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Abstract In this paper, we study the approximability of the minimum rainbow sub-
graph (MRS) problem and other related problems. The input to the problem is an
n-vertex undirected graph, with each edge colored with one of p colors. The goal is to
find a subgraph on a minimum number of vertices which has one induced edge of each
color. The problem is known to be NP-hard, and has an upper bound of O(

√
n) and a

lower bound of �(log n) on its approximation ratio. We define a new problem called
the densest colored k-subgraph problem, which has the same input as the MRS prob-
lem along with a parameter k. The goal is to output a subgraph on k vertices, which has
the maximum number of edges of distinct colors. We give an O(n1/3)-approximation
algorithm for it, and then, using that algorithm, give an O(n1/3 log n)-approximation
algorithm for theMRSproblem.Weobserve that theMin- Rep problem (theminimiza-
tion variant of the famousLabel Cover problem) is indeed a special case of theMRS
problem. This also implies a combinatorial O(n1/3 log n)-approximation algorithm
for the Min- Rep problem. Previously, Charikar et al. (Algorithmica 61(1):190–206,
2011) showed an ingenious LP-rounding based algorithm with an approximation ratio
of O(n1/3 log2/3 n) for Min- Rep. It is quasi-NP-hard to approximate the Min- Rep
problem towithin a factor of 2log

1−ε n (Kortsarz inAlgorithmica 30(3): 432–450, 2001).
The same hardness result now applies to the MRS problem. We also give approxima-
tion preserving reductions between various problems related to the MRS problem for
which the best known approximation ratio is O(nc) where n is the size of the input
and c is a fixed constant less than one.
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1 Introduction

Given an input graph, to output an optimal subgraph satisfying some constraints is
perhaps the most studied family of problems from an approximation perspective. Of
late combinatorists have extensively studied suchproblemswhen the edges are colored,
calledRainbowSubgraph problems. See [2,10,15,25,26] for a short representative list.

Our focus is arguably the simplest such computational problem, called theminimum
rainbow subgraph (MRS) problem. The input to the problem is an n-vertex simple
undirected graph, with each edge colored with one of p colors. The goal is to find
a subgraph on a minimum number of vertices which has one induced edge of each
color. It was introduced in [5] and has been studied from the approximation viewpoint
by [5,19,23]. The problem is known to be NP-hard.

Themotivation for this problem comes from the pure parsimony haplotyping (PPH)
problem in computational biology, which was introduced by Gusfield in 2003 [14].
Input to the problem is a set G of p genotypes (vectors of entries in {0, 1, 2}) corre-
sponding to individuals in population, and a set ofH of haplotypes (vectors of entries
in {0, 1}). A genotype g is explained by two haplotypes h1 and h2, if for each i , either
g[i] = h1[i] = h2[i], or g[i] = 2 and h1[i] �= h2[i]. The goal of the PPH problem
is to find a minimum subset of haplotypes that explain every genotype in G. If the
number of entries where g[i] = 2 is k, then the problem is called PPH(k). Camcho et
al. [5] showed that if k = O(log p), then PPH(k) can be reduced to the MRS problem.

There is a trivial O(
√
n)-approximation algorithm for the MRS problem. Select

one edge of each color and add its end points to the solution set. And this is the best
known upper bound for this problem. The upper bound on the approximation ratio can
be improved for bounded degree graphs. Camcho et al. [5] gave a 5

6�-approximation
algorithm on graphs with maximum degree �, which was later improved by Katrenič
et al. [19] to

( 1
2 + ( 1

2 + ε
)
�

)
. Katrenič et al. [19] also present an exact algorithm for

the MRS problem that has a running time of nO(1) · 2p ·�2p. Hüffner et al. [18] study
the parameterized complexity of the MRS problem with different parameters.

Weobserve that the approximation ratio for theMRSproblemachieved by the trivial
algorithm may not be beaten using natural LP and SDP relaxations (in Sect. 2). We
give an�(

√
n) lower bound on the integrality gap for these natural relaxations. As the

first idea towards an algorithm with an improved ratio, we define a new problem: the
densest colored k-subgraph (DCkS) problem. The input to the DCkS problem consists
of an undirected graph with each edge colored with one of p colors and a parameter k.
The goal is to find a subgraph on k vertices which has the maximum number of edges
with distinct colors. We show then that an f -approximation algorithm for the DCkS
problem implies an O( f log n)-approximation algorithm for the MRS problem.

Note that the well studied densest k-subgraph (DkS) problem is a special case of
the DCkS problem, in which every edge is colored with a different color. In addition
to being NP-hard, the DkS problem has been shown not to admit a PTAS under
various complexity theoretic assumptions [12,20]. Assuming the Small Set Expansion
conjecture, Raghavendra et al. [24] rule out constant factor approximation for the DkS

123



Algorithmica (2017) 79:909–924 911

problem. The DkS problem is known to be notoriously hard to approximate. Breaking
the O(

√
n) barrier, Feige et al. [13] gave an O(n1/3−ε)-approximation algorithm, for

some ε > 0. In a remarkable paper, Bhaskara et al. [3] improve this to O(n1/4+ε),
for any ε > 0. There is a large gap between the known upper and lower bounds for
the DkS problem. As evidence for the hardness of approximating the DkS problem
within polynomial factors, a lower bound of �(n1/4/ log3 n) on the integrality gap
for �(log n/ log log n) rounds of the Sherali-Adams relaxation for the DkS problem
is shown in [4].

The introduction of colors (in the DCkS problem) intuitively seems to increase
the difficulty. One difficulty, for instance is that exactly one edge of each color is of
importance. In this paper, we give an O(n1/3)-approximation algorithm for the DCkS
problem. Our algorithm builds on the one for the DkS problem in [13].

The MRS problem falls in a class of problems with the known upper bound on the
approximation ratio |I |c where |I | is the input size and c a constant less than one,
and with the known lower bounds being smaller growing functions. Prior to a break-
through result by Charikar et al. [7], several papers reduced theMin- Rep [21] problem
(defined in Sect. 3.7) to other problems in order to obtain hardness results. It was con-
jectured that the Min- Rep problem has a lower bound �(

√
n) on the approximation

ratio, which was refuted by Charikar et al. [7]. They gave an LP-rounding algorithm
with approximation ratio O(n1/3 log2/3 n). We observe that the Min- Rep problem
is a special case of the MRS problem, and this gives a combinatorial O(n1/3 log n)-
approximation algorithm forMin- Rep. Note that an o(n1/3)-approximation algorithm
for theMRSproblem, implies an improved approximation ratio for theMin- Rep prob-
lem.

On the inapproximability side, a proof in [23] implies that it is quasi-NP-hard to
approximate the MRS problem to within a factor of log n. Kortsarz [21] showed that it
is quasi-NP-hard to approximate theMin- Rep problem to within a factor of 2log

1−ε n ,
for any ε > 0. The same hardness result applies to the MRS problem.

We present a randomized approximation preserving reduction from the DkS prob-
lem to the MRS problem (in Sect. 4.1), and if we prove an O(n1/8−ε)-approximation
algorithm forMRS, then we will have better (than the current best known) approxima-
tion algorithm for the DkS problem. We also observe that there exist approximation
preserving reductions from the MRS problem to three problems, namely, the red blue
set cover (RBSC) problem, the power dominating set (PDS) problem, and the target
set selection (TSS) problem (See Sect. 4 for problem definitions). So, if a polynomial
approximation hardness result is proved for MRS, then a polynomial approximation
hardness result applies to RBSC, PDS, and TSS problems.

We conclude the paper by observing the existence of a PTAS for the MRS problem
on planar graphs, and in general on minor free graphs.

2 Large Integrality Gaps for Natural LPs and SDP

Consider the following Linear Programming relaxation LP1 (used in [23]) for the
MRS problem:
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min
∑

i∈V
vi

s.t.
∑

e:col(e)=c
xe ≥ 1 . . . ∀c ∈ [p]
vi ≥ xe . . . ∀(i, e), (e � i)
xe ≥ 0 . . . ∀e ∈ E

here,vi is a variable representing a choice of a vertex i ∈ V , xe is a variable representing
a choice of an edge e ∈ E , and e � i represents that the edge e is incident on vertex
i . col(e) is a function that returns the color of the edge e. The first constraint says that
every color needs to be covered. The second constraint says if an edge is chosen in the
solution, then the vertices on which it is incident are also chosen. This Linear program
has integrality gap of at least (n − 1). To see this, consider the complete graph Kn

in which all the edges are colored the same. For each edge e, set xe = 2
n(n−1) . And

for each vertex i , set vi = 2
n(n−1) . Hence OPT (LP1) ≤ 2

n−1 . Whereas the integral
optimal has size 2. This yields an integrality gap of at least n − 1.

Consider the following Linear Programming relaxation LP2 (used in [16]) for the
MRS problem. This relaxation is stronger than LP1. The second constraint says that
for every vertex i and color c pair, if there is an edge of color c incident on that vertex
i in the solution, then the vertex i is also included in the solution.

min
∑

i∈V
vi

s.t. ∑

e:col(e)=c
xe ≥ 1 . . . ∀c ∈ [p]
vi ≥ ∑

e:((e�i)∧(col(e)=c))
xe . . . ∀(i, c)

xe ≥ 0 . . . ∀e ∈ E

Consider a complete bipartite graph Kn,n . Color an edge (i, j)with color (i+ j)mod n.
Now, on any vertex, all the edges that are incident will have different colors. And there
will be n edges of each color in the graph. Set xe = 1/n for each edge and vi = 1/n.
Thus, OPT (LP2) ≤ 2. Whereas the minimum rainbow subgraph will have size
at least 2

√
n. This is because, any n edge bipartite graph should have at least 2

√
n

vertices. Thus LP2 has an integrality gap of �(
√
n).

Consider the following SDP for MRS.

min
∑

i∈V
v0·vi+1

2

s.t. ∑

(i, j):col(i, j)=c
v0 · vi + v0 · v j + vi · v j + 1 ≥ 4 . . . ∀c ∈ [p]

|vi | = 1 . . . ∀i ∈ V

here, v0 is the handle vector, and every vertex i for which vi is in the direction of v0
will be in the solution. The first constraint says that every color should be covered.

Again the same example as LP2 has integrality gap of �(
√
n). This can be seen as

follows. Set v0 = ( 1√
n
, . . . , 1√

n
), and vi = ( 1√

n
,− 1√

n
, . . . ,− 1√

n
) for each i . Clearly
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v0·vi+1
2 = 1/n for each i . It can be seen that the above values will satisfy both the

SDP constraints. Thus, OPT (SDP) ≤ 1. And hence, the integrality gap �(
√
n). In

the paper [17], the authors give an O(log n)-approximation algorithm for the Optimal
Haplotype Inference problem, which is basically the MRS problem in disguise, using
the above mentioned SDP relaxation. The integrality gap disproves their result.

3 An O(n1/3)-Approximation Algorithm for DCkS

Our algorithm follows the one in [13] to some extent. Some of the claims one can
make in the uncolored case do not hold here and we need to overcome this. A major
difficulty is that we do not know which colors appear in the optimum and hence are
“important”. The basic idea in [13] is to pick the vertices in two phases. First pick a
subset of vertices with a large number of edges incident on them and then to pick a
subset with large number of edges incident on these and the first set.

Our algorithm A employs four different procedures, A1, A2, A3, and A4, each of
which selects a dense colored subgraph. It returns the densest of the four colored
subgraphs that are found.

3.1 Preliminaries

The color degree of a vertex is defined to be the number of distinct colors represented
among edges incident on the vertex. The average color degree of the subgraph on a
set S ⊆ V is the ratio of total number of distinct colors among the edges induced by
the vertices in S to the size of S. For a set S ⊆ V and a vertex v, the color degree of v

into S is the color degree of v in the graph induced by S ∪ {v}.
Let, for 1 ≤ i ≤ 4, Ai (G, k) denote the average color degree of the subgraph

selected by the algorithm Ai .
One tool that we use repeatedly is the well known approximation algorithm for the

unweighted maximum coverage problem. In this problem we are given a collection of
subsets of a set and a positive integer k. The objective is to find k subsets which cover
the maximum number of elements. This problem is known to be NP-hard. The greedy
algorithm which chooses the subset which covers the most number of uncovered
elements at each stage has an approximation ratio 1 − 1/e, and no algorithm can do
better [11].

For instance if we wish to determine k vertices which have the maximum number
of edges with distinct colors incident on them, we can use the same greedy strategy
and get an approximation ratio of 1−1/e on the maximum number of colors covered.
We make the following Proposition for finding k vertices with maximum number of
edges of distinct colors incident on them.

Proposition 1 The greedy algorithm to find k vertices with the maximum number of
edges of distinct colors incident on them is (1 − 1/e)-approximate.

Let G∗ denote the optimum densest colored subgraph on k vertices. Although,
more than one edge of a color could be present in the induced subgraph on V (G∗), we
assume that only one edge of a color is present in G∗. This helps us with the analysis
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of our algorithm, and even with this assumption G∗ still remains the optimum densest
colored subgraph on k vertices. Let the average color degree of G∗ be d∗(G, k), or
simply d∗ when it is obvious from the context.

3.2 Procedure A1: A Trivial Procedure

Without loss of generality, wemay assume that the graphG contains at least k/2 edges
of distinct colors.

Procedure A1

1: Select k/2 edges of distinct colors from G.
2: Return the set of vertices incident on these edges, adding arbitrary vertices to this set if its size is smaller

than k.

Clearly, A1(G, k) ≥ 1/2.

3.3 Procedure A2: A Greedy Procedure

Our next procedure is a two step procedure. We first, greedily select a subset T of
k/2 vertices to maximize the number of edges with distinct colors having at least one
end-point in T . Later we again greedily pick k/2 vertices T ′ to maximize the number
of edges with distinct colors covered by T ∪ T ′.

Procedure A2

1: Select the vertex of maximum color degree. Add it to T .
2: Remove all edges of all colors incident on this vertex from G.
3: Repeat steps 1 and 2 until |T | = k/2.
4: Consider the original graph G.
5: Select the vertex in G \ T of maximum color degree into T . Add it to T ′.
6: Remove all edges of all colors incident on this vertex from the vertices in G \ T .
7: Repeat steps 5 and 6 until |T ′| = k/2.
8: Return T ∪ T ′.

Let c(T ) denote the number of distinct colors among edges incident on vertices in
T . Let dT = c(T )/(k/2).

Lemma 1 Procedure A2 returns a subgraph satisfying A2(G, k) ≥ c1
kdT
2n , for some

constant c1 > 0.

Proof Let m1 denote the number of distinct colors among edges, both of whose
endpoints lie in T . Then the number of distinct colors with one end point in T is
dT |T | − m1 = dT k/2 − m1 ≥ 0. The greedy strategy together with Proposition 1
ensures that at least

(
1 − 1

e

) |T ′|/|V (G) \ T | >
(
1 − 1

e

) k
2n fraction of these distinct

colored edges are contained in T ∪T ′. Thus the total number of distinct colored edges
in the subgraph induced by T ∪ T ′ is at least
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(
dT k

2
− m1

) ((
1 − 1

e

)
k

2n

)
+ m1 ≥ c1

dT k2

n
.

�
The maximum number of distinct colored edges incident on any k/2 vertices is at
least 1

2 · d∗k/2. So, by Proposition 1, c(T ) ≥ (
1 − 1

e

)
d∗(G, k) · k/4. Hence, dT ≥(

1 − 1
e

)
d∗(G, k)/2. Thus, this greedy procedure approximates d∗(G, k) to within a

ratio of at most O( nk ).

3.4 Procedure A3: Colored Walks of Length 2

Our next procedure works when the color degree of vertices is small. Towards building
intuition, consider G∗, the optimum densest colored k-subgraph in G. Suppose there
exists a vertex v in V (G∗) so that half the vertices in V (G∗) are at distance 2 from v.
The idea is to look “greedily” in such neighborhoods. Suppose we knew this vertex v.
(We try every vertex.) Then we try to find the densest colored k subgraph on vertices
in G at distance at most 2 from v. Details follow.

Procedure A3

1: Construct a candidate graph H(v) for every vertex v in G as follows.
2: Let N (v) denote neighbors of v in G, and N2(v) denote vertices at distance 2 from v in G.
3: Find greedily the k/2 vertices from N2(v) that cover the most number of colors going into N (v) as in

Procedure A2. Call this set P(v).
4: Find greedily the k/2 vertices from N (v) that cover the most number of colors going into P(v) as in

Procedure A2. Call this set Q(v).
5: Let H(v) denote the subgraph induced on P(v)∪ Q(v). (If H(v) still contains less than k vertices, then

it is completed to size k arbitrarily.)
6: Among all vertices v, select the densest colored candidate graph H(v) as the output.

Let cdeg∗(v) denote the color degree of v in G∗.

Lemma 2 Procedure A3 returns a subgraph satisfying

A3(G, k) ≥ c2
(d∗(G, k))2

2max[k, 2�c(G))] ,

for some constant c2 > 0.

Proof We now analyze the approximation ratio of this procedure. Let us first note
that the number of colored length 2 walks within the optimum subgraph G∗ is at least
k(d∗(G, k))2. This is because each v ∈ V (G∗) contributes (cdeg∗(v))2 to this sum,
and

∑
v∈V (G∗)(cdeg

∗(v))2 ≥ k(d∗(G, k))2 by convexity.
It follows that there is a vertex v which is the endpoint of at least (d∗(G, k))2

colored length-2 walks in G∗. This implies that there exists a subgraph on at most k
vertices in the graph induced on N (v) ∪ N2(v), which has at least (d∗(G, k))2 edges
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of distinct colors. In P(v), we add k/2 vertices from N2(v) which have maximum
number of distinct colored edges going into N (v).We use the greedy construction from
Proposition 1 for the same. Therefore there are at least

(
1 − 1

e

)
(d∗(G, k))2/2 edges of

distinct colors incident on vertices of P(v). There are at least (1− 1/e)(d∗(G, k))2/2
distinct colored edges between Q(v) and P(v) if cdeg(v) ≤ k/2, and at least (1 −
1
e )

2(d∗(G, k))2k/4cdeg(v) distinct colored edges between Q(v) and P(v) otherwise
[by greedy construction of Q(v)]. Since we do not require P(v) and Q(v) to be
disjoint, each edge may have been counted twice. Hence, altogether, H(v) contains
at least (1 − 1

e )
2 min[(d∗(G, k))2/4, (d∗(G, k))2k/8�c(G))] edges, where �c(G)

denotes the maximum color degree in the graph.
This guarantees,

A3(G, k) ≥
(
1 − 1

e

)2
(d∗(G, k))2

2max[k, 2�c(G))] .

�

3.5 Procedure A4: Another Greedy Procedure

This procedure is the key to handling colors. This complements Procedure A3. In this
procedure, we will pick a candidate subgraph with the following guarantee. Either the
vertices in this subgraph will have high color degree, or the graph left after removing
this subgraph has only vertices of low color degree.

So this procedure works in conjunction with Procedure A3. In the uncolored case,
a procedure like Procedure A2 is enough to achieve this result. In this case it is tricky,
and we need to get the algorithm just right. Details follow.

Procedure A4

1: Select a vertex u with maximum color degree. Add it to U .
2: a) For the vertex u, arbitrarily keep only one edge of each color incident on it, and remove the rest.

b)For every edge (u, v) colored c, remove every other edge colored c which is incident on v from the
graph, except (u, v).

3: Repeat steps 1 and 2 until |U | = k/2.
4: Consider the original graph (minus the edges removed in the above steps). Find greedily the k/2 vertices

that cover the most number of colors going into U as in Procedure A2. Call this set V .
5: Consider the original graph (with all the edges). Find greedily the k/2 vertices that cover the most

number of colors going into U as in Procedure A2. Call this set V ′.
6: Among the two subgraphs induced by U ∪ V ′ and U ∪ V , return the one which has more number of

edges of distinct colors.

Let dU denote the color degree of last vertex added to U .

Lemma 3 If k2 ≥ 4n, then A4(G, k) ≥ c3
dU
k , for some constant c3 > 0. Else,

A4(G, k) ≥ c4
dU k
n , for some constant c4 > 0. Also, if half the edges in G∗ are

incident on U, then the average color degree of the subgraph induced on U ∪ V ′ is
c5d∗, for some constant c5 > 0.
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Proof The total number of edges incident on the vertices U is at least kdU/2. Let the
total number of colors covered after picking the i th vertex in V be fi . So, the total
number of colors covered, after picking k/2 vertices in V , in the subgraph induced on
U ∪ V is at least fk/2, and the average color degree is at least fk/2/k.

After i vertices have been picked in V , the number of edges incident on vertices
of U which are colored with one of these fi colors is at most k fi/2. This is because
every vertex in U can have one edge of same color incident on it. Hence the total
number of edges incident on vertices in U colored with uncovered colors is at least
kdU/2−k fi/2.Hence, the next vertex added to V will cover at least (kdU/2−k fi/2)/n
colors. Hence, fi+1 ≥ fi + (kdU/2 − k fi/2)/n = (1 − k/2n) fi + kdU/2n. We use
induction to prove that the total number of colors covered in the subgraph induced on

U ∪ V is f k
2

≥ dU

(
1 − (

1 − k
2n

) k
2

)
. Suppose, fi ≥ dU

(
1 − (

1 − k
2n

)i)
, then we

can show that

fi+1 ≥ (1 − k/2n) fi + kdU/2n

≥ (1 − k/2n) · dU
(

1 −
(
1 − k

2n

)i
)

+ kdU/2n

= dU − kdU/2n − dU

(
1 − k

2n

)i+1

+ kdU/2n

= dU

(

1 −
(
1 − k

2n

)i+1
)

.

Now, if k2 ≥ 4n,

f k
2

≥ dU

⎛

⎝1 −
(
1

e

) k2
4n

⎞

⎠ ≥ dU

(
1 − 1

e

)
.

Else,

f k
2

≥ dU

(

1 −
(

1 −
(
k/2

1

)
k

2n
+

(
k/2

2

) (
k

2n

)2
))

≥ dU · k
2

4n
.

If half the edges inG∗ are incident onU , then there exist k/2 vertices fromwhich at
least half of these distinct colored edges go toU . In V ′, we pick k/2 vertices greedily
which have the maximum number of uncovered colored edges going into U . So, by
Proposition 1, the average color degree of the subgraph induced on U ∪ V ′ will be
c5d∗, for some constant c5 > 0. �
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3.6 Algorithm A

Algorithm A applies Procedures A1, A2, and A4, on the graph G, and Procedure A3
on the subgraph induced on Gl = G \ U , where U is the set of k/2 vertices chosen
by Procedure A4, and returns the densest colored subgraph of these.

Let an α fraction of the edges in G∗ be incident on the vertices of U . If α ≥ 1/2,
then A4 returns constant-approximation, and hence we may assume that α < 1/2, and
then clearly Gl has a densest colored k-subgraph with average color degree �(d∗).

The performance guarantee of algorithm A is at least the geometric mean of the
performance guarantee of any three of the Procedures A1, A2, A3, and A4. We look
at three different cases.

1. If k ≥ dU , then �c(Gl) ≤ k
2 + dU ≤ 2k. Thus,

A(G, k) ≥ max [A1(G, k), A2(G, k), A3(Gl , k)]

≥
(
1

2
· c1 kdT

2n
· c2 (d∗(G, k))2

2max[k, 2�c]
)1/3

≥ d∗(G, k)

cn1/3
,

for some c > 0. Here the last inequality follows from the fact that dT ≥ (1 −
1
e )d

∗(G, k)/2.
For the remaining cases, we may assume �c(Gl) ≤ 2dU , because dU > k.

2. If k2 ≥ 4n, then

A(G, k) ≥ max [A2(G, k), A4(G, k), A3(Gl , k)]

≥
(
c1
kdT
2n

· c4 dU
k

· c2 (d∗(G, k))2

8dU

)1/3

≥ d∗(G, k)

cn1/3
,

for some c > 0. Here the last inequality follows from the fact that dT ≥ (1 −
1
e )d

∗(G, k)/2.
3. If k2 < 4n, then

A(G, k) ≥ max [A1(G, k), A4(G, k), A3(Gl , k)]

≥
(
1

2
· c4 dUk

n
· c2 (d∗(G, k))2

8dU

)1/3

≥ d∗(G, k)

cn1/3
,

for some c > 0. Here the last inequality follows from the fact that k ≥ d∗(G, k)
(this is because d∗(G, k) is the average color degree of a subgraph with k vertices).

This completes the proof for an O(n1/3)-approximation algorithm for the DCkS prob-
lem. The following theorem implies an O(n1/3 log n)-approximation algorithm for the
MRS problem.

Theorem 1 If there is an f -approximation algorithm for theDCkS problem then there
is an O( f log n)-approximation algorithm for the MRS problem.
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Proof Suppose the minimum rainbow subgraph has size k. It will contain edges of
all the p colors. If we run the f -approximation algorithm for DCkS on this instance,
then it will return a subgraph on k vertices with edges of at least p/ f colors. Remove
edges of these colors from the input graph and repeat the same procedure till edges of
all the colors are covered. Take a union of all these subgraphs, and output it.

Let Li be the number of uncovered colors after i th iteration. Then, L0 = p, and Li ≤
p

(
1 − 1

f

)i
. Let j be the number of iterations after which the number of uncovered

colors is less than 1. If j = 2 f log n, then clearly L j < 1. Thus total number of
vertices in the output is at most 2k f log n. �

3.7 An Algorithm for MIN-REP

TheMin- Rep problem is a minimization version of the label cover problem [21]. The
input consists of a bipartite graphG = (A, B, E), where |A| = |B| = n, and equitable
partitions of A and B into k sets of same size q = n/k. The bipartite graph and the
partitions of A and B induce a “supergraph” H in the following way—the vertices of
graph H are the equitable partitions of set A and B. Two vertices corresponding to
sets Ai and Bj are adjacent by a “superedge” in H if and only if there exist ai ∈ Ai

and bi ∈ Bi which are adjacent in G. The goal is to choose A′ ⊂ A and B ′ ⊂ B
such that the pairs (a, b) , a ∈ A′ and b ∈ B ′, cover all the superedges of H , while
minimizing |A′| + |B ′|.

Charikar et al. [7] gave an O(n1/3 log2/3 n)-approximation algorithm for theMin-
Rep problem using LP rounding. We observe that the Min- Rep problem is indeed
a special case of the MRS problem. Consider an instance of the Min- Rep problem.
Color all the edges between vertices of Ai and Bj with same color. Use different
color for every pair Ai and Bj . Clearly, an f -approximation algorithm for the MRS
problem implies an f -approximation algorithm for the Min- Rep problem (Note that
the algorithm for Min- Rep [7] uses a Linear Programming relaxation similar to LP2
in Sect. 2. Such a LP based algorithm will not give a better approximation ratio for the
MRS problem. This is evident from the �(

√
n) integrality gap shown in Sect. 2 for

LP2).

4 Related Problems

We present an approximation preserving randomized reduction from the densest
k-subgraph problem to the MRS problem, and also observe the existence of approx-
imation preserving reductions from the MRS problem to three other problems. All
these reductions involve at most a polynomial sized blow-up, and thus the hardness
of approximation ratios are polynomially related.

4.1 Reduction from the Densest k-Subgraph Problem

The densest k-subgraph (DkS) problem is a well studied problem [3,4,13]. Given
a simple undirected graph, the goal is to output a subgraph on k vertices which has
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maximum number of edges. Feige [12] andKhot [20] prove that the DkS problem does
not have a PTAS. Feige proves the result assuming random 3-SAT formulas are hard to
refute and Khot proves it assuming NP does not have randomized algorithms that run
in subexponential time [i.e. that NP � ∩ε>0 BPTIME(2n

ε
)]. Assuming the Small Set

Expansion conjecture, Raghavendra et al. [24] rule out constant factor approximation
algorithm for the DkS problem. It is widely believed that the DkS problem has a lower
bound on approximation ratio within a factor of nc, for some c > 0.

Theorem 2 If there is an f -approximation algorithm for theMRS problem, then there
is a randomized O( f 2 · log n)-approximation algorithm for the DkS problem.

Proof We exhibit a randomized reduction from the DkS problem to theMRS problem.
Consider an instance of the DkS problem. Assume that this graph G has a subgraph
on k vertices with t edges such that t is maximum. Assume that t is known. This is
a kosher assumption, since one can run the algorithm for each possible value of t .
Pick an edge, which has not yet been colored, arbitrarily, and color it with one chosen
uniformly at random from t/(c log t) colors, for some constant c > 0. Repeat the same
until all edges have been colored. Let X be a random variable that denotes the number
of edges needed to cover all the colors.

We use the Coupon Collector argument to calculate the expected number of edges
needed to cover all the color, which says – Given n coupons, the expected number of
coupons you need to draw with replacement before having drawn each coupon at least
once grows as �(n log n). Similarly, the expected number of edges needed to cover
all the colors is

c′ ·
(

t

c log t

)
· log

(
t

c log t

)
≤ t

c′′

Then by Markov’s inequality,

Pr(X > t) ≤ E[X ]
t

≤ 1

c′′

If c is chosen appropriately, then this probability will be small. The probability that
the first t edges picked will cover all the colors is the same as the probability that the t
edges in the k vertex subgraph will have an edge of each of t/(c log t) colors. Suppose
there exists an f -approximation algorithm for the MRS problem. This algorithm will
give a subgraph on at most f · k vertices and at least t/(c log t) edges. The density

of this subgraph is at least
(

t
c log t · 1

f k

)
. Select k/2 vertices of highest degree from

this subgraph. Call this set U . So, total number of edges incident on vertices of U

will be at least k
2 ·

(
t

c log t · 1
f k

)
. Find k/2 vertices of highest degree into U from

this subgraph. Call this set V . The subgraph induced on U ∪ V will have at least
k/2
f k · k

2 ·
(

t
c log t · 1

f k

)
= tk

c1 f 2 log t
edges, for some constant c1 > 0. The subgraph

induced on U ∪ V will have density at least t
c1 f 2 log t

. Thus, an f -approximation

algorithm for the MRS problem implies a randomized O( f 2 · log n)-approximation
algorithm for the DkS problem. �
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4.2 Red Blue Set Cover

The red blue set cover (RBSC) problemwas introduced by Carr et al. [6]. Given a finite
set of “red” elements R, a finite set of “blue” elements B and a family S ⊆ 2R�B , the
red blue set cover problem is to find a subfamilyC ⊆ S which covers all blue elements,
but which covers the minimum possible number of red elements. Carr et al. [6] gave
a 2

√
n-approximation algorithm for the restricted case in which every set contains

only one blue element, and an O((kn)1− 1
k log n)-approximation algorithm when each

set has a maximum of k red elements. Peleg [22] gave a 2
√
n logβ-approximation

algorithm, where n is the number of sets and β is the number of blue elements. Even
the restriction when every set contains one blue element and two red elements has a

lower bound �(2log
1−1/ log logc n n) on the approximation ratio assuming P �= NP, where

c < 1
2 [6].

The MRS problem is easily seen to be a special case of RBSC – let each edge
represent a set, its color represent a blue element in the set, and its each end point
represent a red element in the set. Now, this instance is a special case of RBSC in
which each set contains two red elements and one blue element. Finding the minimum
rainbow subgraph is equivalent to finding the set cover which covers all blue elements
and minimum number of red elements.

4.3 Power Dominating Set

The power dominating set (PDS) problem may be considered as an extension of the
well-known Dominating Set problem. Power domination [1] is defined by two rules;
the first rule is the same as the rule for the Dominating Set problem, but the second
rule allows a type of indirect propagation. More precisely, given a set of vertices S,
the set of vertices that are power dominated by S, denoted PS , is obtained as follows.

• Rule 1 if vertex v is in S, then v and all of its neighbors are in PS ;
• Rule 2 (propagation) if vertex v is in PS , one of its neighbors w is not in PS , and
all other neighbors of v are in PS , then w is inserted into PS .

The set PS is independent of the sequence in which vertices are inserted by Rule
2. Otherwise, there is a minimal counter example with two maximal sequences of
insertions and an “earliest” vertex that occurs in one sequence but not the other; this
is not possible. The PDS problem is to find a vertex set S of minimum size that power
dominates all vertices (i.e., find S ⊆ V with |S| minimum such that PS = V ). Note,
n = |V |. Aazami and Stilp [1] give an O(

√
n)-approximation algorithm for planar

graphs and prove that it is quasi-NP-hard to approximate PDS to within a factor of
2log

1−ε n , for any ε > 0. They prove the lower bound by reduction from the Min- Rep
problem. We observe that essentially the same reduction works for the MRS problem,
and make the following proposition.

Proposition 2 If there is an f (n)-approximation algorithm for the PDS problem, then
there is an f (N )-approximation algorithm for the MRS problem, where n = O(N 2).

Thus, if polynomial approximation hardness result is proved for the MRS problem,
then it would imply a polynomial approximation hardness result for the PDS problem.
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Note that although the reduction is same as the one from Min- Rep, MRS could
possibly have a better approximation hardness result thanMin- Rep (which is a special
case of MRS), and hence could improve the approximation hardness result for PDS.

4.4 Target Set Selection

The target set selection (TSS) problem is defined in [8]. Given a connected undirected
graph G = (V, E), let d(v) be the degree of v ∈ V . For each v ∈ V , there is a
threshold value t (v) ∈ N, where 1 ≤ t (v) ≤ d(v). Initially, the states of all vertices
are inactive. We pick a subset of vertices, the target set, and set their state to be active.
After that, in each discrete time step, the states of vertices are updated according to
following rule: an inactive vertex v becomes active if at least t (v) of its neighbors are
active. The process runs until either all vertices are active or no additional vertices
can update states from inactive to active (it is easy to verify the process runs at most
n − 1 rounds, where n = |V | is the number of vertices in the graph). The process we
consider is progressive, i.e. a vertex can only become active from inactive but not vice
versa.

The following optimization problem is of interest, which is called target set selec-
tion: which subset of vertices should be targeted at the beginning such that all (or a
fixed fraction of) vertices in the graph are active at the end? Observe that a trivial
solution is to target all vertices in the graph. The goal is to minimize the size of the
target set. Chen [8] proves that it is quasi-NP-hard to approximate the TSS problem to
within a factor of 2log

1−ε n , for any ε > 0. They do this by reduction from theMin- Rep
problem. We observe that essentially the same reduction works for the MRS problem,
and make the following proposition.

Theorem 3 If there is an f (n)-approximation algorithm for the TSS problem, then
there is an f (N )-approximation algorithm for the MRS problem, where n = O(N 6).

Thus, if polynomial approximation hardness result is proved for the MRS problem,
then it would imply a polynomial approximation hardness result for the TSS problem.
Note that although the reduction is same as the one from Min- Rep, MRS could
possibly have a better approximation hardness result thanMin- Rep (which is a special
case of MRS), and hence could improve the approximation hardness result for PDS.

5 PTAS for Minor Free Graphs

Dawar et al. [9] prove the following theorem on planar graphs, and in general, on
minor free families of graphs.

Theorem 4 Letϕ(X) be a first-order formula in the language of graphs that is positive
in a set variable X, and let C be a class of graphs with an excluded minor. Then
MINϕ(X)(C) has a PTAS.

The minimum rainbow subgraph problem can be described as MINϕ(X)(C) for the
formula ϕ(X) = ∀c∃x∃y(Xx ∧ Xy ∧Cxyc). Here, X is a set variable that represents
a set of vertices X ′, and Xx is true if the vertex x ∈ X ′. The function C checks if the
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edge between vertices x and y, has color c. The formula ϕ(X) checks if the induced
subgraph on X ′ is a rainbow subgraph, i.e. if there is an edge of every color induced
on the vertices of X ′. MINϕ(X) represents the minimum rainbow subgraph. From the
above mentioned theorem, the minimum rainbow subgraph problem has a PTAS for
minor free graphs.
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