
Algorithmica (2018) 80:1579–1603
https://doi.org/10.1007/s00453-017-0304-6

The (1+ 1) Elitist Black-Box Complexity of
LeadingOnes

Carola Doerr1 · Johannes Lengler2

Received: 4 September 2016 / Accepted: 7 March 2017 / Published online: 21 March 2017
© Springer Science+Business Media New York 2017

Abstract One important goal of black-box complexity theory is the development of
complexity models allowing to derive meaningful lower bounds for whole classes of
randomized search heuristics. Complementing classical runtime analysis, black-box
models help us to understand how algorithmic choices such as the population size,
the variation operators, or the selection rules influence the optimization time. One
example for such a result is theΩ(n log n) lower bound for unary unbiased algorithms
on functions with a unique global optimum (Lehre and Witt in Algorithmica 64:623–
642, 2012), which tells us that higher arity operators or biased sampling strategies are
neededwhen trying to beat this bound. In lack of analyzing techniques, such non-trivial
lower bounds are very rare in the existing literature on black-box optimization and
therefore remain to be one of themain challenges in black-box complexity theory.With
this paper we contribute to our technical toolbox for lower bound computations by
proposing a new type of information-theoretic argument. We regard the permutation-
and bit-invariant version of LeadingOnes and prove that its (1+ 1) elitist black-box
complexity isΩ(n2), a bound that is matched by (1+1)-type evolutionary algorithms.
The (1 + 1) elitist complexity of LeadingOnes is thus considerably larger than its
unrestricted one, which is known to be of order n log log n (Afshani et al. in Lecture
notes in computer science, vol 8066, pp 1–11. Springer, New York, 2013). The Ω(n2)
lower bound does not rely on the fact that elitist black-box algorithms are not allowed
tomake use of absolute fitness values. In contrast, we show that even if absolute fitness
values are revealed to the otherwise elitist algorithm, it cannot significantly profit from

B Johannes Lengler
johannes.lengler@inf.ethz.ch

1 CNRS and Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 4 place
Jussieu, 75005 Paris, France

2 Institute for Theoretical Computer Science, ETH Zürich, Zürich, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-017-0304-6&domain=pdf
http://orcid.org/0000-0003-0004-7629

1580 Algorithmica (2018) 80:1579–1603

this additional information. Our result thus shows that for LeadingOnes the memory-
restriction, together with the selection requirement, has a substantial impact on the best
possible performance.

Keywords Black-box complexity · Query complexity · LeadingOnes · Elitist
algorithm · Memory restriction · Truncation selection · Evolutionary algorithms

1 Introduction

Randomized search heuristics such as evolutionary algorithms, simulated annealing,
and randomized local search algorithms are so-called black-box optimization algo-
rithms. That is, unlike their white-box counterparts that are typically regarded in
algorithmics, these search heuristics do not have (or do not exploit) access to the
problem instance other than by suggesting potential solution candidates and receiving
(from an oracle/the black-box) information about the quality of these search points
such as, for example, their function values. Based on this information, the black-box
optimizers update the policy from which the next search points are sampled. This pro-
cess is repeated until some stopping criterion is met. In discrete optimization, the most
widely regarded performance measure for such black-box optimizers is the number of
oracle/black-box queries that an algorithm needs to do until it evaluates for the first
time an optimal solution candidate. This number is called the runtime of the algorithm.
Runtime analysis is today one of the most prominent sub-areas in the theory of evolu-
tionary computation. As is classical algorithmics, runtime analysis is complemented
by a complexity theory. The black-box complexity of a problem F , informally speak-
ing, measures the minimum expected number of black-box queries that are needed
to solve any problem instance f ∈ F , where the minimum is taken over a class of
algorithms A. This is, since the seminal paper of Droste, Jansen, and Wegener [12],
the most commonly regarded complexity measure for randomized search heuristics.

The original black-box model by Droste, Jansen, and Wegener regards the whole
collection of possible black-box algorithms asA. It is therefore called the unrestricted
black-box model. However, unlike in classical complexity theory where a widely
accepted complexity notion is used, several black-box complexity models co-exist
in the theory of randomized search heuristics. Each model regards a different collec-
tionA of algorithms (e.g., the memory-restricted model regards only such algorithms
that keep in the memory only a limited number of previously sampled search points
while, in contrast, the algorithms in the unrestricted black-box model are assumed to
have full access to all previous function evaluations).When we compare the black-box
complexity of a problem in the different models, we thus learn how certain algorithmic
choices such as, for example, the population size, the variation operators in use, or the
selection rules, influence the performance of the search heuristics.

At GECCO [8] we have presented a new black-box model that combines several of
the previously regarded restrictions, such as the size of the memory and the selection
rules. More precisely, we have defined a collection of (μ+λ) elitist black-box models,
where a (μ + λ) elitist algorithm is one that keeps at any point in time the μ best-
so-far sampled solutions. In the next iteration, it is allowed to use only the relative

123

Algorithmica (2018) 80:1579–1603 1581

(not absolute) function values of these μ points to create λ new search points. A
(μ + λ) elitist black-box algorithm is thus in particular a memory-restricted and
ranking-based one in the sense of [6,7,12], respectively. In addition, it has to employ
so-called truncation selection as replacement rule; that is, in each iteration, from the
μ+λ parent and offspring search points only the μ best ones “survive”, meaning that
they form the parent population of the next iteration. Truncation selection is a very
commonly applied selection rule in evolutionary computation. Note that this selection
requirement implies in particular that an elitist algorithm has no influence on which
of the μ + λ search points to keep in the population (only in case of ties we allow the
algorithm to break these arbitrarily). This is different from all other existing black-
box models where selection is not restricted and which therefore include algorithms
eventually preferring search points that are not as good as the current-best ones.

In [8] examples are presented for which the elitist black-box complexity is much
larger than in any of the previously existing black-box models, while in [9] it is shown
that the complexity of the OneMax function class is of only linear order even for the
most restrictive (1+1) setting. The classOneMax contains all functions f : {0, 1}n →
R with fitness landscape isomorphic to that of Om : {0, 1}n → R, x �→ ∑n

i=1 xi .
Here in this work, we regard another classical problem, the class of all Leadin-

gOnes functions; i.e., all functions that are isomorphic to the function Lo : {0, 1}n →
{0, 1, . . . , n}, x �→ max{i | ∀ j ≤ i : x j = 1} which assigns to each string the length
of the longest initial segment of ones (cf. Sect. 1.1 for some background on this func-
tion). We show that the (1 + 1) elitist black-box complexity of this function class is
Θ(n2). It matches the performance of typical randomized search heuristics such as
the (1 + 1) Evolutionary Algorithm (EA) and Randomized Local Search. To prove
our result, we develop tools for quantifying the amount of information that an elitist
algorithm can collect about the problem instance.

An extended abstract of this paper has appeared at the 2016 edition of theACMcon-
ference on Genetic and Evolutionary Computation (GECCO’16) [10]. The extended
abstract does not include the formal proof of the main statement and only summarizes
the proof approach.Moreover, the present version contains some additional discussion
of the implications of our analysis (e.g., Remarks 2 and 3 in Sect. 3.6).

1.1 The LeadingOnes Problem

LeadingOnes (Lo for short) is among the best-studied functions in the theory of evo-
lutionary computation. It was originally designed in [17] to disprove the conjecture
of Mühlenbein [16] that the expected runtime of the (1 + 1) EA on every unimodal
function is O(n log n). While Rudolph showed experimentally that its expected run-
time is Θ(n2), this bound was formally proven a bit later in [11]. Exact expressions
for the expected runtime of the (1 + 1) EA on Lo have been shown in [2,13,18].

The (1+1)EA (withmutation probability 1/n, the settingmost commonly regarded
in evolutionary computation) works in the following way. It starts with an initial
solution that is drawn uniformly at random from {0, 1}n . In each iteration the search
point (“individual”) x currently stored in the memory is mutated by flipping each bit
independently with probability 1/n. The so-created “offspring” y replaces x if and

123

1582 Algorithmica (2018) 80:1579–1603

only if it is as good as x ; that is, in the case of a maximization problem x is replaced
by y if and only if f (y) ≥ f (x).

It is easily seen that the (1+1) EA qualifies as a (1+1) elitist algorithm in the sense
of [8]. Furthermore, its runtime is identical on any of the above-mentioned generalized
Lo functions regarded here in this work (see Sect. 2 for precise definitions). The O(n2)
runtime bound for the (1 + 1) EA shown in [11] therefore implies that the (1 + 1)
elitist black-box complexity of Lo is of order at most n2. Our main result, Theorem 1,
shows that this bound is tight.

1.2 Discussion of Our Result

Our main result is summarized by the following statement.

Theorem 1 The (1 + 1) elitist black-box complexity of Lo is Θ(n2).

As mentioned before, this bound is matched by the average performance of the
(1 + 1) EA. It is also matched by the expected runtime of Randomized Local Search
(RLS), a search heuristic which differs from the (1+ 1) EA only in the mutation step.
In RLS, exactly one bit—chosen uniformly at random among the n positions—of the
current best solution x is changed in each iteration. Our result thus implies that these
two simple strategies are asymptotically optimal for Lo among all (1+ 1)-type elitist
algorithms. Our result also shows that an algorithm trying to beat the Ω(n2) bound
(and such algorithms exist, cf. below) has to use larger population sizes or non-elitist
selection strategies.

In our proofwewill notmakeuseof the fact that elitist algorithmshave to be ranking-
based; that is, the (1 + 1) elitist black-box complexity of Lo remains Θ(n2) even if
the algorithms have access to the absolute fitness value of the current search point.

We summarize all known black-box complexities of Lo in Table 1. The most
relevant ones for our contribution are in particular the tight Θ(n log log n) bound
for the unrestricted black-box complexity of Lo obtained by Afshani et al. [1], the
O(n log n) bound for the binary unbiased black-box complexity by Doerr et al. [4],
and the Ω(n2) bound for the unary unbiased model by Lehre and Witt [14]. Note also
that already simple binary search exhibits a complexity of only O(n log n) on the Lo

Table 1 Known black-box complexities of LeadingOnes

Model Lower bound Upper bound

Unrestricted Ω(n log log n) [1] O(n log log n) [1]

Unbiased, arity 1 Ω(n2) [14] O(n2) [17]

Unbiased, arity 2 Ω(n log log n) O(n log n) [4]

Unbiased, arity ≥ 3 Ω(n log log n) O(n log(n)/ log log n) [5]

Ranking-based unbiased, arity ≥ 3 Ω(n log log n) O(n log(n)/ log log n) [5]

Elitist, arity 1 Ω(n2) (Here) O(n2) [11]

The lower bounds for higher arities follow from the lower bound in the unrestricted model. Our contribution
is the Ω(n2) lower bound for the unrestricted model. We recall that both the (1 + 1) EA [17] as well as
RLS have an expected runtime of O(n2) on LeadingOnes

123

Algorithmica (2018) 80:1579–1603 1583

problem (cf. [1] for an implementation of the binary search strategy). This shows that
indeed (some of) the restrictions of the (1 + 1) elitist black-box model are needed to
achieve the quadratic lower bound.

Our result is not the first lower bound of quadratic order for the Lo problem.
Lehre andWitt proved in [14] that all unary unbiased search strategies, i.e., intuitively
speaking, all black-box algorithms using only mutation as variation operators, need
Ω(n2) function evaluations on average to optimize this problem. Combining our result
with theirs, we see that even if we replace the mutation operator in RLS (which
flips exactly one bit, chosen uniformly at random) or the (1 + 1) EA (which flips
independently each bit with probability 1/n) by a—possibly strongly—biased one,
the resulting algorithm would still need time Ω(n2) on average. This shows that not
only unbiased sampling, but also the population structure of the algorithm and the
selection strategies determine the comparatively slow convergence of these two well-
known search heuristics.

In addition to the identification of such structural bottlenecks, our result is also—
and this is in fact the main motivation for our studies—interesting from a purely
mathematical point of view, as we need to develop some new tools for the lower bound
proof. Specifically, we use some information-theoretic arguments, utilizing that the
amount of information that the algorithmhas at any given point is not sufficient tomake
substantial progress. Such information-theoretic arguments are notoriously hard to
formulate rigorously, and are even harder to employ in a non-trivial situation like ours.

What complicates our analysis is the fact that the Lo functions, in principle, allow
for a rather huge storage. Indeed, when the fitness of an individual is k for some
k < n, then all but the k+1 bits determining the fitness of the search point can be used
for storing information about previous samples, the number of iterations elapsed, or
any other information gathered during the optimization process. We remind that such
strategies of constantly storing information about previous samples are at the heart
of many upper bounds in black-box complexity, cf., for example, the proofs of the
O(n/ log n) bound for the (1+ 1) memory-restricted [6], the ranking-based [7] or the
(1+ 1) elitist Monte Carlo [9] black-box complexity of OneMax. We therefore need
to show that, although changing the n− (k + 1) irrelevant bits has no influence on the
fitness, the algorithm cannot make effective use of this storage space.

The intuitive reason why the given storage is not large enough is that, since the Lo
problem is permutation-invariant, the black-box algorithms do not know where the
irrelevant bits are located, and storing this information would require more bits than
available. However, the discrepancy is rather small: in most parts of the process, if the
number of bits of the storage space was larger by just a constant factor, then this would
trivially allow for efficient use of the storage, and the lower bounds would break down.
It is thus essential to find a good measure for the information that an algorithm can
possibly encode in its queries. We develop a precise notion that bounds the amount of
information that the algorithm has about the function Loz,σ at any given state. We can
use this notion to estimate the gain that the algorithm can draw from any given amount
of information. We consider one of the main contributions of our paper to make these
intuitive concepts precise and utilizable in proofs. Although our definitions are adapted
to the Lo problem, we are optimistic that the developed techniques are applicable also
to other black-box settings and, of course, also to other problem classes.

123

1584 Algorithmica (2018) 80:1579–1603

A second difficulty that we face in our proof is that the the MiniMax principle of
Yao [19]—which is the foremost technique in black-box complexity theory to prove
lower bounds—cannot be applied to the elitist model, as discussed in [8].We therefore
need to extend the class of elitist algorithms such that the resulting model allows for
the application of the information-theoretic tool. This is a delicate task since extending
the class of algorithms may decrease the black-box complexity. So we need to devise
an extension that does not decrease the black-box complexity by too much.

2 Formal Definitions

2.1 Black-Box Complexity

A (μ + λ) elitist black-box algorithm is a (possibly randomized) algorithm that can
be described by the framework of Algorithm 1. That is, the algorithm tries to optimize
a given pseudo-Boolean function f : {0, 1}n → R, the fitness function, as follows.
It maintains a multiset X of μ search points, which is called the population. The
population is initialized by sampling iteratively μ search points, which may only
depend on the previous search points and the ranking induced on them by the fitness
function f . Afterwards, in each round it samples λ new search points (offspring) based
only on the search points in X and their rankingwith respect to f . It then forms the new
population by choosing the μ search points from the old population and the offspring
that have the largest fitness, where it may break ties arbitrarily. This process is repeated
until a maximum of f is sampled.

The runtime of a (μ+λ) elitist black-box algorithm A on a pseudo-Boolean function
f is the number of search points (queries) that A samples before it samples for the first
time a maximum of f . The expected runtime of A for a class F of pseudo-Boolean
functions is the maximum expected runtime of A on f , where f runs through F . The
(μ+λ) elitist black-box complexity ofF is the smallest expected runtime of a (μ+λ)

elitist black-box algorithm for the class F .

Algorithm 1:The (μ+λ) elitist black-box algorithm formaximizing an unknown
function f : {0, 1}n → R

1 Initialization:
2 X ← ∅;
3 for i = 1, . . . , μ do
4 Depending only on the multiset X and the ranking ρ(X, f) of X induced by f , choose a

probability distribution p(i) over {0, 1}n and sample x(i) according to p(i);

5 X ← X ∪ {x(i)};
6 Optimization: for t = 1, 2, 3, . . . do
7 Depending only on the multiset X and the ranking ρ(X, f) of X induced by f , choose a

probability distribution p(t) on ({0, 1}n)λi=1 and sample (y(1), . . . , y(λ)) according to p(t);

8 Set X ← X ∪ {y(1), . . . , y(λ)};
9 for i = 1, . . . , λ do Select x ∈ argmin X and update X ← X\{x}

123

Algorithmica (2018) 80:1579–1603 1585

Remark 1 In [8] we distinguished between two different notions of runtime, which in
turn lead to different notions of (elitist) black-box complexity: the Las Vegas runtime
of a black-box algorithm A on a function f is the expected number of steps until A
finds the optimum of f , while the p-Monte Carlo runtime is the minimum number of
steps A needs in order to find the optimum of f with probability at least 1− p. It was
shown that there may be an exponential gap between the resulting elitist black-box
complexities. However, this is not the case for Lo. Formally, we show for Lo that the
(1+1) elitist Las Vegas black box complexity is Ω(n2), and for every constant p > 0
the (1+ 1) elitist p-Monte Carlo black box complexity is Ω(n2). Both statements are
immediate consequences of Theorem 2 below (page 22), which is a more technical
version of Theorem 1.

In this paper, black-box complexity refers to the Las Vegas version unless specified
otherwise.

2.2 LeadingOnes

Asmentioned in Sect. 1.1 the originalLo function assigns to each bit string x the length
of the longest prefix of x that consists completely of ones. Formally, Lo : {0, 1}n →
R, x �→ max{i ∈ {0, 1, . . . , n} | ∀ j ≤ i : x j = 1}. This function is generalized to a
permutation- and bit-invariant version in the following way. Let Sn denote the set of
permutations of [n] := {1, . . . , n}, and let [0..n] := {0, 1, . . . , n}. For z ∈ {0, 1}n and
σ ∈ Sn , we consider the function

Loz,σ : {0, 1}n → [0..n], x �→ max{i ∈ [0..n] | ∀ j ≤ i : zσ(j) = xσ(j)} ,

so Loz,σ (x) is the length of the longest common prefix of the search point x and the
target string z in the orderσ . For i < j we say thatσ(i) ismore significant thanσ(j). In
particular,σ(1), . . . , σ (k) are the kmost significant bits, andσ(n), . . . , σ (n−k+1) are
the k least significant bits. The Lo problem is the problem of optimizing an unknown
member of the class Lo := {Loz,σ | z ∈ {0, 1}n, σ ∈ Sn}. Clearly, the unique
global optimum of Loz,σ is z. For ease of notation we drop the subscript {z, σ } in the
following.

2.3 Other Notation and Definitions

Throughout this work, we will write log x for the binary logarithm log2 x and ln x
for the natural logarithm of x . We say that an event E holds with high probability if
Pr[E] → 1 for n → ∞.

A fitness level of a function f is a maximal set of search points which have the
samefitness. In particular, every functionLoz,σ of course has exactly n different fitness
levels.

3 Proof of the Lower Bound

To prove the desired Ω(n2) bound, we introduce a more generous model in which
algorithms have strictly more power than in the original elitist model (Sects. 3.3–3.5).

123

1586 Algorithmica (2018) 80:1579–1603

We then show theΩ(n2) lower bound for thismore generousmodel in Sect. 3.6. Before
we start with the technical details of the alternative model, we explain in Sect. 3.1 our
motivation for introducing it.We present a high-level overviewof the proof in Sect. 3.2.

3.1 Challenges in Proving the Lower Bound

Learning from Search Points with Inferior Fitness One may be tempted to believe
that in the (1 + 1) elitist model, we cannot learn information from search points that
have strictly lower fitness than that of the current best one. This is indeed a tantalizing
thought as such search points have to be discarded immediately and can therefore
not influence the sampling distribution of the next query. However, one has to be
very careful with such arguments. To illustrate why it fails in general, consider the
following setting: assume that there is a search point x from which we sample search
point y1 with some very small probability ε and search point y2 otherwise; i.e., we
sample y2 with probability 1 − ε. For the sake of the argument assume further that
for all search points z �= x the probability to sample y1 or y2 is zero. If, at some stage
of the algorithm, we happen to have y1 in the memory, we may then conclude that
we must have been at x in the previous step. Moreover, if f (y2) > f (x) then with
probability 1−ε wewould have proceeded to y2, and thus wewould never have visited
y1 (as we cannot return to x from a fitter search point). Therefore, by Bayes’ theorem
f (y2) ≤ f (x) with probability at least 1 − ε. Summarizing, although we have not
visited y2, we can deduce information about its fitness.

Application of Yao’s Principle A tool that has proven to be extremely helpful in
deriving lower bounds for black-box complexities is the so-called MiniMax Principle
of Yao [19]. All lower bounds that we are aware of directly or indirectly use (the easy
directionof) this tool. In simplewords,Yao’sPrinciple allowsus to restrict our attention
to the performance of a best-possible deterministic algorithm on a random input. This
is a lower bound for the expected performance of a best possible randomized algorithm
for this problem. This principle is typically used with a very simple distribution p.
Indeed, in most proofs p can be chosen to be the uniform distribution.

Lemma 1 (Yao’s Principle [15,19]) Consider a problem with a finite set I of input
instances (of a fixed size) permitting a finite set A of deterministic algorithms. Let p
be a probability distribution over I and q be a probability distribution over A. Then,

min
A∈A

E[T (Ip, A)] ≤ max
I∈I

E[T (I, Aq)] , (1)

where Ip denotes a random input chosen from I according to p, Aq denotes a random
algorithm chosen fromA according to q, and T (I, A) denotes the runtime of algorithm
A on input I .

As was pointed out in [8], the informal interpretation of Yao’s principle as stated
before Lemma 1 does not apply to elitist algorithms. Since this is a crucial difficulty in
our proofs, we explain this apparent contradiction in detail, even though a very similar
example was given in [8].

Let I = Lo, let p be the uniform distribution over the inputs I, and let Ip be
defined as in Lemma 1. Then any deterministic algorithm A has a positive probability

123

Algorithmica (2018) 80:1579–1603 1587

of getting stuck during the optimization of Ip. Assume x and y are the first two search
points that A queries, and note that since A is an elitist black-box algorithm, the choice
of y does not depend on the fitness of x (although the example could easily be adapted
to cover this case as well). If the fitness of y is strictly smaller than that of x , y has to
be discarded immediately and the algorithm is in exactly the same state as before, so
it will continue sampling and discarding y. Therefore, the expected runtime of A on
this fitness function is infinite. Since this holds for every deterministic algorithm (that
is, every deterministic (1 + 1) elitist algorithm has an infinite expected runtime on a
uniformly chosen Lo instance), the lower bound in (1) is infinite, too. However, of
course there are randomized search strategies with finite expected runtime, e.g., RLS
and the (1 + 1) EA (see Sect. 1.1).

To resolve this apparent discrepancy, note that Lemma 1 makes a statement about
algorithms that can be formally seen as probability distributions over deterministic
ones (such algorithms are thus convex combinations of deterministic ones). For typical
classes of algorithms this describes exactly the class of all randomized algorithms,
since we can emulate every randomized algorithm by making all random coin flips
in advance, and then choosing the deterministic algorithm whose decisions in each
step agree with these coin flips. However, this only works if the algorithm is free to
make a new decision in each step, e.g., if the algorithm may base its decision on the
number of previous steps. However, (1+ 1) black-box algorithms (elitist or not) may
not do so since they are memory-restricted. Therefore, randomized (1+ 1) black-box
algorithms cannot be in general written as probability distributions over deterministic
(1 + 1) black-box algorithms.

These observations have a quite severe effect on our ability to prove lower bounds in
elitist black-boxmodels. Indeed, the onlywaywe currently know is the approach taken
below, where we consider a superset AM of algorithms such that every randomized
algorithm in AM can be expressed as a probability distribution over deterministic
ones. A lower bound shown for this broader class trivially applies to all elitist black-
box algorithms. In our case, we achieve the classAM by giving the algorithms access
to enough memory to determine the current step (within a certain phase).

If applicable, Yao’s principle allows us to restrict ourselves to deterministic algo-
rithms, which are usually easier to analyze. In particular, we may use the following
observation.

Observation 1 Assume thatwe run a deterministic algorithm A on a problem instance
i that we have taken from the set of instances I uniformly at random, so Pr[i = c] =
1/|I| for every c ∈ I. Assume further that the first queries q1, . . . , q� of A reduce the
number of possible problem instances to some set C. Then Pr[i = c | q1, . . . , q�] =
Pr[i = c | i ∈ C] = 1/|C| for all c ∈ C. In particular, each c ∈ C is equally likely to
be the secret instance i .

3.2 High-Level Ideas of the Proof

As explained above, we cannot use Yao’s principle directly for the set of all elitist
black-box algorithms. Instead, we use a larger classAM of algorithms, the definition
of which is adapted to the special structure of the Lo problem. In this model, whenever

123

1588 Algorithmica (2018) 80:1579–1603

an algorithm reaches fitness level k for the first time, we reveal for a brief moment
the position of the k most significant bits. Note that by symmetry of the Lo function,
an algorithm cannot discriminate between the less significant bits from its previous
samples. Therefore, everything that the algorithm has learned previously is covered
by this piece of information. Based on this information, we allow the algorithm to
store whatever it wants in the m = n − k least significant bits. After that, we occlude
the information about the k significant bits again, and the algorithm may only use its
storage of size m. However, until the algorithm finds the next fitness level, we allow
it to keep track of all the search points that it visits on the current fitness level. In this
way we create a class of algorithms for which Yao’s principle allows us to restrict to
deterministic algorithms. The details are spelled out in Sect. 3.3.

The algorithmmaybe lucky and skip a fitness level, because the (k+1)-st significant
bit in its search point is correct. However, this only happens with probability 1/2.
Otherwise, the algorithm can only carry over m bits of information to the next level,
cf. Lemma 5 for a precise statement. Crucially, if m = δn for some small δ > 0,
then this information is not enough to encode the positions of the k most significant
bits, which would require log

(n
k

) = log
(n
m

) ≈ m(1 + log(1/δ)) bits. One strategy of
the algorithm might be to store as many of the insignificant bit positions as possible,
so that it can test quickly whether one of these candidates is the next significant
bit. However, whenever the algorithm wants to be certain (or rather certain) that a
specific bit b is insignificant, then this decreases the available information about the
remaining bits. This strategy might pay off if b is the next significant bit, because
then the algorithm reaches a new fitness level immediately. However, with a too high
probability, b is not the next significant bit, and the algorithm is left with an even worse
situation.

The key to the proof lies in the exact definition of the classAM, and in a preciseway
to capture the rather vague notation of information used above. We start by defining
AM in Sect. 3.3. In Sect. 3.4 we show that by restricting to one-bit flips, we extend
the runtime of an algorithm on the k-th fitness level by at mostm = n− k. In Sect. 3.5
we first give a precise definition of what we mean by information, and we define the
quantityΦ(k,m, B) to be the minimum expected number of queries that an algorithm
inAM using one-bit flips needs to advance a fitness level, if there are k significant and
m insignificant bits and if the available information is B. In Lemma 6 we then give
a rather straight-forward recursion for the function Φ(k,m, B). Once the recursion
is established, it is purely a matter of (somewhat tedious) algebra to derive the lower
bound Φ(k,m, B) ≥ ε(k + m)(1 − (log B)/(2m)) in Lemma 7. Since the starting
amount of information is B ≈ 2m , each algorithm using one-bits flips needs to spend
expected timeΦ(k,m, 2m) ≈ ε(k+m)/2 on the corresponding fitness level (provided
that it visits this level at all). Since using multi-bit flips can save us at most m queries,
a general algorithm in AM spends at least time ≈ ε(k + m)/2 − m on this level,
which is Ω(n) if m ≤ δn for a sufficiently small δ > 0. Thus there is a linear number
of fitness levels, such that the algorithm spends an expected linear time on each of
them, showing the Ω(n2) runtime. The details of this concluding argument are found
in Sect. 3.6.

123

Algorithmica (2018) 80:1579–1603 1589

3.3 A More Generous Model

We consider the set AM of all algorithms that can be implemented in the following
model M:

Assume that the algorithm has queried some search points x (1), . . . , x (t) with
maxi<t {Lo(x (i))} = k−1 and Lo(x (t)) ≥ k. We then say that the algorithm reaches a
new fitness level with the t-th query. In addition to letting the algorithm know that the
fitness value of x (t) is strictly larger than the previous best search point, we reveal to
the algorithm the first k significant positions σ(1), . . . , σ (k) and the corresponding bit
values zσ(1), . . . , zσ(k) of the target string. Note that from this information, the algo-
rithm can in particular infer thatLo(x (t)) ≥ k, but it does not learn the precise function
value of x (t). Furthermore, it is not difficult to see that the information revealed to the
algorithm contains everything about the unknown instance (z, σ) that the algorithm
could have collect so far (and typically it reveals much more information about the
target instance than the information currently present to the algorithm). We now allow
the algorithm to “revise” its choice of the insignificant m := n − k bits of x (t). That
is, the algorithm may opt to change the entries in the positions [n]\{σ(1), . . . , σ (k)},
thus creating a new search point x̃ (t). This revision does not cost anything in terms of
runtime.

By construction, the fitness of x̃ (t) is at least k. It is possibly strictly greater than k
in which case the algorithm may again revise the entries of the insignificant bits, now
based on the first k+1 positions. This process continues until the fitness of the revised
search point equals the number of significant bit positions that the algorithm has seen
when creating it. For ease of notation, let us assume that f (x̃ (t)) = k. For clarity, we
emphasize that the algorithm never learns about the exact fitness value of its original
choice x (t).

Starting from y(0) := x̃ (t), until it reaches a new fitness level > k, we allow the
algorithm to remember all queries y(1), . . . , y(s), and for each of themwhether f (y(i))

is smaller or whether it is equal to f (y(0)) (if f (y(i)) is larger than f (y(0)), a new
fitness level is reached). Moreover, we allow it to remember the value k. The algorithm
may thus choose y(s+1) depending on k, y(0), . . . y(s), and on the information which of
the y(i) have smaller fitness than y(0). Crucially, note that in this phase the algorithm
does no longer have access to the positions σ(1), . . . , σ (k) of the first k significant
bits, unless it has somehow encoded this information implicitly in y(0).

We want to bound from below the expected number of queries that are needed
to reach a new fitness level, that is, the expected number Tm of queries before the
algorithm queries a search point of fitness strictly larger than k = n − m. Note that
this number may be zero if f (x̃ (t)) > k. We shall apply Yao’s MiniMax Principle with
the uniform distribution over the possible Lo instances (z, σ). A discussion of this
tool has been given in Sect. 3.1. We will show next that, unlike for the original elitist
model, in AM every (reasonable) randomized algorithm is a probability distribution
over deterministic ones, the crucial difference to the original elitist model being that
inAM the algorithms may remember the search points of the current fitness level. In
particular, a reasonable deterministic algorithm therefore never gets stuck. Formally,
we get the following statement.

123

1590 Algorithmica (2018) 80:1579–1603

Lemma 2 Assume that A ∈ AM is a randomized algorithm that never samples a
search point twice on the same fitness level. Then A is a probability distributions over
deterministic algorithms in AM.

Before we prove Lemma 2, we remind that a (deterministic or randomized) algo-
rithm A ∈ AM is allowed to remember all previous queries on the same fitness level,
so it will know whether it is about to sample the same search point twice on the same
fitness level. Its runtime can only increase by sampling the same search point twice,
so for proving lower bounds we can restrict to algorithms A as in the lemma. The
reason why we actually need this restriction is that there is only a finite number of
possible executions (i.e., of sequences of queries) of A if we forbid multiple sampling.
Otherwise the number of possible executions would be uncountable, which causes
some problems that we want to avoid.

Proof of Lemma 2 Assume we have a randomized algorithm A ∈ AM. All random
decisions of A can be based on a sequence of random coin flips.1

For simplicity, we will first argue that for every N > 0, the algorithm A in the phase
before the N -th coin flip can be obtained as a probability distribution over deterministic
algorithms. In other words, if we only consider the execution of A up to the N -th coin
flip, then the randomized algorithm is just a randomly chosen deterministic one. In
the following paragraph we will thus only regard the execution of A until it requests
the N -th coin flip.

We can emulate A as follows. At the very beginning (before actually running A),
we flip n · N coins, which we denote by Fi, j , where 1 ≤ i ≤ n runs through all fitness
levels, and 1 ≤ j ≤ N . We now run A as follows. When it is on the i-th fitness level
and it asks for the j-th random bit on this fitness level, then we feed it the bit Fi, j .
Note that although there are n · N random bits available in total, A will use at most N
of them (in the part of the execution that we consider).

Now that the Fi, j are fixed, the algorithm A is just a deterministic algorithm. The
subtle point here is that we can also realize it as a deterministic algorithm A′ in the
class AM . To understand why this might be a problem, note that we can describe any
deterministic black-box algorithm (restricted or not) as a function α from the set of
possible memory states into the set of search points, since in every state the algorithm
selects one search point to be evaluated next. Conversely, every such function defines
a deterministic algorithm. So how do we emulate A by an algorithm A′ defined by a
function α? If A samples s(i) in step i , and if the memory state of A′ before step i
is Si , then we only need to ensure that α(Si) = s(i) for all i ≥ 0. This may serve as
a definition if we can argue that all the states Si are different. Note that here lies the
crucial difference to the elitist model, in which the state space is so small that A′ may
come to the same state twice.

So we need to argue that the algorithm A′ is never in the same state twice. This is
because whenever A′ is in a specific state (i.e, it has a specific current search point
with specified fitness, and it has some content in the memory that is allowed for the
classAM), then the available information suffices to determine the number of queries

1 We remark without proof that the same argument also works in a different model of computation where
the algorithm is allowed to generate random real number in the interval [0, 1].

123

Algorithmica (2018) 80:1579–1603 1591

in this fitness level. In particular, regardless of what A′ has done in previous steps, the
current state is different from all previous states. Therefore, once the Fi, j are fixed
we can properly define a function α and thus select a deterministic algorithm A′ from
AM that behaves like A for the first N coin flips.

For unlimited N , we use the same argument as before, only that we flip an infinite
sequence of coins for each fitness level. Still, every outcome (Fi, j)1≤i≤n, j≥1 corre-
sponds to exactly one deterministic algorithm, which also does not query the same
search point twice on the same fitness level. Hence, every such deterministic algorithm
is chosen with some probability, where the probabilities add up to 1. The argument
now runs as before. ��

We show that there is a constant ε > 0 such that for all 1 < m ≤ εn and all
deterministic algorithms in AM the expected number of queries that the algorithm
spends on fitness level k = n − m is at least εn. This yields the desired Ω(n2) lower
bound. By the following lemma, this bound also holds for all elitist (1+1) algorithms.

Lemma 3 Every elitist (1 + 1) algorithm is also in AM. This holds even if the
algorithm receives exact fitness information, i.e., every (1 + 1) algorithm that uses
truncation selection is also in AM.

Proof This follows rather trivially from the definition of AM. A (1 + 1) elitist algo-
rithm can be simulated by an algorithm in AM by choosing x̃ (t) := x (t), and by
ignoring all information except for the current search point. Note that for a (1 + 1)
elitist algorithm it suffices that the oracle tells it which of the two search points it
compares is the better one, or whether they are of equal fitness. The (1 + 1) elitist
algorithmwill thus not knowmore about the search points y(i) than whether the fitness
is worse, equal, or better than the fitness of y(0). Thus the (1+ 1) elitist algorithm has
always at most the information that an algorithm in AM has.

In the same way, the algorithm inAM can simulate a (1+1) algorithm A that uses
truncation selection. Recall that an algorithm in AM is always aware of the current
fitness level, but it does not generally learn the fitness of the offspring. There are three
cases: if the offspring has the same fitness as the parent then the algorithm in AM
can trivially deduce the fitness of the offspring. If the offspring has strictly larger
fitness, then the algorithm in AM eventually learns the fitness of the offspring since
it waives all options to revise the offspring (i.e., since it always chooses x̃ (t) := x (t)).
Finally, if the offspring has strictly smaller fitness than the current search point, then
the algorithm inAM does not learn the fitness of the offspring, but it can still predict
that A will reject the offspring. Thus, in all cases the algorithm inAM can predict the
next state of A, i.e., it can simulate the algorithm A. ��

3.4 It Suffices to Study One-Bit Flips

One technical challenge in bounding the complexity of Lo with respect toAM is the
question of how to deal with multiple bit flips. The following lemma tells us that we
do not give away much if we restrict ourselves to algorithms that only use one-bit
flips. This observation simplifies the upcoming computations significantly.

123

1592 Algorithmica (2018) 80:1579–1603

Lemma 4 For every deterministic algorithm A ∈ AM there exists a deterministic
algorithm A′ ∈ AM such that the following holds. If for some instance algorithm A
uses s queries to leave fitness level k, then A′ uses at most s + n− k queries on fitness
level k. Moreover, all the search points y′(1), . . . , y′(r) that A′ uses on this fitness level
have Hamming distance 1 from y(0).

Proof Let A ∈ AM be deterministic, and assume it queries y(0), y(1), . . . , y(s) on
fitness level k. The algorithm A′ also starts with y(0). For i ∈ [s] let �i ∈ [0..n] be
such that y(i) differs from y(0) in �i bits. In the i-th step, which may consist of several
queries, A′ goes through these �i bits, flipping them one by one and querying the
resulting strings until it finds a string that has fitness smaller than k, or until it has
exhausted the �i bits. Note that A′ does not apply the one-bit flips iteratively, but rather
each of the �i strings is created by a one-bit flip applied to y(0). If A′ creates a string
that it queried in one of the previous i − 1 steps, it does not query this string again.
Note that this is possible in the model AM, but would not be possible in the (1 + 1)
elitist model.

We need to show two things: (i) after each step, A′ has at least as much information
as A has, so that it knows which query y(i+1) algorithm A will choose next, and (ii)
A′ uses at most s + m queries, where m = n − k. In fact, we show that each of the
m insignificant bits causes at most one additional query for A′. Assume first that A′
exhausts the �i bits in step i , i.e., that all the �i corresponding strings have fitness at
least k. In this case A learns that the fitness of y(i) is at least k (and possibly that it is
strictly larger than k), and A′ learns the same. Moreover, A has done one query, while
A′ has done one query for each of the at most �i insignificant bits that have not been
evaluated before.

Next assume that in the i-th step A′ finds a string that has fitness smaller than k. Say
it is the �′-th string that A′ queries in the i-th step. Then A only learns that among the
�i flipped bits there is at least one significant bit. A′ learns this, too, but it also learns
specifically the position of such a bit. Algorithm A uses one query, while A′ uses
�′ ≤ �i queries, spending again one query for each insignificant bit that it discovers.

In both cases, algorithm A′ learns at least all the information that A learns, and the
total number of queries done by A′ is at most s +m since it spends at most one query
for each insignificant bit that it tests. ��

It is now easy to argue that with Lemma 4 at hand we need to consider only
algorithms that do one-bit flips. We will show below that, form being within a suitable
range of linear size, every such algorithm in expectation needs at leastm+εn queries to
leave fitness level k := n−m, provided that it started with a search point y(0) of fitness
exactly k. Assume for the sake of contradiction that there was any other algorithm in
AM (possibly doing multiple bit flips) which needs less than s := εn queries in
expectation to leave level k, provided that it visits this level. Then by Lemma 4, there
would also be an algorithm using one-bit flipswhich needs less than s+n−k = m+εn
queries, which is a contradiction. Therefore, every algorithm inAM needs at least εn
queries in expectation to leave level k. (The formal proof can be found in Sect. 3.6.)
Hence, it suffices to analyze algorithms that do one-bit flips.

123

Algorithmica (2018) 80:1579–1603 1593

3.5 Evolution of the Available Information

In this section, we study how the amount of information that a deterministic algo-
rithm has about the problem instance (z, σ) changes over time, in particular while the
algorithm stays on one fitness level.

Let us consider first how much information the algorithm has when entering a new
fitness level k = n−m. Recall that we consider a problem instance (z, σ) that is taken
from all Lo functions uniformly at random. Recall also that in our model, i.e., model
AM described in Sect. 3.3, we reveal to the algorithm the value k of the fitness level,
the position of the k significant bits σ(1), . . . , σ (k), and the values zσ(1), . . . , zσ(k)

of the corresponding bits. In our model AM we allow the algorithm to change the
entries in the m insignificant positions. Intuitively, we thus implicitly grant it m bits
for storing information about the problem instance. In the following, we make this
intuition precise.

Let a k-configuration be a pair (P, u) of a set P ⊆ [n] of size k and a bit string
u ∈ {0, 1}k of length k. We interpret (P, u) as the set {σ(1), . . . , σ (k)} of the first
k significant bit positions, together with the values zσ(1), . . . , zσ(k) of these bits in
the optimum. Thus a k-configuration (together with the value of k) describes exactly
the information the algorithm has before choosing the revised search point x̃ (t), when
it leaves the (k − 1)-st fitness level. The (deterministic) algorithm maps each such
possible k-configuration (P, u) to a bit string x̃ (t) of length n. However, since there are
2k

(n
k

)
k-configurations and only 2n bit strings, there are on average at least 2k−n

(n
k

) =
2−m

(k+m
m

)
different k-configurations that are matched to the same string x̃ (t).

In the following, we will track the number C of k-configurations that are still
compatible with the history of the algorithm on level k, i.e., that are compatible with
f (y(0)) = k, with the fact that the algorithm has chosen y(0), and with the oracle’s
answers to y(1), . . . , y(i), for some i ≥ 0. Note that C will in general be larger than
one, since the algorithm does not have perfect information about the positions and
bit values of the first k significant bits—it does briefly know this information while
choosing y(0), but it forgets the information afterwards. However, the algorithm is
able to limit the size of C by reverse-engineering its configuration-to-query mapping
since it does still know the string y(0). Also note that Observation 1 applies, i.e., all
k-configurations contributing to C are equally likely to occur as the problem instance
is drawn uniformly at random.

Assume that the algorithm starts the k-th fitness level with some string y(0) (= x̃ (t)).
Then the compatible k-configurations (P, u) are determined by y(0) and the set P .
This follows from the fact that by construction the entries in the k significant positions
in the string y(0) coincide with the optimal ones zσ(1), . . . , zσ(k) (these bits were not
changed when creating x̃ (t) = y(0)). Since the algorithm has access to y(0) anyway,
a compatible configuration can be described by the k significant positions. There are(n
k

) = (k+m
m

)
sets of size k in [n], so it is convenient to normalize by this factor. We

thus define

B := B(k,m,C) =
(k+m

m

)

C
(2)

123

1594 Algorithmica (2018) 80:1579–1603

as the factor by which the number of possible target configurations has been reduced
already. We call B the available information after querying y(i). Note that always
B ≥ 1.We remark that information is often measured in bits, which would correspond
to log B. However, for our purposes it is more convenient to work with B rather than
log B.

Lemma 5 With probability at least 1/2, the available information after querying y(0)

is at most 2m+1.

Proof Recall that the algorithm matches on average 2−m
(k+m

m

)
different‘

k-configurations to each string x̃ (t). Let C be the set of all strings x̃ (t) which cor-
respond to at most 2−m−1

(k+m
m

)
k-configurations. These strings together cover at most

2n−m−1
(k+m

m

) = 2k−1
(k+m

m

)
k-configurations, i.e., at most half of all k-configurations.

Since the k-configuration of the problem instance is drawn uniformly at random, with
probability at least 1/2 we draw a configuration that belongs to a string in {0, 1}n\C.
Thus, with probability at least 1/2 we hit a string which is mapped to a x̃ (t) that is
compatible with more than 2−m−1

(k+m
m

)
k-configurations. This proves the claim. ��

Let us now consider how the information evolves with the queries on the k-th fitness
level. Let Aone be the set of all deterministic algorithms that, starting from an n-bit
string y(0) with Loz,σ (y(0)) = k, use only one-bit flips of y(0) until they have found a
string y(s) with Loz,σ (y(s)) > k.

Definition 1 For any k ≥ 0,m ≥ 1, and B ≥ 1, we define Φ := Φ(k,m, B) to be the
minimum expected number of fitness evaluations that an algorithm A ∈ Aone needs
in order to find the next fitness level on a string with k significant and m insignificant
bits if the instance (z, σ) is chosen uniformly at random among all instances whose
k-configuration is contained in a set C. Here the minimum is taken over all algorithms
A ∈ Aone and all sets C of k-configurations with |C| ≥ C(k,m, B) := (k+m

m

)
/B. For

convenience we set Φ(k, 0, B) := 0 for all k and B.

Note that Φ(k,m, B) is a decreasing function in B. Before we study Φ(k,m, B) in
detail, let us first compareΦ(k,m, B)with the expected time needed by any algorithm
inAM (i.e., not necessarily based on single bit-flips) to reach a newfitness level.When
an algorithm A ∈ AM exceeds fitness k − 1 and chooses x̃ (t), with probability 1/2 it
holds thatLoz,σ (x̃ (t)) = k andwith probability 1/2 the function value of x̃ (t) is strictly
larger than k. This is by the uniform choice of the problem instance. Moreover, by
Lemma 5, with probability at least 1/2 the available information is at most B ≤ 2m+1,
where m = n − k, and this event is independent of whether Loz,σ (x̃ (t)) = k. In
particular, with probability at least 1/4, we have both Loz,σ (x̃ (t)) = k and B ≤ 2m+1.
In this case, by Lemma 4, the expected time that A spends on the k-th fitness level is
at least Φ(k,m, 2m+1)−m. Thus, our aim will be to show that Φ(k,m, 2m+1)−m =
Ω(n) for a linear number of values of m. We start our investigations with a recursive
formula for Φ.

Lemma 6 Let k ≥ 0,m ≥ 1, and B ≥ 1. Then

Φ(k,m, B) ≥ m + 1

2
.

123

Algorithmica (2018) 80:1579–1603 1595

Furthermore, for pmin := max{0, 1−Bk/(k+m)} and pmax := min{1, Bm/(k+m)}
it holds that

Φ(k,m, B) ≥ 1 + min
p∈[pmin,pmax]

{

p
m − 1

m
Φ

(

k,m − 1,
B

p
· m

k + m

)

+ (1 − p)Φ

(

k − 1,m,
B

1 − p
· k

k + m

)}

, (3)

where we use the convention that for p = 0 (p = 1) the first (second) summand of the
minimum evaluates to zero.

Proof For the first formula, simply observe that even if the algorithm knows the
configuration exactly, it still needs to test the m insignificant bits one by one (by
definition ofAone) until it finds the next significant one, i.e., until the fitness improves.
Recalling that the position of the next significant bit is uniformly at random among
the insignificant ones, the expected number of steps that it takes the algorithm to find
it is (m + 1)/2.

To verify (3), let A ∈ Aone, and assume that the set C of configurations compatible
with the algorithm’s choice of y(0) satisfies |C| ≥ (k+m

m

)
/B. We need to show that for

each such A and C the expected number of remaining fitness evaluations to find the
next fitness level is at least the right hand side of (3). Assume further that in its next
query A flips the bit bi , yielding a search point y(1), and let p ∈ [0, 1] be such that
exactly p|C| configurations are compatible with the event f (y(1)) ≥ f (y(0)). Since
all configurations are equally likely, p is also the probability that f (y(1)) ≥ f (y(0)).
Moreover, the number of such configurations is at most

(k+m−1
m−1

)
, since bi has to be

one of the insignificant bit positions. This shows that p is bounded by the inequality
p|C| ≤ (k+m−1

m−1

)
. Using |C| ≥ (k+m

m

)
/B this implies p ≤ Bm/(k + m). Similarly,

(1 − p)|C| ≤ (k+m−1
m

)
, which implies p ≥ 1 − Bk/(k + m).

Assume that the event f (y(1)) ≥ f (y(0)) happens. Then with probability 1/m the
algorithm leaves the k-th fitness level (since all m insignificant bits have the same
probability of being the next significant bit). Otherwise, that is, with probability (m −
1)/m, the algorithm learns that bi is not the next significant bit, and it will not query
bi again on this level. Therefore, we may just exclude it from our considerations,
and replace m by m − 1. Since the number of remaining compatible configurations is
p|C|, we need to find Bnew such that

(k+m−1
m−1

)
/Bnew ≤ p|C|. Since p|C| ≥ p

(k+m
m

)
/B,

we may choose Bnew to satisfy
(k+m−1

m−1

)
/Bnew = p

(k+m
m

)
/B, or equivalently Bnew =

(B/p) · (m/(k + m)). So if f (y(1)) ≥ f (y(0)), then the algorithm needs at least an

expected additional time of m−1
m Φ

(
k,m − 1, B

p · m
k+m

)
.

Now we consider the case f (y(1)) < f (y(0)), which happens with probability
1 − p. Then the algorithm learns that bi is significant, and it will not query bi again
on this level. Thus we can exclude it from our considerations and replace k by k − 1.
Similar as before, the number of compatible configurations drops to (1 − p)|C|, so
we need to find Bnew such that

(k+m−1
m

)
/Bnew ≤ (1 − p)|C|. We may choose Bnew

according to the equation
(k+m−1

m

)
/Bnew = (1 − p)

(k+m
m

)
/B and obtain Bnew =

(B/(1 − p)) · (k/(k + m)). So if f (y(1)) < f (y(0)) then the algorithm needs at least

123

1596 Algorithmica (2018) 80:1579–1603

an expected additional time of Φ(k − 1,m, B/(1 − p) · k/(k + m)). This proves (3).
��

We use Lemma 6 to show the following lower bound for Φ(k,m, B). Once this
bound is proven, we have everything together to prove the claimed Ω(n2) bound for
the (1 + 1) elitist black-box complexity of Lo.

Lemma 7 There exists a constant ε > 0 such that for all k ≥ 0,m ≥ 1 and B ≥ 1,

Φ(k,m, B) ≥ ε(k + m)

(

1 − log B

2m

)

. (4)

Proof We use induction on k + m. First we show the statement for the case m = 1
and arbitrary k. If m = 1 and B ≥ 4, the lower bound is at most zero, and thus
trivial. If m = 1 and B < 4, by (2), the number of compatible configurations is at
least (k + 1)/B > (k + 1)/4, and in each of these configurations there is exactly one
insignificant bit. Since these bits are all different from each other, there are at least
(k + 1)/4 positions at which the insignificant bit might be, and by Observation 1 all
these positions are equally likely. Since the algorithm is by definition only allowed to
make one-bit flips, it needs in expectation at least (k +1)/8 steps. Thus, the statement
is satisfied for all ε ≤ 1/8.

Now we come to the inductive step, where by the paragraph above we may assume
that m ≥ 2. Furthermore, we may also assume that log B < 2m since the statement is
trivial otherwise. By Lemma 6 we have

Φ(k,m, B) ≥ 1 + min
p∈[pmin,pmax]

{

p
m − 1

m
Φ

(

k,m − 1,
B

p
· m

k + m

)

+ (1 − p) · Φ

(

k − 1,m,
B

1 − p
· k

k + m

)}

. (5)

By the induction hypothesis we may thus conclude from inequality (5) that

Φ(k,m, B) ≥ 1 + min
p∈[pmin,pmax]

{

p
m − 1

m
ε(k + m − 1)

(

1 − log
(B
p · m

k+m

)

2(m − 1)

)

+ (1 − p)ε(k + m − 1)

(

1 − log
(B
1−p · k

k+m

)

2m

)}

= 1 + ε(k + m)

(

1 − log B

2m

)

+ min
p∈[pmin,pmax]

{−R(p)} ,

123

Algorithmica (2018) 80:1579–1603 1597

where R(p) equals

R(p) = 1
m pε(k + m − 1)

(

1 − log
(
B
p · m

k+m

)

2(m−1)

)

=: X1

+ pε

(

1 − log
(
B
p · m

k+m

)

2(m−1)

)

=: A1

+ pε(k + m)
log

(
1
p · m

k+m

)

2m =: Y1

+ pε(k + m)
log

(
1
p · m

k+m

)

2m(m−1) =: Z
+ pε(k + m)

log B
2m(m−1) =: X2

+ (1 − p)ε

(

1 − log
(

B
1−p · k

k+m

)

2m

)

=: A2

+ (1 − p)ε(k + m)
log(1

1−p · k
k+m)

2m =: Y2

The above expression for R(p) can be verified by elementary calculations, using
only that log(Bx) = log B + log x for x = 1/p ·m/(k +m) and for x = 1/(1− p) ·
k/(k + m). It thus suffices to show that

R(p) ≤ 1 for all p ∈ [pmin, pmax]. (6)

To this end we first observe that B
p · m

k+m ≥ 1 and B
1−p · k

k+m ≥ 1 by definition of pmin
and pmax. Since these expressions occur in A1 and A2, we get

A1 + A2 ≤ ε. (7)

For the same reason, X1 ≤ pε(k + m − 1)/m. Recalling log B < 2m and using
m − 1 ≥ m/2, we thus get

X1 + X2 ≤ 3pε(k + m)

m
=: X (8)

In the following we will show that Y1 + Y2 + X + Z ≤ 1/2 if ε is sufficiently small.
Together with (7) and (8), this will complete the inductive step.

Let p0 := m/(k+m), andwrite p = γ p0 for some (not necessarily constant) γ ≥ 0.
Note that X = 3γ ε. We first consider the case γ ≤ 2. In this case, X ≤ 6ε. Moreover,
Z is either negative (for γ > 1) or upper bounded by −εγ log γ ≤ ε/(e ln 2), since
the function −γ log γ has a unique maximum 1/(e ln 2) in the interval 0 < γ ≤ 1.
Either way, we can choose ε so small that X + Z ≤ 1/2. In the following we will
prove that Y1 + Y2 ≤ 0, which will settle the case γ ≤ 2.

To prove that Y1 + Y2 is non-positive, we may just as well consider the sign of the
function

f (p) := 2m

(k + m)ε
(Y1 + Y2) = p log

(
p0
p

)

+ (1 − p) log

(
1 − p0
1 − p

)

.

123

1598 Algorithmica (2018) 80:1579–1603

The function has derivatives

f ′(p) = log

(
p0
p

)

− log

(
1 − p0
1 − p

)

and

f ′′(p) = − 1

p(1 − p) ln(2)
< 0.

Since the second derivative is negative, the function f is concave. We further observe
that f (p0) = f ′(p0) = 0. Thus f has a unique maximum at p = p0. Therefore,
f (p) ≤ f (p0) = 0 for all 0 ≤ p ≤ 1. Hence, we have proven Y1 + Y2 ≤ 0, and this
concludes the case γ ≤ 2.

For the case γ > 2, we first show that Y1/2 + X + Z ≤ 1/2. Clearly we have
Z ≤ 0. For sufficiently small ε > 0 we obtain

Y1
2

+ X = −εγ log γ

4
+ 3εγ = εγ

(

3 − log γ

4

)

≤ 1024ε

e ln 2
≤ 1

2
,

where the second to last inequality can be easily checked by taking the derivative of
the function and observing that is has a global maximum for γ = 4096/e.

Next we show that Y1/2+Y2 ≤ 0 for all γ > 2. Similar as before, we may consider
the sign of the function

f̃ (p) := 2m

(k + m)ε

(
Y1
2

+ Y2

)

= p

2
log

(
p0
p

)

+ (1 − p) log

(
1 − p0
1 − p

)

under the additional constraint 2p0 < p ≤ 1. Similar as above, the second derivative
of f̃ for 0 < p < 1 is

f̃ ′′(p) = − (p + 1)

2 ln(2)p(1 − p)
< 0.

Thus f̃ is concave for 0 ≤ p ≤ 1. Recall that log(1+ x) < x for all x > 0. Therefore,

f̃ (2p0) = −p0 log(2) + (1 − 2p0) log

(

1 + p0
1 − 2p0

)

< −p0 + p0 = 0.

On the other hand, f̃ (p0) = 0 > f̃ (2p0). Since f̃ is concave, this implies f̃ (p) < 0
for all 2p0 < p < 1. This shows that Y1/2 + Y2 ≤ 0 for all γ > 2.

Summarizing, we have shown that Y1/2 + Y2 ≤ 0 and Y1/2 + X + Z ≤ 1/2 for
all γ > 2, so it follows that Y1 + Y2 + X + Z ≤ 1/2. Together with (7) and (8), this
concludes the inductive step and the proof. ��

123

Algorithmica (2018) 80:1579–1603 1599

3.6 Putting Everything Together

As outlined in the high-level overview, Lemma 4, 5, and 7 together imply runtime
Ω(n2) on the Lo problem for any algorithm in AM. More precisely, we obtain the
following theorem.

Theorem 2 With ε as in Lemma 7 and k satisfying 1 < n−k ≤ εn/8, every algorithm
A ∈ AM spends in expectation at least εn/32 function evaluations on level k, and this
lower bound holds independently of the time spent on previous levels. In particular,
every algorithm inAM (and thus, every elitist (1+ 1) black-box algorithm) needs at
least time Ω(n2) in expectation and with high probability.

Proof We have already argued above after Definition 1 that each deterministic algo-
rithm A ∈ AM spends in expectation at least time (Φ(k,m, 2m+1) −m)/4 on fitness
level k = n−m, since with probability 1/2 the algorithm does not skip the level, with
probability 1/2 the available information is at most 2m+1 (Lemma 5), and conditioned
on both these events, by Lemma 4, A spends at least expected timeΦ(k,m, 2m+1)−m
on the k-th fitness level. By Lemma 2 we may apply Yao’s principle to deduce that
the same bound also holds for every randomized algorithm A ∈ AM.

The lower bound follows immediately from Lemma 7 which for k andm satisfying
1 < m = n − k ≤ εn/8 yields

Φ(k,m, 2m+1) − m ≥ εn

(

1 − m + 1

2m

)

− m ≥ εn

4
− εn

8
= εn

8
.

Note that this lower bound holds independently of the time spent on other fitness levels
because in the modelM every algorithm that enters the k-th fitness level is in exactly
the same state, i.e., it has access to exactly the same information, independent of its
history. Since the lower bound holds for all algorithms in AM, it still holds if we
condition on the history of the algorithm, or specifically on the time spent on previous
fitness levels.

The lower bound Ω(n2) on the expected runtime follows immediately. It remains
to prove that the same bound holds with high probability. We will show that for each
of the last εn/8 levels, the algorithm has probability Ω(1) to spend at least linear time
on this level, regardless of the behavior on previous levels. Note that this implies the
statement, since by the Chernoff bound, with high probability every algorithm spends
at least linear time on a linear number of levels. The argument is formal but somewhat
tricky, so we elaborate on it.

We want to show that there are constants c, p > 0 such that for sufficiently large n,
every algorithm in AM spends at least time cn with probability at least p on level k.
Assume otherwise (for the sake of contradiction), i.e., assume that for every constant
c, p > 0 there are arbitrarily large n and algorithms A = A(n, c, p) ∈ AM such that
A spends at least time cnwith probability atmost p. Then as a formal consequence2 the

2 For every i we fix ni arbitrarily for which the statement holds when p = c = 1/ i . Without loss of
generality, we may assume that the ni are growing (by assumption, for every i there are arbitrary large
values for n for which some algorithm A spends at least time cn with probability at most p). Then we may

123

1600 Algorithmica (2018) 80:1579–1603

same holds for c, p = o(1), so there are functions c = c(n) = o(1) and p = p(n) =
o(1) such that there are arbitrarily largen and algorithms A = A(n, c(n), p(n)) ∈ AM
such that A spends at least time cn with probability at most p. Fix such c(n), p(n),
and such an algorithm A = A(n, c(n), p(n)), and consider the algorithm A′ ∈ AM
that behaves like A for the first cn queries, and afterwards just does random single bit
flips. Note that the latter strategy takes expected time at most n to leave fitness level
k. Therefore, A′ needs in expectation at most cn + pn = o(n) queries to leave level
k (for arbitrarily large values of n), contradicting the fact that every algorithm in A
needs expected time Ω(n). This concludes the formal argument, and thus the proof. ��
Remark 2 Theorem 2 can be strengthened in the following way. Assume that an elitist
(1 + 1) algorithm has an additional memory of size ε′n, which it may use without
restrictions. Then if ε′ is sufficiently small, the algorithm still has expected runtime
Ω(n2).

On the other hand, if the algorithm has in addition n+O(log n) bits of memory that
it may use without restriction, then it is possible to achieve a runtime of O(n log n).
Hence, if the algorithm has access to cn bits of unrestricted memory, then it depends
on the constant c whether runtime o(n2) is possible or not.

Proof The proof of the first statement is identical to the proof of Theorem 2, except
that we increase the available information B by a factor 2ε′n . E.g., for ε′ = ε/16 the
algorithm still spends an expected linear time on all levels with εn/12 ≤ m ≤ εn/8.

The second statement holds because it is possible to store all k significant bits
in n bits of the additional memory, and the remaining O(log n) bits may serve as a
counter. Then, whenever the fitness increases, the algorithm performs O(log n) steps
to determine (one of) the position(s) which was responsible for the improvement. The
details are as follows.

We split the additional memory into a block B1 of length n, and the remaining part
B2. Let x denote the current search point, and let � be the current number of one-bits
in B1. We maintain the invariant that every one-bit in B1 is at the position of one of
the f (x) leading bits. Note that this implies that every such position must be correct
in x . At start we choose B1 to be the all-zero string.

We iteratively proceed as follows. If � = f (x), then the bits in B1 correspond exactly
to the first f (x) leading bits. In this case we flip all positions in x that correspond
to zero-bits in B1, and this operation improves the fitness of x by at least one. In
the same operation, we (re-)set B2 to zero. On the other hand, assume � �= f (x).
Then our invariant implies � < f (x). Let us call P the set of all bit positions that
are correct in x but are not one-bits in B1. Our aim is to identify one of the f (x) − �

positions in P . Let P0 be the set of positions of zero-bits in B1. In our strategy P0
will serve as a set of candidate positions, which we will shrink iteratively. We create
a search point x ′ by flipping the first half of the positions P0 in x , and query f (x ′). If
f (x ′) > f (x) then we (have to) accept the new search point, and we reset all of B2

Footnote 2 continued
choose the functions p(n), c(n) = o(1) so slowly decreasing that p(ni), c(ni) ≥ 1/ i . For these functions
p(n), c(n), there are still arbitrarily large n for which the statement holds, since it holds for all triples
(ni , p(ni), c(ni)).

123

Algorithmica (2018) 80:1579–1603 1601

to zero. If f (x ′) < f (x) then we know that at least one of the positions in P lies in
the first half of P0, so we replace P0 by its first half, and encode this result by a single
bit in B2. Finally, if f (x ′) = f (x) then at least one (in fact, all) of the positions in P
lie in the second half of P0, so we replace P0 by its second half, and also encode this
result by a single bit in B2. Repeating this step, we iteratively decrease the size of P0
by a factor of 2, or find a better search point. We continue this procedure for at most
�log n� rounds, after which we have either found a better search point, or reduced P0
to a single position, which then must be a position in P . In the latter case, we flip the
corresponding bit in B1 to one, reset B2 to zero, and continue.

In this way, in log n steps, we can increase either the fitness of x , or the number
of ones in B1. Since we never flip any bit in B1 to zero, after O(n log n) steps, either
f (x) = n or B1 is the all-one string. By the invariant the latter also implies f (x) = n,
so the algorithm finds the optimum after O(n log n) steps. ��

Remark 3 The proof of Lemma 7 also allows an interesting interpretation. We have
defined B := (k+m

m

)
/C , where C denotes the number of compatible k-configurations,

i.e., loosely speaking, the number of possible positions for the first k significant bits
which are compatible with the current state of the algorithm. Interestingly, the notion
of compatible k-configurations is applicable to any algorithm, also algorithms with
unrestricted memory. Thus, the quantity B is also well-defined for any algorithm. So
we can regard B as a universal measure on how accurate the algorithm has encoded
(in its current state) the positions of the first k significant bits. Of course, for most
settings the current state is just determined by the current content of the memory.

Moreover, in the proof of Lemma 7 the only restriction on the algorithm that we use
is that it is restricted to one-bit flips. Thus Lemma7 can be rephrased as follows: “Every
algorithm using only one-bit flips starting with a search point of fitness k and with
information at most B needs at least ε(k+m)(1− log B/(2m)) queries in expectation
to find a search point of larger fitness.” This formulation is of little interest in general
due to the technical restriction to one-bit flips. However, we believe that the structure
of the statement is quite interesting, since we have shown (under the restriction to
one-bit flips) that every algorithm that has not—directly or indirectly—encoded the
positions of the first k significant positions accurately enough has a bad performance.

We find this interpretation remarkable because it is very common to use the concept
of encoding in a positive sense (“Algorithm A has encoded the positions by…”), but
it has rarely been used in a negative sense (“Algorithm A has neither directly nor
indirectly encoded the positions of the first k significant bits.”). In fact, we believe
that it is not a priori obvious what the latter statement means, and we provide a formal
definition here (“quantity B is small”) that is applicable in the general case and that
proved useful in our specific situation. Of course, we could only obtain a general result
because in our case the algorithmshad small availablememory,whichnecessarily leads
to poor encoding of the positions. But note that there may also be algorithmswith large
memory which nevertheless have a poor encoding of the positions. In this sense our
result is not about the quantity of information (“how large is the memory”), but rather
about the quality (“how good are the positions encoded”), and we merely use the fact
that a small quantity automatically implies poor quality.

123

1602 Algorithmica (2018) 80:1579–1603

4 Discussion

We have shown that the (1 + 1) elitist black-box complexity of Lo is Θ(n2). This
is in contrast to the situation for the OneMax function, where elitist selection does
not substantially harm the runtime [9]. Given the much smaller complexity of Lo in
many other models, this sheds some light on the cost of elitism. In fact, our proof
suggests that the reason for the large complexity is rather the memory restriction than
the selection strategy. We thus conjecture that the lower bound in Theorem 1 holds
already for (1 + 1) memory-restricted algorithms, but we do not see at the moment
a feasible proof for this claim. In particular the generalization of Lemma 4, i.e., the
statement that it suffices to consider one-bit flips, seems tricky.

Related to this, another interesting question arising from our proofs is the question
of whether or not a memory-restricted black-box algorithm can benefit from trading-
off a search point of better fitness value for one possibly containing more information
(but having lower fitness). For LeadingOnes, we believe that this is not true; that is,
we conjecture that for every (1+ 1) black-box algorithm eventually accepting search
points of smaller fitness there exists an elitist one with the same or better expected
runtime. Interestingly, this does not seem to be true for OneMax. In fact, the (1+ 1)
black-box algorithm for OneMax with runtime O(n/ log n) presented in [6] always
selects the most recently queried search point, regardless of its fitness. This is another
extreme selection criterion.

The proof methods employed in this work are adapted to the LeadingOnes prob-
lem, and it is probably non-trivial to transfer them to other problems. Nevertheless,
we believe that the general idea of tracking the amount of information that a black-box
algorithm has been able to gather about the optimization problem at hand can be used
to derive lower bounds for other black-box complexity models as well as for other
function classes. Beyond a purely mathematical interest, we are optimistic that such
considerations can also serve as a source of inspiration for the design of new search
heuristics—just as the idea of using crossover as a repair mechanism triggered the
development of the (1 + (λ, λ)) GA presented in [3].

Acknowledgements This research benefited from the support of the “FMJH Program Gaspard Monge
in optimization and operation research”, and from the support to this program from EDF (Électricité de
France).

References

1. Afshani, P., Agrawal, M., Doerr, B., Doerr, C., Larsen, K.G., Mehlhorn, K.: The query complexity
of finding a hidden permutation. Space-Efficient Data Structures, Streams, and Algorithms-Papers in
Honor of J. Ian Munro on the Occasion of His 66th Birthday. Lecture Notes in Computer Science, vol.
8066, pp. 1–11. Springer, New York (2013)

2. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the LeadingOnes
problem. In: Proceedings of the 11th International Conference on Parallel ProblemSolving fromNature
(PPSN’10), pp. 1–10. Springer (2010)

3. Doerr, B., Doerr, C., Ebel, F.: Lessons from the black-box: Fast crossover-based genetic algorithms.
In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’13), pp. 781–788.
ACM (2013)

123

Algorithmica (2018) 80:1579–1603 1603

4. Doerr, B., Johannsen,D.,Kötzing, T., Lehre, P.K.,Wagner,M.,Winzen,C.: Faster black-box algorithms
through higher arity operators. In: Proceedings of Foundations of Genetic Algorithms (FOGA’11), pp.
163–172. ACM (2011)

5. Doerr, B., Winzen, C.: Black-box complexity: breaking the O(n log n) barrier of LeadingOnes. Arti-
ficial Evolution (EA’11), Revised Selected Papers. Lecture Notes in Computer Science, vol. 7401, pp.
205–216. Springer, New York (2012)

6. Doerr, B., Winzen, C.: Playing mastermind with constant-size memory. Theory Comput. Syst. 55,
658–684 (2014)

7. Doerr, B., Winzen, C.: Ranking-based black-box complexity. Algorithmica 68, 571–609 (2014)
8. Doerr, C., Lengler, J.: Elitist black-box models: analyzing the impact of elitist selection on the

performance of evolutionary algorithms. In: Proceedings of Genetic and Evolutionary Computation
Conference (GECCO’15), pp. 839–846. ACM (2015)

9. Doerr, C., Lengler, J.:OneMax in black-boxmodelswith several restrictions. In: Proceedings ofGenetic
and Evolutionary Computation Conference (GECCO’15), pp. 1431–1438. ACM (2015)

10. Doerr, C., Lengler, J.: The (1 + 1) elitist black-box complexity of LeadingOnes. In: Proceedings of
Genetic and Evolutionary Computation Conference (GECCO’16), pp. 1131–1138. ACM (2016)

11. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1 + 1) evolutionary algorithm. Theor.
Comput. Sci. 276, 51–81 (2002)

12. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search heuristics in black-
box optimization. Theory Comput. Syst. 39, 525–544 (2006)

13. Ladret, V.: Asymptotic hitting time for a simple evolutionary model of protein folding. J. Appl. Prob.
42, 39–51 (2005)

14. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64, 623–642 (2012)
15. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)
16. Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing. In: Proceedings of

the 2nd International Conference on Parallel Problem Solving from Nature (PPSN’92), pp. 15–26.
Elsevier (1992)

17. Rudolph, G.: Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kovač, Hamburg (1997)
18. Sudholt, D.: A new method for lower bounds on the running time of evolutionary algorithms. IEEE

Trans. Evol. Comput. 17, 418–435 (2013)
19. Yao, A.C.C.: Probabilistic computations: toward a unified measure of complexity. In: Proceedings of

Foundations of Computer Science (FOCS’77), pp. 222–227. IEEE (1977)

123

	The (1+1) Elitist Black-Box Complexity of LeadingOnes
	Abstract
	1 Introduction
	1.1 The LeadingOnes Problem
	1.2 Discussion of Our Result

	2 Formal Definitions
	2.1 Black-Box Complexity
	2.2 LeadingOnes
	2.3 Other Notation and Definitions

	3 Proof of the Lower Bound
	3.1 Challenges in Proving the Lower Bound
	3.2 High-Level Ideas of the Proof
	3.3 A More Generous Model
	3.4 It Suffices to Study One-Bit Flips
	3.5 Evolution of the Available Information
	3.6 Putting Everything Together

	4 Discussion
	Acknowledgements
	References

