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Abstract LetF be a family of graphs. Given an n-vertex input graphG and a positive
integer k, testing whether G has a vertex subset S of size at most k, such that G − S
belongs to F , is a prototype vertex deletion problem. These type of problems have
attracted a lot of attention in recent times in the domain of parameterized complexity.
In this paper, we study two such problems; when F is either the family of forests of
cacti or the family of forests of odd-cacti. A graph H is called a forest of cacti if every
pair of cycles in H intersect on at most one vertex. Furthermore, a forest of cacti H is
called a forest of odd cacti, if every cycle of H is of odd length. Let us denote by C and
Codd, the families of forests of cacti and forests of odd cacti, respectively. The vertex
deletion problems corresponding to C and Codd are called Diamond Hitting Set

and Even Cycle Transversal, respectively. In this paper we design randomized
algorithms with worst case run time 12knO(1) for both these problems. Our algorithms
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considerably improve the running time forDiamond Hitting Set and Even Cycle

Transversal, compared to what is known about them.

Keywords Even Cycle Transversal · Diamond Hitting Set · Fixed parameter
tractability · Randomized algorithms

1 Introduction

In the field of parameterized graph algorithms, vertex (edge) deletion (addition, edit-
ing) problems constitute a considerable fraction. In particular, let F be a family of
graphs. Given an input graphG and a positive integer k, testing whetherG has a subset
of at most k vertices (edges) S, such that G − S belongs to F , is a prototype vertex
(edge) deletion problem. Many well known problems in parameterized complexity
can be phrased in this language. For example, if F is the family of edgeless graphs,
or forests, or bipartite graphs, then the vertex deletion problems to convert the input
graph into a graph in F are Vertex Cover, Feedback Vertex Set, and Odd

Cycle Transversal, respectively. Most of these problems are NP-complete due to
a classic result by Lewis and Yannakakis [19], and naturally a candidate for param-
eterized study (with respect to solution size). Vertex Cover, Feedback Vertex

Set and Odd Cycle Transversal are some of the most well studied problems in
the domain of parameterized complexity. These problems have led to identification of
several new techniques and ideas in the field.

Recent years have seen a plethora of results around vertex and edge deletion prob-
lems, in the domain of parameterized complexity [4,5,11–13,15,16]. In this paper, we
continue this line of research and study two vertex deletion problems. In particular we
study the problem of deleting vertices to get a cactus or an odd cactus graph. A graph
H is called a cactus graph if H is connected and every pair of cycles in H intersect
on at most one vertex. Furthermore, a cactus graph H is called an odd cactus graph, if
every cycle of H is of odd length. A graph is called a forest of cacti if every component
of the graph is a cacti. Let us denote by C and Codd, the families of forests of cacti and
forests of odd cacti, respectively. The vertex deletion problems corresponding to C and
Codd are called Diamond Hitting Set and Even Cycle Transversal, respec-
tively. It is important to note here that the name of deleting vertices to get into Codd
is called Even Cycle Transversal, because it is equivalent to deleting a vertex
subset S of size at most k such that G − S does not have any cycle of even length. The
problem of deleting vertices to get into C is called Diamond Hitting Set, because,
it is equivalent to deleting a vertex subset S of size at most k such that G − S does not
contain diamond as a subgraph (see Definition 3 for the definition of diamond). More
precisely, we study the following problems in the realm of parameterized complexity.

Even Cycle Transversal Parameter: k
Input: An n-vertex undirected graph G and a positive integer k.
Question: Does there exist a vertex subset S of size at most k such that G − S ∈
Codd, where Codd is the family of forests of odd cacti?
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Diamond Hitting Set Parameter: k
Input: An n-vertex undirected graph G and a positive integer k.
Question:Does there exist a vertex subset S of size at most k such thatG−S ∈ C,
where C is the family of forests of cacti?

Parameterized complexity has two major subareas—fixed parameter tractability
(FPT) and kernelization. A parameterized problem Π is a subset of Σ∗ × N, where
Σ is a finite alphabet and N is the set of natural numbers. We say that a parameterized
problem Π is fixed parameter tractable, if there is an algorithm solving the problem
Π , which on input (x, k) runs in time f (k)|x |O(1), where f is an arbitrary function
and |x | is the length of x . A kernelization algorithm for a parameterized problem Π

is a polynomial time algorithm (computable function) A : Σ∗ × N → Σ∗ × N such
that (x, k) ∈ Π if and only if (x ′, k′) = A((x, k)) ∈ Π and |x ′| + k′ ≤ g(k) where
g is a computable function. For a broader overview about parameterized complexity
we refer to monographs [6,8].

It needs to bementioned that, in this paper, we refer tomultigraphs (whichmay have
parallel edges) as graphs. While Odd Cycle Transversal is one of the most well
studied problem in the realm of parameterized complexity, there is only one article
about Even Cycle Transversal in the literature. The structure of a graph without
even cycles, or without cycles of length 0 modulo p for some positive integer p, is
simple. Thomassen [21] showed that such graphs have treewidth at most f (p). Misra
et al. [20] used the structural properties of odd cactus graphs to design an algorithm
for Even Cycle Transversal with running time 50knO(1). They also give an
O(k2) kernel for the problem. On the other hand the family C of forests of cacti can be
characterised by a single excludedminor. In particular, letΘ be a graph on two vertices
that have three parallel edges, then a graph H ∈ C if and only if H does not contain Θ

as a minor. SinceΘ is a connected planar graph we obtain a cknO(1) time algorithm as
a corollary to the main results in [11,15,16]. However, the exact value of c is not given
in any of these algorithms as all of them use a protrusion subroutine [3]. The problem
also has aO(k2 log3/2 k) kernel [10]. It should also be noted that Diamond Hitting

Set and Even Cycle Transversal admit approximation algorithms with factor 9
and 10, respectively [9,20].

Our main theorems are the following.

Theorem 1 There is a randomized algorithm for Even Cycle Transversal with
worst case run timeO(12knm(n+m)), where n and m are the number of vertices and
edges in the input graph, respectively. The algorithm outputs No if the input is a No

instance and for a Yes instance, with probability at least 1 − 1
e , returns a solution.

Theorem 2 There is a randomized algorithm forDiamond Hitting Set with worst
case run time 12knO(1), where n is the number of vertices in the input graph. The
algorithm outputs No if the input is a No instance and for a Yes instance, with
probability at least 1 − 1

e , returns a solution.

Two other related problems studied in the literature are Treewidth- 2- Vertex
Deletion and Outerplanar Vertex Deletion. In both the problems, the input
is an n-vertex graph G and a positive integer k, and the objective is to delete at
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most k vertices to get a graph of treewidth 2 (in other words a K4-minor free graph)
in case of Treewidth- 2- Vertex Deletion and an outerplanar graph (in other
words a graph without K4 and K2,3 as minors) in case of Outerplanar Vertex

Deletion. Recall that in Diamond Hitting Set we are looking for a vertex subset
of size at most k which hits all Θ-minors of the input graph. In Treewidth- 2-
Vertex Deletion and Outerplanar Vertex Deletion, we are looking for a
vertex subset of size at most k, which hits all K4-minors and {K4, K2,3}-minors of
the input graph, respectively. Kim et al. [17] showed that there exists an algorithm for
Treewidth- 2- Vertex Deletion running in time 2O(k)nO(1). Again, this algorithm
uses a protrusion subroutine similar to that in [3], but adapted according to the need
of the problem, and therefore the exact value in the exponent of the running time is
not known. It follows from the later work of Fomin et al. [11] that both the problems
have algorithms running in time 2O(k)nO(1), because they are special cases of Planar
F-Deletion.
OurMethods. Our algorithms use the same methodology that is used for the 4knO(1)

time algorithm for Feedback Vertex Set [2], and its generalization to Planar

FDeletion [11]. In both our algorithms, we start by applying some reduction rules
to the given instance. After this, we show that the number of edges incident with any
solution S of our problems, is a constant fraction to the total number of edges in the
graph. This counting lemma is our main technical contribution. We also observe that
the analysis for the counting lemma is tight for an infinite family of graphs and thus the
analysis of our randomized algorithms cannot be improved. It is in the same spirit as
finding an infinite family of instances for which an approximation algorithm achieves
its approximation ratio.

To apply our reduction rules in a way that the ratio between the number of edges
incident with a solution S of the problem and the total number of edges in the input
graph is as small as possible, we study a more general problem than Even Cycle

Transversal, which we call Parity Even Cycle Transversal. In this problem
we are given a graph G and a weight function w : E(G) → {0, 1} and the objective
is to delete a subset S of vertices of size at most k such that in G − S there is no cycle
whose weight sum is even. Observe that if w assigns one to every edge then it is same
as Even Cycle Transversal.

2 Preliminaries

For a function f : D → R and y ∈ R, we use f −1(y) to denote the set {x ∈
D | f (x) = y}. For a set U that is the disjoint union of subsets U1,U2, . . . ,Ut , we
write U = ⊎

1≤i≤t Ui .

Fact 1 For any n ∈ N, (1 − 1
n )n ≤ 1

e .

We denote a graph as G, and its vertex set and edge set as V (G) and E(G),
respectively. It is possible that there are parallel edges between two vertices of a
graph. The degree of a vertex v ∈ V (G), denoted by dG(v), is the number of edges
incident with v. The neighbourhood of v, denoted by NG(v), is the set of vertices that
have at least one edge incident with v. For a subset of vertices S, we use G[S] and
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G− S to denote the subgraphs of G induced by S and V (G)\ S, respectively. An edge
between two vertices u, v ∈ V (G) is denoted by (u, v), while a path between u, v

is denoted by [u, v]. If a sequence of vertices v1, . . . , vt or edges e1, . . . , et form a
path, then we also denote this path by [v1, . . . , vt ] and [e1, . . . et ], respectively. For a
path/cycle Q, we use E(Q) to denote the set of edges in the path/cycle Q. Given two
subsets V1, V2 ⊆ V (G), E(V1, V2) denotes the set of edges in E(G) that have one end
point in V1 and the other in V2. For a vertex v ∈ V (G) and subset V ′ ⊆ V (G)\{v}we
use E(v, V ′) to denote the edge set E({v}, V ′). The subdivision of an edge e = (u, v)

of a graph G results in a graph G ′, which contains a new vertex w, and where the
edge e is replaced by two new edges (u, w) and (w, v). A graph Ĝ is a subdivision
of a graph G if there is a sequence of graphs (G1,G2, . . . ,Gt ), with G1 = G and
Gt = Ĝ, where for each 1 < i ≤ t , Gi is obtained by the subdivision of an edge of
Gi−1.

For a graph G, we say a vertex v ∈ V (G) is a cut vertex if G − {v} has more
components than G. A connected graph G ′ is called a biconnected graph if the graph
G ′ does not contain any cut vertex. A block of a graph G is a maximal biconnected
subgraph of G.

Definition 1 (Block-Cut Vertex Tree) Let G be a connected graph, C be the set of cut
vertices of G and B be the set of blocks of G. The block-cut vertex tree H of G has
vertex set C ∪ B and E(H) = {(c, B) | c ∈ C, B ∈ B, c ∈ V (B)}.
In fact it is known that block-cut vertex tree of a graph is indeed a tree [7]. Now we
explain how to construct a block decomposition tree of a connected graph. Let H be a
block-cut vertex tree of a connected graph G. Let C be the set of cut vertices of G and
B be the set of blocks of G. We arbitrarily root the tree H at a root Br , where Br ∈ B.
Now a block decomposition tree T of G has vertex set B and (B1, B2) ∈ E(T ) if
V (B1) ∩ V (B2) 
= ∅ (in other words B1 and B2 share a cut vertex of G) and B1 is
an ancestor of B2 in H . In other words, T is obtained from H by contracting the
set of edges {(c, B) | c ∈ C, B ∈ B, B is the parent ofcin H}. Thus T is indeed a
tree. See Fig. 1 for an illustration of block decomposition tree of a graph. A block
decomposition tree of a graph can be built in linear time [14].

Lemma 1 Let T be a tree. Let V1 = {v ∈ V (T ) | dT (v) = 1}, V2 = {v ∈
V (T ) | dT (v) = 2} and V3 = {v ∈ V (T ) | dT (v) ≥ 3}. Then ∑

v∈V3 dT (v) ≤ 3|V1|.
Proof We know that |V (T )| = |V1|+ |V2|+ |V3|. Also, Σv∈V (T )dT (v) = 2|E(T )| =
2(|V (T )| − 1). Now, Σv∈V (T )dT (v) = Σv∈V1dT (v) + Σv∈V2dT (v) + Σv∈V3dT (v) ≥
|V1|+2|V2|+3|V3|. Using the two equations we get that |V3| ≤ |V1|−2 ≤ |V1|. This
also means Σv∈V3dT (v) = 2(|V1| + |V2| + |V3| − 1)− (|V1| + 2|V2|) ≤ |V1| + 2|V3|.
Using the bound of |V3|, Σv∈V3dT (v) ≤ 3|V1|. �
Definition 2 A cactus graph is a connected graph where any two cycles have at most
one vertex in common. Equivalently, every edge of the graph belongs to at most one
cycle. Another equivalent definition is that any block of a cactus graph can be either a
cycle or an edge. A graph where every component is a cactus graph is called a forest
of cacti.
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Fig. 1 The leftmost figure is a graph G with blocks B1, B2, B3, B4 and B5. The cut vertices in G are
c1, c2, c3 and c4. The middle figure is the block-cut vertex tree H of G. The rightmost figure is a block
decomposition tree T of G constructed from H rooted at B1

Definition 3 Let Θ be a graph on a pair of vertices {u, v} that have 3 parallel edges
between them. A graph is called a diamond graph if it is obtained by a number of
subdivisions of Θ .

The following proposition characterizes the class of forests of cacti.

Proposition 1 (Fiorini et. al.[9]) A graph is a forest of cacti if and only if it does not
have a diamond as a subgraph.

The definition of diamond graphs and the characterisation of forests of cacti have been
taken from [9]. Please refer to [7] for further details on notations and definitions in
graph theory.

3 Counting Lemma

In this section, we consider a graph G which has a set S, the deletion of which results
in a cactus graph. Moreover, we assume that each vertex of the cactus graph G − S
has at least three distinct neighbors in G or shares at least two edges with S. Then,
it is possible to bound the number of edges in E(G − S) by the number of edges in
E(S, V (G) \ S). In fact, we exhibit a family of graphs where this bound is tight, up
to a constant difference.

Lemma 2 Let G be a graph and S ⊆ V (G) such that G − S is a cactus graph and
for all v ∈ V (G) \ S one of the following two conditions holds:
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1. v has at least 3 distinct neighbors in G, or
2. there are at least two edges in E(v, S)

Then |E(G − S)| ≤ 5|E(S, V (G) \ S)|.
Proof Let G ′ = G − S. We know that G ′ is a cactus graph. Let T be the block
decomposition tree of G ′ rooted at a vertex of degree one. Throughout the proof, for
a block X of G ′, we represent the corresponding vertex in T as tX . Let B = E(G ′)
and C = E(S, V (G) \ S). We need to show that |B| ≤ 5|C |.

Since G ′ is a cactus graph, by Proposition 1, there cannot be three parallel edges
between two vertices of G ′. Towards the proof, we first define some notations. Let
X be a block that is an edge or a cycle of length 2 in G ′, and such that tX has only
one child tY , which is a leaf node in T . Then we say that the blocks X and Y of G ′
together form a super block. If blocks X and Y form a super block Z , where tY is a
leaf node, then by parent of the super block Z , we mean the parent of tX in T . All
other blocks, which are not part of any super block, are called normal blocks. By size
of a (super/normal) block Z , denoted by size(Z), we mean the number of edges in the
block Z . To bound the number of edges in G ′ it is enough to bound the total number of
edges in super blocks and normal blocks. Let B� be the set containing all super blocks
and normal blocks which correspond to leaves in T . LetBn be the set of normal blocks
which are not part of B�. Now we define B� as the set of edges in the (normal/super)
blocks which are part of B�, and Bn as the set of edges in the normal blocks which
are part of Bn . To bound the cardinality of B, it is enough to bound the cardinality
of B� and Bn , individually. We partition the edges in C as follows. We say an edge
e ∈ C is incident with a (super/normal) block Z if it is incident with a vertex u in Z ,
which is not the cut vertex shared with the parent of Z . We use EZ to denote the set
of edges in C , which are incident with the (super/normal) block Z . Let C� be the set
of edges in C which are incident with (super/normal) blocks in B�. Similarly, let Cn

be the set of edges in C which are incident with blocks in Bn . Let ri be the number of
blocks of size i in B�. Let B

(i)
� be the set of edges in blocks of size i in B�. Let C

(i)
�

be the set of edges in C� which are incident with blocks of size i in B�. Notice that
B� = ⊎

1≤i≤n B
(i)
� and C� = ⊎

1≤i≤n C
(i)
� .

Claim 1 ri ≤ |C(i)
� |
2 for i ≤ 4 and ri ≤ |C(i)

� |
i−3 for i ≥ 5.

Proof Bound on r1 Let X be a block of size one in B�. That is, the block X is a single
edge (x, y) and there is a vertex in {x, y} which has degree one in G ′. Let x be the
degree one vertex. By our assumption at least 2 edges in C (1)

� are incident with x . This

implies that |EX | ≥ 2. Thus we have that |C (1)
� | = ∑

{X :size(X)=1} |EX | ≥ 2r1. Hence

r1 ≤ |C(1)
� |
2 .

Bound on r2 Let X be a block of size two in B�. If X is a normal block, then the block
X is a cycle y, x, y of length 2. Since X is a leaf block, there is a vertex in X which
is not a cut vertex in G ′. Let x be the vertex in X such that x is not a cut vertex. This
implies that NG ′(x) = {y}. Thus, by our assumption, either |E(x, S)| ≥ 2 or x has
two neighbors in S. In either case, |E(x, S)| ≥ 2. That is, |EX | ≥ 2. If X is a super
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block, then X consists of two blocks Y and Z of size 1 each, such that tY has only one
child tZ and tZ is a leaf node in T . Let Z = (x, y) be such that x has degree one in
G ′. Thus, by our assumption, we can conclude that |E(x, S)| ≥ 2. That is, |EX | ≥ 2.

Thus, we have that |C (2)
� | = ∑

{X :size(X)=2} |EX | ≥ 2r2. Hence, r2 ≤ |C(2)
� |
2 .

Bound on r3 Let X be a (super/normal) block of size three in B�. That is, either the
block X is a cycle x, y, z, x of length 3, or it is a super block consisting of two blocks,
where one of them is a cycle of length 2 and the other is an edge. If X is a cycle
x, y, z, x , then tX is a leaf in T . Let z be the only cut vertex in {x, y, z}. This implies
that the degrees of x and y are exactly 2 inG ′. Thus, by our assumption, |E(x, S)| ≥ 1
and |E(y, S)| ≥ 1. This implies that |EX | ≥ 2.

Suppose X is a super block. Then X consists of a cycle x, y, x and an edge (y, z).
In this case, only one vertex, either x or z, will be shared with the parent of X and
all other vertices will not have a neighbor in V (G ′) \ X . Suppose x is the shared
vertex with the parent of the block X . Then, the number of distinct neighbors of y
and z in G ′ is exactly 2 and 1, respectively. This implies that |E(y, S)| ≥ 1 and
|E(z, S)| ≥ 2. Consequently, |EX | ≥ 3. By a similar argument, we can show that if
z is the shared vertex of the super block X with its parent, then |EX | ≥ 3. Thus, we

have that |C (3)
� | = ∑

{X :size(X)=3} |EX | ≥ 2r3. Hence, r3 ≤ |C(3)
� |
2 .

Bound on r4 Let X be a (super/normal) block of size four in B�. That is, either the
block X is a cycle of length 4 or it is a super block consisting of two blocks. If X is a
cycle of length 4, then tX is a leaf in T . This implies that the degree of every vertex in
X , except the cut vertex shared with the parent block, is exactly 2 in G ′. This implies
that |EX | ≥ 3.

Suppose X is a super block consisting of two blocks Y and Z , where the size of Y
is at most 2 and tZ is a leaf node in T . If size(Y ) = 1, then Z is a cycle of length 3.
This implies that at least two vertices in Z have degree exactly 2 in G ′. Thus, by our
assumption, |EZ | ≥ 2 and this implies that |EX | ≥ 2.

If size(Y ) = 2, then both Y and Z are cycles of length 2. Let x, y, x be the block
Y and y, z, y be the block Z . Thus, the number of distinct neighbors of y and z in
G ′ is 2 and 1, respectively. By our assumption, this implies that |E(y, S)| ≥ 1 and
|E(z, S)| ≥ 2. Thus, we have that |EX | ≥ 3. Hence, we conclude that |C (4)

� | =
∑

{X :size(X)=4} |EX | ≥ 2r4. This means, r4 ≤ |C(4)
� |
2 .

Bound on ri for i ≥ 5 Let X be a (super/normal) block of size at least five in B�.
That is, either the block X is a cycle of length i , or it is a super block consisting of
two blocks Y and Z such that Z is a cycle of length at least i − 2 and tZ is a leaf in
T . In either case, X contains at least i − 3 vertices (excluding the cut vertex shared
with the parent block) having exactly 2 distinct neighbors in G ′. This implies that
|EX | ≥ i − 3. Hence, we have that |C (i)

� | = ∑
{X :size(X)=i} |EX | ≥ (i − 3)ri . Thus,

ri ≤ |C(i)
� |

i−3 . �

Now we can bound the cardinality of B�. Let C
(≤4)
� = ⋃

i≤4 C
(i)
� and C (≥5)

� =
⋃

i≥5 C
(i)
� .
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|B�| =
∑

i

|B(i)
� | =

∑

i

i · ri

≤ 2
∣
∣C (≤4)

�

∣
∣ +

∑

i≥5

i

i − 3

∣
∣
∣C

(i)
�

∣
∣
∣ (By Claim 1) (1)

≤ 2
∣
∣C (≤4)

�

∣
∣ + 5

2

∣
∣C (≥5)

�

∣
∣ (2)

What remains is to bound the cardinality of Bn . Let B(≥3)
n be the set of blocks in Bn

such that the corresponding nodes in T have degree at least 3. That is,

B(≥3)
n = {X ∈ Bn | dT (tX ) ≥ 3}.

Let B(≥3)
n be the set of edges present in the blocks in B(≥3)

n . We first bound the car-
dinality of B(≥3)

n and then the cardinality of Bn \ B(≥3)
n . For a set X ⊆ V (G ′) let

numcutX and numnoncutX denote the number of cut vertices and non-cut vertices
in X , respectively.

|B(≥3)
n | ≤

∑

X∈B(≥3)
n

|X |

=
∑

X∈B(≥3)
n

numcutX + numnoncutX (3)

The first inequality follows from the fact that the number of edges in a block of a cactus
graph is at most the number of vertices in the block. The quantity

∑
X∈B(≥3)

n
numcutX ,

is at most
∑

X∈B(≥3)
n

dT (tX ). This is bounded by three times the number of leaves in
T (by Lemma 1). Thus by Claim 1, we have the following equation.

∑

X∈B(≥3)
n

numcutX ≤ 3

2

∣
∣C (≤4)

�

∣
∣ + 3

2

∣
∣C (≥5)

�

∣
∣ (4)

Let C≥3
n be the set of edges in Cn which are incident with blocks in B(≥3)

n , and C≤2
n be

the set of edges in Cn which are incident with blocks in Bn \ B(≥3)
n . For each non-cut

vertex x in the block X ∈ B(≥3)
n , there is at least one edge from C (≥3)

n which is incident
with x . This implies the following.

∑

X∈B(≥3)
n

numnoncutX ≤ ∣
∣C (≥3)

n

∣
∣ (5)

Applying Eqs. 4, 5 in Eq. 3, we get the following equation.

|B(≥3)
n | ≤ 3

2

∣
∣C (≤4)

�

∣
∣ + 3

2

∣
∣C (≥5)

�

∣
∣ + ∣

∣C (≥3)
n

∣
∣ (6)
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Fig. 2 A schematic diagram, when a block X of size at most 2 has only one child which is a super block
composed of Y1 and Y2. Here the dotted edges belongs to E(S, V (G) \ S)
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Fig. 3 A schematic diagram, when a block X of size at most 2 has only one child Y such that si ze(Y ) ≤ 2
and dT (tY ) = 2. Here the dotted edges belongs to E(S, V (G) \ S)

Now we bound the cardinality of Bn \ B(≥3)
n . First, we bound the number of edges

in the blocks in Bn \ B(≥3)
n which are not incident with any edge in Cn . Let X be a

block in Bn \ B(≥3)
n , such that there is no edge from Cn incident with it. Since tX has

degree 2 in T , the number of cut vertices in X is 2. Now, we claim that size(X) ≤ 2.
Suppose not. Then there is a vertex x in X such that the degree of x in G ′ is two. Thus,
by our assumption, x is incident with an edge from Cn . This contradicts the fact that
no edge from Cn is incident with X . Since X is a block in Bn \ B(≥3)

n , we have that tX
has only one child. Let the child of tX be tY . Now we have the following claim.

Claim 2 Either dT (tY ) ≥ 3 or Y ∈ Bn \ B(≤3)
n such that there is an edge from C (≤2)

n
incident with Y .

Proof Towards the claim, we first show that Y /∈ B�. Suppose not. If Y is a normal
block in B�, then X and Y together will form a super block and it contradicts the fact
that X ∈ Bn \B(≥3)

n . Suppose Y is a super block inB�. Let Y1 and Y2 be two blocks such
that they together form the super block Y . By the definition of super block either tY1 or
tY2 is a leaf in T . Without loss of generality assume that tY2 is a leaf in T (see Fig. 2).
Consider the vertex x shared by the blocks X and Y1. The number of neighbors of x
in G ′ is 2. Thus, by our assumption, x is incident with a vertex in Cn . This contradicts
the fact that X is a block in Bn \B(≥3)

n which is not incident with any edge in Cn . Now
to prove the claim the only case remaining is Y ∈ Bn \B(≥3)

n and there is no edge from
C (≤2)
n incident with Y (see Fig. 3). Then, the size of Y is at most 2. Consider the vertex

x shared by the blocks X and Y . The number of neighbors of x in G ′ is 2. Thus by

123



Algorithmica (2017) 79:271–290 281

•
• •

• • • • •
•

• •

•
e1 e2

e3

s

Fig. 4 A tight example of Lemma 2. Here S = {s}

our assumption x is incident with a vertex in Cn . This contradicts the fact that X be a
block in Bn \B(≥3)

n which is not incident with any edge in Cn . This proves the claim. �
Using Claim 2we can show that the total number of edges in the blocks inBn \B(≥3)

n
which are not incident with any edge in Cn is bounded by

2
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∣C (≥5)
�

∣
∣ (By Claim 1). (7)

Now, we bound the number of edges in the blocks in Bn \ B(≥3)
n which are incident

with some edges in Cn . Let X be a such a block. If the size of X is at most two, then
there is at least one edge from C(≤2)

n which is incident with X . If the size of X is at least
i ≥ 3, then there are i − 2 vertices in X such that each of these vertices will have only
two neighbors in G ′. By our assumption, this implies that there are at least i −2 edges
from C(≤2)

n which are incident with X . Thus, the total number of edges, in the blocks in
Bn \ B(≥3)

n , which are incident with some edges in Cn , is bounded by 3|C(≤2)
n |. Hence,

∣
∣Bn \ B(≥3)

n

∣
∣ ≤ 5
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n
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Hence,

|B| = |B�| + ∣
∣B(≥3)

n

∣
∣ + ∣

∣Bn \ B(≥3)
n

∣
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≤ 9
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∣
∣ + 5

∣
∣C (≥5)
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∣
∣ + 5

∣
∣C(≤2)

n

∣
∣ + ∣

∣C (≥3)
n

∣
∣ (By Eqs. 2, 6and 8)

≤ 5|C |.

This completes the proof of the Lemma. �
The bound given in Lemma 2 is in fact tight. Given a graph G and a set S ⊆ V (G)

such that the assumptions of Lemma 2 hold, consider the edge sets B = E(G− S) and
C = E(S, V (G)\S). Figure 4 represents a familywhere for every pair of consecutively
occurring triangle and double parallel edges in the cactus, there is an edge inC . On the
other hand, except for the three edges e1, e2 and e3 in C , each other edge is incident to
a distinct triangle. Thus, |B| = 5(|C | − 3). Hence, this is a family of tight instances.
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4 Algorithm for Even Cycle Transversal

In this section, we give a randomized FPT algorithm forEven Cycle Transversal.
In other words, the algorithm runs in FPT time and if there is a solution of size at most
k, then with high probability the algorithm will return a solution of size at most k
for Even Cycle Transversal. The following problem is a generalization of Even
Cycle Transversal.

Parity Even Cycle Transversal Parameter: k
Input:An n-vertex graphG, a weight functionw : E(G) → {0, 1} and a positive
integer k.
Question: Is there a set S ⊆ V (G) of size at most k such that G − S does not
contain any cycle C with Σe∈E(C)w(e) = 0 mod 2?

We call a cycle C an even-parity (odd-parity) cycle if Σe∈E(C)w(e) = 0 mod 2
(Σe∈E(Cw(e) = 1 mod 2), respectively. For compactness of notation, we define
the function parity : 2E(G) → {0, 1}, where for an edge set E ′ ⊆ E(G),
parity(E ′) = Σe∈E ′w(e) mod 2. In other words, for an even-parity (odd-parity)
cycle C , parity(E(C)) = 0 (parity(E(C)) = 1), respectively. This should not be
confused with cycles of even or odd length, since we will refer to these cycles simply
as even and odd cycles.

In what follows, we give a randomized FPT algorithm for Parity Even Cycle

Transversal, that runs in O(12km + nm(n + m)) worst case time, where m is the
number of edges in the input graph. Our algorithm will compute a vertex subset X of
size at most k and returns it as a solution if it is indeed a solution and otherwise returns
No. First, we apply some reduction rules on the input graph. A reduction rule reduces
an instance (I1, k) of a problem Π to another instance (I2, k′) of Π . The reduction
rule is safe when (I1, k) is a Yes instance if and only if (I2, k′) is a Yes instance.
Applying a reduction rule on an input graph is also termed as reducing the graph,
and the resultant graph is termed as the reduced graph. Let G be the input graph. Our
algorithm will set X :=∅ initially. After the reduction rules have been exhaustively
applied on the input graph G, we show that for every solution at least 1

6 fraction of
edges is incident with the vertices of the solution. Let G ′ be the reduced graph. Then
our algorithm picks an edge and its endpoint (say v) at random, puts the vertex into X .
Then again we apply reduction rules exhaustively on G ′ − {v} such that in the reduced
graph for every solution at least 1

6 fraction of edges is incident with the vertices of
the solution. Again our algorithm picks an edge and its endpoint at random, puts the
vertex into X . The algorithm continues the above process (i.e, applying reduction rules
on the graph, randomly picking an edge and choosing one of its end points) k times
or until the reduced graph is empty. If there is a solution of size at most k in G, then
this procedure outputs a solution (that is, X is indeed a solution) with probability at
least 12−k . Then by repeating this procedure 12k times, we obtain constant success
probability.

Now, we describe the reduction rules for Parity Even Cycle Transversal

and prove their safeness.
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x y z x z

Fig. 5 Reduction rule 2. Here the weight of new edge (x, z) isw((x, z)) = (w((x, y))+w((y, z)) mod 2

Reduction Rule 1 If there is a vertex v in G which is not part of any even-parity
cycle, then delete v from G.

Lemma 3 Reduction Rule 1 is safe.

Proof Suppose we delete v from G. If C is an even-parity cycle of G, it is still an
even-parity cycle of G − {v}. Similarly, if there is an even-parity cycle C ′ in G − {v},
then C ′ is also an even-parity cycle in G. Now, Suppose (G, k) is a Yes instance of
Parity Even Cycle Transversal. Let S be a solution of size at most k for G.
Since G − {v} is a subgraph of G and S is a solution for G, we have that S \ {v} is a
solution for the reduced graph G − {v} as well. Therefore, (G − {v}, k) is also a Yes
instance of Parity Even Cycle Transversal.

Conversely, suppose the reduced instance is aYes instance. Suppose S′ is a solution
of size at most k for G − {v}. Then, S′ hits all even-parity cycles of G − {v}. This
means, that S′ also hits all even-parity cycles of G, and therefore S′ is a solution in
G. Thus, (G, k) is a Yes instance of Parity Even Cycle Transversal. �
Lemma 4 There is an algorithm which, given a graph G and w : E(G) → {0, 1},
runs in time O(|E(G)|(|V (G)| + |E(G)|)) and outputs all vertices in G that are not
part of any even-parity cycle.

Proof It is known that there is an algorithm A, which takes as input a graph H , and
two vertices s, t ∈ V (H), and checks whether there is an odd length path from s to
t in time O(|V (H)| + |E(H)|) [1,18]. We use algorithm A to design an algorithm
A′ mentioned in the lemma. We construct, from the given graph G and edge-weight
functionw, a graph Ĝ without edge weights. This is done by subdividing every edge of
weight 0. Notice that V (G) ⊆ V (Ĝ). By this reduction, any vertex in V (G) belongs
to an even-parity cycle in G if and only if it belongs to an even cycle in Ĝ. Now,
for each edge (u, v) ∈ E(Ĝ), run algorithm A, and check whether there is an odd
length path from v to u in the graph Ĝ − {(v, u)} and marks both u and v if there is
an odd length path. Then algorithm A′ return all the unmarked vertices from V (G).
The running time of the algorithm A′ is O(|E(G)|(|V (G)| + |E(G)|)). �
Reduction Rule 2 Let [x, y, z] be a path in G and the degree of y be exactly 2. Then
delete y from G and add a new edge e1 = (x, z) with weight w(e1) = w((x, y)) +
w((y, z)) mod 2 (see Fig. 5).

Lemma 5 Reduction Rule 2 is safe.

Proof Suppose C is a cycle of parity p in G, which contains the vertex y. Then, since
dG(y) = 2, C must contain the path [x, y, z]. In the reduced graph G ′, C is reduced
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Fig. 6 Reduction rule 3

to a cycle C ′ which contains the edge e1 = (x, z). By definition of w(e1), the parity
of the reduced cycle is still p. On the other hand, if C ′ is a cycle of parity p in the
reduced graph G ′, and C ′ does not contain the new edge e1, then C ′ is a cycle of the
original graph G. Otherwise, there is a corresponding cycle C in G, which contains
the path [x, y, z] instead of the newly added edge e1. Again, by definition of w(e1),
the parities of C ′ and C are the same.

Now, suppose (G, k) is a Yes instance for Parity Even Cycle Transversal.
Let S be a solution set in G. Then S hits all even-parity cycles of G. We have argued
that any cycle in G that contains y also contains x and z. Thus, if y was contained
in S, then S ∪ {x} \ {y} is also a solution that hits all even-parity cycles of G. Since
the parities of cycles are preserved by this reduction, it implies that S ∪ {x} \ {y} is
a solution that hits all even-parity cycles of the reduced graph, and that the reduced
instance is also a Yes instance.

Conversely, suppose the reduced instance is a Yes instance. let S′ be a solution set
of G ′. We will show that S′ is also a solution for G. Suppose there is an even-parity
cycle C in G, that is not hit by S′, then this cycle must have the vertex y. This implies
that the cycle must have the path [x, y, z]. Let P = C − {y}. Look at the cycle C ′
formed by the set of edges E(P) ∪ {e1} in G ′. This is also an even-parity cycle which
is not hit by S′. This contradicts the fact that S′ is a solution set of G ′. Thus, (G, k)
must be a Yes instance of Parity Even Cycle Transversal.

Reduction Rule 3 Let x, y be two vertices with two parallel edges e1 and e2. Let
w(e1) = 1, w(e2) = 0. Further, e3 = (y, z) is an edge in G, with z 
= x, and
dG(y) = 3. Then delete y from the graph G and add two new edges f1, f0 = (x, z).
Define w( f1) = 1 and w( f0) = 0 (see Fig. 6).

Lemma 6 Reduction Rule 3 is safe.

Proof Suppose (G, k) is a Yes instance. Let S be a solution for (G, k). If S contains
y, then the set S∪{x} \ {y} is also a solution for (G, k), because any even-parity cycle
that passes through y also passes through x . So, we assume that the solution set S
does not contain y. Now we claim that S is also a solution for (G ′, k). Let C ′ be an
even-parity cycle in G ′. If C ′ does not contain f1 or f0, then C ′ is also an even-parity
cycle in G and hence V (C ′) ∩ S 
= ∅. Now, suppose E(C ′) ∩ { f0, f1} 
= ∅. Since
C ′ is an even-parity cycle, { f0, f1} � E(C ′). Let fi ∈ E(C ′), where i ∈ {0, 1}. Let
j ∈ {1, 2} such that w(e j ) + w(e3) = w( fi ) mod 2. We define C to be the cycle
in G formed by the edges (E(C ′) ∪ {e j , e3}) \ { fi }. Since C ′ is an even-parity cycle,
E(C) = (E(C ′) ∪ {e j , e3}) \ { fi }, and w(e j ) + w(e3) = w( fi ) mod 2, we have
that C is an even-parity cycle in G and V (C) \ {y} = V (C ′). Since S is a solution
for (G, k) not containing y, V (C ′) ∩ S = V (C) ∩ S 
= ∅. Hence S is a solution for
(G ′, k).
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Fig. 7 Reduction rule 4

Suppose (G ′, k) is aYes instance. Let S′ be a solution for (G ′, k).Wewill show that
S′ is also a solution for (G, k). Let C be an even-parity cycle of G. If V (C) does not
contain y, then C is also an even-parity cycle in G ′. This implies that V (C) ∩ S′ 
= ∅.
Now, suppose y ∈ V (C). Since C is an even-parity cycle and y ∈ V (C), there exists
i ∈ {1, 2}, such that {ei , e3} ⊆ E(C) and e j /∈ E(C), where j ∈ {1, 2} \ {i}. Let
r = w(ei ) + w(e3) mod 2. We define C ′ to be the cycle in G ′ formed by the edges
(E(C) ∪ { fr }) \ {ei , e3}. Since C is an even-parity cycle, C ′ is also an even-parity
cycle. This implies that V (C) ∩ S′ = V (C ′) ∩ S 
= ∅. This completes the proof of the
lemma. �
Reduction Rule 4 Let {x1, y} be a pair of vertices that have two parallel edges e1
and e2, with w(e1) = 1, w(e2) = 0. Let there be another vertex x2 
= x1 such that
{x2, y} have two parallel edges e3 and e4. It also holds that w(e3) = 1, w(e4) = 0.
Let dG(y) = 4. Then delete y from G and add two new parallel edges f1, f0 between
x1 and x2. We define w( f1) = 1 and w( f0) = 0 (see Fig. 7).

Lemma 7 Reduction Rule 4 is safe.

Proof Suppose (G, k) is aYes instance. Let S be a solution for (G, k). If S contains y,
then the set S∪{x}\{y} is also a solution for (G, k), because any even-parity cycle that
passes through y also passes through x . So, we assume that the solution set S does not
contain y. Now we claim that S is also a solution for (G ′, k). Let C ′ be an even-parity
cycle inG ′. IfC ′ does not contain f1 or f0, thenC ′ is also an even-parity cycle inG and
hence V (C ′)∩ S 
= ∅. Now, suppose E(C ′)∩{ f0, f1} 
= ∅. Since C ′ is an even-parity
cycle, { f0, f1} � E(C ′). So there is exactly one i ∈ {0, 1} such that fi ∈ E(C ′). Let
j ∈ {1, 2} and j ′ ∈ {3, 4} such that w(e j ) + w(e j ′) = w( fi ) mod 2. We define C
to be the cycle in G formed by the edges (E(C ′) ∪ {e j , e j ′ }) \ { fi }. Since C ′ is an
even-parity cycle, E(C) = (E(C ′) ∪ {e j , e j ′ }) \ { fi }, and w(e j ) + w(e j ′) = w( fi )
mod 2, we have that C is an even-parity cycle in G and V (C) \ {y} = V (C ′). Since
S is a solution for (G, k) not containing y, V (C ′) ∩ S = V (C) ∩ S 
= ∅. Hence S is a
solution for (G ′, k).

Suppose (G ′, k) is aYes instance. Let S′ be a solution for (G ′, k).Wewill show that
S′ is also a solution for (G, k). Let C be an even-parity cycle of G. If V (C) does not
contain y, then C is also an even-parity cycle in G ′. This implies that V (C) ∩ S′ 
= ∅.
Now, suppose y ∈ V (C). Since C is an even-parity cycle and y ∈ V (C), there exist
i ∈ {1, 2} and j ∈ {3, 4}, such that {ei , e j } ⊆ E(C) and ei ′ , e j ′ /∈ E(C), where
i ′ ∈ {1, 2} \ {i} and j ′ ∈ {3, 4} \ { j}. Let r = w(ei ) + w(e j ) mod 2. We define C ′ to
be the cycle inG ′ formed by the edges (E(C)∪{ fr })\{ei , e j }. SinceC is an even-parity
cycle, C ′ is also an even-parity cycle. This implies that V (C) ∩ S′ = V (C ′) ∩ S 
= ∅.
This completes the proof of the lemma. �
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In our algorithm, in all steps we apply Reduction Rules 1, 2, 3 and 4 exhaustively
as long as they are applicable. The resultant graph is called a reduced graph.

Observation 1 Let (G, k) be an instance of Parity Even Cycle Transversal

and (G ′, k) be the instance obtained after applying Reduction Rules 1, 2, 3 and 4.
Then if S is a solution for (G ′, k), then S is a solution for (G, k).

The proof of Observation 1 follows from the Lemmata 3, 5, 6 and 7.
We give the definition of an odd-parity (even-parity) cactus graph and relate it to

Parity Even Cycle Transversal, respectively.

Definition 4 A cactus graph, where the edges have weights from {0, 1}, is an odd-
parity (even-parity) cactus graph when every block of the graph is either an odd-parity
(even-parity) cycle, or an edge, respectively.

Lemma 8 Let G be a connected graph and w : E(G) → {0, 1} be a weight function
on the edges. The graph G does not contain any cycle C with parity(C) = 0 if and
only if G is an odd-parity cactus graph.

Proof Suppose G does not contain any even-parity cycle. Then every cycle in G must
be of odd-parity. Thus, if G was a cactus graph then it must be an odd-parity cactus
graph. Suppose G is not a cactus graph. Then, by Proposition 1, there is a diamond D
in G. Let the diamond be defined at the vertex pair {u, v} by the three disjoint paths
P1, P2, P3. Let parity(P1) = p1,parity(P2) = p2,parity(P3) = p3. By Pigeonhole
Principle, at least two among P1, P2 and P3 must have the same parity. Without loss
of generality, let P1 and P2 have the same parity. Then the cycle [P1uP2v] is of even
parity,which is a contradiction to the assumption onG. Hence,Gmust be an odd-parity
cactus graph.

Conversely, suppose G is an odd-parity cactus graph. Then there is a block decom-
position of G where every block is either an odd-parity cycle or an edge. By definition
of a block, any cycleC ofG must be contained completely inside a block. This implies
that there are no even-parity cycles in G. �

Let G be a graph and let S be a set of vertices that hits all even-parity cycles in G.
Then each component of G − S does not contain an even-parity cycle. By Lemma 8,
it follows that G − S is a forest of odd-parity cacti.

Observation 2 Let G be a reduced graph for Parity Even Cycle Transversal

and S be a solution for Parity Even Cycle Transversal in G. Then, for each
connected component C of G − S, G[V (C) ∪ S] and S satisfy the conditions of
Lemma 2.

Proof Let v ∈ C be a vertex that does not have at least three distinct neighbours in
G. Suppose there is at most one edge in E(v, S). Also note that v cannot have one
neighbour in V (C)with at least two parallel edges of the same parity: this would mean
that two parallel edges of the same parity form an even-parity cycle. Also, notice that if
v has one neighbour with at least three parallel edges, then by pigeonhole principle, at
least two of the parallel edges are of the same parity. Since Reduction Rule 1 does not
apply anymore, v must have exactly two distinct neighbours. Since Reduction Rules 2,
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3 and 4 are no longer applicable, a vertex with exactly two distinct neighbours does
not exist in the reduced graph. This is a contradiction. Thus, in the reduced instance,
every vertex in C satisfies the conditions of Lemma 2. �

Now,we are ready to describe the algorithm forParity Even Cycle Transver-

sal. Informally, the algorithm runs for 12k rounds. In each round, a vertex subset of
size at most k is obtained. We show that, given a Yes instance, with high probability
there is at least one round where the constructed vertex subset is a solution set for
Parity Even Cycle Transversal. A No instance is always detected correctly by
the algorithm.

Theorem 3 Parity Even Cycle Transversal has a randomized algorithm with
worst case run timeO(12knm(n+m)), where n and m are the number of vertices and
edges in the input graph, respectively. The algorithm outputs No if the input is a No

instance and for a Yes instance, with probability 1 − 1
e , returns a solution.

Proof Let (G, k) be the input instance. Our algorithm runs a procedure (call it proce-
dure Q) 12k times. The procedure Q has at most k iterative steps and is as follows:
We set S:=∅ and G ′:=G to start with. We apply Reduction Rules 1, 2, 3 and 4 to the
graph G ′ as long as we can. If the reduced graph G ′′ is non-empty, we pick an edge
e = (u, v) ∈ E(G ′′) uniformly at random and then, with equal probability, we pick
one of the two endpoints (say the vertex picked is v). In other words, we pick a vertex
with probability proportional to its degree. Nowwe set S:=S∪{v} andG ′:=G ′′ −{v}.
We do this for at most k steps, stopping whenever the graph becomes empty. Notice
that the algorithm could stop if the graph becomes empty after applying the reduction
rules exhaustively. Then we check if the constructed set S is a solution set of Parity
Even Cycle Transversal for the input graph G. Note that recognizing a forest of
odd-parity cacti is equivalent to building a block-decomposition and checking if each
block is an odd-parity cycle or an edge – this step can be performed in linear time [14].
If all the 12k executions of procedure Q fail to find out a solution, then the algorithm
will output No.

Now we analyse the success probability of the algorithm. For any i ∈ {0, . . . , k},
let Si be the set of vertices obtained at the end of step i . Consider the step i +1, where
i ∈ {0, . . . , k − 1}. Let Gi+1 be the reduced graph in step i + 1. By Observation 1,
if D is solution of cardinality at most k − i for (Gi+1, k − i), then Si ∪ D is a
solution for (G, k). Suppose there is a solution S∗

k−i of size at most k − i in Gi+1.
By Observation 2, for each component C of Gi+1 − S∗

k−i , Gi+1[V (C) ∪ S∗
k−i ] and

S∗
k−i satisfy the conditions of Lemma 2. By the conditions of Lemma 2, for each

component C of Gi+1 − S∗
k−i , |E(C)| ≤ 5

6 |E(Gi+1[V (C)∪ S∗
k−i ])|. This implies that

|E(Gi+1 − S∗
k−i )| ≤ 5

6 |E(Gi+1)|. The algorithm chooses a vertex in step i + 1 using
a random process. We say that the vertex chosen by the algorithm in step i +1 is good
if the algorithm chooses a vertex from S∗

k−i . Since |E(Gi+1 − S∗
k−i )| ≤ 5

6 |E(Gi+1)|,
the probability that an edge incident with a vertex from S∗

k−i , is picked uniformly at

random in step i + 1, is at least 1
6 . Once we have picked this edge, the probability that

we choose an end point of the edge that belongs to S∗
k−i is at least

1
2 . Therefore, the

probability that a good vertex is chosen in step i +1 is at least 1
2 · 16 = 1

12 . We succeed
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in finding a solution set S for Parity Even Cycle Transversal if every step picks
a good vertex in that step. Thus, the probability of failure in the k-step procedure is
at most 1 − ( 1

12 )
k . We repeat the procedure Q 12k times. The probability of failure

of this many-round procedure is the probability that procedure Q fails in all the 12k

executions, which is at most
(
1 − ( 1

12

)k)12
k

≤ 1
e (by Fact 1).

Now we prove the claimed running time. By Lemma 4 we can identify and apply
ReductionRule 1 in timeO(m(n+m)). Notice that checkingwhether any ofReduction
Rules 2, 3 and 4, is applicable, takesO(m) time and these reduction rules can be applied
in constant time. Since each application of a reduction rule reduces the number of
vertices by at least one, the total number of times these reduction rules are applicable
in the procedure Q is at most n. Thus, the total time spent for applying Reduction
Rules in the procedure Q isO(nm(n +m)). Moreover, in each iteration of procedure
Q, we pick an edge and one of its endpoints inO(m) time. Therefore, over k iterations,
we spend O(km) time picking edges and a corresponding endpoint. This means that
one execution of procedure Q takes time O(nm(n + m) + km) = O(nm(n + m)).
There are 12k executions which makes the total running time to beO(12knm(n+m)).

�
Corollary 1 Even Cycle Transversal has a randomized algorithm with worst
case run timeO(12knm(n+m)), where n and m are the number of vertices and edges
in the input graph, respectively. The algorithm outputsNo if the input is aNo instance
and for a Yes instance, with probability 1 − 1

e , returns a solution.

5 Algorithm for Diamond Hitting Set

In this section, we give a randomized FPT algorithm for Diamond Hitting Set. It
was shown in [9] that there is a set of safe reduction rules that can be applied to reduce
the input graph to a graph with certain properties.

Proposition 2 (Fiorini et. al. [9]) There is a polynomial time algorithm which takes
a graph H as input and outputs a graph H ′ such that (i) the cardinalities of minimum
diamond hitting sets of H and H ′ are the same, (ii) every vertex of H ′ either has at least
three distinct neighbours or is incidentwith three parallel edges, (i i i)V (H ′) ⊆ V (H),
and (iv) if S′ is a diamond hitting set of H ′, then S′ is a diamond hitting set of H as
well.

Proposition 2 follows from the work of Fiorini et. al. [9]. In Section 3 of [9], two
reduction rules are defined to get the graph H ′, where H ′ is a minor of H (i.e, H ′ is
obtained from a subgraph of H , by a series of edge contractions) and property (i i)
of Proposition 2 is mentioned. The property (iv) of Proposition 2 is mentioned in
Section 4 of [9]. We call the output of the algorithm mentioned in Proposition 2 as
reduced graph of Diamond Hitting Set.

Observation 3 Let G be a reduced graph for Diamond Hitting Set and S be a
solution in G. Then, for each connected component C in G − S, G[V (C) ∪ S] and S
satisfy the conditions of Lemma 2.
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Proof Let G be the reduced instance. Given a diamond-hitting set S, Proposition 1
shows that G − S must be a forest of cacti. Thus, for each component C of G − S,
C is a cactus graph. Let v ∈ C be a vertex that does not have at least three distinct
neighbours. Then, v must have at least three parallel edges with a neighbour u. Since
there are no diamonds in C , it must be the case that u ∈ S and therefore, there are at
least two edges in E(v, S). Thus, in the reduced instance, every vertex in C satisfies
the conditions of Lemma 2. �

Now, we can design an algorithm for Diamond Hitting Set, that is very similar
to the algorithm for Parity Even Cycle Transversal. The algorithm runs for
12k rounds. In each round, a set of size at most k is obtained. We show that, for a
Yes instance, with high probability there is at least one round where the constructed
set is a solution set for Diamond Hitting Set. The algorithm detects No instances
correctly.

Theorem 4 Diamond Hitting Set has a randomized algorithm with worst case
running time 12knO(1), where n is the number of vertices in the input graph. The
algorithm outputs No if the input is a No instance and for a Yes instance, with
probability 1 − 1

e , returns a solution.

Proof (proof sketch)The algorithm is similar in description to the algorithmmentioned
in the proof of Theorem 3. In this algorithm, instead of applying Reduction Rules 1, 2,
3 and 4, we exhaustively apply the reduction algorithmmentioned in Proposition 2 and
check whether the constructed set is a diamond hitting set of G. The correctness of the
algorithm follows from arguments similar to those given in the proof of Theorem 3;
in the arguments we replace Observation 1 with property (iv) of Proposition 2 and
Observation 2 with Observation 3. The claimed bound on the running time can be
proved by using arguments similar to that used in the proof of Theorem 3. �

6 Conclusion

In this work we designed randomized algorithms for Even Cycle Transversal

and Diamond Hitting Set with worst case run time 12knO(1). It is natural to ask
whether we can get fast deterministic algorithms for these problems. Another question
is to find Strong Exponential Time Hypothesis based lower bounds on the base of the
exponent in the running time forEven Cycle Transversal andDiamond Hitting

Set.
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