
Algorithmica (2018) 80:2286–2323
https://doi.org/10.1007/s00453-017-0322-4

The Partial Visibility Representation Extension
Problem

Steven Chaplick1 · Grzegorz Guśpiel2 ·
Grzegorz Gutowski2 · Tomasz Krawczyk2 ·
Giuseppe Liotta3

Received: 19 August 2016 / Accepted: 10 May 2017 / Published online: 24 May 2017
© The Author(s) 2017. This article is an open access publication

Abstract For a graph G, a function ψ is called a bar visibility representation of
G when for each vertex v ∈ V (G), ψ(v) is a horizontal line segment (bar) and
uv ∈ E(G) if and only if there is an unobstructed, vertical, ε-wide line of sight
between ψ(u) and ψ(v). Graphs admitting such representations are well understood
(via simple characterizations) and recognizable in linear time. For a directed graphG, a

The conference version of this paper appeared in GD 2016 [10].

This work was partially supported by ESF Project EUROGIGA GraDR and preliminary ideas were
formed during HOMONOLO 2014. Grzegorz Guśpiel was partially supported by the MNiSW Grant
DI2013 000443. Grzegorz Gutowski was partially supported by the Polish National Science Center Grant
UMO-2011/03/D/ST6/01370. Tomasz Krawczyk was partially supported by the Polish National Science
Center Grant UMO-2015/17/B/ST6/01873. Giuseppe Liotta was partially supported by the MIUR project
AMANDA “Algorithmics for MAssive and Networked DAta”, prot. 2012C4E3KT_001.

B Grzegorz Gutowski
gutowski@tcs.uj.edu.pl

Steven Chaplick
steven.chaplick@uni-wuerzburg.de

Grzegorz Guśpiel
guspiel@tcs.uj.edu.pl

Tomasz Krawczyk
krawczyk@tcs.uj.edu.pl

Giuseppe Liotta
giuseppe.liotta@unipg.it

1 Lehrstuhl für Informatik I, Universität Würzburg, Würzburg, Germany

2 Theoretical Computer Science Department, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland

3 Universitá degli Studi di Perugia, Perugia, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-017-0322-4&domain=pdf
http://orcid.org/0000-0003-3501-4608
http://orcid.org/0000-0002-3303-8107
http://orcid.org/0000-0003-3313-1237

Algorithmica (2018) 80:2286–2323 2287

bar visibility representation ofG, additionally, puts the barψ(u) strictly below the bar
ψ(v) for each directed edge (u, v) of G. We study a generalization of the recognition
problem where a functionψ ′ defined on a subset V ′ of V (G) is given and the question
is whether there is a bar visibility representation ψ of G with ψ(v) = ψ ′(v) for every
v ∈ V ′. We show that for undirected graphs this problem, and other closely related
problems, isNP-complete, but for certain cases involving directed graphs it is solvable
in polynomial time.

Keywords Partial representation extension · Planar graphs · Bar visibility ·
SPQR-trees · St-ordering · NP-completeness

1 Introduction

The concept of a visibility representation of a graph is a classic one in computational
geometry and graph drawing and the first studies on this concept date back to the
early days of these fields (see, e.g. [29,47,49] for a recent survey). In the most general
setting, a visibility representation of a graph is defined as a collection of disjoint sets
from anEuclidean space such that the vertices are bijectivelymapped to the sets and the
edges correspond to unobstructed lines of sight between two such sets. Many different
classes of visibility representations have been studied via restricting the space (e.g.,
to be the plane), the sets (e.g., to be points [6] or line segments [7,47]) and/or the
lines of sight (e.g., to be non-crossing or axis-parallel). In this work we focus on a
classic visibility representation setting in which the sets are horizontal line segments
(bars) in the plane and the lines of sight are vertical. As such, whenever we refer to a
visibility representation, we mean one of this type. The study of such representations
was inspired by the problems in VLSI design [45,46] and was conducted by different
authors [24,40,43] under variations of the notion of visibility. Tamassia and Tollis
[47] gave an elegant unification of different definitions and we follow their approach.

A horizontal bar is an open, non-degenerate segment parallel to the x-axis of the
coordinate plane. For a set � of pairwise disjoint horizontal bars, a visibility ray
between two bars a and b in � is a vertical closed segment spanned between bars a
and b that intersects a, b, and no other bar in �. A visibility gap between two bars a
and b in � is an axis aligned, non-degenerate open rectangle spanned between bars a
and b that intersects no other bar.

For a graph G, a visibility representation ψ is a function that assigns a distinct
horizontal bar to each vertex such that these bars are pairwise disjoint and satisfy
additional visibility constraints. Following Tamassia and Tollis [47], we distinguish
three different visibility models:

• Weak visibility In this model, for each edge {u, v} of G, there is a visibility ray
between ψ(u) and ψ(v) in ψ(V (G)).

• Strong visibility In this model, two vertices u, v of G are adjacent if and only if
there is a visibility ray between ψ(u) and ψ(v) in ψ(V (G)).

• Bar visibility In this model, two vertices u, v of G are adjacent if and only if there
is a visibility gap between ψ(u) and ψ(v) in ψ(V (G)).

123

2288 Algorithmica (2018) 80:2286–2323

d

ca

b
b

d

a

c

d

a

b

c

b

d

a

c

Fig. 1 Representation of the cycle C4 in weak, strong, and bar visibility model

The bar visibility model is also known as the ε-visibility model in the literature. See
Fig. 1 for an example that shows different representations of the cycle C4 in three
visibility models.

A graph that admits a visibility representation in any of these models is a planar
graph, but the converse does not hold in general. Tamassia and Tollis [47] charac-
terized the graphs that admit a visibility representation in these models as follows.
A graph admits a weak visibility representation if and only if it is planar. A graph
admits a bar visibility representation if and only if it has a planar embedding with all
cut-vertices on the boundary of the outer face. For both of these models, Tamassia
and Tollis [47] presented linear-time algorithms for the recognition of representable
graphs, and for constructing the appropriate visibility representations. The situation
is different for the strong visibility model. Although the planar graphs admitting a
strong visibility representation are characterized in [47] (via strong st-numberings),
Andreae [1] proved that the recognition of these graphs is NP-complete. Summing
up, from a computational point of view, the problems of recognizing graphs that
admit visibility representations and of constructing such representations are well
understood.

Recently, a lot of attention has been paid to the question of extending partial rep-
resentations of graphs. In this setting a representation of some vertices of the graph is
already fixed and the task is to find a representation of the whole graph that extends
the given partial representation (see, e.g. [5,9,35–38] for papers that study computa-
tional aspects of extending partial representations of geometric intersection graphs).
Problems of this kind are often encountered in graph drawing and are sometimes
computationally harder than testing for existence of an unconstrained drawing. The
problem of extending partial drawings of planar graphs is a good illustration of this
phenomenon. On the one hand, by Fáry’s theorem [25], every planar graph can be
drawn in the plane so that each vertex is represented as a point, and edges are pair-
wise non-crossing, straight-line segments joining the corresponding points. Moreover,
such a drawing can be constructed in linear time [11,21,22]. On the other hand, testing
whether a partial drawing of this kind (i.e., an assignment of points to some of the
vertices) can be extended to a straight-line drawing of the whole graph is NP-hard
[44]. However, an analogous problem in the model that allows the edges to be drawn
as arbitrary curves instead of straight-line segments has a linear-time solution [2].
A similar phenomenon occurs when we consider contact representations of planar
graphs. Every planar graph is representable as a disk contact graph [39] or a triangle
contact graph [20]. Every bipartite planar graph is representable as a contact graph of
horizontal and vertical segments in the plane [19,31]. Although such representations

123

Algorithmica (2018) 80:2286–2323 2289

can be constructed in polynomial time [19,20,41], the problems of extending partial
representations of these kinds are NP-hard [8].

In this paper we initiate the study of extending partial visibility representations
of graphs. From a practical point of view, it may be worth recalling that visibility
representations are not only an appealing way of drawing graphs, but they are also
typically used as an intermediate step towards constructing visualizations of networks
inwhich all edges are oriented in a commondirection and somevertices are aligned (for
example to highlight critical activities in a PERT diagram). Visibility representations
are also used to construct orthogonal drawings with at most two bends per edge.
See, e.g. [12] for more details about these applications of visibility representations.
The partial representation extension problem that we study in this paper occurs, for
example, when we want to use visibility representations to incrementally draw a large
network and we want to preserve the user’s mental map in a visual exploration that
adds a few vertices and edges per time.

Both forweak visibility and for strong visibility, the partial representation extension
problems are easily found to be NP-hard. For weak visibility, the hardness follows
easily from results on contact representations by Chaplick et al. [8]. For strong visi-
bility, it follows trivially from results by Andreae [1]. Our contribution is the study of
the partial representation extension problem for bar visibility representations. Hence,
the central problem for this paper is the following:

Bar Visibility Representation Extension:

Input: (G, ψ ′), where G is a graph andψ ′ is a mapping assigning bars to some subset
V ′ of V (G).

Question: Does G admit a bar visibility representation ψ with ψ |V ′ = ψ ′?
In Sect. 5 we show that this problem is NP-complete.

Theorem 1 The Bar Visibility Representation Extension problem is NP-complete.

The proof is a standard reduction from PlanarMonotone3Sat problem, which is
known to be NP-complete thanks to de Berg and Khosravi [18]. The reduction uses
gadgets that simulate logic gates and constructs a planar Boolean circuit that encodes
the given formula.

We investigate a fewnaturalmodifications of the problem.Most notably, we provide
some efficient algorithms for extension problems for directed graphs. A visibility
representation introduces a natural orientation to edges of the graph—each edge is
oriented from the lower bar to the upper one. The function ψ is a representation of a
digraphG if, additionally to satisfying visibility constraints, it puts the barψ(u) strictly
below the bar ψ(v) for each directed edge (u, v) of G. Note that a planar digraph that
admits a visibility representation also admits an upward planar drawing (see e.g.,
[27]), that is, a drawing in which the edges are represented as non-crossing monotonic
upward curves.

A source (sink) of a digraph is a vertex without incoming (outgoing) edges. A
planar st-graph is a planar acyclic digraph with exactly one source s and exactly
one sink t that admits a planar embedding such that s and t are on the outer face. Di

123

2290 Algorithmica (2018) 80:2286–2323

Battista and Tamassia [14] proved that the following three statements are equivalent
for a planar digraph G:

• G admits an upward planar drawing,
• G is a subgraph of a planar st-graph,
• G admits a weak visibility representation.

Garg and Tamassia [28] showed that the recognition of planar digraphs that admit
an upward planar drawing is NP-complete. It follows that the recognition of planar
digraphs that admit a weak visibility representation is NP-complete, and so is the
corresponding partial representation extension problem. Nevertheless, the situation
might be different for bar visibility. In Sect. 3 we prove the following lemma that
characterizes planar digraphs that admit a bar visibility representation.

Lemma 2 Let st (G) be a graph constructed from a planar digraph G by adding two
vertices s and t, the edge (s, t), an edge (s, v) for each source vertex v of G, and
an edge (v, t) for each sink vertex v of G. A planar directed graph G admits a bar
visibility representation if and only if the graph st (G) is a planar st-graph.

Since planar st-graphs can be recognized in linear time, planar digraphs that admit a
bar visibility representation are also recognizable in linear time. The natural problem
that arises is the following:
Bar Visibility Representation Extension for Digraphs:

Input: (G, ψ ′), where G is a directed graph and ψ ′ is a mapping assigning bars to
some subset V ′ of V (G).

Question: Does G admit a bar visibility representation ψ with ψ |V ′ = ψ ′?
Although we do not provide a solution for this problem, we present an efficient algo-
rithm for an important variant. A bar visibility representation ψ of a directed graph G
is called rectangular ifψ has a unique barψ(s)with the lowest y-coordinate, a unique
bar ψ(t) with the highest y-coordinate, ψ(s) and ψ(t) span the same x-interval, and
all other bars are inside the rectangle spanned between ψ(s) and ψ(t). See Fig. 2 for
an example of a rectangular bar visibility representation of a planar st-graph.

s

1
2

3

4

5

6

7

8 9

10

11
12

13

14

t ψ(t)
ψ(14)

ψ(13)ψ(6)
ψ(10)

ψ(5)
ψ(12)

ψ(9)ψ(8)ψ(4)ψ(3)
ψ(11)

ψ(1)
ψ(7)ψ(2)

ψ(s)

Fig. 2 A planar st-graph G and a rectangular bar visibility representation ψ of G

123

Algorithmica (2018) 80:2286–2323 2291

Tamassia and Tollis [47] showed that a planar digraph G admits a rectangular bar
visibility representation if and only if G is a planar st-graph. In Sect. 4 we give an
efficient algorithm for the following problem:
Rectangular Bar Visibility Representation Extension for planar st-graphs:

Input: (G, ψ ′), where G is a planar st-graph and ψ ′ is a mapping assigning bars to
some subset V ′ of V (G).

Question:DoesG admit a rectangular bar visibility representationψ withψ |V ′ = ψ ′?
The main result in this paper, presented in Sect. 4, is the following.

Theorem 3 The rectangular bar visibility representation extension problem for a
planar st-graph with n vertices can be solved in O

(
n log2 n

)
time.

Our algorithm exploits the correspondence between bar visibility representations
and st-orientations of planar graphs, and utilizes the SPQR-decomposition of pla-
nar graphs.

In the study of planar graphs and their representations, it is important to understand
the area requirements of a drawing. A common way to measure this is by the smallest
integer grid in which a drawing can be realized (see, e.g. [4,32–34,48] for papers
that specifically study the area required by visibility representations of graphs and Di
Battista and Frati [13] for a survey on compact drawings of graphs).

Avisibility representation is agrid representationwhenall bars used in the represen-
tation have integral coordinates. Any visibility representation can be easily modified
into a grid representation. However, this transformation does not preserve coordinates
of the bars. In particular, it might not preserve the partial representation. We can show
that the (Rectangular) Bar Visibility Representation Extension problem isNP-hard on
series-parallel planar st-graphs when one demands a grid representation.

Our results use different tools developed for graph representation problems. In
particular, we exploit the correspondence between bar visibility representations and st-
orientations of planar graphs, and utilize the SPQR-decomposition for planar graphs.

The rest of the paper is organized as follows. Section 2 contains the necessary
definitions and description of the necessary tools. Section 3 contains a characterization
of planar digraphs that admit a bar visibility representation. Section 4 contains the study
of rectangular representations of planar st-graphs. Section 5 contains hardness results
for grid representations and for the bar visibility representation extension problem for
undirected graphs. Section 6 contains conclusions and some open problems.

2 Preliminaries

2.1 Notation

A horizontal bar is an open, non-degenerate segment parallel to the x-axis of the coor-
dinate plane. For a horizontal bar a, functions y(a), l(a), r(a) give the y-coordinate
of a, the x-coordinate of the left end of a, and the x-coordinate of the right end of
a respectively. For any bounded object Q in the plane, we use functions X (Q) and
Y (Q) to denote the smallest possible, possibly degenerate, closed interval containing

123

2292 Algorithmica (2018) 80:2286–2323

the projection of Q on the x-, and on the y-axis respectively. We denote the left end of
X (Q) by l(Q) and the right end of X (Q) by r(Q). Let a and b be two horizontal bars
with y(a) < y(b).We say that Q is spanned between a and b if X (Q) ⊆ X (a)∩X (b),
and Y (Q) = [y(a), y(b)].

For a graph G, a visibility representation ψ in any model (see Sect. 1) is a function
that assigns distinct, pairwise disjoint horizontal bars to the vertices of G. We often
describe the representation ψ by providing the values of functions yψ = y(ψ(v)),
lψ = l(ψ(v)), rψ = r(ψ(v)) for any vertex v of G. We drop the subscripts when the
representation ψ is known from the context.

2.2 Planar st-Graphs and Their Properties

Given a graph G = (V, E), a planar drawing of G is a geometric representation of G
in the plane such that: (i) each vertex v ∈ V is drawn as a distinct point pv; (i i) each
edge e = (u, v) ∈ E is drawn as a simple curve connecting pu and pv; (i i i) no two
edges intersect except at their common end-vertices (if they are adjacent). A graph is
planar if it admits a planar drawing.

Let G be a connected planar graph. A planar drawing � of G divides the plane
into topologically connected regions, called faces. Exactly one face of � is an infinite
region, and is called the external face of �; the other faces are called internal. Each
internal face is described by the counter-clockwise sequence of vertices and edges that
form its boundary; the external face is described by the clockwise sequence of vertices
and edges of its boundary. The description of the set of (internal and external) faces
determined by a planar drawing of G is called a planar embedding of G.

Let G be a planar st-graph. An st-embedding of G is any planar embedding with
s and t on the boundary of the outer face. A planar st-graph together with an st-
embedding is called a plane st-graph. Vertices s and t of a planar (plane) st-graph are
called the poles of G. We abuse notation and we use the term planar (plane) uv-graph
to mean a planar (plane) st-graph with poles u and v. An inner vertex of G is a vertex
of G other than the poles of G. A real valued function ξ from V (G) is an st-valuation
of G if for each edge (u, v) we have ξ(u) < ξ(v).

Tamassia and Tollis [47] showed that the following properties are satisfied for any
plane st-graph:

(1) For every inner face f , the boundary of f consists of two directed paths with a
common origin and a common destination.

(2) The boundary of the outer face consists of two directed paths, with a common
origin s and a common destination t .

(3) For every inner vertex v, its incoming (outgoing) edges are consecutive around v.

To illustrate the above properties, observe in Fig. 2 two paths on the boundary of the
face (s, 2, 3, 5, 1), and the alignment of incoming and outgoing edges around vertex
5.

Let G be a plane st-graph. We introduce two special objects associated with the
outer face of G: the left outer face s∗ and the right outer face t∗. Let e = (u, v) be an
edge of G. The left face (right face) of e is the face of G that is to the left (right) of e

123

Algorithmica (2018) 80:2286–2323 2293

when we traverse e from u to v. If the outer face of G is to the left (right) of e then we
say that the left face (right face) of e is s∗ (t∗).

Using property (1) we can define the left path and the right path for each inner
face of G as follows. If f is an inner face of G then the left path (right path) of f
consists of edges from the boundary of f for which f is the right face (left face). For
example, in Fig. 2, the path (s, 1, 5) is the left path of the face (s, 2, 3, 5, 1) and the
path (s, 2, 3, 5) is the right path of this face.

Using property (2) we can define the left path for t∗ and the right path for s∗ as
follows. The right path of s∗ consists of edges from the boundary of the outer face
that have the outer face on their left side. The left path of t∗ consists of edges from the
boundary of the outer face that have the outer face on their right side. The left path for
s∗ and the right path for t∗ are not defined. For example, in Fig. 2, the path (s, 1, 5, t)
is the right path of s∗ and the path (s, 12, 13, t) is the left path of t∗.

Using property (3) we can define the left face and the right face for each vertex ofG
as follows. The left face (right face) of an inner vertex v is the unique face f incident
to v such that there are two edges e1 and e2 on the right path (left path) of f , where e1
is an incoming edge for v and e2 is an outgoing edge for v. If the left face (right face)
of v is the outer face of G, we say that the left face (right face) of u is s∗ (t∗). We also
say that s∗ (t∗) is the left face (right face) of s and t . For example, in Fig. 2, the left
face of vertex 5 is s∗ and the right face of this vertex is the face (s, 7, 8, 10, 14, 6, 5).

Let G be a plane st-graph. Let F be the set of inner faces of G together with s∗ and
t∗. The dual of G is the directed graph G∗ with vertex set F and edge set consisting
of all pairs (f, g) such that there exists an edge e of G with f being the left face of
e and g being the right face of e. Di Battista and Tamassia [14] showed that G∗ is a
planar s∗t∗-graph.

Let G be a plane st-graph and let G∗ be the dual of G. For two faces f and g in
V (G∗) we say that f is to the left of g, and that g is to the right of f , if there is a
directed path from f to g in G∗.

2.3 SPQR-Trees for Planar st-Graphs

An SPQR-tree for a planar graph G is usually used to describe all possible planar
embeddings of G. In this paper we employ a specific version of SPQR-trees that
allows us to describe all st-embeddings of a planar st-graph. Di Battista and Tamassia
[15] were the first to define such SPQR-trees, and to prove the properties presented in
this section.

LetG be a planar st-graph. A cut-vertex ofG is a vertex whose removal disconnects
G. A separation pair of G is a pair of vertices whose removal disconnects G. A split
pair of G is either a separation pair or a pair of adjacent vertices. A split component
of a split pair {u, v} is either an edge (u, v) or a maximal subgraph C of G such that C
is a planar uv-graph and {u, v} is not a split pair of C . A maximal split pair {u, v} of
G is a split pair such that there is no other split pair {u′, v′} where {u, v} is contained
in some split component of {u′, v′}.

An SPQR-tree T for a planar st-graph G is a recursive decomposition of G with
respect to the split pairs of G. The tree T is rooted and its nodes are of four types:

123

2294 Algorithmica (2018) 80:2286–2323

S for series nodes, P for parallel nodes, Q for edge nodes, and R for rigid nodes.
Each node μ of T represents a planar st-graph (a subgraph of G) called the pertinent
digraph of μ and denoted by Gμ. We use sμ and tμ to denote the poles of Gμ: sμ is
the source of Gμ, and tμ is the sink of Gμ. The pertinent digraph of the root node of
T is G. Each node μ of T has an associated directed multigraph skel(μ) called the
skeleton of μ. If μ is not the root of the tree, then let λ be the parent of μ in T . The
node μ is associated with an edge of the skeleton of λ, called the virtual edge of μ,
which connects the poles of Gμ and represents Gμ in skel(λ). The tree T is defined
recursively as follows.

• Trivial case If G consists of a single edge (s, t), then T is simply a Q-node μ. The
skeleton skel(μ) is G.

• Series case IfG is a chain of biconnected componentsG1, . . . ,Gk for some k � 2
and c1, . . . , ck−1 are the cut-vertices encountered in this order on any path from s
to t , then the root of T is an S-node μ with children μ1, . . . , μk . Let c0 = s and
ck = t . The skeleton skel(μ) is the directed path c0, . . . , ck . The pertinent digraph
of μi is Gi , and edge (ci−1, ci) of skel(μ) is the virtual edge of μi .

• Parallel case If {s, t} is a split pair of G with split components G1, . . . ,Gk for
some k � 2, then the root of T is a P-node μ with children μ1, . . . , μk . The
skeleton skel(μ) has k parallel edges (s, t): e1, . . . , ek . The pertinent digraph of
μi is Gi , and edge ei of skel(μ) is the virtual edge of μi .

• Rigid case If none of the above applies, let {s1, t1}, . . . , {sk, tk} for some k � 2
be the maximal split pairs of G. For i = 1, . . . , k, let Gi be the union of all split
components of {si , ti }. The root of T is an R-node μ with children μ1, . . . , μk .
The skeleton skel(μ) is obtained from G by replacing each subgraph Gi with an
edge ei = (si , ti). The pertinent digraph of μi is Gi , and edge ei of skel(μ) is the
virtual edge of μi .

Note also that there is no additional edge between the poles of the skeleton of a
series, parallel or rigid node—this is the only difference in the SPQR-tree definition
given above and the one given in [15]. In particular, our definition ensures that we have
a one-to-one correspondence between the edges of skel(μ) and the children of μ. See
Fig. 3 for an example of an SPQR-decomposition of the planar st-graph presented in
Fig. 2.

Observe that the skeleton of a rigid node has only two st-embeddings, one being
the flip of the other around the poles of the node. The skeleton of a parallel node with
k children has k! st-embeddings, one for every permutation of the edges of skel(μ).
The skeleton of a series node or a edge node has only one st-embedding.

There is a correspondence between st-embeddings of a planar st-graph G and
st-embeddings of the skeletons of P-nodes and R-nodes in the SPQR-tree T for G.
Having selected an st-embedding of the skeleton of all P-nodes and all R-nodes, we
can construct an embedding of G as follows. Let t be the root of T . We replace every
virtual edge (u, v) in the embedding of skel(t)with the recursively defined embedding
of the pertinent digraph of a child of t associated with the edge (u, v). On the other
hand, any st-embedding of G determines:

• one of the two possible flips of the skeleton of every R-node in T ;
• a permutation of the edges in the skeleton of every P-node.

123

Algorithmica (2018) 80:2286–2323 2295

R-node

s

5

10

13

14

t

P -node

s

5 S-node

s

7

10

R-node

s

11

12

13S-node

5

6

14

S-node

s

1

5

S-node

s

2

5

P -node

7

10

P -node

2

5

S-node

2

3

5 S-node

2

4

5

S-node

7

8

10 S-node

7

9

10

Fig. 3 The SPQR-tree for the graph in Fig. 2. The Q-nodes (leaves of the tree) have been omitted for clarity.
For each S-, P-, and R-node, the skeleton is given such that each solid edge corresponds to a Q-node child
and each dashed edge corresponds to a S-, P-, or R-node child

Di Battista and Tamassia [15] showed that the SPQR-tree T for a planar st-graph
with n vertices has O(n) nodes, and that the total number of edges of all skeletons
is O(n). Gutwenger and Mutzel [30] showed that the SPQR-tree can be computed in
linear time.

2.4 NP-Complete Problems

Our hardness proofs use reductions from the following NP-complete problems:

3Partition:

Input:A set of positive integers w, a1, a2, . . . , a3m such that for each i = 1, . . . , 3m,
we have w

4 <ai<
w
2 .

Question: Can {a1, . . . , a3m} be partitioned into m triples, such that the total sum of
each triple is exactly w?

3Partition is known to be strongly NP-complete [26], i.e., the problem remains
NP-complete even when the integers given in the input are encoded in unary.

PlanarMonotone3Sat:

Input: A rectilinear planar representation of a 3Sat formula in which each variable
is a horizontal segment on the x-axis, each clause is a horizontal segment above or

123

2296 Algorithmica (2018) 80:2286–2323

x1 x2 x3 x4 x5 x6

x1 ∨ x2 ∨ x3 x4 ∨ x5 ∨ x6

x1 ∨ x3 ∨ x6

x2 ∨ x3 ∨ x4

x1 ∨ x2 ∨ x4

x1 ∨ x4 ∨ x5

Fig. 4 A PlanarMonotone3Sat formula with variables x1, . . . , x6; positive clauses {x1, x3, x6},
{x1, x2, x3}, and {x4, x5, x6}; and negative clauses {x1, x4, x5}, {x1, x2, x4}, and {x2, x3, x4}

below the x-axis with straight-line vertical connections to the variables it includes.
All positive clauses are above the x-axis and all negative clauses are below the x-axis.
There are no clauses including both positive and negative occurrences of variables,
all horizontal segments are pairwise disjoint, and each vertical connection intersects
only with the two segments that it connects. See Fig. 4 for an example.

Question: Is the formula satisfiable?

PlanarMonotone3Sat is known to beNP-complete thanks to de Berg andKhosravi
[18].

3 Bar Visibility and Rectangular Bar Visibility Representations for
Planar Digraphs

A bar visibility representationψ of a planar st-graph is rectangular when X (ψ(s)) =
X (ψ(t)) and for any vertex v we have X (ψ(v)) ⊆ X (ψ(s)). Tamassia and Tollis
[47] observed the following connection between planar st-graphs and rectangular bar
visibility representations. Any collection of pairwise disjoint bars � with the bottom-
most bar s and the top-most bar t that satisfies X (s) = X (t), and X (a) ⊆ X (s) for
every a ∈ �, naturally induces a planar st-graph on the set �—a digraph containing
all edges (a, b) such that a is strictly below b and there is a visibility gap between
a and b in �. They further showed that every planar st-graph has a rectangular bar
visibility representation.

The next lemma characterizes the planar digraphs that admit a bar visibility repre-
sentation. For a planar digraph G, let st (G) be a graph constructed from G by adding
two vertices s and t , the edge (s, t), an edge (s, v) for each source vertex v of G, and
an edge (v, t) for each sink vertex v of G.

Lemma 2 A planar directed graph G admits a bar visibility representation if and
only if the graph st (G) is a planar st-graph.

Proof Suppose that st (G) is a planar st-graph. Tamassia and Tollis [47] showed that
st (G) has a rectangular bar visibility representation ψ with the bottom-most bar ψ(s)
and the top-most bar ψ(t). Clearly, ψ |V (G) is a bar visibility representation for G.

123

Algorithmica (2018) 80:2286–2323 2297

Conversely, assume that ψ is a bar visibility representation of G and � is the
image of ψ . For every bar a ∈ �, let A(a) (B(a)) be the interior of the set of all x
such that ψ(a) is the first encountered bar from � if we traverse downward (upward)
the vertical line with the x-coordinate x . We say that a bar a ∈ � is visible from
above (below) if A(a) �= ∅ (B(a) �= ∅). Note that each A(a) and B(a) is a union of
disjoint open intervals. Observe also that if a represents a sink (a source) of G then
A(a) = (l(a), r(a)) (B(a) = (l(a), r(a))). Otherwise,ψ would not be a bar visibility
representation of G.

We claim that some bars in � can be extended so that the new set of bars still
representsG and has the property that only the bars representing the sources are visible
from below and only the bars representing the sinks are visible from above. Before we
give a proof of this claim, suppose thatψ satisfies this property.We can define two bars
ψ(s) andψ(t) such that X (s) = X (t), X (

⋃
�) � X (s), and yψ(s) < yψ(v) < yψ(t)

for every vertex v ofG. This extension ofψ is a rectangular bar representation of st (G).
It follows that st (G) is a planar st-graph.

Now we show that ψ can be modified so that the bars visible from below (above)
represent the sources (sinks) of G. Let X denote the set of the x-coordinates of all
end-points of all bars in �. Let ε and δ be respectively the minimum and the maximum
difference between any two values in X . Suppose that there is a bar ψ(v) in � that
is visible from below and v is not a source of G. Suppose (L , R) is an interval of
B(ψ(v)) and observe that both L and R are in X . Since v is not a source of G and ψ

is a visibility representation of G, there is a vertex u in G such that (u, v) is an edge
of G, and either rψ(u) = L or lψ(u) = R. If rψ(u) = L , we extend ψ(u) to the right
so that rψ(u) = R, and if lψ(u) = R, we extend ψ(u) to the left so that lψ(u) = L .
Observe that such a modification only introduces additional visibility gaps between
ψ(u) and ψ(v), and does not change any visibility gap between any other two bars.
Thus, the modified ψ remains a representation of G. Moreover, all end-points of all
bars are still in X and the total length of all bars increases by at least ε. We repeat
the same procedure as long as there is a vertex v that is not a source of G and ψ(v)

is visible from below. The number of repetitions is bounded, as the length of any
single bar never exceeds δ. In the resulting representation, each bar visible from below
represents a source of G. Next, we transform ψ again, using a similar algorithm, so
that each bar visible from above represents a sink of G. It is easy to see, that in the
second step we do not introduce any new bars that are visible from below. Thus, in
the resulting representation, all the bars visible from below are sources of G and all
the bars visible from above are sinks of G. 	

Lemma 2 gives a linear-time algorithm for the recognition of planar digraphs that
admit a bar visibility representation.Recall from thediscussion inSect. 1 that the recog-
nition of planar digraphs that admit a weak visibility representation is anNP-complete
problem. It follows that the extension problem for digraphs in theweak visibilitymodel
is NP-complete. We do not know the complexity status for the extension problem for
digraphs neither in the strong nor in the bar visibility model. Nevertheless, the results
in Sect. 4 give hope for a polynomial-time algorithm for the extension problem for
bar visibility representations of digraphs.

123

2298 Algorithmica (2018) 80:2286–2323

4 Rectangular Bar Visibility Representations of Planar st-Graphs

In this section we solve the following problem.
Rectangular Bar Visibility Representation Extension for planar st-graphs:

Input: (G, ψ ′), where G is a planar st-graph and ψ ′ is a mapping assigning bars to
some subset V ′ of V (G).

Question:DoesG admit a rectangular bar visibility representationψ withψ |V ′ = ψ ′?
As our algorithm is rather technical (involvingmany small details), we now provide

a high level description of the main ideas. In the first step, our algorithm calculates
y-coordinates yψ for our potential bars. Namely, the algorithm checks whether yψ ′ :
V ′ → R is extendable to an st-valuation yψ of G. When such an extension does not
exist, the algorithm rejects; otherwise it turns out (as shown in Lemma 10) that any
extension of yψ ′ can be used as yψ . To determinewhether there is a set of x-coordinates
to match this set of y-coordinates, we use a dynamic programming approach which
proceeds bottom-up through the SPQR-tree T of the given planar st-graph G. Recall
that, as discussed in Sect. 2.3, T provides a hierarchical decomposition ofG according
to separation pairs, i.e., each node μ of T corresponds to a separation pair (u, v) in G.
Additionally, for a separation pair (u, v) corresponding to a nodeμ in T , the subgraph
‘between’ u and v is a planar st-graph, and is precisely the pertinent digraph of μ. We
will see that there is a similar connection between the SPQR-tree and each rectangular
bar visibility representation ψ of G. Namely, we describe how ψ ‘decomposes’ into
sub-representations according to these separation pairs, i.e., for each node μ and its
corresponding separation pair (u, v), there is a particular rectangular bar visibility
representation ψμ of the pertinent digraph Gμ of μ in ψ . Moreover, we will see that
each ψμ partitions into rectangular ‘tiles’ where each ‘tile’ is a representation of one
of its children. We say that a ‘tile’ of a representation ψμ of Gμ is valid when it
extends ψ ′|V (Gμ). Now, essentially, the key to our dynamic program is to efficiently
describe the set of possible valid ‘tiles’ of the representations of Gμ in terms of the
valid ‘tiles’ of μ’s children. It turns out that it is sufficient to consider four types of
‘tiles’ for each node of T in order to accomplish this. To efficiently determine the
types of ‘tiles’ admitted by a node μ, we distinguish different cases depending on
whether μ is a P-node, an S-node, a Q-node, or an R-node. As usual, for dynamic
programming involving SQPR-trees, the R-node case is the most complex. So, we
describe it first in using a quadratic-time subroutine which is more intuitive. We then
describe a speed-up of this subroutine which runs in nearly linear time (this subroutine
remains as the main bottleneck for our running time).

Section 4.1 presents structural properties of bar visibility representations in relation
to anSPQR-decomposition.Wedescribe howa rectangular bar visibility representation
of the pertinent digraph of a node μ in the SPQR-decomposition is composed of
rectangular bar visibility representations of the pertinent digraphs of the children of
μ. In Sect. 4.2 we present an algorithm that solves this extension problem in quadratic
time. In Sect. 4.3 we refine the algorithm to work in O

(
n log2 n

)
time for a planar

st-graph with n vertices.

123

Algorithmica (2018) 80:2286–2323 2299

4.1 Structural Properties

Let � be a collection of pairwise disjoint bars. For a pair of bars a, b in � with
y(a) < y(b) let the set of visibility rectangles R(a, b) be the interior of the set of
points (x, y) in R2 that satisfy the following properties:

(1) a is the first bar in � on a vertical line downwards from (x, y),
(2) b is the first bar in � on a vertical line upwards from (x, y).

Figure 2 shows (shaded area) the set of visibility rectangles R(s, 5). Note that there is
a visibility gap between a and b in � if and only if R(a, b) is non-empty. Additionally,
if R(a, b) is non-empty, then it is a union of pairwise disjoint open rectangles spanned
between a and b.

LetG be a planar st-graph and let T be the SPQR-tree forG. Letψ be a rectangular
bar visibility representation of G. For every node μ of T we define the set Bψ(μ),
called the bounding box of μ with respect to ψ , as the closure of the following union:

⋃{
R(ψ(u), ψ(v)) : (u, v) is an edge of the pertinent digraph Gμ

}
.

If ψ is clear from the context, then the set Bψ(μ) is denoted by B(μ) and is called
the bounding box of μ. Let B(ψ) = X (ψ(V (G))) × Y (ψ(V (G))) be the minimal
closed axis-aligned rectangle that contains the representation ψ . It follows from the
definition of rectangular embedding, and from the definition of bounding box, that:

(1) B(ψ) = Bψ(μ), where μ is the root of T ,
(2) each point in B(ψ) is in the closure of at least one set of visibility rectangles

R(ψ(u), ψ(v)) for some edge (u, v) of G,
(3) each point in B(ψ) is in at most one set of visibility rectangles.

The following two lemmas describe basic properties of a bounding box.

Lemma 4 (Q-Tiling Lemma) Let μ be a Q-node in T that corresponds to an edge
(u, v) of G. For any rectangular bar visibility representation ψ of G we have:

(1) B(μ) is a union of pairwise disjoint rectangles spanned between ψ(u) and ψ(v).
(2) If B(μ) is not a single rectangle, then the parent λ of μ in T is a P-node, and u,

v are the poles of the pertinent digraph Gλ.

Proof The first assertion is obvious. Suppose that B(μ) is a union of at least 2 rectan-
gles. Let R1 and R2 be the two left-most rectangles of B(μ). Consider the rectangle S
spanned between ψ(u) and ψ(v) and between the right side of R1 and left side of R2.
There are some bars in ψ(G) that are contained in S. The vertices corresponding to
these bars together with u and v form a planar uv-graph. Hence, the split pair {u, v}
has at least two split components: the edge (u, v) and at least one other component.
Thus, λ is a P-node with poles u and v.

In Fig. 5 observe that the set R(s, 5) is a union of two rectangles. Recall the SPQR-
decomposition presented in Fig. 3 and that the Q-node corresponding to the edge
(s, 5) is a child of a P-node.

123

2300 Algorithmica (2018) 80:2286–2323

TheBasic Tiling Lemma presented below describes the relation between the bound-
ing box of an inner node μ and the bounding boxes of the children of μ in any
rectangular bar visibility representation of G. In particular, the next lemma justifies
the use of the name bounding box for the set B(μ).

Lemma 5 (Basic Tiling Lemma) Let μ be an inner node in T with children
μ1, . . . , μk , k � 2. For any rectangular bar visibility representation ψ of G we
have:

(1) ψ(v) ⊆ B(μ) for every inner vertex v of Gμ.
(2) B(μ) is a rectangle that is spanned between ψ(sμ) and ψ(tμ).
(3) The sets B(μ1), . . . , B(μk) tile the rectangle B(μ), i.e., B(μ1), . . . , B(μk) cover

B(μ) and the interiors of B(μ1), . . . , B(μk) are pairwise disjoint.

Proof Observe that for an inner vertex v of Gμ, any edge of G incident to v is an
edge of Gμ. The closures of the sets of visibility rectangles corresponding to all edges
incident to v cover ψ(v) and property (1) follows.

To prove (2) note that for every inner vertex v of Gμ, the set

Sμ(v) = X (ψ(v)) × [y(ψ(sμ)), y(ψ(tμ))]

is a rectangle that is spanned between ψ(sμ) and ψ(tμ) and it is internally disjoint
from ψ(w) for any vertex w not in V (Gμ). Otherwise, there would be a visibility
gap that would correspond to an edge between an inner vertex of Gμ and a vertex in
V (G) � V (Gμ).

If (sμ, tμ) is not an edge of Gμ, then

B(μ) =
⋃

{Sμ(v) : v is an inner vertex of Gμ};

otherwise

B(μ) =
⋃

{Sμ(v) : v is an inner vertex of Gμ} ∪ R(ψ(sμ), ψ(tμ)).

In both cases B(μ) is a rectangle spanned between ψ(sμ) and ψ(tμ).
Property (3) follows immediately from the fact that the edges of Gμ1 , . . . ,Gμk

form a partition of the edges of Gμ. 	

In the next three lemmas we extend the Basic Tiling Lemma by a more precise

description of tilings of the bounding box of an inner nodeμ by the bounding boxes of
the children of μ. We separately consider the cases that μ is a P-node, an S-node, and
an R-node. Figures 5, and 6 give a graphical presentation of the Tiling Lemmas. In
Lemmas 6, 7, and 9 we assume that μ1, . . . , μk are the children of μ for some k � 2.

Lemma 6 (P-Tiling Lemma) Let μ be a P-node. For any rectangular bar visibility
representation ψ of G we have:

(1) If (sμ, tμ) is not an edge of G, then the sets B(μ1), . . . , B(μk) are rectangles
spanned between ψ(sμ) and ψ(tμ).

123

Algorithmica (2018) 80:2286–2323 2301

s

1

2

3

4

5

6

7

8 9

10

11

12

13

14

t
ψ(t)

ψ(14)

ψ(13)ψ(6)

ψ(10)

ψ(5)

ψ(12)

ψ(9)ψ(8)ψ(4)ψ(3)

ψ(11)

ψ(1)

ψ(7)ψ(2)

ψ(s)

Fig. 5 The graph G, the pertinent digraph of the P-node μ1 (solid thick edges), the pertinent digraph of
the S-node μ2 (dashed thick edges), the representation ψ(G), the tiling of μ1 in ψ(G) (solid fill), and the
tiling of μ2 in ψ(G) (patterned fill)

s∗ t∗

s

5 10

13

14

t

f1

f2

f3

f4

f5

χ(s∗)

χ(f1)

χ(f2)

χ(f3)

χ(f4)

χ(f5)

χ(t∗)

ψ(t)

ψ(14)

ψ(13)

ψ(10)
ψ(5)

ψ(s)

Fig. 6 The tiling of the R-node μ, the embedding E of skel(μ), splitting lines (dashed) for faces of E , and
the st-valuation χ of E∗

(2) If (sμ, tμ) is an edge of G, then μ has exactly one child that is a Q-node, say μ1,
and:
• For i = 2, . . . , k, B(μi) is a rectangle spanned between ψ(sμ) and ψ(tμ).
• B(μ1) is a non-empty union of rectangles spanned between ψ(sμ) and ψ(tμ).

Proof This is an immediate consequence of the Basic Tiling Lemma and Lemma 4.
	

123

2302 Algorithmica (2018) 80:2286–2323

When μ is an S-node or an R-node, then there is no edge (sμ, tμ). By the Q-Tiling
Lemma and by the Basic Tiling Lemma, each set B(μi) is a rectangle that is spanned
between the bars representing the poles of Gμi .

Lemma 7 (S-Tiling Lemma) Letμ be an S-node. Let c1, . . . , ck−1 be the cut-vertices
of Gμ encountered in this order on a path from sμ to tμ. Let c0 = sμ, and ck = tμ.
For any rectangular bar visibility representation ψ of G, for every i = 1, . . . , k − 1,
we have X (ψ(ci)) = X (B(μ)). For every i = 1, . . . , k, B(μi) is spanned between
ψ(ci−1) and ψ(ci) and X (B(μi)) = X (B(μ)).

Proof Suppose to the contrary, that the bar assigned to cut-vertex ci is the first one that
does not span the whole interval X (B(μ)). This creates a gap of visibility between a
vertex in the i-th biconnected component and a vertex in one of the later components.
This contradicts ci being a cut-vertex.

The R-Tiling Lemma should describe all possible tilings of the bounding box of
an R-node μ that appear in all representations of G. Since there is a one-to-one
correspondence between the edges of skel(μ) and the children ofμ, we abuse notation
and write B(u, v) to denote the bounding box of the child of μ that corresponds to the
edge (u, v) of skel(μ). By the Basic Tilling Lemma, B(u, v) is spanned between the
bars representing u and v.

Suppose that ψ is a representation of G. The tiling τ = (Bψ(μ1), . . . , Bψ(μk)) of
Bψ(μ) determines a triple (E, ξ, χ), where:

• E is an sμtμ-embedding of skel(μ),
• ξ is an st-valuation of E ,
• χ is an st-valuation of E∗,

that are defined as follows.
Consider the following planar drawing of the planar st-graph skel(μ). Draw every

vertex u in the middle of ψ(u), and every edge e = (u, v) as a curve that starts in the
middle of ψ(u), goes a little above ψ(u) towards the rectangle Bψ(u, v), goes inside
Bψ(u, v) towards ψ(v), and a little below ψ(v) to the middle of ψ(v). This way we
obtain a plane st-graph E , which is an st-embedding of skel(μ). The st-valuation ξ

of E is just the restriction of yψ to the vertices from skel(μ), i.e., ξ = yψ |V (skel(μ)).
To define the st-valuation χ of E∗ we use the following lemma.

Lemma 8 (Face Condition)

(1) Let f be a face in V (E∗) different than t∗, and v0, v1, . . . , vn be the right
path of f . There is a vertical line Lr (f) that contains the left endpoints of
ψ(v1), . . . , ψ(vn−1) and the left sides of Bψ(v0, v1), . . . , Bψ(vn−1, vn).

(2) Let f be a face in V (E∗) different than s∗, and u0, u1, . . . , um be the left
path of f . There is a vertical line Ll(f) that contains the right endpoints of
ψ(u1), . . . , ψ(um−1) and the right sides of Bψ(u0, u1), . . . , Bψ(um−1, um).

(3) If f is an inner face of E then Ll(f) = Lr (f).

Proof To prove (1) we first show that for every i = 1, . . . , n − 1, we have

l(ψ(vi)) = l(Bψ(vi−1, vi)).

123

Algorithmica (2018) 80:2286–2323 2303

By the Basic Tiling Lemma, Bψ(vi−1, vi) is a rectangle spanned between ψ(vi−1)

and ψ(vi). It follows that l(ψ(vi)) � l(Bψ(vi−1, vi)). Suppose that l(ψ(vi)) <

l(Bψ(vi−1, vi)). By the Basic Tiling Lemma again, there is a child λ of μ such that
the rectangle Bψ(λ) has its top right corner located at the intersection of the left side
of Bψ(vi−1, vi) and ψ(vi). Clearly, λ corresponds to an edge of skel(μ) that is in
the embedding E between (vi−1, vi) and (vi , vi+1) in the clockwise order around
vi . However, there is no such edge in E , a contradiction. Similarly, for every i =
1, . . . , n − 1, we have

l(ψ(vi)) = l(Bψ(vi , vi+1)).

It follows that the left sides of the bounding boxes Bψ(v0, v1), . . . , Bψ(vn−1, vn) and
the left endpoints of ψ(v1), . . . , ψ(vn−1) are aligned to the same vertical line Lr (f).

The proof of (2) is analogous. Property (3) is an immediate consequence of the
Basic Tiling Lemma. 	

The above lemma allows us to introduce the notion of a splitting line for every face
f in V (E∗); namely, the splitting line of f is: the line Ll(f) = Lr (f) if f is an inner
face of E , Lr (f) if f is the left outer face of E , and Ll(f) if f is the right outer face
of E . Now, let χ(f) be the x-coordinate of the splitting line for a face f in V (E∗).
To show that χ(f) is an st-valuation of E∗, note that for any edge (f, g) of E∗ there
is an edge (u, v) of E that has f on the left side and g on the right side. It follows
that χ(f) = l(Bψ(u, v)) < r(Bψ(u, v)) = χ(g), proving the claim. See Fig. 6 for an
illustration.

The representation ψ of G determines the triple (E, ξ, χ). Note that any other
representation with the same tiling τ = (Bψ(μ1), . . . , Bψ(μk)) of B(μ) gives the
same triple. To emphasize that the triple (E, ξ, χ) is determined by tiling τ , we write
(Eτ , ξτ , χτ).

Now, assume that E is an st-embedding of skel(μ), ξ is an st-valuation of E , and
χ is an st-valuation of the dual of E . Consider the function φ that assigns to every
vertex v of skel(μ) the bar φ(v) defined as follows:

yφ(v) = ξ(v),
lφ(v) = χ(left face of v),
rφ(v) = χ(right face of v).

Firstly, Tamassia and Tollis [47] showed that φ is a bar visibility representation of
skel(μ) and that for τ = (Bφ(μ1), . . . , Bφ(μk)), we have (Eτ , ξτ , χτ) = (E, ξ, χ).

Secondly, there is a representation ψ of G that agrees with τ on skel(μ), i.e.,
such that τ = (Bψ(μ1), . . . , Bψ(μk)). To construct such a representation, we take
any representation ψ of G, translate and scale all bars in ψ to get Bψ(μ) = Bφ(μ),
and represent the pertinent digraphs Gμ1 , . . . ,Gμk so that the bounding box of μi

coincides with Bφ(μi) for i = 1, . . . , k.
The considerations given above lead us to the following lemma.

Lemma 9 (R-Tiling Lemma) Let μ be an R-node. There is a one-to-one correspon-
dence between the set

123

2304 Algorithmica (2018) 80:2286–2323

T = {(Bψ(μ1), . . . , Bψ(μk)) : ψ is a rectangular bar visibility representation of G}

of all possible tilings of the bounding box of μ by the bounding boxes of μ1, . . . , μk

in all representations of G and the set

T ′ =
⎧
⎨

⎩
(E, ξ, χ) :

E is an st-embedding of skel(μ),

ξ is an st-valuation of E,

χ is an st-valuation of the dual of E .

⎫
⎬

⎭

4.2 Algorithm for Rectangular Bar Visibility Extension of Planar st-Graphs

Let G be a planar st-graph with n vertices and ψ ′ be a partial representation of G
with the set of fixed vertices V ′. We present a quadratic-time algorithm that tests if
there exists a rectangular bar visibility representation ψ of G that extends ψ ′. If such
a representation exists, then the algorithm can construct it in the same time.

In the first step, our algorithm calculates yψ . Namely, the algorithm checks whether
yψ ′ : V ′ → R is extendable to an st-valuation of G. When such an extension does
not exist, the algorithm rejects the instance (G, ψ ′); otherwise any extension of yψ ′
can be used as yψ . The correctness of this step is verified by the following lemma.

Lemma 10 Suppose that ψ is a rectangular bar visibility representation of G that
extends ψ ′.

(1) The function yψ is an st-valuation of G that extends yψ ′ ,
(2) If y is an st-valuation of G that extends yψ ′ , then the function φ that sends every

vertex v of G into a bar so that

yφ(v) = y(v), lφ(v) = lψ(v), rφ(v) = rψ(v)

is also a rectangular bar visibility representation of G that extends ψ ′.

Proof The function yψ extends yψ ′ , because ψ extends ψ ′. It is an st-valuation of G
because for an edge (u, v) of G, the bar of u is below the bar of v.

For the proof of (2), observe that for each vertex u of G we have X (φ(u))

= X (ψ(u)). We claim that for any two vertices u, v of G such that the interior
of X (ψ(u)) ∩ X (ψ(v)) is non-empty we have that yψ(u) < yψ(v) if and only if
y(u) < y(v). For the proof of this claim, let u and v be vertices of G such that the
interior of X (ψ(u))∩ X (ψ(v)) is non-empty. From the fact that ψ(V (G)) is a collec-
tion of pairwise disjoint bars, it follows that yψ(u) �= yψ(v).Without loss of generality
assume that yψ(u) < yψ(v). The non-empty interior of X (ψ(u)) ∩ X (ψ(v)) means
that there is a path from u to v in G. Hence y(u) < y(v) as y is an st-valuation of G.

As a consequence we have that (x1, x2)×(yψ(u), yψ(v)) is a visibility gap between
bars ψ(u) and ψ(v) in representation ψ if and only if (x1, x2) × (y(u), y(v)) is a
visibility gap betweenφ(u) andφ(v) andφ is a rectangular bar visibility representation
of G. 	

123

Algorithmica (2018) 80:2286–2323 2305

Clearly, checking whether yψ ′ is extendable to an st-valuation of G, and constructing
such an extension can be done inO(n)-time. In the second step, the algorithmcomputes
the SPQR-tree T for G, which also takes linear time.

Before we describe the last step in our algorithm, we need some preparation. For
an inner node μ in T we define the sets V ′(μ) and C(μ) as follows:

V ′(μ) = the set of fixed vertices in V (Gμ) � {sμ, tμ},

C(μ) =
⎧
⎨

⎩

∅, if V ′(μ) = ∅;
the smallest axis aligned, closed rectangle that contains ψ ′(u) for
all u ∈ V ′(μ), otherwise.

The set C(μ) is called the core of μ. For a node μ whose core is empty, our algorithm
can represent Gμ in any rectangle spanned between the poles of Gμ. Thus, we focus
our attention on nodes whose core is non-empty.

Assume that μ is a node whose core is non-empty. We describe the ‘possible
shapes’ the bounding box of μ might have in a representation of G that extends ψ ′.
The bounding box of μ is a rectangle that is spanned between the bars corresponding
to the poles of Gμ. By the Basic Tiling Lemma, if C(μ) is non-empty then B(μ)

contains C(μ). For our algorithm it is important to distinguish whether the left (right)
side of B(μ) contains the left (right) side of C(μ). This criterion leads to four types
of representations of μ with respect to the core of μ.

The main idea of the algorithm is to decide for each inner node μ whose core is
non-empty, which of the four types of representation of μ are possible and which are
not. The algorithm traverses the tree bottom-up and for each node and each type of
representation it tries to construct the appropriate tiling using the information about
possible representations of its children. The types chosen for different children need
to fit together to obtain a tiling of the parent node. In what follows, we present our
approach in more detail.

Let μ be an inner node in T . Fix φ′ = ψ ′|V ′(μ). It is convenient to think of φ′
as a partial representation of the pertinent digraph Gμ obtained by restricting ψ ′ to
the inner vertices of Gμ. In particular, φ′ is empty if the core of μ is empty. Let x, x ′
be two real values. A rectangular bar visibility representation φ of Gμ is called an
[x, x ′]-representation of μ if φ extends φ′ and X (φ(sμ)) = X (φ(tμ)) = [x, x ′].

A node μ whose core is empty has an [x, x ′]-representation for any x < x ′. In
particular, a Q-node has an [x, x ′]-representation for any x < x ′.

We say that an [x, x ′]-representation of an inner node μ whose core is non-empty
is:

• left-loose, right-loose (LL-representation), when x < l(C(μ)) and x ′ > r(C(μ)),
• left-loose, right-fixed (LF-representation), when x < l(C(μ)) and x ′ = r(C(μ)),
• left-fixed, right-loose (FL-representation), when x = l(C(μ)) and x ′ > r(C(μ)),
• left-fixed, right-fixed (FF-representation), when x = l(C(μ)) and x ′ = r(C(μ)).

The next lemma justifies this categorization of representations. It says that if a
representation of a given type exists, then every representation of the same type is also
realizable.

123

2306 Algorithmica (2018) 80:2286–2323

Lemma 11 (Stretching Lemma) Let μ be an inner node whose core is non-empty. We
have that:

• If μ has an LL-representation, then μ has an [x, x ′]-representation for any x <

l(C(μ)) and any x ′ > r(C(μ)).
• If μ has an LF-representation, then μ has an [x, x ′]-representation for any x <

l(C(μ)) and x ′ = r(C(μ)).
• If μ has an FL-representation, then μ has an [x, x ′]-representation for x =
l(C(μ)) and any x ′ > r(C(μ)).

Proof Let xl = l(C(μ)). Suppose that φ is some left-loose [x1, x ′]-representation of
μ with x1 < xl . For any x2 < xl we can obtain an [x2, x ′]-representation of μ by
appropriately stretching the part of the drawing of φ that is to the left of xl . If the
representation is right-loose, then we can arbitrarily stretch the part of the drawing
that is to the right of r(C(μ)). 	

The main task of the algorithm is to verify which representations are feasible for
nodes that have non-empty cores. We assume that:

• μ is an inner node whose core is non-empty.
• μ1, . . . , μk are the children of μ, k � 2.
• λ1, . . . , λk′ are the children of μ with C(λi) �= ∅, 0 � k′ � k.
• θ(λi) is the set of feasible types of representations for λi ,

θ(λi) ⊆ {LL , LF, FL , FF}.
We process the tree bottom-up and assume that θ(λi) is already computed and non-
empty.

Let x and x ′ be two real numbers such that x � l(C(μ)) and x ′ � r(C(μ)). We
provide an algorithm that tests whether an [x, x ′]-representation of μ exists. We use
it to find feasible types for μ by calling it four times with appropriate values of x
and x ′. While searching for an [x, x ′]-representation of μ our algorithm tries to tile
the rectangle [x, x ′] × [y(sμ), y(tμ)] with B(μ1), . . . , B(μk). The tiling procedure is
determined by the Tiling Lemma specific for the type of μ. Note that as the core of a
Q-node is empty, the algorithm splits into three cases: μ is an S-node, a P-node, and
an R-node.

Case S. μ is an S-node In this case we attempt to align the left and right sides of the
bounding boxes of the children of μ to x and x ′ respectively. We also must have the
x-intervals of the bars of the cut vertices set to [x, x ′].
Claim 12 There exists an [x, x ′]-representation of an S-node μ if and only if Algo-
rithm 1 returns true.

Proof Claim follows directly from the Tiling Lemma for Series Nodes and the Stretch-
ing Lemma.

Case P. μ is a P-node In this case we attempt to tile the rectangle [x, x ′] ×
[y(sμ), y(tμ)] by placing the bounding boxes of the children of μ side by side from
left to right. The order of children whose cores are non-empty is determined by the

123

Algorithmica (2018) 80:2286–2323 2307

Algorithm 1 Algorithm for series node
1: for each cut-vertex c in Gμ do
2: if c ∈ V ′(μ) and X (ψ ′(c)) �= [x, x ′] then
3: return False
 fixed cut-vertex does not span [x, x ′]
4: for i = 1, . . . , k′ do
5: if l(C(λi)) > x and r(C(λi)) < x ′ and LL /∈ θ(λi) then
6: return False
 λi must stretch on both sides

7: if l(C(λi)) > x and r(C(λi)) = x ′ and LF /∈ θ(λi) then
8: return False
 λi must stretch only on the left side

9: if l(C(λi)) = x and r(C(λi)) < x ′ and FL /∈ θ(λi) then
10: return False
 λi must stretch only on the right side

11: if l(C(λi)) = x and r(C(λi)) = x ′ and FF /∈ θ(λi) then
12: return False
 λi must stretch on neither side

13: return True

position of those cores. We need to find enough space to place the bounding boxes of
children whose cores are empty. Additionally, if (sμ, tμ) is an edge ofG, then we need
to leave at least one visibility gap in the tiling for that edge. Otherwise, if (sμ, tμ) is
not an edge of G, we need to close all the gaps in the tiling. The tiling algorithm is
presented as Algorithm 2.

Algorithm 2 Algorithm for parallel node
1: sort λi ’s by the value l(C(λi))

2: for i = 1, . . . , k′ do
3: li ← l(C(λi)), ri ← r(C(λi))
 left- and right- endpoints of cores

4: r0 ← x , lk′+1 ← x ′
5: closed ← ∅
 set of closed gaps
6: for i = 0, . . . , k′ do
7: if ri > li+1 then
8: return False
 cores overlap

9: if ri = li+1 then
10: closed ← closed ∪ {i}
 λi and λi+1 touch
11: if i > 0 then
12: θ(λi) ← θ(λi) � {FL , LL}
 Use right-fixed rep. of λi

13: if i < k′ then
14: θ(λi+1) ← θ(λi+1) � {LF, LL}
 Use left-fixed rep. of λi+1

15: if
(
k > k′ or (sμ, tμ) ∈ E(Gμ)

)
and |closed| = k′ + 1 then

16: return False
 there is no gap

17: for i = 1, . . . , k′ do
18: if θ(λi) = ∅ then
19: return False
20: if LL ∈ θ(λi) then
21: closed ← closed ∪ {i − 1, i}
 close both gaps
22: else if i − 1 /∈ closed and LF ∈ θ(λi) then
23: closed ← closed ∪ {i − 1}
 close left gap
24: else if FL ∈ θ(λi) then
25: closed ← closed ∪ {i}
 close right gap

26: return (sμ, tμ) ∈ E(Gμ) or k − k′ >= k′ + 1 − |closed|
 can close all gaps

123

2308 Algorithmica (2018) 80:2286–2323

In line 1 the children whose cores are non-empty are sorted by the left end of the
core. In lines 2 to 5 the variables li , ri , and an empty set closed are initialized.

If there are λi , λ j such that the interior of the set X (C(λi)) ∩ X (C(λ j)) is non-
empty, thenwe prove that there is no [x, x ′]-representation ofGμ. Indeed, by the Tiling
Lemma for Parallel Nodes and byC(λi) ⊆ B(λi), the interior of B(λi)∩B(λ j) is non-
empty and hence tiling of B(μ) with B(μ1), . . . , B(μk) is not possible. Additionally,
if r(C(λi)) = l(C(λ j)), then neither a right-loose representation of λi nor a left-loose
representation of λ j can be used. These checks and restrictions are performed by the
algorithm in lines 6 to 14.

Let Qi = [ri , li+1] × [y(sμ), y(tμ)] for i ∈ [0, k′]. We say that Qi is an open
gap (after λi , before λi+1) if Qi has non-empty interior. In particular, if x = r0 < l1
(rk′ < lk′+1 = x ′) then there is an open gap before λ1 (after λk′). On the one hand, if
there is an edge (sμ, tμ) or there is at least one μi whose core is empty, then we need
at least one open gap to construct an [x, x ′]-representation. This condition is checked
by the algorithm in line 15. On the other hand, if (sμ, tμ) is not an edge of G then we
need to close all the gaps in the tiling. There are two ways to close the gaps. Firstly, the
representation of each child node whose core is empty can be placed so that it closes
a gap. The second way is to use loose representations for children nodes λ1, . . . , λk′ .

If θ(λi) = ∅ for some i = 1, . . . , k′, then an [x, x ′]-representation of μ does not
exist. Assume that θ(λi) is non-empty for every i = 1, . . . , k′. Suppose that c is a
function that assigns to every λi a feasible type of representation from the set θ(λi).
Whenever c(λi) is right-loose or c(λi+1) is left-loose, we can stretch the representation
of λi or λi+1, so that it closes the gap Qi . In lines 17 to 25, the algorithm greedily
closes as many gaps as possible. The greedy strategy processes children λi ’s from left
to right and for each child: closes both adjacent gaps if it can; it prefers closing the left
gap if it is not yet closed (this is the last bounding box that can close this gap) from
the right gap.

If there are some open gaps left and (sμ, tμ) is not an edge of G, then each open
gap needs to be closed by placing in this gap a representation of one or more of the
children whose core is empty.

Claim 13 There exists an [x, x ′]-representation of a P-node μ if and only if Algo-
rithm 2 returns true.

Proof Claim follows by the Tiling Lemma for Parallel Nodes and the Stretching
Lemma. The correctness of the greedy strategy follows by a simple greedy exchange
argument.

Case R. μ is an R-node By the Tiling Lemma for Rigid Nodes, the set of possible
tilings of B(μ) by B(μ1), . . . , B(μk) is in correspondence with the triples (E, ξ, χ),
where E is a planar embedding of skel(μ), ξ is an st-valuation of E , and χ is an
st-valuation of E∗. To find an appropriate tiling of B(μ) (that yields an [x, x ′]-
representation of μ) we search through the set of such triples. Since μ is a rigid
node, there are only two planar st-embeddings of skel(μ) and we consider both of
them separately. Let E be one of these planar embeddings. Since the y-coordinate for
each vertex of G is already fixed, the st-valuation ξ is given by the y-coordinates of
the vertices from skel(μ). Now, it remains to find an st-valuation χ of E∗, i.e., to

123

Algorithmica (2018) 80:2286–2323 2309

determine the x-coordinate of the splitting line for every face f of E . First, for every
face f in V (E∗) we compute an initial set of possible placements for the splitting line
of f by taking into account the partial representation φ′. If f is an inner face of E ,
then we have the following restrictions on χ(f):

• If u is a fixed vertex on the left path of f , then χ(f) = r(u).
• If u is a fixed vertex on the right path of f , then χ(f) = l(u).
• If λ is a child of μ whose core is non-empty, and the virtual edge of λ is on the
left path of f , then χ(f) � r(C(λ)).

• If λ is a child of μ whose core is non-empty, and the virtual edge of λ is on the
right path of f , then χ(f) � l(C(λ)).

We impose analogous conditions for the faces s∗ and t∗.
Let X ′(f) be a set of all χ(f) in [x, x ′] that satisfy all the above conditions. If

X ′(f) = ∅ for some face f in V (E∗) or x /∈ X ′(s∗) or x ′ /∈ X ′(t∗), then there is
no [x, x ′]-representation of Gμ. Since we are looking for an [x, x ′]-representation of
Gμ, we set X ′(s∗) = [x, x] and X ′(t∗) = [x ′, x ′] as the splitting line for s∗ (t∗) must
be set to x (x ′).

Now, we further restrict the possible values for χ(f) by taking into account the
fact that χ needs to be an st-valuation of E∗. For every two faces f and g in V (E∗):
• If g is to the left of f , then χ(f) > l(X ′(g)).
• If g is to the right of f , then χ(f) < r(X ′(g)).

Let X (f) be the set of all χ(f) such that χ(f) ∈ X ′(f) and that satisfy the above
conditions. If X (f) is empty for some face f in V (E∗), then there is no [x, x ′]-
representation of Gμ. We assume that X (f) is non-empty for every f in V (E∗). One
can easily verify the following claim.

Claim 14 (1) For every face f in V (E∗), X (f) is an interval in [x, x ′],
(2) For every two faces f and g such that f is to the left of g, we have that:

• l(X (f)) � l(X (g)) and if l(X (f)) = l(X (g)) thenX (g) is open from the left
side.

• r(X (f)) � r(X (g)) and if r(X (f)) = r(X (g)) then X (f) is open from the
right side.

A face f in V (E∗) is determined if X (f) is a singleton (i.e., the location of the
splitting line of f is already fixed); otherwise f is undetermined.

In what follows, we construct a 2-CNF formula
 that is satisfiable if and only if
an [x, x ′]-representation of μ exists.

Variables of
 For every child λ of μ whose core is non-empty, we introduce two
Boolean variables: lλ and rλ, which have the following interpretation:

• The true (false) value of variable lλ means that we use left-loose (left-fixed) rep-
resentation of node λ.

• The true (false) value of variable rλ means that we use right-loose (right-fixed)
representation of node λ.

For every inner face f of E we introduce two Boolean variables: l f and r f , which
have the following interpretation:

123

2310 Algorithmica (2018) 80:2286–2323

• The variable l f is true when the splitting line of f is set strictly to the right of
l(X (f)). It is false when χ(f) = l(X (f)).

• The variable r f is true when the splitting line of f is set strictly to the left of
r(X (f)). It is false when χ(f) = r(X (f)).

In particular, if X (f) is open from the left (right) then l f (r f) is true. When f is
determined then both l f and r f are false.

For the left outer face s∗ and the right outer face t∗ we introduce variables rs∗ and
lt∗ . Since s∗ and t∗ are determined, the corresponding variables are always set to false.

Clauses of
 We split the clauses of
 into four types.

Type I. Clauses of this type propagate the information about the possible representation
types of the children of μ.

• For every child λ with non-empty core and for every type of representation of λ

which is not feasible, we add a clause that forbids using representation of this type.
For example, when there is no left-loose, right-fixed representation of λ we add a
clause ¬(lλ ∧ ¬rλ) = (¬lλ ∨ rλ) to
.

Type II. Clauses of this type enforce the meaning of variables l f and r f for every face
f in V (E∗).
• For every determined inner face f , we add the clauses (¬l f) and (¬r f), and for
s∗ and t∗ we add the clauses (¬rs∗) and (¬lt∗).

• For every undetermined inner face f , we add the clause (l f) if X (f) is open from
the left side, and (r f) if X (f) is open from the right side. If X (f) is closed from
the left and closed from the right side, we add the clause (l f ∨ r f) as the splitting
line of f cannot be placed in both endpoints of X (f) simultaneously.

Type III. Clauses of this type enforce a ‘proper tiling’ of every face f in V (E∗) (see
Face Condition Lemma). This ensures that the bounding boxes associated with the
left path and the right path of f can be aligned to the splitting line of f .

• For every face f and for every node λ on the left path of f with a non-empty core:
– We add the clause (l f ⇒ rλ).
– If r(C(λ)) < l(X (f)), we add the clause (rλ).
– If r(C(λ)) = l(X (f)), we add the clause (¬l f ⇒ ¬rλ).

The clause (l f ⇒ rλ) asserts that whenever the splitting line of f is set to the right
of l(X (f)), then a right-loose representation of λ is necessary to align the bounding
box of λ to the splitting line of f . The two remaining clauses have similar meaning.

We add analogous clauses for the nodes whose cores are non-empty and that cor-
respond to the edges from the right path of f .

Type IV. Clauses of this type enforce that the x-coordinates of the splitting lines form
an st-valuation of E∗.
• For every pair of faces f and g in V (E∗) such that f is to the left of g and such
that r(X (f)) � l(X (g)), we add the clause (¬r f ⇒ lg).

Such a clause forbids setting χ(f) = r(X (f)) and χ(g) = l(X (g)) – such an
assignment of χ(f) and χ(g) would not be a valid st-valuation.

123

Algorithmica (2018) 80:2286–2323 2311

Claim 15 Let μ be an R-node, E be a planar embedding of the skeleton of μ. There
exists an [x, x ′]-representation of μ that corresponds to a planar embedding E if and
only if
 is satisfiable.

Proof Suppose that φ is an [x, x ′]-representation of μ. For every face f in V (E∗),
the splitting line χ(f) of f in φ satisfies χ(f) ∈ X (f). Thus, χ(f) determines the
following assignment for l f and r f :

• l f is true if and only if χ(f) > l(X (f)),
• r f is true if and only if χ(f) < r(X (f)).

For every child λ of μ such that C(λ) �= ∅ we set the variables lλ and rλ as follows:

• lλ is true if and only if λ is left-loose in φ,
• rλ is true if and only if λ is right-loose in φ.

One can easily check that this assignment satisfies
.
Suppose now that
 is satisfiable. We define an [x, x ′]-representation φ of μ by

setting a splitting line χ(f) for every face f in V (E∗). To conclude that φ is an
[x, x ′]-representation it is enough to check that:

(1) The function χ is an st-valuation of E∗.
(2) For every fixed vertex u we have that

lφ(u) = χ(left face of u) and rφ(u) = χ(right face of u).

(3) For every child λ of μ such that C(λ) �= ∅ we have that

Gλ has an [χ(left face of λ), χ(right face of λ)]-representation.

First, we define χ(f) = l(X (f)) when l f is false. We also set χ(f) = r(X (f))
when r f is false. Note that this definition is unambiguous as both l f and r f are false
only for a determined face f by the fact that the clauses of Type II are satisfied. By
Claim 14 and by the fact that the clauses of Type IV are satisfied, for any two faces
f and g in V (E∗) for which χ(f) and χ(g) are already fixed, we have χ(f) < χ(g)
whenever f is to the left of g. Notice that χ(f) is not yet determined for inner faces
f for which l f and r f are true. For such a face f , let X ′′(f) contain all values z such
that:

• χ(g) < z whenever g is a face to the left of f and the value χ(g) is already fixed,
and

• z < χ(h)whenever h is a face to the right of f and the value χ(h) is already fixed,
and

• l(X (f)) < z < r(X (f)).

We claim that X ′′(f) is an open, non-empty interval. Indeed, if X ′′(f) is empty, then
there are faces g and h with the values χ(g), χ(h) fixed such that g is to the left of
h and χ(g) � χ(h), which contradicts our previous observation that if a face is to
the left of another face and splitting lines are determined for both of them, then the
splitting line of the first face is to the left of the splitting line of the second face.

123

2312 Algorithmica (2018) 80:2286–2323

Moreover, for any two faces f1, f2 such that f1 is to the left of f2 and neither χ(f1)
nor χ(f2) is fixed, we have that l(X ′′(f1)) � l(X ′′(f2)) and r(X ′′(f1)) � r(X ′′(f2)).
Thus, for every face f for which both l f , r f are true, we can choose a value χ(f) from
X ′′(f) so thatχ is an st-valuation ofE∗.We need to check the remaining conditions (2)
and (3). Condition (2) is satisfied since, for a determined face f we have chosen χ(f)
from the singletonX (f). Condition (3) follows from the fact that the clauses of Type I
and Type III are satisfied, and by the Stretching Lemma. 	

4.2.1 Complexity Considerations

To compute the feasible representation for a node μ with k children, our algorithm
works in O(k)-time if μ is an S-node. Algorithm 2 for a P-node μ needs to sort the
children of μ and thus, it works in O(k log k)-time. For an R-node, the number of
clauses of Types I, II and III is O(k). The number of clauses of Type IV is O

(
k2

)

and for some graphs, it is quadratic. Thus, the algorithm works in O
(
k2

)
time for an

R-node. Since the number of all edges in all nodes of T is O(n), the whole algorithm
works in O

(
n2

)
time.

4.3 Faster Algorithm

The bottleneck of the algorithm presented in Sect. 4.2 is the number of clauses of
Type IV in the 2-CNF formula constructed for R-nodes. In the presented algorithm
we add one clause (¬r f ⇒ lg) for any two faces f and g in V (E∗) such that f is to the
left of g and r(X (f)) � l(X (g)). The number of such pairs of faces can be quadratic.
In this section we present a different, less direct, approach that uses a smaller number
of clauses to express the same set of constraints.

We can treat the planar st-graph E∗ as a planar poset with a single minimal and a
single maximal element. Using the result by Baker et al. [3] we know that such a poset
has dimension at most 2. Thus, there are two numberings p and q of the vertices of E∗
such that a face f is to the left of a face g if and only if p(f) < p(g) and q(f) < q(g).
Such numberings correspond to dominance drawings of planar st-graphs and can be
computed in linear time [16].

For each face f , we have two Boolean variables l f and r f , two real values λ f =
l(X (f)), � f = r(X (f)), and two integer values p f = p(f) and q f = q(f). We
want to introduce a small set of 2-CNF clauses that implies (¬lg ⇒ r f) whenever
p f < pg , q f < qg , and � f � λg .

To give an intuition for our approach, consider the simpler problem of determining
for every face f the number of faces g such that p f < pg , q f < qg , and � f � λg . This
is a three-dimensional range counting query problem and can be solved in O

(
n log3 n

)

time using range trees, as described in Chapter 5 of [17].
It can also be solved in O

(
n log2 n

)
time using the following sweep line algorithm.

First, we setup a dynamic data structure for two-dimensional range counting queries.
Then, we process faces, one by one, in order of increasing values of p. After processing
each face h, we add the point (qh, �h) to the structure. To compute the answer for a

123

Algorithmica (2018) 80:2286–2323 2313

face h, we ask the structure for the number of points (x, y) such that x < ph and
y � λh .

Now we give an overview of our approach to the original problem of creating a
small set of 2-CNF clauses. Our algorithm is a sweep line algorithm that resembles the
one described above. In particular, we use a data structure similar to a two-dimensional
range tree, that is simply a set of persistent balanced binary search trees, each with
� f as the sorting key. During the course of the sweep, we create additional Boolean
variables corresponding to the vertices of the trees and implications corresponding to
their edges. The algorithm executes O(n) queries against the structure, each of the
queries takes O

(
log2 n

)
time. As a result, both the maximal size of the structure and

the total running time amount to O
(
n log2 n

)
. The algorithm produces O

(
n log2 n

)

2-CNF clauses that correspond to the edges of the search trees and the control flow of
the queries.

For an overview of persistent data structures, refer to [23]. However, we only need
the ideas presented in [42], which are summarized in this paragraph. The tree structure
used in our algorithm is a modification of the AVL tree. A node α of the tree stores
a pointer to its left child le f t (α), a pointer to its right child right (α) and the sorting
key key(α). The parent links are purposefully not stored – AVL trees can easily be
implemented without them and we must not store them for the persistent approach to
work. The difference from regular AVL trees is that no node is ever modified. Let A
be the set of all vertices that the insertion procedure would modify, together with all
of their ancestors. It is a known property of AVL trees that |A| is logarithmic in the
number of vertices of the tree. In a persistent AVL tree, instead of modifying nodes
in A, we perform the modifications on their copies – we create a new node C(α) for
every α ∈ A and set key(C(α)) = key(α).

This way, each addition to the tree introduces a logarithmic number of new nodes.
After each addition, we get a new root node, that represents the new tree, the old tree
is represented by the previous root and all but a logarithmic number of the nodes are
shared by both trees. The graph of old and new nodes together with edges from nodes
to their children is an acyclic digraph.

Now, in our algorithm, each tree keeps some set of Boolean variables r f sorted by
the value of � f . More specifically, with every vertex α we associate a Boolean variable
var(α). To add a variable r f into the tree we add a new node α with key(α) = � f and
var(α) = r f . Additionally, with each nodeα of the treewe associate a secondBoolean
variable var ′(α) and for each child node β we add a clause (var ′(α) ⇒ var ′(β)).
Finally, for each node α we add a clause (var ′(α) ⇒ var(α)).

To simplify the presentation, assume that we have n = 2k faces. Let numberings p
and q take values 0, . . . , n−1. We construct the 2-CNF formula in the following way.
First, for each interval of integers [j · 2i , (j + 1) · 2i), 0 � i � k, j < n

2i
we have one

persistent balanced binary search tree. The tree for the interval [a, b) is going to keep
variables r f for faces f such that q f ∈ [a, b).

We process faces, one by one, in order of increasing values of p. After processing
each face f , we add the variable r f to all trees [a, b) such that q f ∈ [a, b). There
are k + 1 such trees and an addition to each tree takes O(log n) time and introduces
O(log n) new Boolean variables.

123

2314 Algorithmica (2018) 80:2286–2323

This way, when we process face g, then any earlier processed face f satisfies
p f < pg and no other face satisfies this condition. Now, for any value qg we can
select a logarithmic size subset S of the trees such that the union of the intervals of the
trees is exactly [0, qg). The variables r f stored in these trees are exactly the variables
for faces that satisfy both p f < pg and q f < qg . This is exactly the set of faces that
are to the left of the face g.

Each tree in S stores variables r f sorted by � f . We can execute a binary search
for the left-most node with the key no smaller than λg . During the search, when we
descend from an inner node α to the left child or when α is the final node of the search,
we add clauses (¬lg ⇒ var ′(right (α)) and (¬lg ⇒ var(α)). The first implication
is forwarded over the tree to all nodes in the right subtree. This way, after completing
the search, we have that ¬lg implies r f for all faces f such that p f < pg , q f < qg
and � f � λg – exactly as intended.

The total running time of this procedure is O
(
n log2 n

)
and it produces at most that

many variables and clauses. This leads to the following.

Theorem 3 The rectangular bar visibility representation extension problem for a
planar st-graph with n vertices can be solved in O

(
n log2 n

)
time.

5 Hardness Results

In this section we show two hardness results. In the first subsection we show that the
bar visibility extension problem for planar graphs is NP-complete. Then, we show
that the bar visibility extension problem for directed graphs is NP-complete when
restricted to grid representations.

5.1 Representations of Undirected Graphs

Theorem 1 The Bar Visibility Representation Extension problem is NP-complete.

Proof It is clear that the Bar Visibility Representation Extension problem is inNP. To
prove completeness, we present a reduction from PlanarMonotone3Sat. Given a
formula φ we construct a graphG, a subset V ′ of vertices ofG, and a representationψ ′
of V ′ that is extendable to a representation of the wholeG if and only if φ is satisfiable.
The vertex v is fixed when v ∈ V ′, otherwise v is unrepresented. The reduction
constructs a planar Boolean circuit that simulates the formula φ. The bars assigned
to fixed vertices of G create wires and gates of the circuit. Unrepresented vertices
of G correspond to Boolean values transmitted over the wires. Our construction uses
several Boolean gates: a NOT gate, a XOR gate, a special gate which we call a CXOR
gate, and an OR gate.

In the figures illustrating this proof, the red bars denote the fixed vertices of G
and the black bars denote the unrepresented vertices. A bar may have its left (right)
endpoint marked or not depending on whether the bar extends to the left (right) of
the figure or not. The figures also contain some vertical ranges. These ranges are only
required for the description of the properties of the gadgets.

123

Algorithmica (2018) 80:2286–2323 2315

⊥

�
v

⊥

�

v

Fig. 7 Wire transmitting true value (on the left) and false value (on the right)

⊥

y

a

b

x

� �

⊥

a

b

x

y

NOT

x

y

�

⊥

a

b

x

y

NOT

x

y

Fig. 8 The NOT gadget depicted by its two possible representations and their schemes

For readability, the figures contain only schemes of previously defined gadgets.
Whenever a scheme appears in a figure, its area is colored gray.

Each wire, see Fig. 7, in the circuit is an empty space between two fixed vertices,
� and ⊥, whose bars are placed one above the other. One unrepresented vertex v,
that is adjacent to both � and ⊥, corresponds to the value transmitted over the wire.
The construction of the gates ensures that in each wire there are exactly two disjoint
rectangular regions In the figures, the small horizontal lines with a dotted line between
them are used to mark those regions and are not part of the construction. Placement of
v anywhere in the top (bottom) region corresponds to a transmission of a true (false)
value. We show a collection of gadgets for the gates that use such wires as inputs,
and outputs. Similarly to wires, each gate is bounded from the top and bottom by two
bars. This way, it is easy to control the visibility between bars from different gates and
wires.

NOT Gadget Figure 8 presents a NOT gate and its scheme. An unrepresented vertex
x (y) can transmit the value in the wire that can be placed to the left (right) from the
gate. Both bars a and b are adjacent to each other, adjacent to vertices x and y, and
not adjacent to the bounding bars. As a and b don’t have any other neighbors, the only
way to obstruct the visibility gap between a, b and bounding bars is to use x and y.
Thus, one of x or y is placed below a and b, and the other is placed above a and b. This
way we obtain a desired functionality of a NOT gate. As the visibility between every

123

2316 Algorithmica (2018) 80:2286–2323

�

y1
bx1

x2
a

y2

⊥ ⊥

�

a

b

x2

x1

y2

y1

XOR
x2

x1

y2

y1

⊥

�

a

b

x1

x2

y1

y2
XOR

x1

x2

y1

y2

Fig. 9 The XOR gadget depicted by its two possible representations and their schemes

XOR

x1

x2

y1

y2

NOT

x

y

NOT

x

y

y1

y2

CXOR

x1

x2

y1

y2

CXOR

x1

x2

Fig. 10 The CXOR gadget depicted by the schemes for its two possible representations

two bars does not change across the two representations, the corresponding edges of
G are well defined.

XOR Gadget Figure 9 presents a XOR gate. It checks that the inputs x1 and x2 have
different Boolean values. It also produces outputs y1 and y2. The partial representation
is extendable if and only if x1 = ¬x2 = ¬y1 = y2.

To see that, observe that the visibility gap between b and � needs to be obstructed
and b has only two neighbors x1 and y1. Assume that y1 blocks the visibility between
b and �. Now x1 needs to block the visibility between b and the other bars. Thus, x1
is placed below b. The only other neighbor of x1 is x2 and thus, it needs to go above a.
The last unrepresented vertex is y2 and it needs to obstruct the visibility gap between
a and ⊥.

The other possibility is that x1 blocks visibility between b and �. The analysis of
this case is symmetric to the previous one and gives the second possible valuation of
the variables.

Finally, note that the visibility between every two bars does not change across the
two representations and the corresponding edges of G are well defined.

123

Algorithmica (2018) 80:2286–2323 2317

NOT1

x

y

NOT2

x

y

NOT3

x

y

CXOR1

y1

y2

x1

x2

CXOR2

y1

y2

x1

x2

x

¬x

x

x

¬x

x

x
¬x

x

x
¬x

x

Fig. 11 On the left The gadget for the variable x with two output slots and one of its possible representation
for the false value of x .On the right Schemes of the gadget for the false and the true value of x , respectively

�

b
x1

y

x2

a

�
b

y
x1

a

x2

⊥⊥

�
b

y
x1

a

x2

⊥

�
b

y
x1

x2

a

⊥

�
b

y

yx1

x2

a

x2

⊥

y

l1
x1

OR
x2

l2

Fig. 12 The OR gadget

CXOR Gadget Figure 10 presents a CXOR circuit. It checks that the inputs x1 and
x2 have different Boolean values and produces copies y1 and y2 of the inputs. The
CXOR construction combines the XOR gate and two NOT gates in order to obtain a
circuit that checks that x1 = ¬x2, y1 = x1 and y2 = x2.

VariableGadgetUsingNOTgates andCXOR circuits it is easy to construct a variable
gadget. Figure 11 presents a gadget that gives two wires with value x to the right side,
and two wires with value ¬x to the left side. If we need k copies of a variable, we
simply stack 2k − 1 NOT gates one on another, and add CXOR gates to check the
consistency of the outputs produced by every second NOT gate.

All we need to finish the construction of our building blocks is a clause gadget that
checks that at least one of three wires connected to it transmits a true value.

OR Gadget and Clause Gadget Figure 12 presents an OR gate that has two inputs
x1 and x2 and one output y.

123

2318 Algorithmica (2018) 80:2286–2323

y

OR1

l1
x1

l2
x2

l3

y

x1

OR2

x2

b

a

l1 ∨ l2 ∨ l3

l1

l2

l3

Fig. 13 The construction for a clause l1 ∨ l2 ∨ l3 and its representation for the false value of l1 and l2 and
the true value of l3

The output value can be true only if at least one of the inputs is true. In each of these
three scenarios y can be represented in the higher of its regions. See Fig. 12 for these
three representations. Now, consider a representation of the gadget where both x1 and
x2 are false. Observe that x1 and b are neighbors andwe have that r(x1) > l(b) = l(a).
Vertices x1 and a are not adjacent and x2 is represented below a. The only other bar
that can block the visibility gap between a and x1 is y. Therefore, y is placed in the
lower of its regions, as it needs to be below x1.

Combining two OR gates and two bars that ensure that the output of the second
gate is true, we get a clause gadget presented in Fig. 13.

Given an instance φ of PlanarMonotone3Sat (together with a rectilinear planar
representation of φ), we show how we construct the graph G with a partial repre-
sentation ψ ′. We rotate the rectilinear representation by 90 degrees. Now, we replace
vertical segments representing variables of φ with variable gadgets and vertical seg-
ments representing clauses of φ with clause gadgets. Finally, for each occurrence of
variable x in clauseC , we replace the horizontal connection between the segment of x
and the segment of C by a wire connecting the appropriate gadgets. The properties of
our gadgets assert that φ is satisfiable if and only if ψ ′ is extendable to a bar visibility
representation of G. 	

123

Algorithmica (2018) 80:2286–2323 2319

s

t

u0 u1 ··· um

t1

H1

s1

t2

H2

s2

···
t3m

H3m

s3m

si

ti

···

0

1

2

3

4

0 1 iw+i iw+i+1 W+m W+m+1

ψ′(s)

ψ′(t)

ψ′(u0) ··· ψ′(ui) ··· ψ′(um)

1

2

3

0 1 2 ai−2 ai−1 ai

ψ(si)

ψ(ti)

···

Fig. 14 The graph G, partial representation ψ ′, graph Hi , and the representation ψ of Hi with minimum
width

5.2 Grid Representations

In this section we consider the following problem:
Grid Bar Visibility Representation Extension for directed graphs:

Input: (G, ψ ′), where G is a directed graph and ψ ′ is a mapping assigning bars to
some subset V ′ of V (G).

Question: Does G admit a grid bar visibility representation ψ with ψ |V ′ = ψ ′?
In what follows we show that the above problem is NP-complete.

The proof is generic and can be easily modified to work for other grid representa-
tions including undirected, rectangular directed/undirected, and even other models of
visibility.

Theorem 3 Grid Bar Visibility Representation Extension problem is NP-complete.

Proof We use the 3Partition problem to show NP-hardness. Consider an instance
w, a1, . . . , a3m of the 3Partition problem. LetW = ∑3m

j=1 a j , i.e.,W = mw. From
this instance of 3Partition, we create a graph G and a partial representation ψ ′ that
assigns bars to a subset V ′ of V (G). These are constructed as follows and depicted in
Fig. 14.

The graph G is constructed as follows. We start with G ′ which is a K2,m+1 with
source s and sink t as the two vertices of degree m + 1 and the other vertices are
labeled u0, . . . , um . Now, for each i = 1, . . . , 3m, create a planar st-graph Hi which
is a K2,ai with source si and sink ti as its two vertices of degree ai . We remark that the
width of any visibility representation of Hi in the integer grid is at least ai . Finally, the
graph G is obtained by attaching each Hi to G ′ by adding the edges (s, si) and (ti , t).

For the fixed bars, we let V ′ = {s, t, u1, . . . , um+1} and we define a bar ψ ′(v) for
each element v ∈ V ′.

123

2320 Algorithmica (2018) 80:2286–2323

yψ ′(v) =
⎧
⎨

⎩

0 v = s
2 v = ui
4 v = t

lψ ′(v) =
{
0 v = s, t
iw + i v = ui

rψ ′(v) =
{
W + m + 1 v = s, t
iw + i + 1 v = ui

Observe that the distance between the right-end ofψ ′(ui) and the left-end ofψ ′(ui+1)

is exactly w.
We now claim that there is a solution for input (G, ψ ′) if and only if the 3Partition

instance {w, a1, . . . , a3m} has a solution. First, we consider a collection of triples
T1, . . . , Tm which form a solution of the 3Partition problem. We extend ψ ′ to a
visibility representation of G where, for each triple Tj = {a j1, a j2 , a j3}, we place
visibility representations of Hj1 , Hj2 , Hj3 in sequence left-to-right and between the
fixed bars ψ ′(u j−1) and ψ ′(u j). Notice that this is possible since a j1 +a j2 +a j3 = w

and the distance from the right-end of ψ ′(u j−1) to the left-end of ψ ′(u j) is w.
To show that any visibility representation ψ of G which extends ψ ′ provides a

solution to the 3Partition problem we make the following observations. First, due
to the the placement of the bars ψ ′(s), ψ ′(t), ψ ′(u0) and ψ ′(um), the outer face of the
resulting embedding is s, u0, t, um . In particular, the bars of every Hi occur strictly
within the rectangle enclosed by ψ ′(s) and ψ ′(t). Thus, each Hi must also be drawn
between some pair of bars ψ ′(u j−1), ψ ′(u j) (for some j ∈ {1, . . . ,m − 1}). Second,
due to each ai being between w

4 and w
2 and the width of a visibility representation

of Hi being at least ai , at most three Hi ’s ‘fit’ between the fixed bars ψ ′(u j−1) and
ψ ′(u j). Thus, since there are 3m Hi ’s, every ψ ′(u j−1), ψ ′(u j) has exactly three Hi ’s
between them.Moreover, if Hi1 , Hi2 and Hi3 are placed betweenψ ′(u j−1) andψ ′(u j),
then ai1 + ai2 + ai3 � w. Thus, in ψ , the gaps between each pair ψ ′(u j−1), ψ ′(u j)

must contain precisely three Hi ’s whose sum of corresponding ai ’s is w, i.e., the gaps
correspond to the triples of a solution of the 3Partition problem. 	

6 Open Problems

The main problem left open is to decide whether there exists a polynomial-time
algorithm that checks whether a partial representation of a directed planar graph is
extendable to a bar visibility representation of the whole graph. Although we showed
an efficient algorithm for the case of planar st-graphs, it seems that some additional
ideas are needed to resolve this problem in general.

Some further open problems concern extension problems for the weak and strong
visibility models.

6.1 Weak Visibility

Tamassia and Tollis [47] showed that every planar graph admits a weak visibility
representation. Nevertheless, the problem of extending a partial representation of a
planar graph to a weak visibility representation is NP-complete [8].

Di Battista and Tamassia [14] showed that a directed planar graph G admits a
weak visibility representation if and only if G admits an upward planar drawing. The

123

Algorithmica (2018) 80:2286–2323 2321

latter problem isNP-complete [28], so the problem of extending partial weak visibility
representations for planar digraphs is alsoNP-complete. Nevertheless, we do not know
whether there is an efficient algorithm if we assume that an upward planar drawing of
a planar digraph is given on the input.

6.2 Strong Visibility

Due to Andreae [1], the recognition of planar graphs that admit a strong visibility
representation isNP-complete. It follows that the problem of testing whether a partial
representation of a planar graph is extendable to a strong visibility representation is
also NP-complete. Nevertheless, we do not know if there exists an efficient algorithm
that tests whether a partial representation of a planar digraph is extendable to a strong
representation of the whole graph. It seems that some of our results on the bar visibility
model can be adjusted to the strong visibility model.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Andreae, T.: Some results on visibility graphs. Discrete Appl. Math. 40(1), 5–17 (1992)
2. Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing

planarity of partially embedded graphs. ACM Trans. Algorithms 11(4), 1–42 (2015)
3. Baker, K.A., Fishburn, P.C., Roberts, F.S.: Partial orders of dimension 2. Networks 2(1), 11–28 (1972)
4. Biedl, T.C.: Small drawings of outerplanar graphs, series-parallel graphs, and other planar graphs.

Discrete Comput. Geom. 45(1), 141–160 (2011)
5. Bläsius, T., Rutter, I.: Simultaneous PQ-orderingwith applications to constrained embedding problems.

ACM Trans. Algorithms 12(2), 1–46 (2015)
6. Cardinal, J., Hoffmann, U.: Recognition and complexity of point visibility graphs. Discrete Comput.

Geom. 57(1), 164–178 (2017)
7. Chang, Y.-W., Hutchinson, J.P., Jacobson, M.S., Lehel, J., West, D.B.: The bar visibility number of a

graph. SIAM J. Discrete Math. 18(3), 462–471 (2004)
8. Chaplick, S., Dorbec, P., Kratochvíl, J., Montassier, M., Stacho, J.: Contact representations of planar

graphs: Extending a partial representation is hard. In:WG2014: 40th InternationalWorkshop onGraph-
Theoretic Concepts in Computer Science, Nouan-le-Fuzelier, France, June 2014. Revised selected
papers, pp. 139–151 (2014)

9. Chaplick, S., Fulek, R., Klavík, P.: Extending partial representations of circle graphs. In: GD 2013: 21st
International Symposium on Graph Drawing, Bordeaux, France, September 2013. Revised selected
papers, pp. 131–142 (2013)

10. Chaplick, S., Guśpiel, G., Gutowski, G., Krawczyk, T., Liotta, G.: The partial visibility representation
extension problem. In: GD 2016: 24th International Symposium on Graph Drawing and Network
Visualization, Athens, Greece, September 2016. Revised selected papers, pp. 266–279 (2016)

11. Chrobak, M., Payne, T.H.: A linear-time algorithm for drawing a planar graph on a grid. Inf. Process.
Lett. 54(4), 241–246 (1995)

123

http://creativecommons.org/licenses/by/4.0/

2322 Algorithmica (2018) 80:2286–2323

12. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization
of Graphs. Prentice-Hall, Upper Saddle River (1999)

13. Di Battista, G., Frati, F.: A survey on small-area planar graph drawing (2014). arXiv:1410.1006
14. Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theor. Comput.

Sci. 61(2–3), 175–198 (1988)
15. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)
16. Di Battista, G., Tamassia, R., Tollis, I.G.: Area requirement and symmetry display of planar upward

drawings. Discrete Comput. Geom. 7(1), 381–401 (1992)
17. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and

Applications, 3rd edn. Springer, Berlin (2008)
18. de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the plane. Int. J. Comput.

Geom. Appl. 22(3), 187–205 (2012)
19. de Fraysseix, H., de Mendez, P.O., Pach, J.: Representation of planar graphs by segments. In: Intuitive

Geometry (Szeged, 1991), Volume 63 of Colloquia Mathematica Societatis János Bolyai, pp. 109–117
(1994)

20. de Fraysseix, H., deMendez, P.O., Rosenstiehl, P.: On triangle contact graphs. Comb. Probab. Comput.
3, 233–246 (1994)

21. de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting Fáry embeddings of planar graphs. In:
STOC 1988: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, Chicago,
IL, USA, pp. 426–433 (1988)

22. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1),
41–51 (1990)

23. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures persistent. J. Comput.
Syst. Sci. 38(1), 86–124 (1989)

24. Duchet, P., Hamidoune, Y.O., Las Vergnas, M., Meyniel, H.: Representing a planar graph by vertical
lines joining different levels. Discrete Math. 46(3), 319–321 (1983)

25. Fáry, I.: On straight line representation of planar graphs. Acta Univ. Szeged. Sect. Sci. Math. 11,
229–233 (1948)

26. Garey,M.R., Johnson, D.S.: Computers and Intractability: AGuide to the Theory of NP-Completeness.
W.H. Freeman, New York (1979)

27. Garg, A., Tamassia, R.: Upward planarity testing. Order 12(2), 109–133 (1995)
28. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing.

SIAM J. Comput. 31(2), 601–625 (2001)
29. Ghosh, S.K., Goswami, P.P.: Unsolved problems in visibility graphs of points, segments, and polygons.

ACM Comput. Surv. 46(2), 1–29 (2013)
30. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Proceedings of the GD

2000: 8th International Symposium on Graph Drawing, Colonial Williamsburg, VA, USA, September
2000, pp. 77–90 (2001)

31. Hartman, I.B.-A., Newman, I., Ziv, R.: On grid intersection graphs. DiscreteMath. 87(1), 41–52 (1991)
32. He, X., Wang, J.-J., Zhang, H.: Compact visibility representation of 4-connected plane graphs. Theor.

Comput. Sci. 447, 62–73 (2012)
33. Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in graph

drawing problems. Theor. Comput. Sci. 172(1–2), 175–193 (1997)
34. Kant, G., Liotta, G., Tamassia, R., Tollis, I.G.: Area requirement of visibility representations of trees.

Inf. Process. Lett. 62(2), 81–88 (1997)
35. Klavík, P., Kratochvíl, J., Krawczyk, T., Walczak, B.: Extending partial representations of function

graphs and permutation graphs. In: Proceedings of the ESA 2012: 20th Annual European Symposium
on Algorithms, Ljubljana, Slovenia, September 2012, pp. 671–682 (2012)

36. Klavík, P., Kratochvíl, J., Otachi, Y., Rutter, I., Saitoh, T., Saumell, M., Vyskočil, T.: Extending partial
representations of proper and unit interval graphs. Algorithmica 77(4), 1071–1104 (2017)

37. Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T.: Extending partial representations of subclasses of
chordal graphs. Theor. Comput. Sci. 576, 85–101 (2015)

38. Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T., Vyskočil, T.: Extending partial representations of
interval graphs. Algorithmica 1–23 (2016)

39. Koebe, P.: Kontaktprobleme der konformen Abbildung. Hirzel, Stuttgart (1936)
40. Luccio, F., Mazzone, S., Wong, C.-K.: A note on visibility graphs. Discrete Math. 64(2–3), 209–219

(1987)

123

http://arxiv.org/abs/1410.1006

Algorithmica (2018) 80:2286–2323 2323

41. Mohar, B.: A polynomial time circle packing algorithm. Discrete Math. 117(1–3), 257–263 (1993)
42. Myers, E.W.: Efficient applicative data types. In: Proceedings of the POPL 84: 11th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, Salt Lake City, UT, USA, January
1984, pp. 66–75 (1984)

43. Otten, R.H.J.M., van Wijk, J.G.: Graph representations in interactive layout design. In: Proceedings
of the IEEE International Symposium on Circuits and Systems, New York, NY, USA, May 1978, pp.
914–918 (1978)

44. Patrignani, M.: On extending a partial straight-line drawing. Int. J. Found. Comput. Sci. 17(5), 1061–
1070 (2006)

45. Schlag, M., Luccio, F., Maestrini, P., Lee, D.-T., Wong, C.-K.: A visibility problem in VLSI layout
compaction. Adv. Comput. Res. 2, 259–282 (1985)

46. Storer, J.A.: On minimal-node-cost planar embeddings. Networks 14(2), 181–212 (1984)
47. Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar graphs. Discrete

Comput. Geom. 1(4), 321–341 (1986)
48. Wang, J.-J., He, X.: Visibility representation of plane graphs with simultaneous bound for both width

and height. J. Graph Algorithms Appl. 16(2), 317–334 (2012)
49. Wismath, S.K.: Characterizing bar line-of-sight graphs. In: Proceedings of the SCG 1985: 1st Annual

Symposium on Computational Geometry, Baltimore, MD, USA, June 1985, pp. 147–152 (1985)

123

	The Partial Visibility Representation Extension Problem
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Planar st-Graphs and Their Properties
	2.3 SPQR-Trees for Planar st-Graphs
	2.4 NP-Complete Problems

	3 Bar Visibility and Rectangular Bar Visibility Representations for Planar Digraphs
	4 Rectangular Bar Visibility Representations of Planar st-Graphs
	4.1 Structural Properties
	4.2 Algorithm for Rectangular Bar Visibility Extension of Planar st-Graphs
	4.2.1 Complexity Considerations

	4.3 Faster Algorithm

	5 Hardness Results
	5.1 Representations of Undirected Graphs
	5.2 Grid Representations

	6 Open Problems
	6.1 Weak Visibility
	6.2 Strong Visibility

	References

