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Abstract Computing theLZ77 factorization is a fundamental task in text compression
and indexing, being the size z of this compressed representation closely related to the
self-repetitiveness of the text. A long-standing problem is to compute LZ77 using
small working space. Considering that O(z) words of space can be significantly (up
to exponentially) smaller than the size n of the input text, even succinct and entropy-
compressed solutions are often unduly memory demanding. In this work we focus on
an important measure of text repetitiveness: the number r of equal-letter runs in the
Burrows–Wheeler transform of the reversed input text. As z, the measure r is closely
related to the number of repetitions in the text and can be exponentially smaller than
n. We describe two algorithms computing LZ77 in O(r log n) bits of working space
and O(n log r) time. Roughly speaking, our algorithms store a constant number of
memory words per BWT run to keep track of first-last run-positions and a suitable
indexingmechanism to sample the runsof theBWT(insteadof its positions). Important
consequences of our results include (i) the possibility to convert from RLBWT- to
LZ77-based compressed formats without first decompressing the text, and (ii) the
existence of asymptotically-optimal construction algorithms for repetition-aware self-
indexes based on these compression techniques.Wefinally describe an implementation
of our solutions and present extensive experiments on highly repetitive datasets. Our
algorithms use a working space as small as 1% of the dataset size and are two to three
orders of magnitude more space-efficient (albeit slower) than existing solutions based,
respectively, on entropy compression and suffix arrays.
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1 Introduction

Being able to estimate and exploit the self-repetitiveness of a text T ∈ �n is a task that
stands at the basis of many efficient compression algorithms. This issue is particularly
relevant in situations where the text to be processed is extremely large and repetitive
(e.g. consider all versions of the articles belonging to the Wikipedia corpus or a large
set of genomes belonging to individuals of the same species): in such cases, it is not
always feasible to load the text into main memory in order to process it, even if the
size of the final compressed representation could easily fit in RAM.

While fixed-order statistical methods are able to exploit only short text regular-
ities [15], techniques such as Lempel–Ziv parsing (LZ77) [36], grammar compres-
sion [7], and run-length encoding of the Burrows–Wheeler transform [31,32] have
been shown superior in the task of compressing highly repetitive texts. Some recent
works showed, moreover, that such efficient representations can be augmented with-
out asymptotically increasing their space usage in order to support also fast search
functionalities [3,8,22] (repetition-aware self-indexes). One of the most remarkable
properties of such indexes is the possibility of representing (extremely) repetitive texts
in (up to) exponentially less space than that of the text itself.

Among the above mentioned repetition-aware compression techniques, LZ77 has
been shown to be superior to both grammar-compression [30] and run-length encoding
of the Burrows–Wheeler transform (RLBWT) [3]. For this reason, much research
is focusing into methods to efficiently build, access, and index LZ77-compressed
text [4,22]. A major concern while computing LZ77 and building LZ77-based self-
indexes is to use limited working space. This is particular concerning in situations
where the input text is highly repetitive: in these domains, algorithmsworking in space
�(n log n) [9],O(n log |�|) [5,26], or evenO(nHk) [22,29] bits are of little use as they
could be much more memory-demanding than the final compressed representation.
Very recent results suggested that it is possible to achieve these goals in repetition-
aware working space. Let z be the number of phrases of the LZ77 parse. Fischer et al.
in [14] proposed a randomized algorithm to compute inO(ε−1n log n) time andO(z)
words of space an approximation of the parsing consisting of at most (1+ε)z phrases,
where 0 < ε ≤ 1. Nishimoto et al. in [25] show how to build the LZ77 parsing in
O(z log n log∗ n) words of space.

In this work, we focus on themeasure r of repetitiveness: the number of equal-letter
runs in the BWT of the (reversed) text. Several works [3,31,32] studied the empirical
behavior of r on highly repetitive text collections, suggesting that on such instances
r grows at the same rate as z. Let � = {s1, . . . , sσ } be the alphabet. Both z and r are
at least σ and can be �(σ), e.g. in the text (s1s2 . . . sσ )e, e > 0. However, infinite
families of strings for which r/z ∈ �(logσ n) exist: this happens, for example, in
de Bruijn sequences of order k > 1. To see this, consider the BWT row-partition
induced by length-(k − 1) contexts. Each x ∈ �k−1 appears exactly σ times in the
de Bruijn sequence and all such occurrences are preceded by different characters. It
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follows that each of the above BWT partitions contains at least σ − 1 runs, so the
BWT has at least (σ − 1)σ k−1 ∈ O(σ k) = O(n) runs. The number of LZ77 phrases
of any text is, on the other hand, always O(n/ logσ n) [36]. The opposite relation
z/r ∈ �(logσ n) also holds true for certain families of strings. This is the case—for
example—of Fibonacci words. Such words are defined recursively as follows: f1 = a,
f2 = b, fn = fn−1 fn−2. Fibonacci words are a particular case of standard words;
such words produce a total clustering of the alphabet letters in the BWT [23] (i.e. two
runs). On the other hand, the LZ77 factorization of fn corresponds to the factorization
of fn into singular words f̂i , where each f̂i is obtained by complementing the first
letter in the left rotation of the Fibonacci word fi (see [13] for more details). Since | fi |
is exponential in i , it follows that the Lempel–Ziv factorization of fn has �(log | fn|)
factors. We emphasize the fact that the algorithms presented in this work use a space
proportional to the number of runs in the BWT of the reversed text. Experimentally
it has been observed [3] that the number of runs in BW T (T ) and BW T (

←−
T ) are two

measures of repetitiveness that behave very similarly. This should be expected since,
if T is very repetitive, then so is

←−
T . However, we are not aware of theoretical results

relating in a more precise way the two measures.
The main obstacle in building LZ77 within O(r log n) bits of space with a run-

length encoded FM-index is the suffix array (SA) sampling: by sampling the SA
every 0 < k ≤ n text positions, this structure takes O((n/k) log n) bits of space and
supports locate queries in time proportional to k. The main contributions of this work
are two algorithms that compute LZ77 by combining a (dynamic) run-length BWT
with a repetition-aware sparse suffix array sampling. The first algorithm stores only
two samples per BWT equal-letter run, while the second stores at most one sample
per LZ77 factor. Both algorithms run inO(n log r) time and requireO(r log n) bits of
working space.

As a by-product of our results we obtain a O(r log n)-space algorithm to convert
fromRLBWT- to LZ77-based compressed formats. This is one of the first works show-
ing how to convert a compressed format into another without first decompressing the
text; see [1,2,30] (grammar compression to/from Lempel–Ziv), and [34] (run-length
encoding of the text to LZ78) for similar results. Another important application of
our results is related to text indexing. In particular, we obtain that indexes based
on combinations of LZ77 and RLBWT compressors—see, e.g. [3]—can be built in
asymptotically optimal O(z + r) words of working space. To the best of our knowl-
edge, the only other repetition-aware index that can be built in asymptotically optimal
working space is based on grammar compression and is described in [33].

The paper is organized as follows. We first describe—in Sect. 3—a dynamic run-
length encoded string data structure. This structure is used in our algorithms to build
online and in small space the RLBWT of the reversed input text. In Sects. 4 and 5 we
describe our two algorithms to compute LZ77 in repetition-aware working space.

We conclude by presenting a C++ implementation of our algorithms and extensive
results on highly repetitive datasets. Our implementation is available as part of the
DYNAMIC library [10], featuring several dynamic compressed data structures. In some
real-case scenarios, our algorithms are two and three orders of magnitude more space-
efficient than existing solutions based, respectively, on entropy compression and suffix
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arrays. This space efficiency is, however, paid in terms of running times, which in
some cases are up to two orders of magnitude higher than those of suffix array-based
algorithms.

2 Preliminaries

Let our input text be of the form T = #T ′$ ∈ �n , with T ′ ∈ (� \ {$, #})n−2, $
LZ77-terminator, and #—lexicographically smaller than all elements in �—BWT-
terminator. We put # in first position since we will build the BWT of the reverse
of T . We assume, for simplicity, that we are working on an integer alphabet � =
{0, . . . , σ − 1} (in this respect, we reserve codes 0 and 1 for the two terminators).

The LZ77 parsing (or factorization) of a text T is the stream of z phrases (or factors)

〈π1, λ1, c1〉 . . . 〈πi , λi , ci 〉 . . . 〈πz, λz, cz〉

where πi ∈ {0, . . . , n − 1} ∪ {⊥} and ⊥ stands for “undefined”, λi ∈ {0, . . . , n − 2},
ci ∈ �, and:

1. T = ω1c1 . . . ωzcz , with ωi = ε if λi = 0 and ωi = T [πi , . . . , πi + λi − 1]
otherwise, with πi < |ω1c1 . . . ωi−1ci−1|

2. For any i = 1, . . . , z, the string ωi is the longest string that occurs at least twice
in ω1c1 . . . ωi

The notation
←−
S indicates the reverse of the string S ∈ �∗.

An (equal-letter) run in a string S is a maximal substring ak , with k > 0 and a ∈ �.
A substring V of a string S ∈ �∗ is right-maximal if there exist two distinct

characters a �= b, a, b ∈ � such that both V a and V b are substrings of S.
The Burrows–Wheeler transform BW T (S) of a (#-terminated) string S is the S-

permutation obtained by sorting all circular permutations of S in a conceptual matrix
of size n × n and by taking the last column of this matrix [6]. With F- and L-positions
we denote positions on the first an last column of the BWT, respectively. The LF
mapping is a function associating to each L-position i its corresponding F-position
i ′ (i.e. i and i ′ correspond to the same text’s position). We denote this function as
BW T .L F(i) (BWT being a structure representing the Burrows–Wheeler transform
of some string and supporting LF-function computation). Let V be a substring of S.
Note that V is a prefix of some interval [l, r ] of rows in the matrix representation of
BW T (S); we call [l, r ] the BW T (S) interval of V (or simply BWT interval when S is
clear from the context). The LF mapping naturally extends to BWT intervals. Letting
[l, r ] be the BWT interval of some string V and c ∈ �, BW T .L F([l, r ], c) returns
the BWT interval [l ′, r ′] of string cV . All BWT intervals are inclusive, and we denote
them as [l, r ] (left-right positions on the BWT).

We indicate by r(S) (or simply by r , when clear from the context) the number of
(equal-letter) runs of BW T (S). Throughout the paper, we will work with BW T (

←−
S ).

As a consequence, the quantity r will always denote the number of (equal-letter)
runs of BW T (

←−
S ). A run-length encoded representation of BW T (S)—to be denoted
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as RL BW T (S)—is any representation of BW T (S) storing it as a sequence of runs
and taking therefore space proportional to r words. See [32] for an example of such
representation. We remind that the BWT can be turned into a self-index by encoding
it with a structure supporting rank queries and by augmenting it with a sampling of
the suffix array (see, e.g., [11,12]). If a RLBWT is used, the resulting index takes
space proportional to r plus the size of the suffix array sampling [3,31,32].

We recall that BW T (
←−
S ) can be built online with an algorithm that reads S-

characters left-to-right and inserts them in a dynamic string data structure (see,
e.g., [24,28] for a detailed description of this algorithm). Let a ∈ �. Briefly, the
algorithm is based on the idea of backward-searching the extended reversed text

←−
Sa in

the BWT index for
←−
S . This operation leads to an empty interval [l, l) (since Sa does

not appear in S) such that l is the lexicographic position of
←−
Sa among all

←−
S ’s suffixes.

At this point, it is sufficient to insert # at position l in BW T (
←−
S ) and replace the old

# with a to obtain BW T (
←−
Sa).

3 Dynamic RLBWT Data Structure

In this section we describe a run-length encoded string data structure supporting
access and rank operations. In the next sections we will use this structure to
encode the BWT of the reversed input.

We adopt the general approach of [32], that is run-length encoding of the FM index.
We store one character per run in a string H ∈ �r , we mark the beginning of the runs
with a 1 in a bit-vector Gall [0, . . . , n − 1], and for every c ∈ � we store all c-runs
lengths consecutively in a bit-vectorGc as follows: everym-length c-run is represented
in Gc as 10m−1. For example, letting BW T = bc#bbbbccccbaaaaaaaaaaa, we
have H = bc#bcba, Gall = 11110001000110000000000, Ga = 10000000000,
Gb = 110001, and Gc = 11000 (G# is always 1). Then, rank/access on the BWT
are reduced to rank/select/access on H , Gall , and Gc. Briefly: to answer
rankc(i)we count the number of bits set in Gall before position i and use this value to
access the position j in H corresponding to the run containing position i . Then, with
a rankc( j) query on H we retrieve the number k of c-runs before position i in the
BW T . Finally, we call select1(k + 1) on Gc to retrieve the number of c’s contained
in all c-runs appearing before position i in the BW T . Special care has to be taken in
the case i falls inside a c-run. To answer selectc(i), we proceed as follows. Suppose,
for simplicity, that the i-th c is the first of its c-run (the general case is slightly more
complicated and we do not discuss it here). We count the number j of bits set before
position i in Gc. We then call selectc( j) on H to find the rank k (among all runs) of
the c-run containing the i-th c. Finally, we call Gall .select1(k) to find the text position
corresponding to the i-th c.

The structure takes O(r) words of space if all bit-vectors are gap-encoded and
supports the insertion of character c in the BWT, by (possibly) one character insertion
in H followed by a constant number of rank, select, insert and delete (of
0-bits) operations in Gall and Gc.
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All structures are implemented dynamically. For H we can use the result in [24],
guaranteeing O(r log n) bits of space. Note that in [24] there is an extra O(σ log r)

spatial term amounting, in our case, to O(r log n) bits, since σ ≤ r ≤ n. This
structure supports O(log r)-time rank, select, access, and insert. We can
reduce dynamic gap-encoded bit-vectors to the so-called Searchable Partial Sums
with Indels (SPSI) problem. The SPSI asks for a data structure P S to maintain a
sequence s1, . . . , sm of non-negative k-bits integers (in our case, k ∈ �(log n), n
being the text length), supporting the following operations:

– PS.sum(i) = ∑i
j=1 s j ;

– PS.search(x) is the smallest i such that
∑i

j=1 s j ≥ x ;
– PS.update(i, δ): update si to si + δ. δ can be negative as long as si + δ ≥ 0;
– PS.insert(i): insert 0 between si−1 and si (if i = 0, insert in first position).

Below (Sect. 3.1) we briefly outline how to implement P S in O(m · k) bits of space
with O(logm) time-cost for each of the above operations.

Hence, a length-n bit-vector B = 10s1−110s2−1 . . . 10sm−1 (si > 0) can be encoded
in O(m log n) bits of space with a partial sum P S on the sequence s1, . . . , sm .
We need to show how to answer the following queries on B: B[i] (access),
B.rank(i) = ∑i

j=0 B[ j], B.select(i) (the position j such that B[ j] = 1 and
B.rank( j) = i), B.insert(i, b) (insert bit b ∈ {0, 1} between positions i − 1 and
i), and B.delete0(i), where B[i] = 0 (delete B[i]).

It is easy to see that rank/access and select operations on B reduce to
search and sum operations on P S, respectively. B.delete0(i) requires just a
search and an update on P S. To support insert on B, we can operate as follows:
B.insert(i, 0), i > 0, is implemented with PS.update(PS.search(i), 1).
B.insert(0, 1) is implementedwithPS.insert(0) followedbyPS.update(0, 1).
B.insert(i, 1), i > 0, “splits” an integer into two integers: let j = PS.search(i)
and δ = PS.sum( j) − i . We first decrease s j with PS.update( j,−δ). Then, we
insert a new integer δ + 1 with PS.insert( j + 1) and PS.update( j + 1, δ + 1).
We obtain:

Lemma 1 Let S ∈ �n and let r be the number of runs in S. The structure above
described takes O(r log n) bits of space and supports rank, access, and insert
operations on S in O(log r) time.

Combining the BWT construction algorithm sketched in the Preliminaries section
with the above data structure, we obtain:

Theorem 2 Let r be the number of runs in BW T (
←−
S ). We can build online

RL BW T (
←−
S ) by reading T left-to-right in O(n log r) time and O(r log n) bits of

space.

3.1 The Searchable Partial Sums with Indels Problem

In our case, the bit-length of the integers in each of our P S-structures is k ∈ �(log n).
We can use O(m · k) = O(m log n) bits of space by employing a red-black tree
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(RBT) in which we store integers s1, . . . , sm in the leaves. Internal nodes of the tree
are used instead to store the number of nodes and partial sum of its subtrees. sum
and search queries can then be implemented with a traversal of the tree from the
root to the target leaf. update queries require finding the integer (leaf) of interest
and then updating O(logm) partial sums while climbing the tree from the leaf to
the root. Finally, insert queries require finding an integer (leaf) si immediately
preceding or following the insert position, substituting it with an internal node with
two children leaves si and 0 (the order depending on the insert position—before or after
si ), incrementing by oneO(logm) subtree-size counters while climbing the tree up to
the root, and applying the RBT update rules. This last step requires the modification
of O(logm) counters (subtree-size/partial sum) if RBT rotations are involved. All
operations take O(logm) time.

4 First Algorithm: SA Sampling Based on BWT Runs

In this section we describe our first algorithm. The main data structures we use are
a dynamic RLBWT of the text

←−
T and σ sets storing the suffix array sampling. The

algorithm works in two phases.
In the first phase, we read T from left to right, building RL BW T (

←−
T ) (see Theorem

2). This step employs the online BWT construction algorithm briefly illustrated in
Section 2, which requires a dynamic string data structure D to represent the BWT.
The algorithm performs a total amount of |T | rank and insert operations on D.
In our case, D will be designed to be also run-length compressed: we represent it with
the data structure described in the previous section.

In the second phase, the algorithm scans T left to right once more, this time using
the RLBWT just built—i.e. by repeatedly using the LF mapping on the entire BWT
of

←−
T starting from T [0]— and outputs the LZ77 factors.
While reading T [ j] for j > 0 in the second phase, we must determine whether

T [i, . . . , j], with i first position of the current LZ-phrase, occurs in T [0, . . . , j −1]. If
this is not the case, then we output the LZ triple 〈π, j − i, T [ j]〉, where π corresponds
to the source of the current LZ-phrase (and, hence, T [π, . . . , π + j − i − 1] =
T [i, . . . , j − 1] and π = ⊥ in case i = j). Note that the computation is performed on
an index of the entire text (not just of T [0, . . . , j]), thus we need to take special care
to ensure that the occurrences of T [i, . . . , j] we find are indeed previous occurrences.
Informally, we need an index of the entire text for the following reason. Our strategy
will consist in maintaining this invariant: we keep track, for each BWT run, of the two
most external suffix array samples (i.e. text positions) encountered while scanning the
text left-to-right. Using an index for T [0, . . . , j] only, we do not know whether an
equal-letter run ak will later be split in two runs ak′

cak′′
(with k′ +k′′ = k and a �= c).

In such a case, we would have to sample the last and first a’s of the two new runs ak′

and ak′′
, respectively, in order to preserve the validity of our invariant. Sampling (i.e.

mapping an L-position on the text) is an expensive task as it requires navigating the
BWT until a sample is found (O(n) backwards steps), so this strategy is not feasible.
Notice that keeping an index for the entire text solves this problem as we already have
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access to all runs and therefore we know which L-positions, among the ones we have
already visited, are the most external in their run.

In the following we show how to implement our algorithm in O(r log n) bits of
working space, by maintaining σ dynamic sets equipped with a total of O(r) SA-
samples.

4.1 Strategy and Correctness

From now on BWT stands for BW T (
←−
T ). As said above, our strategy will consist in

keeping track, for each BWT run, of the two most external suffix array samples while
scanning the text left-to-right. In this respect, when saying that we sample the suffix
array we actually mean that we associate to some L-positions their corresponding text
position (the sparse suffix array is, instead, a sampling of F-positions).Moreover, since
we enumerate positions in T -order (not

←−
T -order), k-th L-position will correspond to

sample (n − S A[k]) mod n, where S A[k] is the k-th entry in the (standard) suffix
array of

←−
T .

Let j be a T -position and k its corresponding L-position: T [ j] = BW T [k]. We
store SA-samples as pairs 〈 j, k〉 and each pair is of one of three types: singleton,
denoted as 〈 j, k〉◦, open, denoted as [〈 j, k〉, and close, denoted as 〈 j, k〉]. If the pair
type is not relevant for the discussion, we simply write 〈 j, k〉.

Let � = {s1, . . . , sσ } be the alphabet. Samples are stored in σ red-black trees
Bs1 , . . . ,Bsσ and are ordered by BWT coordinate (i.e. the second component of the
pairs). While reading a = T [ j] = BW T [k] we first locate the (inclusive) bounds
l ≤ k ≤ r of its associated BWT a-run, then we update the trees according to the
following rules:

(A) If for all 〈 j ′, k′〉 ∈ Ba , k′ /∈ [l, r ], then we insert the singleton 〈 j, k〉◦ in Ba .
(B) If there exists 〈 j ′, k′〉◦ ∈ Ba such that k′ ∈ [l, r ], then we remove it and:

a. If k < k′, then we insert in Ba the pairs [〈 j, k〉 and 〈 j ′, k′〉],
b. If k′ < k, then we insert in Ba the pairs [〈 j ′, k′〉 and 〈 j, k〉].

(C) If there exist [〈 j ′, k′〉, 〈 j ′′, k′′〉] ∈ Ba such that k′, k′′ ∈ [l, r ]:
a. If k < k′ < k′′, then we remove [〈 j ′, k′〉 from Ba and insert [〈 j, k〉 in Ba ,
b. If k′ < k′′ < k, then we remove 〈 j ′′, k′′〉] from Ba and insert 〈 j, k〉] in Ba ,
c. Otherwise (k′ < k < k′′), we leave the trees unchanged.

We say that a BWT a-run BW T [l, . . . , r ] contains a pair or, equivalently, contains
a SA-sample, if there exists some 〈 j, k〉 ∈ Ba such that k ∈ [l, r ]. It is easy to see
that the following invariants hold for the above three rules: (i) each BWT run contains
either no pairs, a singleton pair, or two pairs—one open and one close; (ii) If a BWT
run contains an open [〈 j ′, k′〉 and a close 〈 j ′′, k′′〉] pair, then k′ < k′′; (iii) once we add
a SA-sample inside a BWT run, that run will always contain at least one SA-sample.

We say that L-position k ismarked by SA-sample 〈 j, k〉, whena = T [ j] = BW T [k]
and 〈 j, k〉 ∈ Ba .

Let BW T [k#] = #. By saying that T -positions 0, . . . , j have been processed, we
mean that—starting with all trees empty—we have applied the update rules to the SA-
samples 〈0, k#〉, 〈1, BW T .L F(k#)〉, 〈2, BW T .L F2(k#)〉, . . . , 〈 j, BW T .L F j (k#)〉,
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where BW T .L Fi (k#) denotes i applications of the LF map starting from L-position
k#. We now prove that, after processing 0, . . . , j , we can quickly locate at least one
occurrence of any string that occurs in T [0, . . . , j]. Intuitively, this property will allow
us to locate LZ phrase boundaries and previous occurrences of LZ phrases.

Lemma 3 Let a ∈ �. If 0, . . . , j have been processed and [l, r ] is the BWT interval

associated with a string
←−
V ∈ �m, with V right-maximal in T , then

∃〈 j ′, k′〉 ∈ Ba such that k′ ∈ [l, r ] if and only if Va occurs in T [0, . . . , j].

Proof (⇒) If 〈 j ′, k′〉 ∈ Ba with k′ ∈ [l, r ] exists, then clearlyT [ j ′−m, . . . , j ′] = V a.
Moreover, sincewe processed T -positions 0, . . . , j only, itmust be the case that j ′ ≤ j
and hence Va occurs in T [0, . . . , j].

(⇐)Let T [t, . . . , t+m] = V a, with t ≤ j−m. Consider theBWTa-run containing
T [t + m] = a. One of the following cases holds true:

(1) The BWT a-run is entirely included in BW T [l, . . . , r ] and is neither a prefix
nor a suffix of BW T [l, . . . , r ], that is BW T [l, . . . , r ] = XcaedY , for some
X, Y ∈ �∗, c, d �= a, e > 0. Then, it follows from invariant (iii) and rule (A)
that since we have visited T -position t + m, the a-run must contain at least one
SA-sample. This is the pair 〈 j ′, k′〉 we are looking for.

(2) The BWT a-run spans either position l or position r . Since V is right-maximal in
T , then BW T [l, . . . , r ] contains also a character b �= a. We therefore have that
either (i) BW T [l, . . . , r ] = ae XbY , or (ii) BW T [l, . . . , r ] = Y bXae, where
X, Y ∈ �∗, e > 0. The two cases are symmetric hence we discuss only (i).
Consider all T -prefixes T [0, . . . , j ′′] satisfying the following properties:

1. j ′′ ≤ j
2. Va is a suffix of T [0, . . . , j ′′], and
3. the lexicographic rank of

←−−−−−−−−−−−
T [0, . . . , j ′′ − 1] among all

←−
T -suffixes is k′′ ∈ [l, l +

e − 1]
Property 3 means that the

←−
T -suffix

←−−−−−−−−−−−
T [0, . . . , j ′′ − 1] is a prefix of the k′′-th row

of the BW T (
←−
T ) matrix. Note that the requirement k′′ ∈ [l, l + e − 1] implies that

character T [ j ′′] appears inside the length-e a-run prefixing BW T [l, . . . , r ] = ae XbY .
There exists at least one T -prefix satisfying the above properties: T [0, . . . , t + m] (by
definition). Then, the rank k′ of the lexicographically largest

←−
T -suffix satisfying the

above properties is such that 〈 j ′, k′〉 ∈ Ba for some j ′ ≤ j . In other words: there exists
a sampled BWT position inside BW T [l, . . . , l + e − 1]; this position is the rightmost
we have visited in its run BW T [l, . . . , l + e − 1] (note that lexicographically largest
translates to rightmost on theBWT). This is implied by the three update rules described
above. The BWTposition k corresponding to T -position t +m lies in the BWT interval
[l, l + e − 1], therefore either (i) k is the rightmost position visited in its run (and it is
marked with a SA-sample), or (ii) the rightmost visited position k′ > k in [l, l +e−1]
is marked with a SA-sample. ��

The intuition behind our algorithm is to search the LZ phrase prefix ending at the
end of the current text prefix. If the phrase prefix occurs before, then we proceed to the
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next prefix. Otherwise, we output a new phrase. Note that prefixes of LZ phrases are
not necessarily right-maximal.We therefore need a way to apply Lemma 3 also to non-
right-maximal strings. We start by showing how to quickly detect right-maximality of
a string.

Lemma 4 Let [l, r ] be the BWT range of a string
←−
V ∈ �∗. In O(log r) time we can

check whether V is right maximal or not.

Proof It is easy to see that V is right-maximal iff Gall [l + 1, . . . , r ] contains at least
one bit set. This property can be checked with two rank operations on Gall . The
claimed complexity follows from Lemma 1. ��

We now show how we can drop the right-maximality requirement from Lemma 3.

Lemma 5 If 0, . . . , j − 1 have been processed (none if j = 0) and, for any m > 0,
a string W ∈ �m occurs in T [0, . . . , j + m − 1] at positions i1, . . . , it , then we can
locate one of such occurrences in O(m log r) time.

Proof Weprove the property by induction on |W | = m > 0. The idea is to process also
positions j, . . . , j + m − 1 while locating W prefixes. Let W = Va, V ∈ �m−1, a ∈
�.

If m = 1, then V = ε (empty string). We process position j . Since T contains at
least two distinct characters (a and #), V is right-maximal. Therefore we can apply
Lemma 3 to find an occurrence of W = a in T [0, . . . , j].

If m > 1, then |V | > 0. First of all, we process also position j + m − 1. Two
cases can occur. (i) V is not right-maximal. Then, V is always followed by a in T
(since Va occurs in T by hypothesis). By inductive hypothesis we can locate (before
processing position j + m − 1) an occurrence π of V in T [0, . . . , j + m − 2]. But
then, since all occurrences of V in T are followed by a, π is also an occurrence
of W = Va in T [0, . . . , j + m − 1]. (ii) V is right-maximal. Note that by inductive
hypothesis we already processed positions j, . . . , j +m−2 (and located an occurrence
of V [0, . . . , |V | − 1]). We apply Lemma 3 to find an occurrence of W = Va in
T [0, . . . , j + m − 1].

Note that we perform overall m steps. In each step, we execute a backward search
query to extend the BWT interval of current W ’s prefix, check for its right-maximality,
and query the red-black trees storing suffix array samples. Our claimed complexity
follows from Lemmas 1 and 4. ��

Lemma 5 directly gives us an efficient algorithm to locate phrase boundaries and
previous occurrences of phrases (and, therefore, compute the LZ77 factorization of
T using a RLBWT data structure). Figures 1, 2, and 3 depict the three cases of the
strategy (see next section for a more detailed description). In Fig. 1 the phrase prefix is
right-maximal but the letter that follows is not sampled on the BWT range (we output
an LZ factor); in Fig. 2 the phrase prefix is right-maximal and the letter that follows
is sampled on the BWT range (we extend the current LZ factor); in Fig. 3 the phrase
prefix is not right-maximal (we extend the current LZ factor).
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BWT (
←−
T ) processed sample

#$AGGAGAGAGGAG � 1
AG#$AGGAGAGAGG � 3
AGAGAGGAG#$AGG
AGAGGAG#$AGGAG
AGGAG#$AGGAGAG
AGGAGAGAGGAG#$
G#$AGGAGAGAGGA � 2
GAG#$AGGAGAGAG
GAGAGAGGAG#$AG
GAGAGGAG#$AGGA
GAGGAG#$AGGAGA
GGAG#$AGGAGAGA
GGAGAGAGGAG#$A
$AGGAGAGAGGAG# � 0

T = # G A G G A G A G A G G A $
processed � � � �

BWT range
of ’G’

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fig. 1 Case 1: we are trying to extend the phrase prefix ’G’ with a ’G’. The range of ’G’ spans more than
1 run (’G’ is right-maximal) and there are no sampled ’G’ in the range. It follows that ’GG’ does not appear
before in the text. Note that in this and in the following pictures, the text is already LZ77-factored (vertical
bars) for clarity

BWT (
←−
T ) processed sample

#$AGGAGAGAGGAG � 1
AG#$AGGAGAGAGG � 3
AGAGAGGAG#$AGG
AGAGGAG#$AGGAG
AGGAG#$AGGAGAG
AGGAGAGAGGAG#$
G#$AGGAGAGAGGA � 2
GAG#$AGGAGAGAG � 4
GAGAGAGGAG#$AG
GAGAGGAG#$AGGA
GAGGAG#$AGGAGA
GGAG#$AGGAGAGA � 5
GGAGAGAGGAG#$A
$AGGAGAGAGGAG# � 0

T = # G A G G A G A G A G G A $
processed � � � � � �

BWT range
of ’A’

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Fig. 2 Case 2: we are trying to extend the phrase prefix ’A’ with a ’G’. The range of ’A’ spans more than
1 run (’A’ is right-maximal) and there is a sampled ’G’ in the range. It follows that ’AG’ appears before in
the text (at position sample − length = 3 − 1 = 2)
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BWT (
←−
T ) processed sample

#$AGGAGAGAGGAG � 1
AG#$AGGAGAGAGG �
AGAGAGGAG#$AGG �
AGAGGAG#$AGGAG �
AGGAG#$AGGAGAG � 6
AGGAGAGAGGAG#$
G#$AGGAGAGAGGA � 2
GAG#$AGGAGAGAG � 4
GAGAGAGGAG#$AG � 11
GAGAGGAG#$AGGA � 9
GAGGAG#$AGGAGA �
GGAG#$AGGAGAGA � 5
GGAGAGAGGAG#$A
$AGGAGAGAGGAG# � 0

T = # G A G G A G A G A G G A $
processed � � � � � � � � � � � �

BWT range
of ’GGAG’

{

Fig. 3 Case 3: we are trying to extend the phrase prefix ’GAGG’ with an ’A’. The range of ’GGAG’
contains only one run (’GAGG’ is not right-maximal). Then, all ’GAGG’ are followed by ’A’ in the text.
Since we previously located ’GAGG’ (inductive hypothesis) at position 1, it follows that also ’GAGGA’
appears at position 1. Note that not all processed positions are marked with a SA sample (only the most
external ones in each run)

4.2 Pseudocode

Our complete procedure is reported as Algorithm 1. The pseudocode implements
an iterative version of Lemma 5. In Line 1 we build the RLBWT of

←−
T using the

online algorithm mentioned at the beginning of this section and employing a dynamic
run-length encoded string data structure to represent the BWT. This is the only step
requiring access to the input text, which is read only once from left to right. Since the
dynamic string we use is run-length compressed, this step requires O(r log n) bits of
working space.

From Lines 2–9 we initialize all variables. In order: the text length n, the current
position j in T , the position k in RL BW T corresponding to position j in T (at the
beginning, T [0] = RL BW T [k#] = #), the current LZ77 phrase prefix length λ (last
character T [ j] excluded), the T -position π < j at which the current phrase prefix
T [ j − λ, . . . , j − 1] occurs (π = ⊥ if λ = 0), the red-black trees Bs1 , . . . ,Bsσ used
to store SA-samples, the current character c = T [ j] = RL BW T [k], and the interval
[l, r ] corresponding to the current reversed LZ phrase prefix

←−−−−−−−−−−−−−
T [ j − λ, . . . , j − 1] in

RL BW T (when λ = 0, [l, r ] is the full interval [0, n − 1]).
The while loop at Line 10 scans T positions from the first to last. Note that we do

not actually access the text T itself; rather, we extract T ’s characters from RL BW T .
First of all, we have to discover if the current character T [ j] = c ends an LZ phrase.
In Line 11 we count the number u of runs that intersect interval [l, r ] on RL BW T .
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If u = 1, then the current phrase prefix T [ j − λ, . . . , j − 1] is always followed
by c in T (i.e. it is not right-maximal), and consequently T [ j] cannot be the last
character of the current LZ phrase. Otherwise, by Lemma 3, T [ j − λ, . . . , j] occurs
in T [0, . . . , j − 1] if and only if there exists a SA-sample 〈 j ′, k′〉 ∈ Bc such that
l ≤ k′ ≤ r . The existence of such pair can be verified with a binary search on the
red-black tree Bc. In Line 12 we perform these two tests. If at least one of these two
conditions holds, then T [ j − λ, . . . , j] occurs in T [0, . . . , j − 1] and therefore it
is not an LZ phrase. If this is the case, we now have to find π < j − λ such that
T [π, . . . , π + λ] = T [ j − λ, . . . , j] (i.e. a previous occurrence of the current LZ
phrase prefix). The implementation of this task follows the inductive proof of Lemma
5. If u = 1 (current phrase prefix is not right-maximal) then π is already the value we
need. Otherwise (Lines 13–14) we find a SA-sample 〈 j ′, k′〉 ∈ Bc such that k′ ∈ [l, r ]
(such pair must exist since u > 1 and the condition in Line 12 succeeded). Procedure
Bc.locate(l, r) returns such j ′ (to make the procedure deterministic, one could return
the value j ′ associated with the smallest BWT position k′ ∈ [l, r ]). Then, we assign
to π the value j ′ − λ (Line 14). We can now increment the current LZ phrase prefix
length (Line 15) and update the BWT interval [l, r ] so that it corresponds to the string←−−−−−−−−−−−−−
T [ j − λ + 1, . . . , j] (LF mapping in Line 16).

If both the conditions at Line 12 fail, then the string T [ j − λ, . . . , j] does not
occur in T [0, . . . , j − 1] and therefore is an LZ phrase. By the inductive hypothesis
of Lemma 5, π < j − λ is either ⊥—if λ = 0—or such that T [π, . . . , π + λ − 1] =
T [ j − λ, . . . , j − 1] otherwise. At Line 18 we can therefore output the LZ factor. We
now have to open (and start searching in RLBWT) a new LZ phrase: at Lines 19–21
we reset the current phrase prefix length, set π to ⊥, and reset the interval associated
to the current (reversed) phrase prefix to the full interval.

All we are left to do now is to process position j (i.e. apply the update rules to
the SA-sample 〈 j, k〉) and proceed to the next text position. At Line 22 we locate
the (inclusive) borders [lrun, rrun] of the BWT run containing position k (i.e. k ∈
[lrun, rrun]). This information is used at Line 23 to apply the update rules on Bc

and on the SA-sample 〈 j, k〉. Finally, we increment the current T -position j (Line
24), compute the corresponding position k on RLBWT (Line 25), and read the next
T -character c on the RLBWT.

4.3 Analysis

rank, access, and insert operations on RLBWT takeO(log r) time each. Oper-
ations Bc.exists_sample(l, r) (Line 12) and Bc.locate(l, r) (Line 14) require a
binary search on the red-black tree and can also be implemented in O(log r) time.
RL BW T .number_of _runs(l, r) is the number of bits set in Gall [l, . . . , r ], plus 1
if Gall [l] = 0: this operation requires therefore O(1) rank/access operations on
Gall (O(log r) time). Similarly, RL BW T .locate_run(k) requires finding the two bits
set preceding and following position k in Gall (O(log r) time with a constant number
of rank and select operations). Correctness of our algorithm follows easily from
Lemma 5. We obtain:
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Algorithm 1: rle_lz77_1(T)
input : A text T ∈ �n beginning with # and ending with $
output: LZ77 factors of T in text order.

1 RL BW T ← build_rev_RL BW T (T ); /* Build online the RLBWT of
←−
T */

2 n ← |T |; /* T length */
3 j ← 0 ; /* Last position (on T ) of current LZ phrase prefix */
4 k ← k# ; /* Position of # in RL BW T */
5 λ ← 0; /* Length of current LZ phrase prefix */
6 π ← ⊥; /* Previous occurrence of current LZ phrase prefix */
7 Bs1 , . . . ,Bsσ ← ∅; /* Initialize red-black trees of SA-samples */
8 c ← RL BW T [k]; /* Current T character */
9 [l, r ] ← [0, n − 1]; /* Range of current LZ phrase prefix in RL BW T */

10 while j < n do

11 u ← RL BW T .number_of _runs(l, r); /* Runs intersecting [l, r ] */

12 if u = 1 or Bc.exists_sample(l, r) then

13 if u > 1 then
14 π ← Bc.locate(l, r) − λ; /* Occurrence of phrase prefix */

15 λ ← λ + 1; /* Increase length of current LZ phrase */
16 [l, r ] ← RL BW T .L F([l, r ], c); /* Backward search step */
17 else
18 Output 〈π, λ, c〉; /* Output LZ77 factor */

19 λ ← 0; /* Reset phrase prefix length */
20 π ← ⊥; /* Reset phrase prefix occurrence */
21 [l, r ] ← [0, n − 1]; /* Reset range of current LZ phrase prefix */

22 [lrun , rrun ] ← RL BW T .locate_run(k) ; /* run of BWT position k */
23 Bc.update_tree(〈 j, k〉, [lrun , rrun ]); /* Apply update rules */

24 j ← j + 1; /* Increment T position */
25 k ← RL BW T .L F(k); /* RLBWT position corresponding to j */
26 c ← RL BW T [k]; /* Read next T character */

Theorem 6 Algorithm 1 computes the LZ77 factorization of a text T ∈ �n in
O(r log n) bits of working space and O(n log r) time, r being the number of runs

in the Burrows–Wheeler transform of
←−
T .

Note that in Algorithm 1 we can remove the step at Line 1 and take as input a
RLBWT encoding of T , i.e. a series of pairs 〈λi , ci 〉i=1,...,r , where λi is the length of
the i-th ci -run in BW T (T ).We can then easily turn—inO(n log r) time andO(r log n)

bits of space—this representation into a run-length encoded string data structure with
support for access and rank1 and continue with the execution of Algorithm 1. We
obtain the following result:

1 e.g. by inserting the characters c
λ1
1 c

λ2
2 . . . cλr

r in the dynamic string structure described in the previous
section.
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Theorem 7 We can convert the run-length BWT encoding 〈λi , ci 〉i=1,...,r of a text

T ∈ �n into the LZ77 factorization of
←−
T in O(r log n) bits of working space and

O(n log r) time, r being the number of runs in the Burrows–Wheeler transform of T .

5 Second Algorithm: SA Sampling Based on LZ77 Factors

The algorithm presented in the previous section employs a RLBWT and additional
data structures storing 2r suffix array samples. Even with a careful implementation of
these components, the overall space is therefore lower bounded by roughly 3r words.
The question we raise in this section is the following: can we reduce the impact of the
constant involved in this lower bound? We propose a solution based on the following
observation. As previous works [3,32] suggested, in practice the size z of the LZ77
parsing is often (much) smaller than the number r of runs in the Burrows–Wheeler
transform. From the practical point of view, it could be thereforemore advantageous to
employ a suffix array sampling based on LZ77 phrases rather than on BWT runs. The
solution presented in this section employs a RLBWT and sparse suffix array sampled
at the end of LZ phrases. The overall working space is lower-bounded by roughly
r + 2z words. In the case z is larger than r , we moreover show how we can compute z
with a RLBWT data structure so that we can choose the most space-efficient strategy
between the ones presented in this section and in the previous one.

We first give an overview of the algorithm, which is described more in detail in
the next subsection. The algorithm works in three steps. In the first step, we build
online RL BW T (

←−
T ) by reading T -characters from left to right and by inserting them

in a run-length compressed dynamic string data structure (with the same algorithm
used in the previous section). At the same time, we search in the RLBWT the current
(reversed) LZ77 phrase prefix using backward search.While doing this, wemarkBWT
positions corresponding to sources of (reversed) LZ phrases with the corresponding
phrase rank: while searching the j-th LZ phrase, as soon as the BWT interval for

←−
W c,

W ∈ �λ, c ∈ �, λ > 0 becomes empty, we mark one of the F-positions in the BWT
interval for

←−
W with the integer j , being careful of choosing a position corresponding to

a previous occurrence of W in the text (not the current one). Note that a F-position can
be assigned more than one integer, so we need to maintain sets of integers on a subset
of F-positions. This problem can be solved efficiently with a dynamic sparse bitvector
marking with a bit set F-positions with at least one integer, with a dynamic succinct
bitvector storing sets multiplicities in unary (i.e. a size-k set, k > 0, corresponds to
the sequence of bits 10k−1 in this bitvector), and with a dynamic sequence of integers
(for this last component we can use the SPSI described in Sect. 3.1).

In the second step, we scan T from left-to-right by using the RL BW T just built
(i.e. by applying iteratively the LF function starting from F-position 0) and we use the
integers stored in the previous step to locate the sources of LZ phrases. We store such
sources in a vector SOU RC E S[0, . . . , z − 1] initialized with ⊥ (null) values: while
reading text position i , if the position is associated with a set { j1, ..., jt } of integers,
we assign the value i to SOU RC E S[ j1], . . . , SOU RC E S[ jt ]. Note that i is the last
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position of the source, so in the next algorithm step we will need to subtract λ from it
before outputting the LZ77 factor.

In the third and last step we delete all structures except SOU RC E S and re-build
RL BW T by reading T left-to-right. As done in step 1, while building RL BW T
we search the current (reversed) LZ phrase. In this way, each time the BWT inter-
val for

←−
W c, W ∈ �λ, c ∈ �, λ ≥ 0 becomes empty, we output the LZ77 factor

〈(SOU RC E S[ j] − λ) + 1, λ, c〉 (or 〈⊥, 0, c〉 if λ = 0), j = 0, . . . , z − 1 being the
rank of the current LZ phrase. Note that SOU RC E S[ j] is ⊥ iff the j-th phrase is a
single character.

5.1 Pseudocode

Algorithm 2 describes steps 1 (Lines 1–22) and 2 (Lines 23–29) sketched above. In
Lines 1–5 we initialize the number z of LZ phrases (0 at the beginning: we will count
them online), the RLBWT (as an empty run-length encoded string data structure), the
BWT interval [l, r ] of the current LZ phrase prefix, the current LZ phrase prefix length
λ, and the position k of the BWT terminator character # on the L column of the BWT.
At the beginning, k = ⊥ (undefined) as the BWT is empty.

We are going to read T [i] for i = 0, . . . , n − 1 and build RL BW T (
←−
T ) while

computing phrase boundaries. At Lines 7–8 we perform a backward search step to
extend the BWT interval [l, r ] with the current text character. Two cases can occur.

If the interval [l ′, r ′] corresponding to
←−
W c, W ∈ �λ, c = T [i] ∈ �, λ ≥ 0 is

empty (Line 9), then W c is an LZ77 phrase and—in the case λ > 0—we need to
assign the current phrase rank to one of the sources of

←−
W on the RLBWT. If λ = 0,

then the phrase is a single character and it has no source. Otherwise (Lines 11–14), we
need to pick a position inside [l, r ] different than the current occurrence of W . Since
the last character we inserted in the RLBWT is W [|W | − 1], the current occurrence
of W appears at the k-th BWT row, k being the position of # in the L-column. At
Lines 12 and 14 we therefore insert the integer z, z being the current LZ phrase
rank, in the set associated with either F-position l or r , depending on which one is
different than k. In pseudocode 2 we denote the integer set associated with F-position
k with RL BW T .set_at (k). Note that it must be the case that r > l since W occurs
at least twice in T [0, . . . , i − 1]. We finally update RL BW T (

←−−−−−−−−−−
T [0, . . . , i − 1]) to

RL BW T (
←−−−−−−−
T [0, . . . , i]) with an extension step (Line 15) and, at Lines 16–18 we reset

the BWT interval to the full interval, reset the phrase length λ to 0, and increase the
number z of LZ phrases seen until now.

In the second case, the interval [l ′, r ′] corresponding to ←−
W c, W ∈ �λ, c = T [i] ∈

�, λ ≥ 0 is not empty (Line 19). Then, we simply increase the length of the current
phrase prefix (Line 15) and extend the RLBWT with T [i] (Line 21). The extension
step at Line 21 returns the new position k of the # character on the L column of the
BWT. Note that the (reverse of the) current occurrence of W c falls inside [l ′, r ′], so
we need to update this interval by extending its right boundary by 1 (Line 22).

We can now scan the RLBWT and assign a source to each phrase. At Line 23 we
initialize the SOU RC E S vector with⊥ values. From here, k represents the F-position
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on the BWT corresponding to text position i (starting from i = 0). Since we start from
T [0] = # and # appears at position 0 on the F-column, at Line 24 we initialize k to
0. For each i = 0, . . . , n − 1, we then check if F-position k is associated with a
nonempty set RL BW T .set_at (k) of integers. If this is the case, for each such integer
j ∈ RL BW T .set_at (k) at Line 27 we assign the source i to the j-th LZ phrase.
Synchronization between indexes i and k is guaranteed by the execution of the LF
step at Line 28.

The complete procedure to compute the parse is reported as Algorithm 3. We do
not discuss it in detail as it basically repeats the online construction of the RLBWT
described above while computing LZ phrase boundaries. While doing this, at Line
10 we access the SOU RC E S vector computed with procedure f ind_sources(T )

and output LZ77 phrases in text order, being careful to subtract the phrase length
from the content of SOU RC E S since this vector contains the last position of each
phrase source. To simplify the description, at this Line we use the convention that
(SOU RC E S[ j] − λ) + 1 = ⊥ if SOU RC E S[ j] = ⊥.

5.2 Analysis

Building the RLBWT in the first and third steps and performing the n backward search
steps takes overall O(n log r) time (for the same reasons discussed in Sect. 4). We
update the sets of integers once per phrase; we remind that such sets are encoded with
a dynamic gap-encoded bitvector, a dynamic succinct bitvector, and a dynamic string.
The total number of integers is z, so each update operation on the sets takes O(log z)
time with the structures described in Sect. 3 and the red-black tree implementing the
dynamic string. Since z ∈ O(n/ logσ n) [36], updating and querying the sets takes
therefore O(z log z) ⊆ O(n log σ) ⊆ O(n log r) time.

As discussed in Sect. 4, the RLBWT takes O(r log n) bits of space. Each integer
stored in the sets takes O(log n) bits, so the algorithm uses overall O((r + z) log n)

bits of working space. In the case z is asymptotically larger than r , this strategy is less
space-efficient than Algorithm 1. We can however choose—within O(r log n) bits of
working space—the most space-efficient strategy:

Lemma 8 The number z of LZ77 phrases of a text T can be computed with an online
algorithm running in O(n log r) time and using O(r log n) bits of working space, r

being the number of equal-letter runs in BW T (
←−
T ).

Proof Algorithm 3 without the instructions at Lines 5 and 10 solves exactly this
problem: we just need to return the value z at the end of its execution. ��

We can use Lemma 8 and compute z in O(n log r) time and O(r log n) bits of
working space before computing the actual parse. If z ≤ r , we execute Algorithm 3,
otherwise Algorithm 1. Overall, this combined strategy runs therefore in O(n log r)

time and uses O(r log n) bits of working space. We obtain:

Theorem 9 Our combined strategy computes the LZ77 factorization of a text T ∈ �n

in O(r log n) bits of working space and O(n log r) time, r being the number of runs

in the Burrows–Wheeler transform of
←−
T .
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Algorithm 2: find_sources(T )
input : A text T ∈ �n beginning with # and ending with $
output: A vector SOU RC E S[0, . . . , z − 1], z being the size of the LZ77 parse, such that

SOU RC E S[ j] is the last position of j-th phrase’s source.

1 z ← 0; /* Initialize size of the parse */
2 RL BW T ← ε; /* Initialize RLBWT to empty string */
3 [l, r ] ← [0, 0]; /* Initialize range on RLBWT */

4 λ ← 0; /* Length of current LZ phrase */
5 k ← ⊥; /* Position of # in RLBWT (here ⊥ because RL BW T = ε) */

6 for i = 0 . . . |T | − 1 do
7 c ← T [i]; /* read current text character */
8 [l ′, r ′] ← RL BW T .L F([l, r ], c); /* backward search step */

9 if l ′ > r ′ then
10 if λ > 0 then
11 if k = l then
12 RL BW T .set_at (r).insert (z);
13 else
14 RL BW T .set_at (l).insert (z);

15 RL BW T .extend(c); /* insert character c in the BWT */

16 [l, r ] ← [0, i]; /* reset [l, r ] to full interval */
17 λ ← 0; /* reset phrase length */
18 z ← z + 1; /* increase number of phrases */
19 else
20 λ ← λ + 1; /* increase current phrase length */
21 k ← RL BW T .extend(c); /* extend with c. Return position of # */
22 [l, r ] ← [l ′, r ′ + 1]; /* new suffix falls inside [l ′, r ′]: increment r ′ */

23 SOU RC E S[0, . . . , z − 1] ← 〈⊥, . . . ,⊥〉; /* initialize SOURCES */
24 k ← 0; /* position of # on F column */

25 for i = 0 . . . |T | − 1 do

26 for each j ∈ RL BW T .set_at (k) do
27 SOU RC E S[ j] ← i ; /* assign source to the j-th phrase */

28 k ← RL BW T .L F(k); /* LF step: navigate T forward */

29 return SOU RC E S;

As a direct consequence of Theorems 6 and 9, we obtain asymptotically optimal-
space construction algorithms for indexes based on LZ77 and RLBWT compressors
such as the ones described in [3]. The main idea behind these indexes is to use a
RLBWT structure on

←−
T to compute the lexicographic order of the reversed LZ77

T -factors and of the T -suffixes starting at LZ77 phrase boundaries. This, combined
with geometric range data structures, permits to efficiently count and locate pattern
occurrences in T within O(r + z) words of space (see [3] for full details). The con-
struction of such indexes requires building the RLBWT of

←−
T , computing the LZ77

factorization of T , and building additional structures of O(z) words of space. We
observe that with our algorithms all these steps can be carried out in O(r + z) words
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Algorithm 3: rle_lz77_2(T)
input : A text T ∈ �n beginning with # and ending with $
output: LZ77 factors of T in text order.

1 z ← 0; /* Initialize size of the parse */
2 RL BW T ← ε; /* Initialize RLBWT to empty string */
3 [l, r ] ← [0, 0]; /* Initialize range on RLBWT */
4 λ ← 0; /* Length of current LZ phrase */

5 SOU RC E S ← f ind_sources(T ); /* locate phrase sources */

6 for i = 0 . . . |T | − 1 do
7 c ← T [i]; /* read current text character */
8 [l ′, r ′] ← RL BW T .L F([l, r ], c); /* backward search step */

9 if l ′ > r ′ then
10 Output 〈(SOU RC E S[z] − λ) + 1, λ, c〉; /* Output LZ77 factor */

11 RL BW T .extend(c); /* insert character c in the BWT */

12 [l, r ] ← [0, i]; /* reset interval */
13 λ ← 0; /* reset phrase length */
14 z ← z + 1; /* increase number of phrases */
15 else
16 λ ← λ + 1; /* increase current phrase length */
17 RL BW T .extend(c); /* extend with c */
18 [l, r ] ← [l ′, r ′ + 1]; /* new suffix falls inside [l ′, r ′]: increment r ′ */

of working space, which is asymptotically the same space of the resulting index. To
the best of our knowledge, the only other known repetition-aware index that can be
built in asymptotically optimal working space is based on grammar compression and
is described in [33].

6 Implementation and Experimental Results

We implemented the structures described in Sect. 3 and the two previously presented
algorithms in the DYNAMIC [10] C++ library. The SPSI structure has been imple-
mented using B-trees to improve cache efficiency (w.r.t. red-black trees). In order to
reduce space usage while still guaranteeing very fast operations on integers stored on
leaves, integers are packed contiguously in a word array and the same bit-size is used
(i.e. the bit-size of the largest integer), for each leaf. Dynamic succinct bitvectors are
implemented using an SPSI where all stored integers are either 0 or 1 (in this case we
accelerate operations by using built-in bitwise operations such as popcount, masks
and shifts), while dynamic strings are implemented with a Huffman-shaped wavelet
tree built upon dynamic succinct bitvectors. Gap-encoded bitvectors and dynamic run-
length encoded strings are implemented using SPSI structures and dynamic strings as
described in Sect. 3. Instead of using red-black trees, the dynamic SA sampling of
Algorithm 1 is stored using σ dynamic sparse vectors of integers, each implemented
with a gap-encoded bitvector and a sequence of integers (we used an SPSI struc-
ture for this component). Sets of integers on RLBWT positions used in Algorithm 2
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are implemented—as mentioned at the beginning of Sect. 5.2—with a gap-encoded
bitvector, a succinct bitvector, and a sequence of integers (an SPSI).

6.1 Experimental Setup

We created two scripts that generate repetitive datasets by downloading all versions of
Wikipedia web pages [35] and all revisions of GitHub repositories [16]. In addition,
we downloaded four repetitive DNA datasets from the pizza&chili repetitive
corpus [27]. To limit resources (computation time and RAM space), we truncated all
files to 1GB (when bigger). The datasets are:

– DNA (from pizza&chili repetitive corpus):
– cere: 37 sequences of Saccharomyces Cerevisiae
– para: 36 sequences of Saccharomyces Paradoxus
– influenzae: 78041 sequences of Haemophilus Influenzae
– escherichia: 23 sequences of Escherichia Coli

– Git repositories. Concatenation of source files from the last revisions of:
– sdsl. https://github.com/simongog/sdsl-lite
– samtools. https://github.com/samtools/samtools
– boost. https://github.com/boostorg/boost
– bwa. https://github.com/lh3/bwa

– Wikipedia. Concatenation of all versions of:
– Einstein. https://en.wikipedia.org/wiki/Albert_Einstein
– earth. https://en.wikipedia.org/wiki/Earth
– Bush. https://en.wikipedia.org/wiki/George_W._Bush
– wikipedia. https://en.wikipedia.org/wiki/Wikipedia

Table 1 reports the sizes of the above files before and after compression with 7-Zip,
followed by compression rate (size-after/size-before).

We tested implementations of six LZ77 factorization algorithms on the datasets (in
order of decreasing space usage):

1. ISA6r [18,21]. O(n log n) space (in practice: 6n Bytes)
2. KKP1s [18,20]. O(n log n) space (in practice: 5n Bytes)
3. LZscan [18,19]. O(n log σ) space (in practice: n + O(n/d) Bytes, d > 0)
4. h0-lz77 [10,29]. nH0 + o(n log σ) space
5. rle-lz77-1 [10]. Our first algorithm. O(r log n) space
6. rle-lz77-2 [10]. Our second algorithm. O(r log n) space

As far as LZscan is concerned, we chose d in such a way that the term O(n/d)

was always around 50% text’s size (the tool requires n/d to be an integer number
of MB). We included ISA6r as it is specialized for repetitive inputs. We moreover
note that KKP1s is a semi-external algorithm (i.e., streams the suffix array from disk
using a small buffer), while all other algorithms use only internal memory. We ran all
experiments on an intel core i7 machine with 12GB of RAM running Linux
Ubuntu 15.10.
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Table 1 Size before and after 7-Zip-compression of the files

File Size (MB) 7-Zip-compressed size (MB) Compression rate (%)

cere 440.0 8.10 1.84

para 410.0 9.80 2.39

influenzae 148.0 2.50 1.69

escherichia 108.0 7.10 6.57

sdsl 1024.0 0.60 0.06

samtools 1024.0 1.20 0.12

boost 1024.0 0.20 0.02

bwa 419.0 0.38 0.09

Einstein 1024.0 1.60 0.16

earth 1024.0 1.70 0.17

Bush 1024.0 1.90 0.19

wikipedia 1024.0 2.40 0.23

Last column is the rate (in percentage) between columns 3 and 2. Note that software repositories are
extremely repetitive: in particular, the boost C++ library is compressed by over 5000 times with 7-Zip

6.2 Results

Figure 4 reports the results of the experiments, with solid and dotted horizontal lines
marking the sizes of the plain input files and the 7-Zip-compressed files, respec-
tively. For a more precise comparison, in Table 2 we report detailed working space
and running times values of all tools on three representative datasets: sdsl, cere,
and einstein. As expected, the linear-space LZscan algorithm and the zero-order
compressed-space h0-lz77 algorithm always use space close to the plain file size,
with h0-lz77 always slightly below and LZscan slightly above the solid lines.
ISA6r and KKP1s exhibit very similar performances: these algorithms are the fastest
but use one order ofmagnitudemore space than the plain file size. In all cases but para
and sdsl, the algorithm ISA6r was slightly faster than KKP1s. This behavior is
probably due to the fact that ISA6r is specialized for highly repetitive inputs, onwhich
it should be faster than KKP1s.rle-lz77-2 always dominatesrle-lz77-1, sug-
gesting that the SA sampling based on LZ77 factors in practice is much more effective
than the one based on BWT runs. Our two algorithms use approximately one order
of magnitude more space than the 7-Zip-compressed file size, and in almost all cases
from 2 to 3 orders of magnitude less space than all other methods. The only exceptions
occur in correspondence of the DNA datasets, which are much less repetitive than the
others. In such cases our algorithms use a working space comparable to (in one case
higher than) the uncompressed file size. Table 2 shows that rle-lz77-2’s working
space is approximately 60% of rle-lz77-1’s working space on very compressible
datasets (sdsl and einstein). On the less repetitive dataset cere, this fraction
drops to 31%. It is worth to note that, on very compressible datasets, rle-lz77-2
uses a working space close to only 1% of the dataset size. This space efficiency is
not paid in terms of running times: rle-lz77-2 requires approximately 75% of
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Fig. 4 Running times and RAM working space (logarithmic scales) of the six tested tools on the twelve
datasets.Solid anddotted horizontal linesmark the sizes of the plain and7-Zip-compressedfiles, respectively

rle-lz77-2’s running time to terminate. As expected, the algorithms making use
of complex dynamic data structures (h0-lz77, rle-lz77-1, and rle-lz77-2)
are much slower than the others (from 1 to 3 orders of magnitude).

7 Conclusions and Future Work

In this work we proved that LZ-based text compression and indexing can be carried
out in a working space proportional to the size of the run-length compressed Burrows–
Wheeler transform of the text. We believe our results are both of theoretical as well as
of practical interest.We achieve the first algorithms that compute the exact LZ77 parse
in a space that can turn out (up to) exponentially smaller than that of the input text, if
this is highly compressible. Moreover, we showed that also in practice our techniques
use only one order of magnitude more space than the 7-Zip-compressed file size;
on repetitive inputs, this space is several orders of magnitude smaller than the size
of the text and of data structures—e.g. suffix arrays—employed in other algorithms
described in literature. The only practical weak point of our strategies is the use of
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Table 2 Detailed working space (WS: both absolute and relative w.r.t. original dataset size) and running
times of all tools on three representative datasets

Tool Data Dataset size (MB) W S(M B) W S(%) Time (s)

ISA6r sdsl 1024 5770.58 563.53 218

KKP1s sdsl 1024 5121.76 500.17 205

LZscan sdsl 1024 1153.45 112.64 1648

h0-lz77 sdsl 1024 855.97 83.59 36,805

rle-lz77-1 sdsl 1024 16.85 1.65 74,398

rle-lz77-2 sdsl 1024 10.26 1.00 55,635

ISA6r cere 440 2594.15 589.58 65

KKP1s cere 440 2201.33 500.30 69

LZscan cere 440 516.65 117.42 3146

h0-lz77 cere 440 203.52 46.25 8056

rle-lz77-1 cere 440 227.03 51.60 37,007

rle-lz77-2 cere 440 73.15 16.63 26,071

ISA6r einstein 1024 5782.76 564.72 199

KKP1s einstein 1024 5121.76 500.17 206

LZscan einstein 1024 1182.20 115.45 1391

h0-lz77 einstein 1024 924.92 90.32 43,495

rle-lz77-1 einstein 1024 34.45 3.36 77,048

rle-lz77-2 einstein 1024 20.66 2.02 61,267

complex dynamic data structures such as dynamic run-length encoded strings. Despite
proved to have update-times nearly-optimal in theory, these structures are very slow in
practice. One solution could be to use parallelization to speed up operations on these
components. Alternatively, one could use faster algorithms to build the RLBWT (e.g.
the incremental algorithm of [31]).

We note that the suffix-array sampling based on BWT runs allows to find at least
one previous occurrence of the factors, but not all occurrences of an arbitrary string in
the text. It follows that this technique cannot be directly used in a full-text index. We
leave open the question whether this sampling can be used in a compressed index to
support locate (e.g. by augmenting it with additional structures); such a result would
lead to the first compressed text index taking O(r) words of space.

Our results find important applications in the space-efficient construction of com-
pressed text indexes, potentially requiring exponentially less space than standardly
employed algorithms. Another promising line of research explored in our work is that
of converting between compressed representations of a text. The topic of compressed
computation is becoming of increasing importance in many fields—first of all bioin-
formatics and web databases—as it is not always feasible to decompress data before
manipulating it. We showed how our results can be used to compute LZ77 of the
reversed text from a RLBWT-based compressed text representation in a space pro-
portional to its input size. Other published works in this direction include [30] (LZ77
to grammar compression), [1,2] (grammar compression to LZ78), and [34] (LZ78 to
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run-length encoding of T and back). We leave to future works the problem of com-
puting the LZ77 factorization of T (instead of

←−
T ) from the RLBWT of T and the

opposite direction (LZ77 to RLBWT). The opposite direction can be easily obtained
by extracting text from LZ77 and building online a RLBWT structure. The problem
with this approach is that text extraction from LZ77 compressed text representations is
a computationally expensive task as it requires to follow chains of character’s copies.
In the worst case, the height h of the LZ77 parse can be O(n), which leads to a
quadratic-time solution. We leave open the problem whether this can be done more
efficiently—e.g. in O(n log n) time.

The implementation of the two algorithms described in this paper led to the cre-
ation of a C++ library, DYNAMIC [10], collecting several compressed dynamic data
structures. To date, several excellent libraries such as sdsl [17] offer efficient imple-
mentations of static compressed data structures; however, few code can be found on
the dynamic side. Our library has been written in modern C++11 standard and features
dynamic partial sums, succinct and gap-encoded bitvectors, Huffman and run-length
compressed strings and FM indexes. DYNAMIC has been heavily profiled in order to
get the best space/time trade-offs and we believe it will be useful also in other works
making use of dynamic compressed data structures.

To conclude, we provide two scripts [16,35] that can be used to generate very
repetitive datasets by downloading all versions of aWikipedia web page and a GitHub
repository. The scripts are easy to use and can generate heavy datasets (up to several
GB) compressible by thousands of times with techniques such as the Lempel–Ziv
factorization.
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