
,
(
n logw − n log 4(1 + 2ε) − w

2
log (e2n)

)}

bits. (See Sect. 3.1 for a description of the algorithm and proof of the claims).

In the additive model, we give similar results. However, in this case our algorithms
match the lower bound for space usageonly in the casewhen ε is a constant independent
of n.

Theorem 4 There exists an algorithm which performs approximate sampling with ε

additive error using a space of 1
ε
log n bits. Any algorithmwhich performs approximate

sampling with ε additive error requires to use a space of Ω
(
1
ε

· log (1 + εn) + n log
(
1 + 1

εn

))
bits. (See Sect. 3.2 for a description of the algorithm and proof of the claims)

1.4 Related Work

Streaming Sampling There has been a lot of work done in streaming sampling starting
from [6,10,11], which discussed some of the preliminary techniques and ideas in
sampling, especially reservoir sampling. Most of the previous work done tries to
optimize the running time and there is no previous work to the current knowledge
of the authors which try to optimize randomness. Vitter [11] did some of the earliest
work in the area of streaming sampling. The author was interested optimizing the
running time and not concerned about the amount of randomness. The algorithm in
fact assumes that one can draw a random number of infinite precision from [0, 1].
Li [8] gave a better running time than Vitter’s work. These techniques where extended
to samplingwith replacement by Park et al. [9] and toweighted sampling byEfraimidis
and Spirakis [4]. Babcock et al. [1] studied and gave algorithms for the case of sliding
window sampling, where it is required to maintain random samples from a window
of the most recent items.

Comparison with Vitter’s Reservoir Sampling The most relevant previous work
to our work in streaming sampling is the work by Vitter [11]. So, we compare our
results with those in [11]. Recall that the naïve algorithm which stored i th item with
probability 1

i , uses O(n log n) randombits in expectation. The large number of random
bits required is due to the use of fresh random bits whenever a new item arrives. Vitter
gives a more advanced method, which skips some of the items. After i items have
been processed, the algorithm chooses a positive integer s according to the probability
distribution fi (s) = i

(i+s)(i+s+1) . Then, it skips the next s items. It is shown that this
algorithm gives a uniform sample. Now, the randomness is only required in selecting
the number of skips. For choosing s, the algorithm assumes that it can choose a real
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number u with infinite precision from [0, 1]. Then, it chooses s to be the smallest
number x such that the cumulative probability F =

∑

i≤x

fi (x) is at least u.

Before analyzing Vitter’s algorithm further, we point out two differences in the
models used by our work and Vitter [11]. The first difference is that Vitter uses the
assumption that random numbers of arbitrary precision can be drawn from [0, 1]. But
in our work, we consider randomness in terms of absolute random bits. Secondly,
both the basic reservoir algorithm and Vitter’s algorithm (after suitable modification
discussed below to remove the assumption about arbitrary precision randomnumbers),
give upper bounds on the expected amount of randomness. Ourwork on the other hand,
give guarantees on the worst case number of random bits needed, provided that the
algorithm is allowed to err with a small input probability. In other words, one can
think of our algorithm as a Monte Carlo Algorithm and that of Vitter as a Las Vegas
Algorithm.

In order to estimate the number of random bits required by Vitter’s algorithm, we
need to get rid of the requirement of sampling with arbitrary precision from [0, 1]. So,
we address the question whether the process of choosing s according to fi can be done
with few random bits instead of sampling real numbers from [0, 1]. Let us design an
algorithm for this. First, Observe that

Pr[s > i] = 1 −
∑

0≤ j≤i

fi ( j) = 1 −
∑

0≤ j≤i

(
i

i + j
− i

i + j + 1

)
≤ 1

2
.

Let us define a distribution D as D( j) = fi ( j),∀0 ≤ j ≤ i and D(i + 1) =∑
j>i fi ( j). Now, consider the problem of sampling from {0, 1 . . . i + 1} according

toD. Here, 0 ≤ j ≤ i represent the event that s = j and i + 1 represent the event that
s > i . In case i + 1 is sampled, we repeat the procedure with 0 ≤ j ≤ i representing
the event that s = i + 1 + j and i + 1 representing the event that s > 2i + 1 and so
on. If we can sample according toD with R expected number of random bits, then we
can clearly sample s according to fi with O(R) expected random bits. So, we now
focus on the problem of sampling according to D. We use the sampling algorithm
by Bringmann and Larsen [2] for this (see Sect. 2.1). We will use an array A, which
contains elements in {0, 1, . . . i + 1}. Each element j is present �(i + 2) · D( j)� + 1
times in A. Now, the sampling algorithm proceeds as follows:

1. Pick k uniformly at random from {1, . . . , |A|}.
2. If k = 1 or A[k] = A[k − 1],
with probability, (1 − f rac((i + 2) · D(A[k]))) go to step 1.

3. Output A[k].

Here, f rac(x) represents x−�x�. Bringmann and Larsen shows that this procedure
gives a sample from {0, 1, . . . i + 1} according toD. In step 1,we need atmostO(log i)
random bits. In step 2, as D ( j) = i

(i+ j)(i+ j+1) , we need only O(log i) random bits.
Also, the steps are repeated a constant number of times in expectation. So, the expected
number of random bits required by this procedure is at most O(log i). This implies
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that s can be sampled according to fi using O(log i) random bits in expectation.
Since Vitter shows that the expected number of skips is O(log n), we get that the total
expected number of random bits required by Vitter’s algorithm is O(log2 n).

In the non-streaming setting, where all the items are available at once in the mem-
ory, the expected number of random bits for sampling is O(log n). So, in the model
considered by Vitter, there is still a gap of Ω(log n) between the expected number of
random bits required in the streaming and non-streaming settings. It is an interesting
open question whether this gap should exist. In our model, where we are allowed to
err with a small given probability, we show that there is no gap between the streaming
and non-streaming settings.

Succinct Sampling The classic solution to the problem of exact sampling from
discrete distribution was given by Walker [12]. Kronmal and Peterson [7] improved
the preprocessing time of Walker’s method. Bringmann and Panagiotou [3] studied
some variants of discrete sampling. All of the above works used the Real RAMmodel
of computation. Bringmann and Larsen [2] analyzed Walker’s method in the word
RAM model. They also gave better algorithms for exact sampling in the word RAM
model and proved their optimality. Our work can be thought of as an extension of the
ideas in [2] to approximate sampling from discrete distributions.

2 Sampling in the Streaming Setting

The input in this setting consists of a stream of distinct objects denoted as O1, O2, . . .,
where the object Oi is thought to be arriving at time i . Our objective is to maintain a
random sample chosen uniformly at random from the objects seen so far in the stream.
More formally, we maintain a random variable Xt for all time t such that Pr[Xt = Oi ]
is same for all i = 1, . . . , t . We discussed in the introduction why this objective cannot
be met for all values of time t . Therefore, we relax the sampling criteria and allow the
sampling algorithm to fail with probability at most ε, where ε is an input parameter.
We say the sampling algorithm fails when it returns a null object ⊥. Therefore, the
algorithm is allowed to return ⊥ with probability at most ε. We want the following
property to be true for all time t : Pr[Xt = ⊥] ≤ ε,Pr[Xt = O1] = Pr[Xt =
O2] = · · · = Pr[Xt = Ot ]. Such a sequence of random variables Xt is called uniform
samples (with error parameter ε, which will be implicit in the discussion).

Streaming algorithms are typically allowed to use poly-logarithmic space. We fur-
ther constrain our setting by insisting that the algorithm can store only one object at
one time and some local variables. The implicit assumption is that the objects in the
stream could be arbitrarily large (objects could be large files/packets etc.) and we may
not have enough space in the local memory of the program to store more than one
object.

Consider the classical setting where all the n items are present in the memory and
we need a random sample from these items. It is not difficult to show that O

(
log n

ε

)

random bits suffice (w.r.t. uniform sampling with ε-error). In fact, it can be seen
easily that any algorithm (even in the non-streaming setting) needs at least these many
random bits. We give details of the lower bound on number of random bits in Sect. 2.1.
In Sect. 2.2, we show that we can maintain a uniform sample with only O

(
log n

ε

)
bits
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of randomness (till time n). These results may be extended to the weighted case which
we discuss in Sect. 2.3.

2.1 Background

We consider the off-line problem of generating a uniform sample with error parameter
ε from the set of objects O1, . . . , On .

Lemma 1 We can generate a uniform sample with error parameter ε from a set of
n distinct objects using O(log n

ε
) random bits. Further, any algorithm for generating

such a random sample must use Ω(log n
ε
) random bits.

Proof Let r be the smallest integer such that 2r ≥ n/ε, and let k denote
⌊
2r
n

⌋
. Now

we consider a sequence x of r random bits, and interpret this as a number between 0
and 2r − 1. If this number is at least nk, we output ⊥. Otherwise x is less than nk. Let
i be the (unique) integer between 1 and n such that x ∈ [(i − 1)k, ik). In this case, the
algorithm outputs the object Oi . Clearly, the probability that the algorithm outputs Oi

is k
2r , which is same for all the n objects. The probability that it outputs ⊥ is

2r − nk

2r
≤

2r − n
(
2r
n − 1

)

2r
= n

2r
≤ ε.

Since r is O(log n
ε
), we have shown the first part of the lemma.

Now we prove the lower bound result. Let R denote the minimum number of
required random bits. Clearly, 2R ≥ n, because there are at least n possible outcomes.
Assuming there is at least one sequence of random bits for which the algorithm outputs
⊥ (recall that for a general n, this will be the case), we get ε ≥ 1

2R
, which implies

2R ≥ 1
ε
. Thus, R ≥ 1

2 log
n
ε
. ��

Since we do not know the number of objects in the stream in advance but still need
to maintain a random sample at all times, the above upper bound idea does not work in
streaming setting. One solution that is known for this problem is reservoir sampling.
However, as we have seen, reservoir sampling is costly in terms of the number of
random bits used for sampling. In the next section, we design a sampling algorithm in
the streaming setting that uses O(log n

ε
) random bits till time n, and hence, matches

the lower bound result mentioned above.

2.2 Uniform Samples in the Streaming Setting

Let us try to understand some of the challenges of designing sampling algorithms in
the streaming setting. Recall that Xt is the random object maintained by the algorithm
at time t . Since the algorithm is allowed to store only one object at any time, it does
not store any other object at time t . At time t + 1, when Ot+1 arrives, the algorithm
has only three choices for Xt+1, they are Xt , Ot+1 or ⊥. We shall use rt to denote
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the number of random bits used by our algorithm till time t . Given a sequence xt
of rt random bits, let ft (xt ) denote the object stored by the algorithm at time t , i.e.,
Xt = ft (xt ). Note that the functions ft need to satisfy a “consistency” property: if
x ∈ {0, 1}rt is a prefix of a string y ∈ {0, 1}rt+1 , then ft+1(y) is either ft (x) or Ot+1
or ⊥. This is due to the restriction of the streaming setting, in particular because we
store only one object at any time. Note that the only stream elements one has access
to at time t + 1 are Xt and Ot+1, assuming Xt 
= ⊥. We now describe our sampling
algorithm which we call the doubling–chopping algorithm.

2.2.1 The Algorithm

For each time t and i ∈ {1, . . . , t} ∪ {⊥}, the algorithm will maintain an ordered set
Ht
i ⊆ {0, 1}rt of strings x for which ft (x) = Oi (or ⊥). Note that a naive implemen-

tation of these sets would result in huge space overhead, we will show later that these
sets can be maintained implicitly. Initially, at time t = 0, H0⊥ = ∅ and r0 = 0. We first
describe the doubling step in Fig. 1. The goal of this step is to ensure that 2rt stays

larger than (t+1)2

ε
. Whenever this inequality is not true, the value of rt is increased till

it is satisfied. The functions ft are updated accordingly, they just look at the first rt
bits of the input.

Note that after we call the algorithm Double, the new rt − rt−1 random bits do
not participate in the choice of random sample Xt at time t . In Step 3 of the Double
algorithm, the set Ht

i is an ordered list—“append” just adds an element to the end of
the list.

The next step, called the chopping step, shows how to modify the function ft so
that some probability mass moves towards Ot . The value of rt remains unchanged
during this step. A number of bit strings are moved from Ht

i to Ht
t . The algorithm is

described in Fig. 1. The function append(T1, T2) takes two ordered lists and outputs

Fig. 1 The doubling and chopping steps
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a new list obtained by first taking all the elements in T1 followed by the elements in T2
(in the same order). The algorithm maintains the sets Ht

i , where i ∈ {1, . . . , t} ∪ {⊥}.
Given these sets, the function ft is immediate. If the string x ∈ {0, 1}rt lies in the set
Ht
i , then ft (x) = Oi .
To summarize, at time t > 1, we first call the function Double(t) and then the

function Chop(t). The initial conditions (at time t = 1) are r1 = �log 4
ε
�, H1

1 =
{0, 1}r1 , and H1⊥ = ∅. It is easy to check that the functions ft satisfy the consistency
criteria.

Lemma 2 Suppose x ∈ {0, 1}rt−1 and y ∈ {0, 1}rt−rt−1 . Then, ft (yx) is either ft−1(x)
or Ot or ⊥.

Proof Let x and y be as above. Suppose x ∈ Ht−1
i (and so, ft−1(x) = i). After the

call to Double(t), yx ∈ Ht
i . Now consider the function Chop(t). If yx /∈ Ht

i after
Step 1, then it must be the case that yx gets added to the set T . Now, notice that the
strings in T get added to either Ht

t or H
t⊥. This proves the lemma. ��

The lemma above implies that we can execute the algorithm by storing only one
object at any time. Now, we show that the number of random bits used by the algorithm
is small.

Lemma 3 The number of random bits used by the algorithm till time n is O(log n
ε
).

Proof Till time n, the algorithm uses at most rn bits and 2rn ≤ 2(n+1)2

ε
. ��

The correctness of the algorithm follows from the next lemma.

Lemma 4 For all time t > 0, and i ∈ {1, . . . , t}, |Ht
i | =

⌊
2rt
t

⌋
, and |Ht⊥| ≤ ε · 2rt .

Proof The proof is by induction on t . The base case (t = 1) is true from the initial
conditions r1 = �log 4

ε
�, H1

1 = {0, 1}r1 , and H1⊥ = ∅. Now suppose the lemma is true

for t − 1. At time t , we first call Double(t). For each x ∈ Ht−1
i , we just append

all bit strings of length rt − rt−1 to it and this set of strings to Ht
i . Therefore, when

this procedure ends, |Ht
i | = 2rt−rt−1 · � 2rt−1

t−1 �, for i = 1, . . . , t − 1 (using induction
hypothesis) and we have

|Ht
i | = 2rt−rt−1 ·

⌊
2rt−1

t − 1

⌋
≥ 2rt−rt−1 ·

(
2rt−1

t − 1
− 1

)
≥ 2rt

t
(since 2rt−1 ≥ t2/ε)

In Step 1 of the procedure Chop(t), we ensure that |Ht
i | becomes � 2rt

t � (this step

can be done, because the |Ht
i | was at least � 2rt

t �). After this step, we do not change
Ht
i for i = 1, . . . , t − 1, and hence, the induction hypothesis is true for these sets. It

remains to check the size of Ht
t and Ht⊥.

First assume that |T | ≥ � 2rt
t �. In this case, Ht

t gets exactly � 2rt
t � elements. Now

suppose |T | < � 2rt
t �. First observe that Ht⊥ and T are disjoint. Since all strings not in

Ht
i , i = 1, . . . , t − 1 belong to either Ht⊥ or T , it follows that

|Ht⊥| + |T | = 2rt − (t − 1) ·
⌊
2rt

t

⌋
≥

⌊
2rt

t

⌋
.

123



1450 Algorithmica (2018) 80:1439–1458

Fig. 2 Space efficient pseudocode for the doubling and chopping algorithms

Therefore, |Ht⊥| is at least � 2rt
t � − |T |, and Step 4(i) in this case can be executed.

Clearly, |Ht
t | becomes � 2rt

t � as well. Finally,

|Ht⊥| = 2rt − t ·
⌊
2rt

t

⌋
≤ 2rt − t

(
2rt

t
− 1

)
= t ≤ ε · 2rt ,

where the last inequality follows from the definition of rt . ��

2.2.2 Space Complexity

Note that the use of the sets Ht
i in our algorithm was just to provide the intuition.

We only need to maintain the heights of these sets. This involves only storing two
quantities h and h⊥, where at any point of time t we maintain h = Ht

1 = Ht
2 =

· · · = Ht
t and h⊥ = Ht⊥. We will also need to maintain the location, l of the current

random string(means that the random string belongs to Ht
l ) and the rank of the current

random string in Ht
l . Since each Ht

i is an ordered list, rank is the position in this
order. We give a space efficient implementation of the Double and Chop methods
in Fig. 2. 4 We assume that the function random(y) returns a random integer from
[y] and the function random_bit() returns a random bit. random(y) may be easily
implemented using random_bit() when y is a power of 2 which is indeed the case
here.

4 A python implementation of this pseudocode can be found at http://www.cse.iitd.ac.in/~rjaiswal/
Research/Sampling/sampling.py.
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Fig. 3 The figure shows simulation of the doubling–chopping algorithm at time t = 2 when the value of
ε = 1/2

Lemma 5 For every time t, the location and the rank of the current random string xt
can be maintained using O(log t

ε
) bits of space.

Proof The space efficient Double and Chop methods given in Fig. 2 only stores
s, h, h⊥, l and rank, each of which is at most 2rt at any time t . Hence, we only need
O(rt ) = O(log n

ε
) bits of space. ��

2.2.3 Running Time

Finally, we analyze the running time requirement of the algorithm after n time steps
have been completed. We will analyze using the pseudocode given in Fig. 2. It is easy
to see that Chop only requires constant number of operations. Also, all the operations
inside the While in Double are constant operations. The total number of iterations
of While loop across all invocations of Double until time step n is at most rn , i.e.,
O(log n

ε
). Hence, the total time required after n steps is O(log n

ε
). It is easy to see that

r2 ≤ r1 + 3, r3 ≤ r2 + 3 and for t ≥ 3, rt+1 ≤ rt + 2. So, the While loop is executed
only a constant number of times during each call to Double. Hence, our algorithm
requires O(1) updation time per item. 5

Figure 3 shows the operations performed by the sampling algorithm after the arrival
of the second item. The techniques in this section generalize to weighted sampling
discussed next.

5 Note that this is under the common word RAM assumption that arithmetic operations on O(log n) bit
words can be done in O(1) time.
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2.3 Weighted Sampling

In Sect. 2, we discussed uniform sampling. We can extend our sampling algorithm
to the case where object i in the stream is associated with integer weight wi and the
sampling algorithm is required to output object i with probability proportional to wi .
Further, as in the uniform sampling case, the algorithm is allowed to output ⊥ with
probability at most ε. More specifically, let the algorithm output⊥with probability p.
Then p ≤ ε, and the probability that it outputs object i is given by (1− p) · wi∑

i wi
. The

most obvious way to extend our uniform sampling algorithm to the weighted case is
to consider wi copies of object i and simulate our sampling algorithm. The number of

required randombits would be log
(∑

i wi
ε

)
. Assuming each of theweightsw1, . . . , wn

to be a w-bit integer, the upper bound becomes O(log n·2w

ε
) = O(w + log n

ε
). From

Lemma 1, we know that the lower bound is Ω(log n
ε
) when w1 = w2 = · · · = 1.

Furthermore, given that w1 = 1 and w2 = 2w − 1, any sampling algorithm would
need at least w bits for uniform sampling. This gives another lower bound of Ω(w).
From the last two statements, we get that the lower bound on the number of random
bits required for weighted sampling is Ω(w + log n

ε
) which matches with our upper

bound. In this setting, simple space/time optimizations lead to a sampling algorithm
with running time O(n+w+log 1

ε
) (with per item time O(w)) and space O(w+log n

ε
)

bits.

3 Succinct (Approximate) Sampling

In this section, we consider the approximate sampling problem in the succinct data-
structuremodel.We are given as input a set of n elements labelled 1, . . . , n andweights
x1, . . . , xn associated with these elements. Each of these weights xi is assumed to be a
w-bit integer where the assumption is w = o(n). The assumption is reasonable since
typically w is a single precision (w = 32) or double precision (w = 64) number.
Let pi denote xi/(

∑
j x j ). Given an error parameter ε, we consider additive and

multiplicative approximate sampling. More formally, in the multiplicative model, the
probability of returning element i as output lies in the range [pi (1 − ε), pi (1 + ε)].
In the additive model, the respective probability lies in the range [pi − ε, pi + ε]. We
are also allowed suitable representation of these weights so as to facilitate efficient
sampling.

3.1 Approximate Sampling: Multiplicative Model

In this section we consider approximate sampling with (multiplicative) error ε and
give upper and lower bounds of space usage in this model. We first describe the upper
bound by giving our sampling algorithm. Next we provide matching lower bounds.
For simplicity, we assume that ε is a power of 2 (this only affects the bounds by a
constant factor). The following definition of closeness of distributions will be useful
in the analysis.
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Definition 1 Wesay that a distributiongivenby (y1, . . . , yn) is ε-close to a distribution
given by (x1, . . . , xn) if ∀i, (1− ε) · xi∑

j x j
≤ yi∑

j y j
≤ (1+ ε) · xi∑

j x j
. In such a case,

(y1, . . . , yn) may be used to (approximately) represent the distribution (x1, . . . , xn).

Upper Bound For each i , let fi denote the location of the most significant bit (MSB)
in xi which is 1 (i.e., the first fi −1 bits of xi are 0). Let x ′

i denote the number obtained
by taking the first fi + log 2

ε
bits of xi followed by

(
w − fi − log 2

ε

)
many 0’s. It

is fairly easy to check that exact sampling with respect to the weights x ′
i leads to

approximate sampling with respect to xi with error at most ε. This is because the
distribution given by (x ′

1, . . . , x
′
n) is ε-close to the distribution given by (x1, . . . , xn).

Lemma 6 For all i , (1 − ε) · pi ≤ x ′
i∑
j x

′
j

≤ (1 + ε) · pi .

Proof Observe that for all i , xi−x ′
i ≤ ε

2 ·xi , which implies that xi ≥ x ′
i ≥ (1−ε/2)·xi .

Using this fact, we get (1 − ε)pi ≤ xi (1−ε/2)∑
j x j

≤ x ′
i∑
j x j

≤ x ′
i∑
j x

′
j

≤ xi
(1−ε/2)

∑
j x j

≤
(1 + ε)pi . ��

Therefore, it is enough to run an exact sampling algorithm with weights x ′
i for all

element i . We use the exact sampling algorithm of Bringmann and Larsen [2] for this
purpose with weights x ′

i for element i . The space usage of this algorithm is O(n+w′)
bits in addition to the space required for storing input data, where w′ denotes the
required number of bits to store any of these weights. In our case, w′ can be as high
as w, and so the space used by the algorithm is O(n + w) bits in addition to the
space required for storing input data. There is one catch though: we need to store all
the x ′

i using the same number of bits, and using w bits would be a waste of space.
Instead we store each x ′

i as a tuple—we first store the value of fi and then the value
of the next log 2

ε
bits. Note that this representation uses (logw + log 2

ε
) bits for each

x ′
i . It is not difficult to check that the algorithm of Bringmann and Larsen [2] works
with this representation as well. Thus, the total space needed by our algorithm is
O(n logw + n log 2

ε
) bits.

Lower Bound In this section, we derive lower bound on the amount of space needed
for approximately sampling the elements with error ε. To get a lower bound on the
space, we will estimate the size of a set of tuples S ⊆ [{0, 1}w]n such that for any
tuple x̄ ∈ [{0, 1}w]n , there exists at least one element ȳ in S such that ȳ is ε-close to
x̄ . Let S denote the minimum amount of space needed in bits. We get a lower bound
on S using the next two lemmas.

Lemma 7 S ≥ n log 1
ε

− w − log n − n.

Proof Let U ⊆ [{0, 1}w]n denote a universe of n tuples of w-bit numbers such that
for any (u1, . . . , un) ∈ U,

∑
i ui = T , where T will be specified later. Given a tuple

x̄ = (x1, . . . , xn) ∈ U , Ball(x̄) denotes the set of all tuples ȳ ∈ U such that ȳ is
ε-close to x̄ . Recall that this implies that for all i = 1, . . . , n,

(1 − ε)xi ≤ yi ≤ (1 + ε)xi .
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So, yi can have at most 2εxi different values around xi . This gives the following:

|Ball(x̄)| ≤ (2ε)n · x1 · x2 · · · xn ≤ 2wn · (2ε)n, (1)

where the last inequality follows from the fact that each xi is a w-bit number. For any
tuple t̄ ∈ [{0, 1}w]n , the sum of elements in the tuple belongs to the set {0, 1, . . . , n ·
(2w − 1)}. This means that there is one value T ′ ∈ {0, 1, . . . , n · (2w − 1)} such that
the number of tuples whose sum is equal to T ′ is at least 2nw

n·(2w−1)+1 ≥ 2nw

n·2w . We will

use T = T ′. This implies that |U | ≥ 2nw

n·2w . Combining this fact with inequality (1),
we get

2S ≥ |U |
2wn · (2ε)n

≥ 1

n · 2w · (2ε)n

This gives S ≥ n log 1
ε

− w − n − log n. ��
Lemma 8 S ≥ n logw − n log 4(1 + 2ε) − w

2 log (e2n).

Proof Let U ⊆ ([{0, 1}w])n denote the subset of n-tuples of w-bit numbers x̄ of the
following form: it should be possible to divide the n coordinates in x̄ into w blocks,
each block consisting of n/w coordinates (note that these coordinates need not be
consecutive). Let the set of indices for block l is denoted by Bl . For any index i ∈ Bl ,
the first (l − 1) bits are 0, and the lth bit is 1. The remaining bits of index i can be
arbitrary though. Consider any tuple x̄ = (x1, . . . , xn) ∈ U . Define Ball(x̄) as the
set of all tuples ȳ ∈ U which are ε-close to x̄ , i.e., for all i = 1, . . . , n,

(1 − ε) · xi
S

≤ yi
S′ ≤ (1 + ε) · xi

S
, (2)

where S = ∑
j x j and S′ = ∑

j y j . Let Smin = min ȳ∈Ball(x̄)
∑

i yi and Smax =
max ȳ∈Ball(x̄)

∑
i yi . Then for all i we have

Smin

S
· (1 − ε) · xi ≤ yi ≤ Smax

S
· (1 + ε) · xi .

Therefore, number of possible values of yi is upper bounded by

xi
S

· ((Smax − Smin) + ε(Smax + Smin)) ≤ (1 + 2ε) · xi · Smax

S
.

Using this, we get that

|Ball(x̄)| ≤
(
Smax

S

)n

· (x1 · · · xn) · (1 + 2ε)n (3)

We will now try to get an upper bound on |Ball(x̄)| by obtaining suitable bounds on
the quantities on the RHS of the above inequality. First, note that due to the nature of
the tuples under consideration, we have:
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S ≥
w∑

i=1

n

w
· 2w−i = n

w
· (1 + 2 + · · · + 2w−1) = n

w
· (2w − 1).

Furthermore, for any ȳ ∈ U , we have

Smax ≤
w∑

i=1

n

w
(2w−i+1 − 1) = n

w
(2w+1 − 2 − w) ≤ 2 · n

w
· (2w − 1)

Next we upper bound the product of x1, . . . , xn . Since, each number in i th group is
< 2w−i+1, we can write,

x1 · · · xn <

w∏

i=1

(2w−i+1)n/w = 2n(w+1)/2

Putting these bounds in inequality (3), we get that

|Ball(x̄)| ≤ 2n · 2n(w+1)/2 · (1 + 2ε)n

Now, we try to get an estimate on |U |. The number of ways w blocks can be arranged
is n!

( n
w

!)w . We now use the following Stirling’s approximation of a! for any positive

integer a:

√
2πaa+1/2e−a ≤ a! ≤ eaa+1/2e−a,

to get

n!
( n
w

!)w ≥ √
2π

( w

e2n

)w
2
n1/2wn .

So, we get

|U | ≥
(√

2π
( w

e2n

)w
2
n1/2wn

)
·

w∏

i=1

(2w−i )
n
w

=
(√

2π
( w

e2n

)w
2
n1/2wn

)
· 2n(w−1)/2
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Using this bound, we have

2S ≥ |U |
2n · 2n(w+1)/2 · (1 + 2ε)n

≥

(√
2π

(
w
e2n

)w
2
n1/2wn

)
· 2n(w−1)/2

2n · 2n(w+1)/2 · (1 + 2ε)n

= 1

22n
· √

2πn · wn ·
( w

e2n

)w/2 ·
(

1

1 + 2ε

)n

which implies that

S ≥ n logw + log
√
2πn + w

2
log

w

e2n
+ n log

1

4(1 + 2ε)

≥ n logw − n log 4(1 + 2ε) − w

2
log (e2n)

This concludes the proof of the lemma. ��
Comparing Upper Bounds with Lower Bounds The upper bound that we obtained

on the space requirement was (n log 2
ε

+ n logw) bits. We break the comparison into
the following two parts:

1. 1
ε

> w: In this case, the upper bound is O(n log 1
ε
) bits. Using Lemma 7, we get

that the lower bound is Ω(n log 1
ε
) bits assuming w = o(n).

2. 1
ε

≤ w: In this case, the upper bound is O(n logw) bits. Using Lemma 8, we get
that the lower bound is Ω(n logw) bits assuming w = o(n).

So, we obtain matching lower and upper bounds assuming w = o(n).

3.2 Approximate Sampling: Additive Model

Wediscuss the additive errormodel in this section. In thismodel, given error parameter
ε, the probability of sampling element i lies in the range [pi − ε, pi + ε]. We first
describe the upper bound by giving our algorithm. Next we give matching lower
bounds. Again, we assume wlog that 1

ε
is an integer. Let S denote

∑
j x j .

Upper BoundWe create a sorted array A of size 1
ε
which stores copies of numbers

from 1 to n as follows: for each i , first we store � 1
ε

· xi
S � many copies of i ; then we

pick 1
ε

− ∑
i� 1

ε
· xi

S � elements arbitrarily from [n] and add an extra copy of each. To
generate a random element, the algorithm picks a uniformly random location in A and
outputs the number stored in that location in A. Clearly, the probability of sampling
i lies in the range

[
ε
⌊ 1

ε
· xi
S

⌋
, ε

(⌊ 1
ε

· xi
S

⌋ + 1
)] ⊆ [

ε
( 1

ε
· xi
S − 1

)
, ε

( 1
ε

· xi
S + 1

)] =
[pi − ε, pi + ε] , which is what we need. The space usage by the algorithm is the
space required to store array A, i.e., O

( 1
ε
log n

)
bits.

Lower Bound We now prove the lower bound result. We come up with a set of
distributions such that each pair of themdiffer bymore than ε on at least one coordinate.
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Consider the following set of n-tuples: (x1 · ε, x2 · ε, . . . , xn · ε) where x1, . . . , xn are
non-negative integers such that

∑
i xi = 1

ε
. If we pick any two such distinct vectors,

they will differ on at least one coordinate by at least ε. Clearly, the size of the set of

such possible vectors (or distributions) is at least
( 1

ε
+n−1
n

)
. Therefore, the space needed

for sampling with ε additive error is at least log
( 1

ε
+n−1
n

) ≥ Ω
( 1

ε
log n

)
bits, provided

ε is some constant independent of n.
Lower bound for smaller ε is discussed in the following manner. As shown above,

the lower bound on space is given by the expression:

S ≥ log

(
1/ε + n − 1

n

)
= Ω

(
1

ε
· log (1 + εn) + n log

(
1 + 1

εn

))
.

So, we get the following lower bounds in the following two cases:

1. ε ≥ 1/n: In this case, we get that S = Ω
( 1

ε
· log εn

)
.

2. ε < 1/n: In this case, we get that S = Ω
(
n · log 1

εn

)
.

Matching these lower bounds for small ε is left as an open problem.

4 Conclusions and Open Problems

We introduced sampling with ε-error and justified why it is the right model for
the streaming setting. We achieved matching upper and lower bounds for uniform
sampling with ε-error in the streaming setting. The upper bound is achieved by the
doubling–chopping algorithm which is also efficient in terms of space usage and run-
ning time. The algorithm can also be extended to weighted sampling with ε-error in
the streaming setting and is still optimal in terms of the amount of random bits used.
The doubling–chopping algorithm in fact matches the lower bound for the number of
random bits required even in the non-streaming setting. Thus we show that there is no
gap between the classical and streaming settings as far as number of random bits is
concerned.

We initiated the study of space complexity of approximate sampling with multi-
plicative and additive errors. We gave tight upper and lower bounds for the space
required for approximate sampling with ε multiplicative error. For approximate sam-
pling with ε additive error, we gave upper and lower bounds which are tight only when
ε is a constant independent of the number of items.

The major question left open is to find matching upper and lower bounds for the
space required for approximate samplingwith ε additive error, when ε is not a constant,
but is dependent on the number of items.
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