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Abstract Björklund andHusfeldt developed a randomized polynomial time algorithm
to solve the shortest two disjoint paths problem. Their algorithm is based on compu-
tation of permanents modulo 4 and the isolation lemma. In this paper, we consider
the following generalization of the shortest two disjoint paths problem, and develop
a similar algebraic algorithm. The shortest perfect (A + B)-path packing problem is:
given an undirected graph G and two disjoint node subsets A, B with even cardinal-
ities, find shortest |A|/2 + |B|/2 disjoint paths whose ends are both in A or both in
B. Besides its NP-hardness, we prove that this problem can be solved in randomized
polynomial time if |A| + |B| is fixed. Our algorithm basically follows the framework
of Björklund and Husfeldt but uses a new technique: computation of hafnian modulo
2k combined with Gallai’s reduction from T -paths to matchings. We also generalize
our technique for solving other path packing problems, and discuss its limitation.

Keywords Shortest disjoint paths problem · Hafnian · Randomized polynomial time
algorithm

1 Introduction

The shortest two disjoint paths problem is: given an undirected graph G = (V, E)

and s1, t1, s2, t2 ∈ V , find two disjoint paths, one connecting s1 and t1 and the other
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connecting s2 and t2, such that the sum of their lengths is minimum. Although the
length-less version, the two disjoint paths problem, is elegantly solved [12–14], no
polynomial time algorithm was known for this generalization. Recently, Björklund
and Husfeldt [2] obtained the first polynomial time algorithm.

Theorem 1.1 [2] There exists a randomized polynomial time algorithm to solve the
shortest two disjoint paths problem.

Their algorithm is build on striking application of computation of permanents mod-
ulo 4 by Valiant [15] and the isolation lemma by Mulmuley–Vazirani–Vazirani [9].

In this paper, we consider a generalization of the shortest two disjoint paths prob-
lem and develop a randomized polynomial time algorithm based on a similar algebraic
technique. Let us introduce our problem. For T ⊆ V , a T -path is a path connecting
distinct nodes in T . We are given two disjoint terminal sets A and B with even cardi-
nalities. A perfect (A+B)-path packing is a set P of node-disjoint paths such that each
path is an A-path or B-path and |P| = |A|/2+ |B|/2. The size of a perfect (A + B)-
path packing is defined as the total sum of the length of each path, where the length of
a path is defined as the number of edges in the path. The shortest perfect (A + B)-path
packing problem asks to find a perfect (A + B)-path packing with minimum size. It
will turn out that this problem is NP-hard. In the case where |A| = |B| = 2, the prob-
lem is the shortest two disjoint paths problem above. When B is empty, the problem
is the disjoint A-path problem by Gallai [4]. Our main result says that the problem is
tractable, provided |A| + |B| is fixed.
Theorem 1.2 There exists a randomized algorithm to solve the shortest perfect (A +
B)-path packing problem in O( f (|V |)|A|+|B|) time, where f is a polynomial.

Our algorithm basically follows the framework of Björklund–Husfeldt [2] but we use
a new technique: computation of hafnian modulo 2k , instead of permanent modulo 4,
combined with a classical reduction technique to matching by Gallai (for T -paths) [4]
and Edmonds (for odd path); see [11, Section 29.11e].

Related work Colin de Verdière–Schrijver [3] and Kobayashi–Sommer [7] gave com-
binatorial polynomial time algorithms for shortest disjoint paths problems in planar
graphs with special terminal configurations. Karzanov [6] and Hirai–Pap [5] showed
the polynomial time solvability of a shortest version of edge-disjoint T -paths prob-
lem. Yamaguchi [16] reduced the shortest disjoint S-paths problem (nonzero T -paths
problem in a group labeled graph, more generally) to weighted matroid matching.
Kobayashi–Toyooka [8] developed a randomized polynomial time algorithm for the
shortest nonzero (s, t)-path problem in a group labeled graph; their algorithm is also
based on the framework of Björklund–Husfeldt.

It is well-known that the hafnian of the adjacency matrix of a graph is equal to
the number of perfect matchings. By utilizing the hafnian, Björklund [1] developed a
faster algorithm to count the number of perfect matchings.

Organization The rest of this paper is organized as follows. In Sect. 2, we first show
that hafnian modulo 2k for fixed k is computable in polynomial time. This direct
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generalization of permanent computation modulo 2k seems new and interesting in its
own right. Next we present the randomized algorithm in Theorem 1.2. In Sect. 3, we
verify the hardness of the (A + B)-path packing problem, and then generalize our
technique for solving other path packing problems, and discuss its limitation.

2 Algorithm

In this section, we first provide an algorithm to compute hafnian modulo 2k , and next
present a randomized polynomial time algorithm to solve the shortest perfect (A+ B)-
path packing problem for fixed |A| + |B|. An undirected pair or edge {i, j} is simply
denoted by i j .

2.1 Computing Hafnian Modulo 2k

The hafnian haf A of a 2n × 2n symmetric matrix A = (ai j ) is defined by

haf A :=
∑

M∈M

∏

i j∈M

ai j ,

where M is the set of all partitions of {1, 2, 3, . . . , 2n} into n pairs.
Let S(n, N ) denote the set of all 2n × 2n symmetric matrices with zero diagonal

each of whose element is a univariate polynomial of degree at most N . Let haf2k A
denote the hafnian of A modulo 2k . The main result of this subsection is the following:

Theorem 2.1 There exists a bivariate polynomial f such that for all A ∈ S(n, N ),
haf2k A can be computed in O( f (n, N )k) time.

We prove Theorem 2.1 by the similar way to that for permanents modulo 2k [15]
and that for permanents of polynomial matrices modulo 2k [2,8]. First we verify
Theorem 2.1 for k = 1. Let Ã = (ãi j ) be a skew-symmetric matrix obtained from
A by replacing ai j by −ai j if i > j . Modulo 2, haf A coincides with pf Ã (Pfaffian
of Ã). Hence haf2 A can be obtained in time polynomial in n and N by computing√
det Ã (mod 2).
Next, we consider the case of k ≥ 2.We use a formula like the Laplace expansion of

determinants. Let A[i, j]denote thematrix obtained from A by removing the row i , row
j , column i , and column j . For distinct i, j, p, q, let A[i, j, p, q] := (A[i, j])[p, q].
Lemma 2.2 (1) haf A =

∑

j : j �=i

ai j haf A[i, j].

(2) haf A = ai j haf A[i, j] +
∑

pq: p,q /∈{i, j},p �=q

(aipa jq + aiqa jp) haf A[i, j, p, q].

Proof (1) For j �= i , let M j be the set of all M ∈ M that contain i j . Since {M j |
j �= i} is a partition of M, we obtain

haf A :=
∑

j : j �=i

ai j

∑

M∈M j

∏

pq∈M\{i j}
apq =

∑

j : j �=i

ai j haf A[i, j].
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(2) By using (1) repeatedly, we obtain

haf A =
∑

p: p �=i

aip haf A[i, p] = ai j haf A[i, j] +
∑

p: p/∈{i, j}
aip haf A[i, p]

= ai j haf A[i, j] +
∑

p: p/∈{i, j}
aip

∑

q: q /∈{i, j,p}
a jq haf A[i, j, p, q]

= ai j haf A[i, j] +
∑

(p,q): p,q /∈{i, j},p �=q

aipa jq haf A[i, j, p, q].

Combining the terms for (p, q) and (q, p), we obtain (2). ��
For A ∈ S(n, N ), let A(i, j; c) denote the matrix obtained from A by adding c

multiple of column i to column j , adding c multiple of row i to row j , and replacing
the j j th element with zero. We refer to this operation as the (i, j; c)-operation. Note
that differences between A and A(i, j; c) occur only in row j and column j , and that
A(i, j; c) also belongs to S(n, N ). We investigate how the hafnian changes by the
(i, j; c)-operation. Let A(i → j) denote the matrix obtained from A by replacing row
j with row i and column j with column i .

Lemma 2.3 haf A(i, j; c) = haf A + c haf A(i → j).

Proof Let ãpq denote the pqth element of A(i, j; c). We use Lemma 2.2 (1) with
respect to row j and column j .

haf A(i, j; c) =
∑

k:k �= j

ãk j haf A[k, j]

=
∑

k: k �= j

ak j haf A[k, j] +
∑

k: k �= j

caki haf A[k, j]

= haf A + c haf A(i → j).

Let d be a fixed positive integer. A term of a polynomial is said to be lower if its degree
is at most d and higher otherwise. A polynomial f is said to be even if all coefficients
of lower terms of the polynomial f (x) are even. For a polynomial f (x) that is not
even, let m( f (x)) denote the lowest degree of terms with odd coefficients.

Let A = (ai j ) ∈ S(n, d).We are going to show that all lower terms of haf Amodulo
2k can be computed in time polynomial in n and d. The hafnian does not change if we
exchange row i and row j , and column i and column j . Hence we exchange rows and
columns of A in advance so that a12 is a minimizer of m(a1 j ) in a1 j ( j = 2, . . . , 2n)

that are not even. Next we find a polynomial c j such that c j a12 + a1 j is even for
j = 3, . . . 2n. The computation can easily be done in time polynomial in n and d
[2, Section 3.2]. Using the (2, j; c j )-operation for j = 3, . . . 2n in order, we obtain
matrices A3 := A(2, 3; c3), A4 := A3(2, 4; c4), . . . , A2n := A2n−1(2, 2n; c2n).
Then 1 j elements of A2n are even if j ≥ 3. Applying Lemma 2.3 repeatedly, we
obtain

haf A2n = haf A +
2n∑

j=3

c j haf A j−1(2 → j),
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where A2 = A. Using Lemma 2.2 (1) for A2n = (bi j ), we obtain

haf A = b12 haf A2n[1, 2] +
2n∑

j=3

b1 j haf A2n[1, j] −
2n∑

j=3

c j haf A j−1(2 → j). (1)

Though there may be higher terms in elements of matrices in (1), we may replace
these higher terms with 0 (since our goal is computing lower terms). Similarly we
may replace higher terms in b1 j ( j = 2, . . . , 2n) with 0. Hence all matrices in right-
hand side of (1) can be regarded in S(n − 1, d) or S(n, d).

Next we discuss the second and third terms of the right-hand side in detail. For the
second term, we obtain b1 j haf A2n[1, j] modulo 2k from haf A2n[1, j] modulo 2k−1

since b1 j (3 ≤ j ≤ 2n) are even. Therefore we need to compute hafnians of 2n − 2
polynomial matrices in S(n − 1, d) modulo 2k−1.

Next we consider the third term. For A(i → j), it holds aip = a jp, aiq = a jq and
ai j = 0 (since A has zero diagonals). Hence, applying Lemma 2.2 (2) to A(i → j),
we obtain the following:

haf A(i → j) =
∑

p,q

2aipa jq haf A[i, j, p, q].

Hence we obtain haf A(i → j) modulo 2k from hafnians of
(2n−2

2

)
matrices in S(n −

2, d) modulo 2k−1.
In this way, our algorithm recursively computes lower terms of haf A modulo 2k

according to (1). We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1 Let T (n, d, k) be the computational complexity of computing
all lower terms of the hafnian of a matrix in S(n, d). From (1) and the argument after
(1), it follows

T (n, d, k) ≤ T (n − 1, d, k) + (2n − 2)T (n − 1, d, k − 1)

+(2n − 2)

(
2n − 2

2

)
T (n − 2, d, k − 1) + poly(n, d),

where poly(n, d) is a polynomial of n and d. Since T (n, d, k) is monotone increasing
on n, it follows that

T (n, d, k) ≤ T (n − 1, d, k) + 4n3T (n, d, k − 1) + poly(n, d).

Using this inequality repeatedly, we obtain

T (n, d, k) ≤ 4n4T (n, d, k − 1) + poly(n, d).

T (n, d, 1) is a polynomial of n and d by the result of the case k = 1. Hence there
exists a polynomial f of n and d such that for all positive integers k, T (n, d, k) is
O( f (n, d)k).
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For A ∈ S(n, N ), the degree of haf A is at most nN . Apply the above algorithm
with d = nN , we obtain haf2k A in O( f (n, nN )k) time. This completes the proof. ��

2.2 Perfect (A+ B)-Path Packing via Hafnian

Let G = (V, E) be a simple undirected graph and A, B disjoint node sets of even
cardinalities. Let n := |V | and m := |E |. We can assume that G = (V, E) has no
edge with both endpoints in A ∪ B; otherwise, replace each edge by a series of two
edges. We consider a general case where G has positive integer weight w(e) on each
edge e. We assume that the maximum value of the weight is bounded by a polynomial
of n. For a path P , let w(P) denote the sum of the weight of edges in P . The size of
a set P of vertex-disjoint paths is defined as the total sum of w(P) over P ∈ P , and
is denoted by w(P).

Gallai’s construction From input G, A, B, we construct graph H = (VH , EH ) so
that matchings in H correspond to disjoint T -paths in G (with T = A ∪ B). This
construction is due to Gallai [4]; see [11, Section 73.1]. Let U := V \(A ∪ B). First
we add to G a copy of the subgraph of G induced by U . The copy of a node v ∈ U is
denoted by v′. Let U ′ := {v′ | v ∈ U }, VH := V ∪ U ′ = A ∪ B ∪ U ∪ U ′. Next, for
each v ∈ U , add an edge vv′. The set of such edges is denoted by E=. Finally, we add
edge uv′ for each uv ∈ E with u ∈ A ∪ B, v ∈ U . The set of all edges in A ∪ B ∪ U ′
is denoted by E ′. Let EH := E ∪ E ′ ∪ E=. The weight w is extended to EH → Z≥0
by

⎧
⎪⎨

⎪⎩

w(e) := 0 if e ∈ E=,

w(uv′) := w(uv) if uv′ ∈ E ′, u ∈ A ∪ B,

w(u′v′) := w(uv) if u′v′ ∈ E ′, u′, v′ ∈ U ′.

A perfect (A ∪ B)-path packing is a set of |A|/2+|B|/2 node-disjoint (A ∪ B)-paths.
From a perfect matching M of H , we obtain a perfect (A ∪ B)-path packing PM in G
as follows. For all s ∈ A ∪ B, there exists a unique path P = {s, v1, v2, . . . , t} in H
such that (s, v1) ∈ M , t ∈ (A ∪ B)\{s} and it goes through edges in M and edges in
E= alternately. This path in H determines an (s, t)-path in G by picking up the only
nodes in (A ∪ B)∪U in the same order. Gathering up these paths, we obtain a perfect
(A ∪ B)-path packingPM in G. Conversely, one can see that any perfect (A ∪ B)-path
packing in G is obtained in this way. The size of PM is at most the weight of M . They
coincide if and only if all edges of M not used by PM belong to E=.

Matrices S and S′ Next we introduce a symmetric matrix S associated with H . Let
h := |VH |. We can assume that VH = {1, 2, . . . , h}. Let S = (si j ) be an h × h
symmetric matrix defined by

si j :=
{

xw(i j) if i j ∈ EH ,

0 otherwise.
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Recall that w(i j) denotes the weight of the edge i j in H .
For t ∈ A ∪ B, let Et denote the set of edges joining t and U , and let E ′

t denote the
set of edges joining t and U ′. From the matrix S, we define a new matrix S′ = (s′

i j )

by

s′
i j :=

{
−si j if i j ∈ E ′

t for some t ∈ B,

si j otherwise.

Let τ := (|A| + |B|)/2. For a perfect (A + B)-path packing P , let θ(P) denote the
number of even-length B-paths in P .

Lemma 2.4
haf S′ =

∑

P
(−1)θ(P)2τ xw(P)(1 + x fP (x)),

where P ranges over all perfect (A + B)-path packings, and fP (x) is a polynomial.

Proof For a matching M of H , let s′(M) := ∏
i j∈M s′

i j . By the above discussion on
Gallai’s construction, we obtain

haf S′ =
∑

M

s′(M) =
∑

P

∑

M :PM =P
s′(M), (2)

where M ranges over all perfect matchings in H andP ranges over all perfect (A∪ B)-
path packings in G. First we estimate

∑
M :PM =P s′(M). Suppose P = {P1, . . . , Pτ }.

For each path Pk = (sk, v1, v2, . . . , vnk , tk) (k = 1, . . . , τ ), we define two matchings
Mk,1, Mk,2 in H by

Mk,1 =
{

{skv1, v
′
1v

′
2, . . . , vnk−1vnk , v

′
nk

tk} if nk is odd,

{skv1, v
′
1v

′
2, . . . , v

′
nk−1v

′
nk

, vnk tk} if nk is even,

Mk,2 =
{

{skv
′
1, v1v2, . . . , v

′
nk−1v

′
nk

, vnk tk} if nk is odd,

{skv
′
1, v1v2, . . . , vnk−1vnk , v

′
nk

tk} if nk is even.

Both of them have weight w(Pk). Then a perfect matching M with PM = P can be
represented as the union of

⋃τ
k=1 Mk,ik (ik ∈ {1, 2}) and a perfect matching M ′ of the

subgraph H −P of H obtained by removing vertices in
⋃τ

k=1 Mk,ik . Then we obtain

∑

M :PM =P
s′(M) =

∑

i1∈{1,2}
· · ·

∑

iτ ∈{1,2}

∑

M ′
s′(M1,i1) · · · s′(Mτ,iτ )s

′(M ′)

= (s′(M1,1) + s′(M1,2)) · · · (s′(Mτ,1) + s′(Mτ,2))
∑

M ′
s′(M ′),(3)

where M ′ ranges over all perfect matchings of H − P .
Next we estimate s′(Mk,1) + s′(Mk,2). We call an edge in E ′

t for t ∈ B minus.
Then s′(Mk, j ) = xw(Pk ) if Mk, j has an even number of minus edges, and s′(Mk, j ) =
−xw(Pk ) if Mk, j has an odd number of minus edges. If Pk connects A and B, just one
of Mk,1 and Mk,2 contains one minus edge. If Pk is an A-path, then neither Mk,1 nor
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Mk,2 contains one minus edge. If Pk is a B-path and the length of Pk is odd, one of
Mk,1 and Mk,2 has two minus edges and the other has no minus edge. If Pk is a B-path
and the length of Pk is even, both of Mk,1 and Mk,2 have one minus edge. (Recall the
assumption that there is no edge joining A ∪ B.) Hence we obtain

s′(Mk,1) + s′(Mk,2) =

⎧
⎪⎨

⎪⎩

0 if Pk connects A and B,

−2xw(Pk ) if Pk is an even-length B-path,

2xw(Pk ) otherwise.

(4)

Finally we estimate
∑

M ′ s′(M ′). The perfect matching consisting of edges in E= has
weight 0, and other perfect matchings have weight at least 1. Thus

∑
M ′ s′(M ′) is

represented as 1 + x f (x) for a polynomial f . By this fact and equations (2), (3) and
(4), we obtain the formula. ��

Unique Optimal Solution Case. We first consider the case where G has a unique
shortest perfect (A + B)-path packing P∗. Here w is not necessarily uniform (but
is bounded by a polynomial of n). In this case, Lemma 2.4 immediately yields a
desired algorithm to find P∗. Indeed, the leading term (lowest degree term) of haf S′
is (−1)θ(P∗)2τ xw(P∗) (by the uniqueness). In particular we can obtain the minimum
degree w(P∗) by computing haf S′ modulo 2τ+1. Observe that an edge e belongs to
P∗ if and only if the degree of the leading term of haf S′ strictly increases when e is
removed from G. Thus we can determine P∗ by m + 1 computations of the hafnian
of a 2n × 2n matrix in modulo 2τ+1. By Theorem 2.1 (with N = maximum of w),
this can be done in O( f (n)|A|+|B|) time for a polynomial f .

General Case. Suppose now that w is uniform weight, i.e., w(e) = 1 for all e in
E . We consider the general case where there may be two or more shortest perfect
(A + B)-path packings. We construct a randomized polynomial time algorithm with
the help of the isolation lemma [9]. This technique is due to [2]. We use the isolation
lemma in the following form:

Lemma 2.5 Let n be a positive integer andF a family of subsets of E = {e1, . . . , em}.
Weightw(ei ) is assigned to each element ei of E, wherew(ei )are chosen independently
and uniformly at random from {2mn, 2mn + 1, . . . , 2mn + 2m − 1}. Then, with
probability greater than 1/2, there exists a unique set F ∈ F of minimum weight
w(F) := ∑

e∈F w(e).

We are ready to prove our main theorem.

Proof of Theorem 1.2 Weperturb theweightw intow′ so that a shortest packing forw′
is unique and is also shortest forw. For each edge e, choose a from {2mn, . . . , 2mn +
2m − 1} independently and uniformly at random, and let w′(e) := a. By Lemma 2.5,
with a high probability (≥ 1/2), a shortest (A + B)-path packing P∗ for w′ is unique.
By the unique optimal solution case above, we can find P∗ in O( f (n)|A|+|B|) time.
We finally verify thatP∗ is actually shortest for the original uniformweightw. Indeed,
pick an arbitrary packing P not equal to P∗. Then we have
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1 ≤ w′(P) − w′(P∗) ≤ (2mn + 2m − 1)w(P) − 2mnw(P∗)
≤ 2mn(w(P) − w(P∗)) + (2m − 1)w(P).

Hence we have

w(P) − w(P∗) ≥ 1

2mn
− (2m − 1)w(P)

2mn
≥ −1 + 1 + w(P)

2mn
> −1,

where the second inequality follows from w(P) ≤ n. Since both w(P) and w(P∗)
are integers, we have w(P) − w(P∗) ≥ 0. This means that P∗ is shortest for w. ��

3 Related Results

3.1 NP-Completeness

Herewe verify that the perfect (A+ B)-path packing problem, the problem of deciding
the existence of a perfect (A+ B)-path packing (with |A|+|B| unfixed), is intractable.
Theorem 3.1 The perfect (A + B)-path packing problem is NP-complete, even if
|B| = 2.

Proof Hirai and Pap [5] proved that the following edge-disjoint paths problem is
NP-complete: (∗) Given an undirected graph G = (V, E) and S, T ⊆ V with S ∩
T = ∅ and |S| = |T | = k and a, b ∈ V \ (S ∪ T ), find an edge-disjoint set P
of paths P0, P1, . . . , Pk such that P0 connects a and b and Pi connects S and T
(i = 1, 2, . . . , k). They gave a reduction from 3-SAT to the problem (∗). In their
reduction [5, Section 5.2.3], a solution is necessarily vertex-disjoint. Moreover, one
can see from the reduction that a set P of paths is a solution of (∗) if and only if P
is a perfect (S ∪ T + {a, b})-path packing. Consequently the perfect (A + B)-path
packing problem is also NP-complete, even if |B| = 2. ��

3.2 Other Path Packing Via Hafnian

In this subsection,we generalize our technique for solving other path packing problems
and discuss its limitation. Let G = (V, E) be a simple undirected graph. Let T be a
terminal set with even cardinality |T | = 2τ . As in Sect. 2.2, we assume that there is
no edge joining T .

To specify path packing problems, we introduce a notion of perfect matching with
parity (PMP) on T , which is defined as a set of pairs (si ti , σi ) (i = 1, . . . , τ ) such
that

⋃
i {si , ti } = T and σi ∈ {odd, even} is a parity. A perfect T -path packing P (a

disjoint set of τ T -paths) induces PMP MP :

MP := {(st, σ ) | P has an (s, t)-path with its length having the parity σ }.

For a set M of PMPs, a perfect M-path packing is a perfect T -path packing with
MP ∈ M. We introduce the shortest perfect M-path packing problem as the problem
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of finding a perfect M-path packing of minimum size. Notice that an (A + B)-path
packing corresponds toMA+B := {M ∪ M ′ | M : PMP on A, M ′ : PMP on B}.

Next we consider a generalization of matrix S′. As in Sect. 2.2, consider graph
H , edge sets Et and E ′

t , and matrix S (with A ∪ B = T ). Suppose that T =
{1, 2, 3, . . . , 2τ }. For p = (p1, . . . , p2τ ), q = (q1, . . . , q2τ ) ∈ Z

2τ , we define the
matrix S[p, q] from S by

(S[p, q])i j :=

⎧
⎪⎨

⎪⎩

pt si j if i j ∈ Et for t ∈ T,

qt si j if i j ∈ E ′
t for t ∈ T,

si j otherwise.

For distinct s, t ∈ T and parity σ , define [p, q]st,σ by

[p, q]st,σ :=
{

ps pt + qsqt if σ = odd,

psqt + qs pt if σ = even.

A set M of PMPs is said to be h-representable if there exist N , k ∈ Z>0, ni ∈ Z≥0,
pi , qi ∈ Z

2τ for i = 1, . . . , N such that a PMP M belongs toM if and only if

N∑

i=1

ni

∏

(st,σ )∈M

[pi , qi ]st,σ �≡ 0 mod 2k .

In particular, the argument in Sect. 2.2 says thatMA+B is h-representable with N = 1,
k = τ + 1, n1 = 1, p1 = (1, 1, . . . , 1) and q1 = (1, . . . , 1,−1, . . . ,−1). That is, q1

has 1 for the first |A| entries and −1 the remaining |B| entries. A generalization of
Theorem 1.2 is the following.

Theorem 3.2 Suppose that a set M of PMPs is h-representable with parameters
N , k, ni , pi , qi (i = 1, 2, . . . , N ). Then the shortest perfect M-path packing problem
can be solved in randomized polynomial time, provided N and k are fixed.

Proof As in the proof of Lemma 2.4, one can show

N∑

i=1

ni haf S[pi , qi ] =
∑

P

⎡

⎣
N∑

i=1

ni

∏

(st,σ )∈MP

[pi , qi ]st,σ

⎤

⎦ xw(P)(1 + x fP (x)),

where P ranges over all perfect T -path packings. Therefore, if G has a unique
shortest perfect M-path packing P∗, then we can obtain P∗ by computing∑N

i=1 ni haf S[pi , qi ] modulo 2k . This can be done in polynomial time provided N
and k are fixed. As in Sect. 2.2, we obtain the randomized polynomial time algorithm
for the general case. ��
We do not know a characterization of h-representable sets of PMPs. We here discuss
three interesting special cases, where odd and even are simply denoted by o and e
respectively.
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Shortest two disjoint paths via hafnian modulo 4. First we return to the shortest two
disjoint paths problem, which corresponds to T = {1, 2, 3, 4} and

M2 := {{(12, σ1), (34, σ2)} | σ1, σ2 ∈ {o, e}}.

We have seen that M2 is h-representable with N = 1 = n1 = 1, p1 = (1, 1, 1, 1),
q1 = (1, 1,−1,−1), and k = 3. We present another economical h-representation.

Proposition 3.3 M2 is h-representable with N = 1, k = 2, n1 = 1, p1 = (1, 1, 1, 1),
and q1 = (0, 1,−1,−1).

Proof A direct calculation (e.g.,[p1, q1]12,e[p1, q1]34,o = (1 ·1+0 ·1){1 ·1+ (−1) ·
(−1)} = 2) shows

∏

(st,σ )∈M

[p1, q1]st,σ =

⎧
⎪⎨

⎪⎩

2 if M = {(12, o), (34, o)}, {(12, e), (34, o)},
−2 if M = {(12, o), (34, e)}, {(12, e), (34, e)},
0 otherwise.

In particular, modulo 4 computation is sufficient. It might be interesting to compare
with the original approach by Björklund–Husfeldt [2]: their algorithm requires to
compute permanents of three n × n matrices modulo 4, whereas our algorithm with
these parameters requires to compute the hafnian of one 2n × 2n matrix modulo 4.

Shortest odd two disjoint paths via four hafnians modulo 4. The hafnian approach
can solve the shortest two disjoint paths problem with a parity constraint that the
sum of the lengths of paths is odd. This problem corresponds to T = {1, 2, 3, 4} and
M2,odd := {{(12, o), (34, e)}, {(12, e), (34, o)}}.
Theorem 3.4 M2,odd is h-representable with N = 4, k = 2, (n1, n2, n3, n4) =
(1, 1,−1,−1), and

p1 = (1, 1, 1, 0), q1 = (0, 0, 0, 1),

p2 = (1, 1, 0, 1), q2 = (0, 0, 1, 0),

p3 = (1, 0, 1, 1), q3 = (0, 1, 0, 0),

p4 = (0, 1, 1, 1), q4 = (1, 0, 0, 0).

Proof One can verify the theorem from the value of Ci := ∏
(st,σ )∈M [pi , qi ]st,σ for

i = 1, 2, 3, 4 and all PMPs M on T , which are shown in Table 1. ��

Non h-representability of 3-disjoint paths. A deep result by Robertson–Seymour [10]
is that the k-disjoint paths problem is solvable in polynomial time (for fixed k) . One
may naturally ask whether the shortest k-disjoint paths problem for k ≥ 3 is solvable
by this approach.Unfortunately our approach cannot reach the shortest 3-disjoint paths
problem, which corresponds to T = {1, 2, 3, 4, 5, 6} and

M3 := {{(12, σ1), (34, σ2), (56, σ3)} | σ1, σ2, σ3 ∈ {o, e}}.
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Table 1 Values of Ci

PMP C1 C2 C3 C4 C1 + C2 − C3 − C4

{(12, o), (34, o)} 0 0 0 0 0

{(12, o), (34, e)} 1 1 0 0 2

{(12, e), (34, o)} 0 0 1 1 −2

{(12, e), (34, e)} 0 0 0 0 0

{(13, o), (24, o)} 0 0 0 0 0

{(13, o), (24, e)} 1 0 1 0 0

{(13, e), (24, o)} 0 1 0 1 0

{(13, e), (24, e)} 0 0 0 0 0

{(14, o), (23, o)} 0 0 0 0 0

{(14, o), (23, e)} 0 1 1 0 0

{(14, e), (23, o)} 1 0 0 1 0

{(14, e), (23, e)} 0 0 0 0 0

Theorem 3.5 M3 is not h-representable.

We start with a preliminary argument. Let 1 := (1, 1, . . . , 1). For χ ∈ {0, 1}2τ , let
S(χ) := S[χ, 1 − χ ]. Then haf S[p, q] can be expressed as a linear combination of
haf S(χ) over χ ∈ {0, 1}2τ :

Lemma 3.6 haf S[p, q] =
∑

χ∈{0,1}2τ

2τ∏

i=1

{χi pi + (1 − χi )qi } haf S(χ).

Proof Each perfect matching of H determines χ ∈ {0, 1}2τ as: χi = 1 if and only
if node i is matched to a node in U . Here χ is called the type of M . We classify all
perfect matchings in terms of their types. One can verify

∑

M :type χ

∏

i j∈M

(S[p, q])i j =
[

2τ∏

i=1

{χi pi + (1 − χi )qi }
]
haf S(χ).

Thus we have the desired formula.

From Lemma 3.6, in the definition of h-representability, it suffices to consider the case
where p = χ and q = 1 − χ for χ ∈ {0, 1}2τ . In this case,

∏
(st,σ )∈M [p, q]st,σ is 0

or 1. Let [χ ]st,σ := [χ, 1 − χ ]st,σ .

Proof of Theorem 3.5 First consider the following six PMPs:

M1 := {(12, o), (34, o), (56, e)}, M2 := {(12, o), (36, o), (45, e)},
M3 := {(14, o), (23, o), (56, e)}, M4 := {(14, o), (36, o), (25, e)},
M5 := {(16, o), (23, e), (45, o)}, M6 := {(16, o), (34, e), (25, o)}.
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Observe that M1 is in M3 and other five PMPs are not in M3. For PMP M and
χ ∈ {0, 1}6, define bM,χ by

bM,χ :=
∏

(st,σ )∈M

[χ ]st,σ .

By computer calculation, we have verified the following 64 equations to hold;

bM1,χ = bM2,χ + bM3,χ − bM4,χ + bM5,χ − bM6,χ (χ ∈ {0, 1}6). (5)

Next suppose thatM3 is h-representable. Thanks toLemma3.6, there exist k ∈ Z>0
and nχ ∈ Z for χ ∈ {0, 1}6 such that a PMP M belongs toM if and only if

∑

χ∈{0,1}6
nχ

∏

(st,σ )∈M

[χ ]st,σ �≡ 0 mod 2k .

In particular, it holds

∑

χ∈{0,1}6
nχ bM j ,χ ≡ 0 mod 2k ( j = 2, 3, 4, 5, 6).

By (5), we have ∑

χ∈{0,1}6
nχ bM1,χ ≡ 0 mod 2k .

However this is a contradiction to M1 ∈ M3. ��
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