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Abstract Bjorklund and Husfeldt developed a randomized polynomial time algorithm
to solve the shortest two disjoint paths problem. Their algorithm is based on compu-
tation of permanents modulo 4 and the isolation lemma. In this paper, we consider
the following generalization of the shortest two disjoint paths problem, and develop
a similar algebraic algorithm. The shortest perfect (A + B)-path packing problem is:
given an undirected graph G and two disjoint node subsets A, B with even cardinal-
ities, find shortest |A|/2 + | B|/2 disjoint paths whose ends are both in A or both in
B. Besides its NP-hardness, we prove that this problem can be solved in randomized
polynomial time if |A| + | B| is fixed. Our algorithm basically follows the framework
of Bjorklund and Husfeldt but uses a new technique: computation of hafnian modulo
2% combined with Gallai’s reduction from T-paths to matchings. We also generalize
our technique for solving other path packing problems, and discuss its limitation.

Keywords Shortest disjoint paths problem - Hafnian - Randomized polynomial time
algorithm

1 Introduction

The shortest two disjoint paths problem is: given an undirected graph G = (V, E)
and s1, 11, 52, 1o € V, find two disjoint paths, one connecting s; and #; and the other
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connecting s> and #y, such that the sum of their lengths is minimum. Although the
length-less version, the two disjoint paths problem, is elegantly solved [12-14], no
polynomial time algorithm was known for this generalization. Recently, Bjorklund
and Husfeldt [2] obtained the first polynomial time algorithm.

Theorem 1.1 [2] There exists a randomized polynomial time algorithm to solve the
shortest two disjoint paths problem.

Their algorithm is build on striking application of computation of permanents mod-
ulo 4 by Valiant [15] and the isolation lemma by Mulmuley—Vazirani—Vazirani [9].

In this paper, we consider a generalization of the shortest two disjoint paths prob-
lem and develop a randomized polynomial time algorithm based on a similar algebraic
technique. Let us introduce our problem. For T C V, a T-path is a path connecting
distinct nodes in 7. We are given two disjoint terminal sets A and B with even cardi-
nalities. A perfect (A+B)-path packing is a set P of node-disjoint paths such that each
path is an A-path or B-path and |P| = |A|/2 + | B|/2. The size of a perfect (A + B)-
path packing is defined as the total sum of the length of each path, where the length of
a path is defined as the number of edges in the path. The shortest perfect (A + B)-path
packing problem asks to find a perfect (A + B)-path packing with minimum size. It
will turn out that this problem is NP-hard. In the case where |A| = | B| = 2, the prob-
lem is the shortest two disjoint paths problem above. When B is empty, the problem
is the disjoint A-path problem by Gallai [4]. Our main result says that the problem is
tractable, provided |A| 4 | B] is fixed.

Theorem 1.2 There exists a randomized algorithm to solve the shortest perfect (A +
B)-path packing problem in O(f(|V)AH1BlY time, where f is a polynomial.

Our algorithm basically follows the framework of Bjorklund—Husfeldt [2] but we use
a new technique: computation of hafnian modulo 2, instead of permanent modulo 4,
combined with a classical reduction technique to matching by Gallai (for T'-paths) [4]
and Edmonds (for odd path); see [11, Section 29.11e].

Related work Colin de Verdiere—Schrijver [3] and Kobayashi—Sommer [7] gave com-
binatorial polynomial time algorithms for shortest disjoint paths problems in planar
graphs with special terminal configurations. Karzanov [6] and Hirai—Pap [5] showed
the polynomial time solvability of a shortest version of edge-disjoint 7-paths prob-
lem. Yamaguchi [16] reduced the shortest disjoint S-paths problem (nonzero 7T -paths
problem in a group labeled graph, more generally) to weighted matroid matching.
Kobayashi—Toyooka [8] developed a randomized polynomial time algorithm for the
shortest nonzero (s, ¢)-path problem in a group labeled graph; their algorithm is also
based on the framework of Bjorklund—Husfeldt.

It is well-known that the hafnian of the adjacency matrix of a graph is equal to
the number of perfect matchings. By utilizing the hafnian, Bjorklund [1] developed a
faster algorithm to count the number of perfect matchings.

Organization The rest of this paper is organized as follows. In Sect. 2, we first show
that hafnian modulo 2* for fixed k is computable in polynomial time. This direct
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generalization of permanent computation modulo 2% seems new and interesting in its
own right. Next we present the randomized algorithm in Theorem 1.2. In Sect. 3, we
verify the hardness of the (A + B)-path packing problem, and then generalize our
technique for solving other path packing problems, and discuss its limitation.

2 Algorithm

In this section, we first provide an algorithm to compute hafnian modulo 2%, and next
present a randomized polynomial time algorithm to solve the shortest perfect (A + B)-
path packing problem for fixed |A| 4 | B|. An undirected pair or edge {i, j} is simply
denoted by ij.

2.1 Computing Hafnian Modulo 2*

The hafnian haf A of a 2n x 2n symmetric matrix A = (a;;) is defined by

haf A := Z l_[ ajj,

MeMijeM

where M is the set of all partitions of {1, 2,3, ..., 2n} into n pairs.

Let S(n, N) denote the set of all 2n x 2n symmetric matrices with zero diagonal
each of whose element is a univariate polynomial of degree at most N. Let haf,x A
denote the hafnian of A modulo 2¥. The main result of this subsection is the following:

Theorem 2.1 There exists a bivariate polynomial f such that for all A € S(n, N),
haf,x A can be computed in O(f (n, N)Y¥) time.

We prove Theorem 2.1 by the similar way to that for permanents modulo 2% [15]
and that for permanents of polynomial matrices modulo 2% [2,8]. First we verify
Theorem 2.1 for k = 1. Let A = (a;;) be a skew-symmetric matrix obtained from
A by replacing a;; by —a;; if i > j. Modulo 2, haf A coincides with pf A (Pfaffian
of A). Hence haf; A can be obtained in time polynomial in n and N by computing

Vdet A (mod 2).

Next, we consider the case of k > 2. We use a formula like the Laplace expansion of
determinants. Let A[i, j]denote the matrix obtained from A by removing the row i, row
J»>column i, and column j. For distinct i, j, p, g, let A[i, j, p,q] := (A[i, jDIp, q]
Lemma2.2 (1) haf A= ) a;;haf A[i, j].

Jij#i
(2) haf A = a;; haf A[i, j] + Z (aipajq + aigajp) haf Ali, j, p, q].
pq:p.q i, jhp#q
Proof (1) For j # i, let M be the set of all M € M that contain ij. Since {M; |
j # i} is a partition of M, we obtain

haf A= Y ai; ».  [] apg= D ajhaf Al jl.

Jij#E MeMj pgeM\{ij} Jii#
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(2) By using (1) repeatedly, we obtain

haf A = ) aphaf Ali, pl = a;jhaf Ali, jl+ Y a;phaf A[i, p]
p:p#i p:p¢li,j}
ajjhaf Ali, j1+ Y aip . ajghaf Ali. j. p.q]
pplij}y qrq¢li.j.p}
= a;; haf Ali, j]+ > aipajq haf Ali, j, p, ql.
(p.g): p.q#li.j}.p#q

Combining the terms for (p, ¢) and (g, p), we obtain (2). O

For A € S(n, N), let A(i, j; ¢) denote the matrix obtained from A by adding ¢
multiple of column i to column j, adding ¢ multiple of row i to row j, and replacing
the jjth element with zero. We refer to this operation as the (i, j; ¢)-operation. Note
that differences between A and A(i, j; ¢) occur only in row j and column j, and that
A(i, j; ¢) also belongs to S(n, N). We investigate how the hafnian changes by the
(i, j; c)-operation. Let A(i — j) denote the matrix obtained from A by replacing row
J with row i and column j with column i.

Lemma 2.3 haf A(i, j;c) =haf A+ ¢ hat A(@ — ).

Proof Let ap, denote the pqth element of A(i, j; c). We use Lemma 2.2 (1) with
respect to row j and column j.

haf A(i, j; ¢) = Z ayj hat A[k, j]

kik+£j
= > ajhaf Ak, jl+ > cay haf A[k, j]
kik#j kik#j

= haf A + ¢ haf A(i — j).

Let d be a fixed positive integer. A term of a polynomial is said to be lower if its degree
is at most d and higher otherwise. A polynomial f is said to be even if all coefficients
of lower terms of the polynomial f(x) are even. For a polynomial f(x) that is not
even, let m( f(x)) denote the lowest degree of terms with odd coefficients.

Let A = (a;j) € S(n, d). We are going to show that all lower terms of haf A modulo
2K can be computed in time polynomial in n and d. The hafnian does not change if we
exchange row i and row j, and column i and column j. Hence we exchange rows and
columns of A in advance so that ay; is a minimizer of m(a;;) inay; (j =2,...,2n)
that are not even. Next we find a polynomial ¢; such that c¢jaj> + aj; is even for
Jj = 3,...2n. The computation can easily be done in time polynomial in n and d
[2, Section 3.2]. Using the (2, j; cj)-operation for j = 3, ...2n in order, we obtain
matrices Az = A(2,3;¢3), Ay = A3(2,4;¢4), ..., A2 = Ax_1(2,2n; cop).
Then 1 elements of Ay, are even if j > 3. Applying Lemma 2.3 repeatedly, we

obtain
2n

haf Ay, = haf A + ch haf Aj_1(2 — ),
j=3
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where A; = A. Using Lemma 2.2 (1) for A, = (b;;), we obtain

2n 2n
haf A = biphaf Az, [1,2]+ Y byjhaf Ag,[1, j1— > cjhaf Aj 12— j). (1)
j=3 j=3

Though there may be higher terms in elements of matrices in (1), we may replace
these higher terms with O (since our goal is computing lower terms). Similarly we
may replace higher terms in by (j = 2, ..., 2n) with 0. Hence all matrices in right-
hand side of (1) can be regarded in S(n — 1, d) or S(n, d).

Next we discuss the second and third terms of the right-hand side in detail. For the
second term, we obtain b ; haf A,[1, j] modulo 2* from haf Az,[1, j] modulo 2~
since b1; (3 < j < 2n) are even. Therefore we need to compute hafnians of 2n — 2
polynomial matrices in S(n — 1, d) modulo 2¢~!.

Next we consider the third term. For A(@ — j), itholds a;, = a,, aiq = a;4 and
ajj = 0 (since A has zero diagonals). Hence, applying Lemma 2.2 (2) to A(i — j),
we obtain the following:

haf A — j) =Y 2aipajq haf Ali, j, p. q].
p.q

Hence we obtain haf A(i — j) modulo 2¥ from hafnians of (2”; 2) matrices in S(n —
2, d) modulo k-1

In this way, our algorithm recursively computes lower terms of haf A modulo 2%
according to (1). We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1 Let T (n, d, k) be the computational complexity of computing
all lower terms of the hafnian of a matrix in S(n, d). From (1) and the argument after
(1), it follows

T, d, k) < T(n—1,d, k) + Q@n—2)T(n—1,d, k — 1)
)
+(2n—2)< ”2 )T(n—Z,d,k—l)—i-poly(n,d),

where poly(n, d) is a polynomial of n and d. Since T (n, d, k) is monotone increasing
on n, it follows that

T(n,d, k) <Tn—1,d,k)+4n’T(n,d, k — 1) + poly(n, d).
Using this inequality repeatedly, we obtain
T(n,d, k) <4n*T(n,d, k — 1) + poly(n, d).
T (n,d, 1) is a polynomial of n and d by the result of the case k = 1. Hence there

exists a polynomial f of n and d such that for all positive integers k, T (n, d, k) is

O(f(n,d)").
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For A € S(n, N), the degree of haf A is at most nN. Apply the above algorithm
with d = nN, we obtain haf,x A in O(f(n,nN )¥) time. This completes the proof. O

2.2 Perfect (A + B)-Path Packing via Hafnian

Let G = (V, E) be a simple undirected graph and A, B disjoint node sets of even
cardinalities. Let n := |V| and m := |E|. We can assume that G = (V, E) has no
edge with both endpoints in A U B; otherwise, replace each edge by a series of two
edges. We consider a general case where G has positive integer weight w(e) on each
edge e. We assume that the maximum value of the weight is bounded by a polynomial
of n. For a path P, let w(P) denote the sum of the weight of edges in P. The size of
a set P of vertex-disjoint paths is defined as the total sum of w(P) over P € P, and
is denoted by w(P).

Gallai’s construction From input G, A, B, we construct graph H = (Vy, Ey) so
that matchings in H correspond to disjoint 7-paths in G (with T = A U B). This
construction is due to Gallai [4]; see [11, Section 73.1]. Let U := V\(A U B). First
we add to G a copy of the subgraph of G induced by U. The copy of anode v € U is
denotedby v'. Let U’ := {0/ |ve U}, Vg .=V UU = AUBUU UU’. Next, for
each v € U, add an edge vv’. The set of such edges is denoted by E_. Finally, we add
edge uv’ foreach uv € E withu € AU B, v € U. The set of all edgesin AU B U U’
is denoted by E’. Let Eyy := E U E' U E_. The weight w is extended to Eyy — Zxo
by

w(e) =0 ifee E_,
wwv') == w(uv) ifuv' € E',u € AUB,

wu'v') == wv) ifuv e E',u',v e U’.

A perfect (AU B)-path packing is a set of |A|/2 4| B|/2 node-disjoint (A U B)-paths.
From a perfect matching M of H, we obtain a perfect (A U B)-path packing Py in G
as follows. For all s € A U B, there exists a unique path P = {s, vi, v2,...,t}in H
such that (s, v;) € M, t € (AU B)\{s} and it goes through edges in M and edges in
E_ alternately. This path in H determines an (s, ¢)-path in G by picking up the only
nodes in (A U B) U U in the same order. Gathering up these paths, we obtain a perfect
(AU B)-path packing Py in G. Conversely, one can see that any perfect (A U B)-path
packing in G is obtained in this way. The size of Py, is at most the weight of M. They
coincide if and only if all edges of M not used by P, belong to E—.

Matrices S and S’ Next we introduce a symmetric matrix S associated with H. Let

h := |Vy|. We can assume that Vg = {1,2,...,h}. Let § = (s;;) be anh x h
symmetric matrix defined by

xW@) ifij e Ey,
Sii =
Y 0 otherwise.

@ Springer



2484 Algorithmica (2018) 80:2478-2491

Recall that w(ij) denotes the weight of the edge ij in H.

Fort € AU B, let E; denote the set of edges joining t and U, and let E; denote the
set of edges joining 7 and U’. From the matrix S, we define a new matrix §" = (s; j)
by

;o) sy ifij e Ej for some t € B,
Sij = Sij otherwise.
Let v := (JA| + |B])/2. For a perfect (A + B)-path packing P, let 6(P) denote the

number of even-length B-paths in P.

Lemma 2.4
haf §' =) "(=1)!P27x"P (1 + xfp(x)),
P

where P ranges over all perfect (A + B)-path packings, and fp(x) is a polynomial.

Proof For a matching M of H, let s'(M) := ]_[l-jeM s{j. By the above discussion on
Gallai’s construction, we obtain

haf ' =Y "s'M)y=>"" Y s (M), @)
M

P M:Pu=P

where M ranges over all perfect matchings in H and P ranges over all perfect (AU B)-
path packings in G. First we estimate » _;.p _p s'(M). Suppose P = {Py, ..., Pr}.
For each path Py = (s, v1, v2, ..., vy, %) (k =1, ..., 7), we define two matchings
My 1, My 2 in H by

My, = {skvl,v’lvé,...,vnk_lvnk,v,/lktk} if ny is odd,
- /A / / : :
{skvl,v1v2,...,vnk_lvnk,vnktk} if ny is even,
/ / / : :
My = {sxv], viva, ...,vnk_lvnk,vnktk} if ny is odd,
' {skv], v1v2, .o, Vg1 Uy v;lktk} if ny is even.

Both of them have weight w(Py). Then a perfect matching M with Py; = P can be
represented as the union of Uli:l My.i, (ix € {1,2}) and a perfect matching M’ of the
subgraph H — P of H obtained by removing vertices in | J;_, My ;,. Then we obtain

YooSn= Y e D0 Y S M) s (Meg)s' (M)

M:Py=P ire{1,2} ire{1,2} M’

(s"(M1,1) + 5" (M12)) -+ (5" (M 1) + 5" (M7 2)) Z s"(M"),(3)
M/

where M’ ranges over all perfect matchings of H — P.

Next we estimate s'(Mg,1) + s'(My,2). We call an edge in E; for ¢t € B minus.
Then s'(My, ;) = x* P9 if My ; has an even number of minus edges, and s"(My, ;) =
—xW PO if M, ; has an odd number of minus edges. If P, connects A and B, just one
of My 1 and My > contains one minus edge. If Pk is an A-path, then neither My | nor
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M > contains one minus edge. If Py is a B-path and the length of Py is odd, one of
M1 and My > has two minus edges and the other has no minus edge. If Py is a B-path
and the length of Py is even, both of M} 1 and My > have one minus edge. (Recall the
assumption that there is no edge joining A U B.) Hence we obtain

0 if Py connects A and B,
s'(My.1) + 5" (Mg 2) = § —2x* P if Py is an even-length B-path, 4)
2xWF) otherwise.

Finally we estimate ) _,,, s’(M"). The perfect matching consisting of edges in E— has
weight 0, and other perfect matchings have weight at least 1. Thus )_,, s’ (M’) is
represented as 1 + x f (x) for a polynomial f. By this fact and equations (2), (3) and
(4), we obtain the formula. O

Unique Optimal Solution Case. We first consider the case where G has a unique
shortest perfect (A + B)-path packing P*. Here w is not necessarily uniform (but
is bounded by a polynomial of n). In this case, Lemma 2.4 immediately yields a
desired algorithm to find P*. Indeed, the leading term (lowest degree term) of haf S’
is (= 1)?PH T xw(P™) (by the uniqueness). In particular we can obtain the minimum
degree w(P*) by computing haf §' modulo 27!, Observe that an edge e belongs to
P* if and only if the degree of the leading term of haf S’ strictly increases when e is
removed from G. Thus we can determine P* by m + 1 computations of the hafnian
of a 2n x 2n matrix in modulo 271!, By Theorem 2.1 (with N = maximum of w),
this can be done in O (f(n)!41F18) time for a polynomial f.

General Case. Suppose now that w is uniform weight, i.e., w(e) = 1 for all e in
E. We consider the general case where there may be two or more shortest perfect
(A + B)-path packings. We construct a randomized polynomial time algorithm with
the help of the isolation lemma [9]. This technique is due to [2]. We use the isolation
lemma in the following form:

Lemma 2.5 Let n be a positive integer and F a family of subsets of E = {ey, ..., en}.
Weight w(e;) is assigned to each element e; of E, where w(e;) are chosen independently
and uniformly at random from {2mn,2mn + 1,...,2mn + 2m — 1}. Then, with

probability greater than 1/2, there exists a unique set F € F of minimum weight

w(F) =) ,cpwle).
We are ready to prove our main theorem.

Proof of Theorem 1.2 We perturb the weight w into w’ so that a shortest packing for w’
is unique and is also shortest for w. For each edge e, choose a from {2mn, ..., 2mn +
2m — 1} independently and uniformly at random, and let w’(¢) := a. By Lemma 2.5,
with a high probability (> 1/2), a shortest (A + B)-path packing P* for w’ is unique.
By the unique optimal solution case above, we can find P* in O(f (n)!A+18]) time.
We finally verify that P* is actually shortest for the original uniform weight w. Indeed,
pick an arbitrary packing P not equal to P*. Then we have
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w' (P) — w' (P*) < @mn +2m — Dw(P) — 2mnw(P*)
2mn(w(P) — w(P*)) + 2m — Dw(P).

=
=

Hence we have

w(P) —wp?) = - G DwP) L T w®)
2mn 2mn 2mn

-1,

where the second inequality follows from w(P) < n. Since both w(P) and w(P*)
are integers, we have w(P) — w(P*) > 0. This means that P* is shortest for w. O

3 Related Results
3.1 NP-Completeness

Here we verify that the perfect (A 4 B)-path packing problem, the problem of deciding
the existence of a perfect (A + B)-path packing (with |A|+ | B| unfixed), is intractable.

Theorem 3.1 The perfect (A + B)-path packing problem is NP-complete, even if
|B| = 2.

Proof Hirai and Pap [5] proved that the following edge-disjoint paths problem is
NP-complete: (x) Given an undirected graph G = (V, E) and S, T € V with § N
T =@Wand |S| = |T| = kanda,b € V \ (SUT), find an edge-disjoint set P
of paths Py, Pi, ..., Pr such that Py connects a and b and P; connects S and T
(i = 1,2,...,k). They gave a reduction from 3-SAT to the problem (x). In their
reduction [5, Section 5.2.3], a solution is necessarily vertex-disjoint. Moreover, one
can see from the reduction that a set P of paths is a solution of (x) if and only if P
is a perfect (S U T 4+ {a, b})-path packing. Consequently the perfect (A + B)-path
packing problem is also NP-complete, even if |B| = 2. O

3.2 Other Path Packing Via Hafnian

In this subsection, we generalize our technique for solving other path packing problems
and discuss its limitation. Let G = (V, E) be a simple undirected graph. Let T be a
terminal set with even cardinality |7| = 27. As in Sect. 2.2, we assume that there is
no edge joining 7.

To specify path packing problems, we introduce a notion of perfect matching with
parity (PMP) on T, which is defined as a set of pairs (s;#;,0;) (i = 1,...,7t) such
that | J;{s;.#;} = T and 0; € {odd, even} is a parity. A perfect 7-path packing P (a
disjoint set of t T -paths) induces PMP Mp:

Mp = {(st, o) | P has an (s, t)-path with its length having the parity o}.

For a set M of PMPs, a perfect M-path packing is a perfect T-path packing with
Mp € M. We introduce the shortest perfect M-path packing problem as the problem

@ Springer



Algorithmica (2018) 80:2478-2491 2487

of finding a perfect M-path packing of minimum size. Notice that an (A + B)-path
packing corresponds to Mayp :={M UM’ | M : PMP on A, M’ : PMP on B}.

Next we consider a generalization of matrix S’. As in Sect. 2.2, consider graph
H, edge sets E; and E;, and matrix S (with A U B = T). Suppose that 7 =
{(1,2,3,...,2t). For p = (p1,..., p20).q = (q1, ..., q2:) € Z**, we define the
matrix S[p, g] from S by

pisij ifije E fort €T,
(S[p.q)ij == Yqisij ifij€E forteT,
Sij otherwise.

For distinct s, ¢ € T and parity o, define [p, gls & by

pspr +qsqr if o = odd,
[P, qlst,o == .
Psqr +qspr if o = even.
A‘ set‘/\/l of PMPs is said to be h-representable if there exist N, k € Z-o, n; € Z>o,
pl.q' € Z* fori =1, ..., N such that a PMP M belongs to M if and only if

N
Zni 1_[ [Piy qi]st,a 7_é 0 mod 2k

i=1 (st,o)eM

In particular, the argument in Sect. 2.2 says that M 44 p is h-representable with N = 1,
k=t+1L,n=1p'=,1,...,)andg' =(1,...,1,—1,...,—1). Thatis, ¢
has 1 for the first |A| entries and —1 the remaining | B| entries. A generalization of
Theorem 1.2 is the following.

Theorem 3.2 Suppose that a set M of PMPs is h-representable with parameters
N,k,n;, p',q'(i = 1,2, ..., N). Then the shortest perfect M-path packing problem
can be solved in randomized polynomial time, provided N and k are fixed.

Proof As in the proof of Lemma 2.4, one can show

anhafS[p q'] Z an [T P.d' Yo |x"P A +xfp@)),

i=1 i=1 (st,0)eMp

where P ranges over all perfect 7T-path packings. Therefore, if G has a unique
shortest perfect M-path packing P*, then we can obtain P* by computing
Z,N: | n; haf S| p', ¢'1 modulo 2%, This can be done in polynomial time provided N
and k are fixed. As in Sect. 2.2, we obtain the randomized polynomial time algorithm
for the general case. O

We do not know a characterization of h-representable sets of PMPs. We here discuss
three interesting special cases, where odd and even are simply denoted by o and e
respectively.
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Shortest two disjoint paths via hafnian modulo 4. First we return to the shortest two
disjoint paths problem, which corresponds to 7 = {1, 2, 3, 4} and

Mz :={{(12, 01), (34, 02)} | 01, 02 € {o, e}}.

We have seen that M5 is h-representable with N = 1 = n; = 1, p1 =(,1,1,1),
I — (1,1, —1, —1), and k = 3. We present another economical h-representation.

Proposition 3.3 M, is h-representable with N = 1,k =2, n; = 1, p1 =(1,1,1,1),
and q' = (0,1, —1, —1).

Proof A direct calculation (e.g..[p', ¢'T12.e[p' ¢' 1340 = (1 - 140-D{L- 1+ (=1)-
(—1)} = 2) shows

2 it M =1{(12,0), (34,0}, {(12,e), (34, 0)},

[T 1P a"lso = {—2 if M ={(12,0). 34, )}, ((12.¢). 34, )},
(st,0)eM 0  otherwise.

In particular, modulo 4 computation is sufficient. It might be interesting to compare
with the original approach by Bjorklund—Husfeldt [2]: their algorithm requires to
compute permanents of three n x n matrices modulo 4, whereas our algorithm with
these parameters requires to compute the hafnian of one 2n x 2n matrix modulo 4.

Shortest odd two disjoint paths via four hafnians modulo 4. The hafnian approach
can solve the shortest two disjoint paths problem with a parity constraint that the
sum of the lengths of paths is odd. This problem corresponds to 7' = {1, 2, 3, 4} and
Maoad := {{(12, 0), (34, 0)}, {(12, ¢), (34, 0)}}.

Theorem 3.4 My oqq is h-representable with N = 4, k = 2, (n1,na,n3, na) =
(1,1, -1, =1), and

pl=(1,1,1,0), ¢'=(0,0,0,1),
p?=(1,1,0,1), ¢*>=(0,0,1,0),
p’=(1,0,1,1), ¢>=(0,1,0,0),
pr=,1,1,1), ¢*=(,0,0,0).

Proof One can verify the theorem from the value of C; := [T5; 5yeum [p', q'1ss.0 for
i =1,2,3,4 and all PMPs M on T, which are shown in Table 1. |

Non h-representability of 3-disjoint paths. A deep result by Robertson—Seymour [10]
is that the k-disjoint paths problem is solvable in polynomial time (for fixed k) . One
may naturally ask whether the shortest k-disjoint paths problem for k > 3 is solvable
by this approach. Unfortunately our approach cannot reach the shortest 3-disjoint paths
problem, which corresponds to 7 = {1, 2, 3,4, 5, 6} and

M3 = {{(12, 01), (34, 02), (56, 03)} | 01, 02, 03 € {0, e}}.
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Table 1 Values of C;

PMP Cq Cy C3 Cy C1+Cr—C3—Cy
{(12,0), (34, 0)} 0 0 0 0 0
{(12, 0), (34, ¢)} 1 1 0 0 2
(12, ¢), (34, 0)} 0 0 1 1 -2
{(12,e), (34, e)} 0 0 0 0 0
{(13,0), (24, 0)} 0 0 0 0 0
(13, 0), (24, )} 1 0 1 0 0
(13, €), (24, 0)} 0 1 0 1 0
{(13,e), (24,e)} 0 0 0 0 0
{(14,0), (23, 0)} 0 0 0 0 0
{(14,0), (23, ¢e)} 0 1 1 0 0
{(14,¢), (23, 0)} 1 0 0 1 0
{(14,¢), (23,e)} 0 0 0 0 0
Theorem 3.5 M3 is not h-representable.
We start with a preliminary argument. Let 1 := (1, 1, ..., 1). For x € {0, 1}2’, let

S(x) := S[x,1 — x]. Then haf S[p, ¢g] can be expressed as a linear combination of
haf S(x) over x € {0, 1}27:

27
Lemma 3.6 haf S[p,ql= Y [[{xipi+ (1= xigi} hat S(x).
x€{0,1}2r i=1

Proof Each perfect matching of H determines x € {0, 1}>7 as: x; = 1 if and only
if node i is matched to a node in U. Here x is called the rype of M. We classify all
perfect matchings in terms of their types. One can verify

2t
> TGt aby = []‘[ ipi + (1 - xz-)qi}} haf S(x).
i=1

M:type x ijeM
Thus we have the desired formula.

From Lemma 3.6, in the definition of h-representability, it suffices to consider the case
where p = y and g = 1 — x for x € {0, 1}?*. In this case, ]—[m’[,)eM[p, qlst.o 150
or 1. Let [X]st,o =[x.1—- X]st,a-

Proof of Theorem 3.5 First consider the following six PMPs:

M, :={(12,0), (34,0), (56,e)}, M> :={(12,0), (36,0), (45, ¢)},
M; = {(14,0), (23, 0), (56,e)}, M4 :={(14,0), (36,0), (25, ¢)},
Ms :={(16,0), (23, e), (45,0)}, Mg := {(16,0), (34, ¢), (25, 0)}.
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Observe that M| is in M3 and other five PMPs are not in M3. For PMP M and
x € {0, 1}5, define by , by

bM,X = 1_[ [X]st,a-

(st,o)eM
By computer calculation, we have verified the following 64 equations to hold;
DMy x = bMs, bty x = baay + s —batgx (x €10, 1)°). )

Next suppose that M3 is h-representable. Thanks to Lemma 3.6, there existk € Z~
and n, € Zfor x € {0, 1}° such that a PMP M belongs to M if and only if

3 ny J1 DXleo #0 mod 2%,

x€{0,1}0 (st,o)eM

In particular, it holds

Z nybu,, =0 mod 2" (j=2,3,4,56).

x€{0,1)°
By (5), we have
> nybu, =0 mod 2~
x€{0,136
However this is a contradiction to M| € M3. O

Acknowledgements We thank the referees for helpful comments. The work was partially supported by
JSPS KAKENHI Grant Numbers 25280004, 26330023, 26280004, 17K00029.

References

1. Bjorklund, A.: Counting perfect matchings as fast as Ryser. Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 914-921. ACM, New York (2012)

2. Bjorklund, A., Husfeldt, T.: Shortest two disjoint paths in polynomial time. Proceedings of 41st Inter-
national Colloquium on Automata, Languages, and Programming, Lecture Notes in Computer Science
8572, pp. 211-222. Springer, Berlin (2014)

3. Colin de Verdiere, E., Schrijver, A.: Shortest vertex-disjoint two-face paths in planar graphs. ACM
Trans. Algorithms 7(19), 12 (2011)

4. Gallai, T.: Maximum-minimum Sétze und verallgemeinerte Faktoren von Graphen. Acta Math. Acad.
Sci. Hung. 12, 131-173 (1961)

5. Hirai, H., Pap, G.: Tree metrics and edge-disjoint S-paths. Math. Program. 147, 81-123 (2014)

6. Karzanov, A.: Edge-disjoint T-paths of minimum total cost. Technical Report, STAN-CS-92-1465.
Department of Computer Science, Stanford University, Stanford (1993). Available at http://alexander-
karzanov.net/

7. Kobayashi, Y., Sommer, C.: On shortest disjoint paths in planar graphs. Discret. Optim. 7, 235-245
(2010)

8. Kobayashi, Y., Toyooka, S.: Finding a shortest non-zero path in group-labeled graphs. Algorithmica
77, 1128-1142 (2017)

@ Springer


http://alexander-karzanov.net/
http://alexander-karzanov.net/

Algorithmica (2018) 80:2478-2491 2491

10.

11.
12.
13.
14.
15.
16.

Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inversion. Combinatorica
7, 105-113 (1987)

Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory Ser.
B 63, 65-110 (1995)

Schrijver, A.: Comb. Optim. Polyhedra Effic. Springer-Verlag, Berlin (2003)

Seymour, P.D.: Disjoint paths in graphs. Discret. Math. 29, 293-309 (1980)

Shiloach, Y.: A polynomial solution to the undirected two paths problem. J. ACM 27, 445-456 (1980)
Thomassen, C.: 2-Linked graphs. Eur. J. Comb. 1, 371-378 (1980)

Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189-201 (1979)
Yamaguchi, Y.: Shortest disjoint non-zero A-paths via weighted matroid matching. In: Proceedings of
the 27th International Symposium on Algorithms and Computation, pp. 63:1-63:13 (2016)

@ Springer



	Shortest (A+B)-Path Packing Via Hafnian
	Abstract
	1 Introduction
	2 Algorithm
	2.1 Computing Hafnian Modulo 2k
	2.2 Perfect (A+B)-Path Packing via Hafnian

	3 Related Results
	3.1 NP-Completeness
	3.2 Other Path Packing Via Hafnian

	Acknowledgements
	References




