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Abstract A tree-child network is a phylogenetic network with the property that each
non-leaf vertex is the parent of a tree vertex or a leaf. In this paper, we show that a tree-
child network on taxa (leaf) set X with anoutgroup and apositive real-valuedweighting
of its edges is essentially determined by the multi-set of all path-length distances
between elements in X provided, for each reticulation, the edges directed into it have
equal weight. Furthermore, we give a polynomial-time algorithm for reconstructing
such a network from this inter-taxa distance information. Such constructions are of
central importance in evolutionary biology where phylogenetic networks represent the
ancestral history of a collection of present-day taxa.

Keywords Distance matrix · Tree-child network · Stack-free network

1 Introduction

A central task in evolutionary biology is inferring the ancestral history of a collection
X of present-day (species) taxa based on the inherited characteristics amongst the
taxa in X . This inference is usually represented by a phylogenetic (evolutionary) tree
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whose leaf set is X . One fundamental and widely-used approach for inferring the
tree-like ancestral history of a collection of present-day taxa is to utilise a measure
of distance between taxa, such as the time since separation from the most recent
common ancestor, to infer the structure of ancestral relationships between taxa. Such
approaches are called distance-based methods, and include the popular method of
Neighbor-Joining [10]. They are often used because they are computationally fast
compared to maximum likelihood methods. For a recent survey of distance-based
methods for inferring phylogenetic trees see Pardi and Gascuel [7].

Although one typically thinks of evolution as being a tree-like process, it is nowwell
recognised that for many collections of taxa the ancestral history is non-tree-like and is
more accurately represented by a phylogenetic network rather than a phylogenetic tree.
This is because of reticulate (non-tree-like) processes in evolution such as hybridisation
and horizontal gene transfer. To date, most of the focus in inferring phylogenetic
networks has been based on topological information [5], but there is now a growing
interest in making this inferences based on distance information.

In this paper we establish an algorithm for efficiently (polynomial time in the size
of the input) reconstructing an edge-weighted tree-child network from its inter-taxa
distances. Reconstruction of edge-weighted phylogenetic networks from distances is
significantly more difficult than the analogous task for phylogenetic trees. A crucial
feature of this problem is that, for a phylogenetic network N , there is no longer a
unique distance between every pair of taxa unless N is a phylogenetic tree, so one
must work with shortest distances, average distances, sets of distances, or some other
variation. As a result, we have more strenuous requirements on the distances as well
as the class of phylogenetic networks. To be precise, we shall require the multi-set of
distances between each pair of taxa, that the edge-weighted phylogenetic network is
tree child with an outgroup, and that the pair of edges directed into a reticulation have
equal weight.

In related prior work, Chan et al. [4] take a matrix of inter-taxa distances and recon-
struct an ultrametric galled network such that there is a path between each pair of taxa
having the length given in the matrix, if such a phylogenetic network exists. Willson
[11] studied the problem of determining a phylogenetic network given the average
distance between each pair of taxa, where each reticulation assigns a probability to
the two edges directed into it. From such distances, one can reconstruct phyloge-
netic networks having a single reticulation cycle in polynomial time [12]. In earlier
work [1], Bordewich and Semple showed that (unweighted) tree-child networks can
be reconstructed from the multi-set of distances between taxa and that (unweighted)
temporal, tree-child networks can be reconstructed from the set of distances between
taxa, each in polynomial time. Furthermore, Bordewich and Tokac [2] have shown
that ultrametric, tree-child networks can be reconstructed from the set of distances
between taxa in polynomial time.

The originality of our work is in applying a Q-score, inspired by the Neighbor-
Joining algorithm [10], to determine key local structures in the network. This enables
us to establish a polynomial-time algorithm for reconstructing edge-weighted tree-
child networks from inter-taxa distances. Although we build upon the prior works
mentioned above, it is a significant step to remove the ultrametric condition, which
is not realistic in many biological settings, and to allow weighted edges, rather than
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Fig. 1 A weighted tree-child
network (N , w) on
X = {r, x1, x2, x3, x4, x5, x6}
with outgroup r
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the topological path lengths used in [1]. The results are rigorously proved, not based
upon empirical evidence. The significance of the work is that it is an important step
towards developing practical methods for fast reconstruction of phylogenetic networks
based upon distance data, and the proper understanding of the phylogenetic history of
taxa has major implications in healthcare (see e.g. [6] and [9]) as well as biological
understanding of the origins of present-day taxa.

For the rest of the introduction, we formally state the main result, after some nec-
essary definitions, as well as outlining the organisation of the paper. Throughout, X
will always denote a non-empty finite set.

A phylogenetic networkN on X is a rooted acyclic digraph with no parallel edges
and the following properties:

(i) the unique root has out-degree two,
(ii) the set X is the set of vertices of out-degree zero, each of which has in-degree

one, and
(iii) all other vertices either have in-degree one and out-degree two, or in-degree two

and out-degree one.

For technical reasons, if |X | = 1, we additionally allow the directed graph consisting
of the single vertex in X to be a phylogenetic network. The vertices of out-degree
zero are called leaves. Furthermore, the vertices of in-degree one and out-degree two
are called tree vertices, while the vertices of in-degree two and out-degree one are
called reticulations. An edge directed into a reticulation is a reticulation edge; all
other edges are tree edges. An element in X is an outgroup if its parent is the root
ofN . A phylogenetic networkN is a tree-child network [3] if each non-leaf vertex in
N is the parent of either a tree vertex or a leaf.

LetN be a phylogenetic network on X . Two distinct reticulation edges e1 and e2 in
N is a reticulation pair if e1 and e2 are directed into the same reticulation.We sayN has
a reticulation-pair weighting, denoted (N , w), if the edges ofN are assigned a positive
real-valued weighting w with the properties that: for each reticulation pair e1 and e2
we havew(e1) = w(e2); and internal tree edges have strictly positiveweight. (Without
this restriction on internal tree edges, it would not be possible to distinguish the internal
structure of networks with many zero-weight edges.) To illustrate, a reticulation-pair
weighted tree-child network (N , w) on X with outgroup r is shown in Fig. 1, where
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X = {r, x1, x2, x3, x4, x5, x6}. The vertex u is a reticulation. As with all drawings of
phylogenetic networks in this paper, edges are directed down the page.

To ease reading, throughout the paper, a “weighted tree-child network” means a
“reticulation-pair weighted tree-child network”. Let (N , w) be a weighted phyloge-
netic network on X , and let v and v′ be vertices in (N , w). An up-down path from v

to v′ in N is an underlying path

v, u1, u2, . . . , uk−1, v
′,

where, for some i ≤ k − 1,

(ui , ui−1), (ui−1, ui−2), . . . , (u1, v)

and

(ui , ui+1), (ui+1, ui+2), . . . , (uk−1, v
′)

are edges inN . The length of an up-down path is the sum of the weights of the edges
along it.

Now let Px,y be the set of up-down paths from x to y in N . The multi-set of
distances from x to y, denoted Dx,y , is the multi-set of lengths of paths in Px,y . Of
course, Dx,y = Dy,x for all x, y ∈ X and Dx,x = {0} for all x ∈ X . The multi-set
distance matrixD of (N , w) is the |X | × |X | matrix whose (x, y)-th entry isDx,y for
all x, y ∈ X , in which case D is realised by (N , w). As an example, in Fig. 1, there
are two up-down paths connecting x1 and x3, and Dx1,x3 = {14, 21}.

LetD be a multi-set distance matrix on X . Let (N , w) be a weighted phylogenetic
network on X with outgroup r , and suppose that (N , w) realisesD. Theweightingw is
certainly not unique. Let u be the child of the root ρ ofN that is not r . Then, provided
the sum of the weights w(ρ, r) + w(ρ, u) is fixed, we can change the weights of the
edges (ρ, r) and (ρ, u) to construct a differentweighting,w′ say, such that (N , w′) also
realises D (where w and w′ are equal on the other edges). We refer to this scenario as
re-weighting the edges at the root ofN . A similar scenario happens at any reticulation
of N . In particular, let u be a reticulation in N with parents pu and qu , and let v be
the unique child of u. Then, provided the sum of the weights of (pu, u) and (u, v) and
the sum of the weights of (qu, u) and (u, v) are equal to w(pu, u) + w(u, v), we can
change the weights of the edges (pu, u), (qu, u), and (u, v), again fixing the weights of
all other edges, to construct a different weighting, w′′ say, such that (N , w′′) realises
D. We refer to this last scenario as re-weighting the edges at a reticulation ofN . For
example, consider the weighted phylogenetic network show in Fig. 1. If we increase
the weights of both (pu, u) and (qu, u) to 2, and simultaneously decrease the weight
of (u, x4) to 2, then the resulting weighted phylogenetic network also realises D.

Now let (N1, w1) be another weighted phylogenetic network on X with outgroup
r , and suppose, in addition to (N , w), that (N1, w1) realises D. We say (N , w) and
(N1, w1) are equivalent ifN is isomorphic toN1, and w1 can be obtained from w by
re-weighting the edges at the root and at each reticulation. Observe that this induces an
equivalence relation on the set of weighted phylogenetic networks on X with outgroup
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r realisingD. Furthermore, under this relation, there is a uniqueweighted phylogenetic
network, denoted (N0, w0), in the equivalence class of (N , w), where the weight of
each reticulation edge is zero, and the weight of the pendent edge incident with the
root ρ, that is (ρ, r), is zero. The main result of the paper is the following theorem.

Theorem 1 Let D be a multi-set distance matrix on X with distinguished element
r . Let (N , w) be a weighted tree-child network on X with outgroup r realising D.
Then, up to equivalence, (N , w) is the unique such network realisingD, in which case
(N0, w0) can be found from D in time quadratic in |D|.

The unweighted analogue of Theorem 1 is established in [1]. Furthermore, the
analogue of Theorem 1 for when the multi-set distance matrix D is realised by a
weighted tree-child network whose weighting satisfies the ultrametric condition is
established in [2]. A weighting is ultrametric if the lengths of all paths from the root
to a leaf are the same.

To provide some intuition to the proof of Theorem 1 and the content of the paper, the
algorithm proceeds iteratively by identifying a pair of taxa that form one of two local
structures (a cherry or a reticulated cherry) in the target network. Before recursing, it
either deletes one of these taxa or reduces the distance matrix to effectively delete a
reticulation edge from the network under construction.We identify an appropriate pair
of taxa using a so-calledQ-score, which is inspired by theQ-score used to identify a
pair of taxa to agglomerate in the popular Neighbor Joining algorithm [10].

The paper is organised as follows. The next section consists of some additional
preliminaries, including the notion of a reticulated cherry. Section 3 introduces the
Q-score of a pair of elements in X . This score is calculated using values in a distance
matrix on X and is the key idea underlying Theorem 1. The uniqueness and compu-
tational parts of Theorem 1 are proved in Sects. 4 and 5, respectively. A phylogenetic
network N is stack free if each reticulation is the parent of either a tree vertex or
a leaf. Also note that if N is a stack-free network on X , where |X | = 1, then N
consists of the single vertex in X . Observe that if N is a tree-child network, then
N is a stack-free network, but the converse does not hold. In Sect. 6, we state, as a
conjecture, an analogue of Theorem 1 for stack-free networks and establish a lemma
supporting the conjecture. Consequently, where appropriate, the results in Sects. 2
and 3 are generalised to stack-free networks.

We end the introduction with two remarks. First, it is natural to ask if all of the inter-
taxa distances are necessary in recovering a weighted tree-child network. A separate
collaboration is currently investigating this question. Second, for the approach taken
in this paper of using the Q-score, the assumption in the statement of Theorem 1
that the edges directed into the same reticulation have the same weight is necessary
(for details, see Sect. 3). However, whether this assumption is necessary in general,
remains an open problem.

2 Preliminaries

LetN be a phylogenetic network on X , and let {s, t} be a 2-element subset of X . We
say {s, t} is a cherry, alternatively a 0-reticulated cherry, if there is an up-down path,
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s, u1, t

say, between s and t , where u1 is (necessarily) a tree vertex. Furthermore, {s, t} is a
1-reticulated cherry if there is an up-down path,

s, u1, u2, t

say, between s and t , where exactly one of u1 and u2 is a tree vertex. If u1 is the
tree vertex, then t is the reticulation leaf of the 1-reticulated cherry. Lastly, {s, t} is a
2-reticulated cherry if there is an up-down path,

s, u1, u2, u3, t

say, between s and t , where both u1 and u3 are reticulations, and u2 is a tree vertex.
Depending on whether {s, t} is a 0- , 1- , or 2-reticulated cherry, we refer to the
unique tree vertex in the associated up-down paths as the tree vertex of the 0- , 1- ,
or 2-reticulated cherry, respectively. For example, in Fig. 1, {x1, x2} is a cherry, while
{x4, x5} is a 1-reticulated cherry with tree vertex qu . The 2-element set {x3, x4} is also
a 1-reticulated cherry.

The proof of Lemma 1 for when N is tree child is established in [1].

Lemma 1 LetN be a stack-free (resp. tree-child) network on X, where |X | ≥ 2. Then
N has a k-reticulated cherry for some k ∈ {0, 1, 2} (resp. k ∈ {0, 1}). Moreover, ifN
is weighted and u is a tree vertex at maximum distance from the root, then u is the tree
vertex of a k-reticulated cherry for some k ∈ {0, 1, 2} (resp. k ∈ {0, 1}).
Proof Let u be a tree vertex at maximum distance from the root of N . We prove the
lemma for whenN is stack free by showing that u is the tree vertex of a k-reticulated
cherry for some k ∈ {0, 1, 2}.

By maximality, there is no tree vertex in N below u, and so, as N has no parallel
edges, there are exactly two elements, x and y say, in X below u. Moreover, as N is
stack free, the number of edges on the unique directed path from u to x (respectively,
y) is at most two. By a routine check, it now follows, for some k ∈ {0, 1, 2}, that u is
the tree vertex of the k-reticulated cherry {x, y}.

In the case thatN is tree child, at least one child of u must be a leaf, and hence for
some k ∈ {0, 1}, that u is the tree vertex of the k-reticulated cherry {x, y}. ��

Let (N , w) be a weighted phylogenetic network on X . Let {s, t} be a 2-element
subset of X that is either a 0- or 1-reticulated cherry of N , and denote the parents of
s and t by ps and pt , respectively. First assume that {s, t} is a 0-reticulated cherry,
and so ps = pt . Let gs denote the parent of ps . Then reducing t is the operation of
deleting t and its incident edge, suppressing ps , and setting the weight of the resulting
edge (gs, s) to be

w(gs, ps) + w(ps, s).

Now assume that {s, t} is a 1-reticulated cherry in which t is the reticulation leaf.
Let gs and gt denote the parents of ps and pt , respectively, where gt �= ps . Then
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Fig. 2 Two weighted tree-child
networks (N1, w1) and
(N2, w2) obtained from (N , w)

in Fig. 1 by reducing x2 and by
cutting {x4, x5}, respectively
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cutting {s, t} is the operation of deleting (ps, pt ), suppressing ps and pt , and setting
the weight of the resulting edge (gs, s) to w(gs, ps) + w(ps, s) and the weight of
the edge (gt , t) to w(gt , pt ) + w(pt , t). To illustrate, consider Fig. 2. The weighted
tree-child network (N1, w1) has been obtained from (N , w) in Fig. 1 by reducing
x2. Furthermore, the weighted tree-child network (N2, w2) has been obtained from
(N , w) by cutting {x4, x5}.

The proof of the next lemma follows from [1, Lemma 4.1].

Lemma 2 Let (N , w) be a weighted tree-child network. Suppose (N ′, w′) is obtained
from (N , w) by either reducing a leaf in a cherry, or cutting a 1-reticulated cherry.
Then (N ′, w′) is also a weighted tree-child network.

LetD be amulti-set distancematrix on X . For all x, y ∈ X , we denote themaximum
and minimum values in Dx,y by dmax(x, y) and dmin(x, y), respectively. Now, let r
be a distinguished element in X . We next describe two reduction operations on D
that parallel the above reduction and cutting operations on a weighted phylogenetic
network. This is necessary because in the reconstruction algorithmwewill be working
with the input data D, and not with the unknown (as yet) network. We will only need
to perform these parallel operations in cases in which we have already identified a pair
of taxa {s, t} that form a k-reticulated cherry at maximum distance from the outgroup
r , in a sense that shall be defined precisely in the next section. In these cases the
assumptions made in the definitions below will be shown to hold.
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Let {s, t} be a 2-element subset of X − {r}. First assume |Ds,t | = 1. Let D′ be the
multi-set distance matrix on X ′ = X − {t} obtained from D by setting

D′
x,y = D′

y,x = Dx,y

for all x, y ∈ X ′. We say thatD′ has been obtained by reducing t inD. Second assume
that, for all x ∈ X − {s, t},

{d + c : d ∈ Ds,x }�Dt,x ,

where c = dmax(r, t) − dmax(r, s). Now let D′ be the multi-set distance matrix on X
obtained from D by setting

D′
x,y = D′

y,x = Dx,y

for all x, y ∈ X − {t},

D′
t,x = D′

x,t = Dt,x − {d + c : d ∈ Ds,x }

for all x ∈ X − {s, t}, where c = dmax(r, t) − dmax(r, s), and

D′
s,t = D′

t,s = Ds,t − {dmin(s, t)}.

We say D′ has been obtained by cutting {s, t} in D.

3 Q-Score

We establish Theorem 1 by iteratively determining a 2-element subset {s, t} in X −{r}
that is either a 0- or a 1-reticulated cherry in (N , w). The same approach is used in
[1] to prove an unweighted analogue of this theorem, but there the determination is
straightforward. For example, in the unweighted setting, |Ds,t | = 1 and Ds,t = {2}
is both a necessary and sufficient condition to determine that {s, t} is a 0-reticulated
cherry of (N , w). However, with an arbitrary weighting, the canonical generalisation
of this condition is neither necessary nor sufficient. The key to resolving this hurdle
is the notion of a Q-score.

Let D be a multi-set distance matrix on X . For all x, y, z ∈ X , the Q-score of x
and y with respect to z, denoted Qz(x, y), is the value

Qz(x, y) = 1
2 (dmax(z, x) + dmax(z, y) − dmin(x, y)) .

For example, referring to the multi-set distance matrix realised by (N , w) in Fig. 1,

Qr (x4, x6) = 1
2 (dmax(r, x4) + dmax(r, x6) − dmin(x4, x6))

= 1
2 (21 + 14 − 8) = 27

2 .
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Given the multi-set distance matrix of a weighted tree-child network (N , w) with
outgroup r , the next lemma shows that maximising the Q-score with respect to r
identifies a k-reticulated cherry of (N , w).

Lemma 3 Let D be a multi-set matrix of distances between elements of a set X with
distinguished element r , where |X | ≥ 3. Let (N , w) be a weighted stack-free (resp.
tree-child) network on X with outgroup r realisingD. Let {s, t} be a 2-element subset
of X − {r} such that

Qr (s, t) = max{Qr (x, y) : x, y ∈ X − {r}}.

Then

(i) For some k ∈ {0, 1, 2} (resp. k ∈ {0, 1}), the set {s, t} is a k-reticulated cherry
in (N , w).

(ii) The length of the longest up-down path in (N , w) starting at r and ending at a
tree vertex is Qr (s, t).

(iii) The length of the longest up-down path in (N , w) starting at r and ending at
the tree vertex u in the k-reticulated cherry {s, t} is Qr (s, t), and dmax(r, s) and
dmax(r, t) are realised by paths that include u.

Proof We begin by establishing a lower bound for

max{Qr (x, y) : x, y ∈ X − {r}}.

Let l be the length of the longest up-down path in (N , w) starting at r and ending at
a tree vertex, u say. By Lemma 1, u is a tree vertex of a k-reticulated cherry {a, b}
for some k ∈ {0, 1, 2}. Observe that if (N , w) is tree child, then k ∈ {0, 1}. Using
the maximality of l, and the fact that reticulations pairs have equal weight, it is easily
checked that Qr (a, b) = l and so

l ≤ max{Qr (x, y) : x, y ∈ X − {r}}. (1)

Now let {s, t} be a 2-element subset of X − {r} such that

Qr (s, t) = max{Qr (x, y) : x, y ∈ X − {r}}.

Let ps and pt be the parents of s and t in (N , w), respectively. The rest of the proof
is partitioned into three cases depending on whether ps and pt are tree vertices or
reticulations. For the first case, suppose that ps and pt are both tree vertices. Let ls
and lt denote the lengths of the longest up-down paths in (N , w) from r to ps and r
to pt , respectively. Noting that

dmax(r, s) = ls + w(ps, s)

and

dmax(r, t) = lt + w(pt , t),
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and ls, lt ≤ l, we have

Qr (s, t) = 1
2

(
dmax(r, s) + dmax(r, t) − dmin(s, t)

)

= 1
2

(
ls + w(ps, s) + lt + w(pt , t)

− dmin(ps, pt ) − w(ps, s) − w(pt , t)
)

≤ 1
2

(
ls + lt

)

≤ l,

wheredmin(ps, pt )denotes theminimum lengthof anup-downpath in (N , w)between
ps and pt . Since Qr (s, t) = max{Qr (x, y) : x, y ∈ X − {r}}, it follows by (1) that
equality holds throughout and so dmin(ps, pt ) = 0. Since internal tree edges have
strictly positive weight, we have ps = pt , in which case {s, t} is a 0-reticulated cherry
in (N , w).

For the second case, suppose that exactly one of ps and pt is a tree vertex. Without
loss of generality, we may assume that ps is a tree vertex. Let ls and lt denote the
lengths of the longest up-down paths in (N , w) from r to ps and r to a parent, gt say,
of pt . Observe that

dmax(r, s) = ls + w(ps, s)

and, as w is reticulation paired,

dmax(r, t) = lt + w(gt , pt ) + w(pt , t).

Let g′
t denote the parent of pt that is on an up-down path in (N , w) realising dmin(s, t).

Note that gt and g′
t may or may not be distinct. Since N is stack-free, gt and g′

t are
tree vertices. Therefore, as w(gt , pt ) = w(g′

t , pt ) and ls, lt ≤ l,

Qr (s, t) = 1
2

(
dmax(r, s) + dmax(r, t) − dmin(s, t)

)

= 1
2

(
ls + w(ps, s) + lt + w(gt , pt ) + w(pt , t)

− dmin(ps, g
′
t ) − w(ps, s) − w(gt , pt ) − w(pt , t)

)

= 1
2

(
ls + lt − dmin(ps, g

′
t )

)

≤ 1
2

(
ls + lt

)

≤ l,

where dmin(ps, g′
t ) denotes the minimum length of an up-down path in (N , w)

between ps and g′
t . By the choice of {s, t} and (1), equality holds throughout and

so dmin(ps, g′
t ) = 0, that is ps = g′

t , in which case {s, t} is a 1-reticulated cherry.
Lastly, suppose that ps and pt are both reticulations. Let ls and lt denote the lengths

of the longest up-down paths in (N , w) from r to a parent, gs say, of ps and from r to
a parent, gt say, of pt . Then

dmax(r, s) = ls + w(gs, ps) + w(ps, s)

123



2250 Algorithmica (2018) 80:2240–2259

x1

x2 x1 x2 x3

x4

r
b

x3

r

2b

b

(ii) (N2, w2()i( )N1, w1)

Fig. 3 Two weighted tree-child networks for which the maximum Qr -score is not realised by either a 0-
or 1-reticulated cherry

and

dmax(r, t) = lt + w(gt , pt ) + w(pt , t).

Let g′
s and g′

t denote the parents of ps and pt , respectively, on an up-down path in
(N , w) realising dmin(s, t). As N is stack free, each of gs , g′

s , gt , and g′
t are tree

vertices. Since w is reticulation paired, w(gs, ps) = w(g′
s, ps) and w(gt , pt ) =

w(g′
t , pt ). Therefore, as ls, lt ≤ l,

Qr (s, t) = 1
2

(
dmax(r, s) + dmax(r, t) − dmin(s, t)

)

= 1
2

(
ls + w(gs, ps) + w(ps, s) + lt + w(gt , pt ) + w(pt , t)

)

− dmin(g
′
s, g

′
t ) − w(gs, ps) − w(ps, s) − w(gt , pt ) − w(pt , t)

)

= 1
2

(
ls + lt − dmin(g

′
s, g

′
t )

)

≤ 1
2

(
ls + lt

)

≤ l,

where dmin(g′
s, g

′
t ) denotes the minimum length of an up-down path in (N , w)

between g′
s and g′

t . By the choice of {s, t} and (1), equality holds throughout and
so dmin(g′

s, g
′
t ) = 0, that is g′

s = g′
t . If (N , w) is not tree child, then {s, t} is a 2-

reticulated cherry. While if (N , w) is tree child, then (N , w) has a vertex with two
child reticulations; a contradiction.

In each case, it easily follows that Qr (s, t) is the length of the longest up-down
path in (N , w) starting at r and ending at the tree vertex of the k-reticulated cherry
{s, t}. In addition, in each case we have the equality ls = lt = l, from which it follows
that dmax(r, s) and dmax(r, t) are each realised by a path via the tree vertex of the
k-reticulated cherry. This completes the proof of the lemma. ��

Lemma 3 does not necessarily hold if (N , w) is not stack free or if the weighting
does not have the property that w(e1) = w(e2) for each reticulation pair e1 and e2.
Consider the two weighted tree-child networks (N1, w1) on X1 and (N2, w2) on X2
shown in Fig. 3, where X1 = {r, x1, x2, x3} and X2 = {r, x1, x2, x3, x4}. Here, b
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is a positive real and, for clarity, unweighted edges each have weight one. The fact
that unweighted edges each have the same weight is simply for convenience. Observe
that (N1, w1) is not stack free and the weighting in (N2, w2) does not satisfy the
reticulation pair property. With regards to (i), it is easy to check that

Qr (x2, x3) = max{Qr (xi , x j ) : xi , x j ∈ X1 − {r}}

provided b is sufficiently large. But {x2, x3} is neither a 0- nor 1-reticulated cherry in
(N1, w1). In (ii), provided b is sufficiently large,

Qr (x1, x3) = Qr (x2, x3) = max{Qr (xi , x j ) : xi , x j ∈ X − {r}},

and {x1, x3}, as well as {x2, x3}, is not a 0- or 1-reticulated cherry.

4 Tree-Child Networks

In this section, we prove the uniqueness part of Theorem 1. We begin with a lemma
which will be used again in the next section.

Lemma 4 Let (N , w) be a weighted tree-child network on X with outgroup r, where
|X | ≥ 3. Let D be the multi-set distance matrix of (N , w). For some k ∈ {0, 1}, let
{s, t} be a k-reticulated cherry in (N , w) such that

Qr (s, t) = max{Qr (x, y) : x, y ∈ X − {r}}.

Depending on k, let D′ be the multi-set distance matrix obtained from D by reducing
t if k = 0 and by cutting {s, t} if k = 1. ThenD′ is realised by the weighted tree-child
network obtained from (N , w) by reducing t if k = 0 and by cutting {s, t} if k = 1.

Proof If k = 0, then it is clear that D′ is realised by the weighted tree-child network
on X ′ obtained from (N , w) by reducing t . Therefore suppose that k = 1 and t is
the reticulation leaf of the 1-reticulated cherry {s, t}. Let (N ′, w′) be the weighted
tree-child network on X obtained from (N , w) by cutting {s, t}. We next show that
D′ is realised by (N ′, w′).

Let ps and pt be the (unique) parents of s and t in (N , w), respectively. Since
the only up-down paths in (N , w) between elements in X traversing (ps, pt ) involve
t , it follows that D′

x,y = D′
y,x is realised by (N ′, w′) for all x, y ∈ X − {s, t}. Let

x ∈ X −{s, t} and consider the set of up-down paths starting at s and ending at x , and
the set of up-down paths starting at t , traversing (ps, pt ), and ending at x . There is an
obvious one-to-one correspondence between the two sets. Under this correspondence,
if ds,x is the length of an up-down path starting at s and ending at x , then the length
dt,x of the corresponding up-down path starting at t , traversing (ps, pt ), and ending
at x is

dt,x = ds,x + w(ps, pt ) + w(pt , t) − w(ps, s)

= ds,x + c,
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where, by Lemma 3 and the equality of weights on reticulations pairs, c = dmax(r, t)−
dmax(r, s). Hence, for each x ∈ X − {s, t},

D′
t,x = D′

x,t = Dt,x − {d + c : d ∈ Ds,x }

is realised by (N ′, w′). Lastly, D′
s,t = D′

t,s is realised by (N ′, w′) as there is exactly
one up-down path P = s, ps, pt , t in (N , w) between s and t that traverses (ps, pt ),
and which is therefore the only path removed when cutting {s, t} in (N , w). Path
P must have distance dmin(s, t), since any other up-down path P ′ from s to t also
traverses the edges (ps, s) and (pt , t) and must traverse the reticulation edge paired
with (ps, pt ), which has weight equal to (ps, pt ), and hence P ′ is at least as long as P .

��
By way of example, consider (N1, w1) as shown in Fig. 2. The pair that maximise

the Qr -score is {x3, x4} with Qr (x3, x4) = 1
2 (19 + 21 − 6) = 17. Consider the

multi-set distance matrixD realised by (N1, w1), and the multi-set distance matrixD′
obtained by cutting {x3, x4} in D. Now Dx1,x3 = {14, 21} and Dx1,x4 = {16, 21, 23}.
The latter set can be viewed as

{21} ∪ {d + c : d ∈ Dx1,x3 , c = 2},

where 21 is the only distance realised by a path not going via the parent of x3. Observe
that D′

x1,x4 = {21}. Finally, Dx3,x4 = {6, 14, 21}, and D′
x3,x4 = {14, 21}, where the

length 6 up-down path is the only path removed by cutting {x3, x4} in (N1, w1).
The following theorem establishes the uniqueness part of Theorem 1.

Theorem 2 Let D be a multi-set distance matrix on X with distinguished element r .
Let (N , w) be a weighted tree-child network on X with outgroup r realisingD. Then,
up to equivalence, (N , w) is the unique such network realising D.

Proof The proof is by induction on the sum of the number n of leaves and the number
k of reticulations in (N , w). If this sum is 1, then (N , w) consists of the single vertex
r and so the theorem holds. If the sum is 2, then (N , w) consists of two leaves attached
to the root and again the theorem holds. Now suppose that n + k ≥ 3 and the theorem
holds for all weighted tree-child networks with outgroup r , where the sum of the
number of leaves and the number of reticulations is at most n + k − 1.

Let {s, t} be a 2-element subset of X − {r} such that

Qr (s, t) = max{Qr (x, y) : x, y ∈ X − {r}}.

Then, by Lemma 3, {s, t} is a k-reticulated cherry for some k ∈ {0, 1}. If k = 1, we
may assume without loss of generality that t is the reticulation leaf. Depending on k,
let (N ′, w′) be the weighted tree-child network obtained from (N , w) by reducing t if
k = 0 and cutting {s, t} if k = 1. Furthermore, let D′ be the multi-set distance matrix
obtained from D by reducing t in D if k = 0 and by cutting {s, t} in D if k = 1. By
Lemmas 2 and 4 respectively, (N ′, w′) is tree child and realises D′. Since (N ′, w′)
has n − 1 leaves if k = 0 and k − 1 reticulations if k = 1, it follows by the induction
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assumption that, up to equivalence, (N ′, w′) is the unique weighted tree-child network
with outgroup r realising D′.

Let (N1, w1) be a weighted tree-child network on X with outgroup r realising D.
Since

Qr (s, t) = max{Qr (x, y) : x, y ∈ X − {r}},

it follows by Lemma 3 that {s, t} is a k-reticulated cherry in (N1, w1) for some k ∈
{0, 1}. First assume that {s, t} is a 0-reticulated cherry in (N , w). Then |Ds,t | = 1,
and so {s, t} is a 0-reticulated cherry in (N1, w1). Let (N ′

1, w
′
1) be the weighted tree-

child network on X − {t} obtained from (N1, w1) by reducing t . Then, by Lemma 4,
(N ′

1, w
′
1) realises D′ and so, by the induction assumption, (N ′

1, w
′
1) is equivalent to

(N ′, w′). Using this equivalence and considering a distance in Dr,t , it is easily seen
that (N1, w1) is equivalent to (N , w).

Now assume that {s, t} is a 1-reticulated cherry in (N , w). Then |Ds,t | �= 1, so
{s, t} is a 1-reticulation in (N1, w1). Furthermore, as t is the reticulation leaf of {s, t}
in (N , w),

{d + c : d ∈ Ds,x }�Dt,x ,

where c = dmax(r, t) − dmax(r, s), for all x ∈ X − {s, t}, and so t is the reticulation
leaf of {s, t} in (N1, w1). Let (N ′

1, w
′
1) be the weighted tree-child network on X

obtained from (N1, w1) by cutting {s, t}. Then, as (N1, w1) realises D, it follows by
Lemma 4 that (N ′

1, w
′
1) realisesD′. Therefore, by the induction assumption, (N ′

1, w
′
1)

is equivalent to (N ′, w′). Using dmin(s, t), it is now easily deduced that (N1, w1) is
equivalent to (N , w). This completes the proof of the theorem. ��

5 The Algorithm

Let (N , w) be aweighted tree-child network on X with outgroup r . LetD be themulti-
set distance matrix of (N , w). In this section, we present the algorithmQ-Reduction
which takes as input X , D, and r , and outputs (N0, w0). As described at the end of
the introduction, this algorithm recursively finds a 2-element subset that maximises
the Q-score with respect to r and then, depending on whether this subset is a 0- or
1-reticulated cherry, reduces or cuts a 2-element subset of X in the current distance
matrix. Once this matrix is small, it recursively reverses these operations to construct
(N0, w0). Formally, Q-Reduction works as follows:

1. If |X | = 1, then return the phylogenetic network (N0, w0) consisting of the single
vertex r .

2. If |X | = 2, say X = {r, s}, then return the phylogenetic network (N0, w0) consist-
ing of leaves r and s adjoined to the root ρ with (ρ, r) weighted the single value
in Dr,s and (ρ, s) weighted 0.

3. Else, find a 2-element subset {s, t} of X such that

Qr (s, t) = max{Qr (x, y) : x, y ∈ X − {r}}.
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(a) If |Ds,t | = 1 (in which case, {s, t} is a 0-reticulated cherry), then
(i) Reduce t in D to give the multi-set distance matrix D′ on X ′ = X − {t}.
(ii) Apply Q-Reduction to input X ′, D′, and r . Construct (N0, w0) from

the returned network (N ′
0, w

′
0) on X ′ by reversing the reduction on t . In

particular, if u is the parent of s in (N ′
0, w

′
0), then subdivide (u, s) with

a new vertex v, add a new leaf t and adjoin it with the new edge (v, t),
assign weights w0(u, v) and w0(v, s) so that

Qr (s, t) = max{Qr (x, y) : x, y ∈ X − {r}}

and

w0(u, v) + w0(v, s) = w′
0(u, s),

and assign weight w0(v, t) so that dmin(s, t) = w0(v, s) + w0(v, t).
Return (N0, w0).

(b) Else ({s, t} is a 1-reticulated cherry, in which case it has reticulation leaf t if,
for all x ∈ X − {s, t},

{d + c : d ∈ Ds,x }�Dt,x ,

where c = dmax(r, t) − dmax(r, s)),
(i) Cut {s, t} in D to give the multi-set distance matrix D′ on X .
(ii) Apply Q-Reduction to input X , D′, and r . Construct (N0, w0) from

the returned network (N ′
0, w

′
0) on X by reversing the cutting of {s, t}.

In particular, if u1 and u2 denote the parents of s and t , respectively, in
(N ′

0, w
′
0), then subdivide (u1, s) and (u2, t) with new vertices v1 and v2,

respectively, adjoin v1 and v2 with the new edge (v1, v2), assign weight
w0(u1, v1) so that

Qr (s, t) = max{Qr (x, y) : x, y ∈ X},

assign weight w0(v1, s) so that

w0(u1, v1) + w0(v1, s) = w′
0(u1, s),

and assign weight 0 to (v1, v2) and (u2, v2), and weight w′
0(u2, t) to

(v2, t). Return (N0, w0).

The next theorem shows that Q-Reduction does indeed work as expected.

Theorem 3 Let (N , w) be a weighted tree-child network on X with outgroup r. Let
D be the multi-set distance matrix of (N , w). Then Q-Reduction applied to X, D,
and r returns (N0, w0).

Proof The proof is by induction on the sum of the number n of leaves and the number
k of reticulations in (N , w). If this sum is 1, then (N , w) consists of the single vertex r
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andQ-Reduction correctly returns (N0, w0). If the sum is 2, then (N , w) consists of
two leaves attached to the root and, again, Q-Reduction correctly returns (N0, w0).

Now suppose that (N , w) has n leaves and k reticulations, where n + k ≥ 3, and
note that n ≥ 3. Let D′ be a multi-set matrix of distances on a set X ′, and let r be
a distinguished element in X ′. Suppose that D′ is realised by a weighted tree-child
network (N ′, w′) on X ′ with outgroup r , and with n′ leaves and k′ reticulations such
that

1 ≤ n′ + r ′ < n + r.

The inductive hypothesis is that if Q-Reduction is applied to X ′, D′, and r , then
(N ′

0, w
′
0) is returned.

Consider the run of the algorithm on input X , D, and r . Since n ≥ 3, at the first
iteration it finds a 2-element subset {s, t} of X − {r} such that

Qr (s, t) = max{Qr (x, y) : x, y ∈ X − {r}}.

Furthermore, by Lemma 3, as D is realised by (N , w), either (i) we have |Ds,t | = 1
or (ii) without loss of generality we have

{d + c : d ∈ Ds,x }�Dt,x ,

where c = dmax(r, t)−dmax(r, s). First suppose (i) holds. Then the algorithm reduces
t in D producing the multi-set distance matrix D′ on X ′ = X − {t} given by

D′
x,y = D′

y,x = Dx,y

for all x, y ∈ X ′. This completes the first iteration and Q-Reduction is now recur-
sively applied to X ′, D′, and r . By Lemma 4, D′ is realised by a weighted tree-child
network, (N ′, w′) say, on X ′ with outgroup r . Since (N ′, w′) has n − 1 leaves and k
reticulations, it follows by the induction assumption thatQ-Reduction applied to X ′,
D′, and r returns (N ′

0, w
′
0). It is easily checked that the construction in Step 3(a) (ii)

of Q-Reduction applied to (N ′
0, w

′
0) returns (N0, w0). In this construction, observe

that there is exactly one choice for the weights of the edges incident with the parent
of s and t in the returned network.

Now suppose (ii) holds. Then Q-reduction cuts {s, t} in D to produce the multi-
set distance matrix D′ on X . This completes the first iteration and Q-Reduction is
now recursively applied to X , D′, and r . By Lemma 4, D′ is realised by a weighted
tree-child network (N ′, w′) on X with outgroup r . Since (N ′, w′) has n leaves and
k −1 reticulations, it follows by the induction assumption thatQ-Reduction applied
to X ,D′, and r returns (N ′

0, w
′
0). It is easily checked that the construction in Step 3(b)

(ii) of Q-Reduction applied to (N ′
0, w

′
0) returns (N0, w0). Note that the weighting

of (u1, v1) is unique as is the weighting of (v1, s) in constructing (N0, w0). ��
We now turn our attention to the running time of Q-Reduction. The algorithm

takes as input a set X , an |X | × |X | matrixD whose entries are multi-sets of up-down
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path distances of a weighted tree-child network (N , w) on X , and an element r in X .
We will assume that each entry in D is presented as an ascending list of distances.
Unless |X | ∈ {1, 2}, in which caseQ-Reduction runs in constant time, each iteration
involves finding a 2-element subset {s, t} of X − {r} such that

Qr (s, t) = max{Qr (x, y) : x, y ∈ X − {r}}.

Since each entry is an ascending list of distances, finding such a subset takes O(|X |2)
time, that is O(|D|) time, where |D| is the sum of the cardinalities of the multi-sets
that are the elements of D.

With a suitable 2-element subset of X−{r} found,we computeD′. This computation
is done in one of two ways depending on whether or not |Ds,t | = 1. If |Ds,t | �= 1, we
need to additionally check which of

{d + c : d ∈ Ds,x }�Dt,x and {d − c : d ∈ Dt,x }�Ds,x ,

where c = dmax(r, t) − dmax(r, s) holds, for all x ∈ X − {s, t}. Since D is the multi-
set distance matrix of (N , w), it suffices to do this check for only one element in
X − {s, t} and this can be done in O(|D|) time. ComputingD′ takes O(|D|) time and
once (N ′

0, w
′
0) is returned, it can be augmented to (N0, w0) in constant time. Hence

the total time of the iteration is linear in |D|.
When we recurse, the multi-set distance matrix D′ inputted to the recursive call is

strictly smaller thanD sincewe either reduce an element, inwhich casewe delete a row
and column ofD, or we cut a 2-element set, in which case we delete elements in entries
ofD. Thus the total number of iterations is atmost |D|, and soQ-Reduction completes
in time O(|D|2). Together with Theorems 2 and 3, this establishes Theorem 1.

6 Stack-Free Networks

In this section, we consider an analogue of Theorem 1 for stack-free networks. Let
(N , w) be a weighted phylogenetic network on X . If F is a subset of edges of (N , w),
we denote byw(F) the sumof theweights of the edges in F .Without loss of generality,
let E ′ be a subset of the edges of (N , w) consisting of all the tree edges of (N , w)

and exactly one edge from each reticulation pair of (N , w). We say w is generic if
w(F) �= w(G) for all distinct non-empty subsets F and G of E ′. Up to the restriction
that reticulation pairs have equal weights, if a weighting of each edge ofN is selected
independently from any continuous probability distribution on the positive reals, then
the probability of the weighting being generic is one. Note that our requirement for a
generic weighting is very close to the no-equally-long-paths (NELP) property of Pardi
and Scornavacca [8], and is introduced for similar reasons.

In writing this paper, we felt we were tantalisingly close to establishing an analogue
of Theorem 1 for stack-free networks with a generic weighting. In particular, the
following which we state as a conjecture:
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x1 x2 x3 x4

y

x1 x2 x3 x4

y

r r

(ii) N2(i) N1

Fig. 4 In this figure all edges have weight 1.N1 andN2 are two non-isomorphic stack-free phylogenetic
networks on {x1, x2, x3, x4, y, r} with the same multiset-matrix of inter-taxa distances

Conjecture 1 LetD be a multi-set distance matrix on X with a distinguished element
r . Let (N , w) be a generically-weighted stack-free network on X with outgroup r
realising D. Then, up to equivalence, (N , w) is the unique such network realising D.

Note that a reticulation-pair weighting is not sufficient for the conjecture to hold.
Figure 4 gives an example of two reticulation-pair weighted, stack-free networks that
share the same multiset-matrix of inter-taxa distances but are non-isomorphic.

The following lemma supports Conjecture 1, in that it proves a partial result that
could potentially be used in a proof of Conjecture 1. Given a distance matrix D on X
with distinguished element r that is realised by a weighted stack-free network (N , w)

on X with outgroup r , this lemma not only allows us to find a 2-element subset of
X − {r} that is a 0- , 1- , or 2-reticulated cherry of (N , w) using just D, but also to
determine its type. The notion of a generic weighting is crucially used in the proof of
this lemma. Whether one can relax this condition remains an open problem.

Lemma 5 Let D be a multi-set distance matrix on X with a distinguished element
r , where |X | ≥ 3. Let (N , w) be a generically-weight stack-free network on X with
outgroup r realising D. Let {s, t} be a 2-element subset of X − {r} such that

Qr (s, t) = max{Qr (x, y) : x, y ∈ X}.

Then

(i) {s, t} is a 0-reticulated cherry in (N , w) if |Ds,t | = 1;
(ii) {s, t} is a 1-reticulated cherry in (N , w) with reticulation leaf t if, for all x ∈

X − {s, t},

{d + c : d ∈ Ds,x }�Dt,x ,

where c = dmax(r, t) − dmax(r, s); and
(iii) {s, t} is a 2-reticulated cherry in (N , w) otherwise.
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Proof ByLemma3, {s, t} is a k-reticulated cherry for some k ∈ {0, 1, 2}. If |Ds,t | = 1,
then it is clear that {s, t} is a 0-reticulated cherry in (N , w). Suppose that, for all
x ∈ X − {s, t},

{d + c : d ∈ Ds,x }�Dt,x ,

where c = dmax(r, t) − dmax(r, s). We next show that, under this assumption, {s, t} is
a 1-reticulated cherry in (N , w) with reticulation leaf t .

If {s, t} is a 1-reticulated cherry in (N , w), then, because of the strict subset assump-
tion, t is the reticulation leaf.Assume, to the contrary, that {s, t} is a 2-reticulated cherry
in (N , w). Let ps and pt be the parents of s and t in (N , w), respectively. Let gst
be a common parent of ps and pt . Since {s, t} is a 2-reticulated cherry in (N , w), it
follows that ps and pt have at least one such parent. If ps and pt have both parents
in common, then |Ds,x | = |Dt,x | for all x ∈ X − {s, t}; a contradiction. So gst is the
only such parent. Let gs and gt be the parents of ps and pt in (N , w), respectively,
that is not gst .

Let z ∈ X −{s, t} such that z can be reached by an up-down path, Ps say, starting at
s, traversing (gs, ps) in (N , w). Since {d + c : d ∈ Ds,z}�Dt,z , there is an injection
from the set of up-down paths from s to z to the set of up-down paths from t to z, where
each path is mapped onto a path whose length differs by exactly c. Moreover, we may
create this injection by extending the canonical bijection between the set of up-down
paths starting at s, traversing (gst , ps), and ending at z and the set of up-down paths
starting at t , traversing (gst , pt ), and ending at z. Thus we may assume that under the
injection each path traversing (gs, ps) maps to a path traversing (gt , pt ). Hence there
is an up-down path Pt starting at t and ending at z such that

w(Ps) + c = w(Pt ), (2)

where w(Ps) and w(Pt ) are the sums of the weights of the edges in Ps and Pt ,
respectively, and Pt traverses (gt , pt ). By Lemma 3, dmax(r, t) and dmax(r, s) are
realised by paths via gst , hence we can express c as

c = w(gst , pt ) + w(pt , t) − w(gst , ps) − w(ps, s),

and so (2) implies

w(Ps) + w(gst , pt ) + w(pt , t) = w(Pt ) + w(gst , ps) + w(ps, s). (3)

Let P ′
s consist of the edges of Ps starting at gs and ending at z, and let P

′
t consist of the

edges of Pt starting at gt and ending at z. So w(Ps) = w(P ′
s) + w(gs, ps) + w(ps, s)

and w(Pt ) = w(P ′
t ) + w(gt , pt ) + w(pt , t). Then, by (3)

w(P ′
s) + w(gs, ps) + w(gst , pt ) = w(P ′

t ) + w(gt , pt ) + w(gst , ps).
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But asw is reticulation pairedw(gs, ps) = w(gst , ps) andw(gt , pt ) = w(gst , pt ), so
w(P ′

s) = w(P ′
t ), contradicting that w is generic. Thus {s, t} is a 1-reticulated cherry

with reticulation leaf t , and the lemma follows. ��
Unfortunately, although we are able to determine a 0- , 1- , or 2-reticulated cherry

of (N , w) using just D, in the case that we find a pair {s, t} that form a 2-reticulated
cherry, it is not clear how to obtain a multi-set distance matrixD′ fromD such thatD′
is displayed by the network obtained from (N , w) by cutting one of the reticulation
edges in {s, t}. In particular it is not clear which elements of Ds,t should be in D′

s,t .

References

1. Bordewich, M., Semple, C.: Determining phylogenetic networks from inter-taxa distances. J. Math.
Biol. 73, 283–303 (2016)

2. Bordewich, M., Tokac, N.: An algorithm for reconstructing ultrametric tree-child networks from inter-
taxa distances. Discrete Appl. Math. 213, 47–59 (2016)

3. Cardona, G., Rossello, F., Valiente, G.: Comparison of tree-child phylogenetic networks. IEEE ACM
Trans. Comput. Biol. Bioinform. 6, 552–569 (2009)

4. Chan, H.-L., Jansson, J., Lam, T.-W., Yiu, S.-M.: Reconstructing an ultrametric galled phylogenetic
network from a distance matrix. J. Bioinform. Comput. Biol. 4, 807–832 (2006)

5. Huson, D.H., Scornavacca, C.: A survey of combinatorial methods for phylogenetic networks. Genome
Biol. Evol. 3, 23–35 (2011)

6. Luksza, M., Lassig, M.: A predictive fitness model for influenza. Nature 507, 57–61 (2014)
7. Pardi, F., Gascuel, O.: Distance-based methods in phylogenetics. In: Kliman, R. (ed.) Encyclopedia of

Evolutionary Biology, pp. 458–465. Academic Press, Oxford (2016)
8. Pardi, F., Scornavacca, C.: Reconstructible phylogenetic networks: do not distinguish the indistin-

guishable. PLoS Comput. Biol. 11, e1004135 (2015)
9. Rambaut, A., Robertson, D., Pybus, O., Peeters, M., Holmes, E.: Phylogeny and the origin of HIV-1.

Nature 410, 1047–1048 (2001)
10. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstruction of phylogenetic

trees. Mol. Biol. Evol. 4, 406–425 (1987)
11. Willson, S.J.: Tree-average distances on certain phylogenetic networks have their weights uniquely

determined. Algorithms Mol. Biol. 7, 13 (2012)
12. Willson, S.J.: Reconstruction of certain phylogenetic networks from their tree-average distances. Bull.

Math. Biol. 75, 1840–1878 (2013)

123


	Constructing Tree-Child Networks from Distance Matrices
	Abstract
	1 Introduction
	2 Preliminaries
	3 mathcalQ-Score
	4 Tree-Child Networks
	5 The Algorithm
	6 Stack-Free Networks
	References




