
Algorithmica (2017) 79:941–959
DOI 10.1007/s00453-016-0267-z

Quantum Algorithm for Triangle Finding in Sparse
Graphs

François Le Gall1 · Shogo Nakajima1

Received: 14 February 2016 / Accepted: 18 December 2016 / Published online: 5 January 2017
© Springer Science+Business Media New York 2017

Abstract This paper presents a quantum algorithm for triangle finding over sparse
graphs that improves over the previous best quantum algorithm for this task by
Buhrman et al. (SIAM J Comput 34(6):1324–1330, 2005). Our algorithm is based
on the recent Õ(n5/4)-query algorithm given by Le Gall (Proceedings of the 55th
IEEE annual symposium on foundations of computer science, pp 216–225, 2014) for
triangle finding over dense graphs (here n denotes the number of vertices in the graph).
We show in particular that triangle finding can be solved with O(n5/4−ε) queries for
some constant ε > 0 whenever the graph has at most O(n2−c) edges for some constant
c > 0.

Keywords Quantum algorithm · Quantum walk · Triangle finding

1 Introduction

Background. Triangle finding asks to decide if a given undirected graph G = (V, E)

contains a cycle of length three, i.e., whether there exist three vertices u1, u2, u3 ∈ V
such that {u1, u2} ∈ E , {u1, u3} ∈ E and {u2, u3} ∈ E . This problem has received
recently a lot of attention, for the following reasons.

First, several new applications of triangle finding have been discovered recently. In
particular, Vassilevska Williams and Williams [17] have shown a surprising reduc-
tion from Boolean matrix multiplication to triangle finding, which indicates that
efficient algorithms for triangle finding may be used to design efficient algorithms

B Shogo Nakajima
nakajimashogo@is.s.u-tokyo.ac.jp

1 Department of Computer Science, Graduate School of Information Science and Technology,
The University of Tokyo, Tokyo, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-016-0267-z&domain=pdf
http://orcid.org/0000-0001-9348-278X

942 Algorithmica (2017) 79:941–959

for matrix multiplication, and thus also for a vast class of problems related to matrix
multiplication. Relations between variants of the standard triangle finding problem
(such as triangle finding over weighted graphs) and well-studied algorithmic prob-
lems (such as 3SUM) have also been shown in the past few years (see for instance
[16,18]).

Second, triangle finding is one of the most elementary graph theoretical problems
whose complexity is unsettled. In the time complexity setting, the best classical algo-
rithm uses a reduction to matrix multiplication [9] and solves triangle finding in time
O(n2.38), where n denotes the number of vertices in G. In the time complexity set-
ting again, Grover [8] search immediately gives, when applied to triangle finding as a
search over the set of triples of vertices of the graph, a quantum algorithm with time
complexity Õ(n3/2), which is still the best known upper bound for the quantum time
complexity of this problem.1 In the query complexity setting, where an oracle to the
adjacency matrix of the graph is given and only the number of calls to this oracle is
counted, a surge of activity has lead to quantum algorithms with better complexity.
Magniez et al. [14] first presented a quantum algorithm that solves triangle finding
with Õ(n1.3) queries. This complexity was later improved to O(n1.296...) by Belovs
[4], then to O(n1.285...) by Lee et al. [13] and Jeffery et al. [11], and further improved
recently to Õ(n5/4) by Le Gall [12]. The main open problem now is to understand
whether this Õ(n5/4)-query upper bound is tight or not. The best known lower bound
on the quantum query complexity of triangle finding is the straightforward�(n) lower
bound.

Another reason why triangle finding has received much attention from the quantum
computing community is that work on the quantum complexity of triangle finding has
been central to the development of algorithmic techniques. Indeed, all the improve-
ment mentioned in the previous paragraph have been obtained by introducing either
new quantum techniques or new paradigms for the design of quantum algorithms:
applications of quantum walks to graph-theoretic problems [14], introduction of the
concept of learning graphs [4] and improvements to this technique [13], introduction
of quantum walks with quantum data structures [11], association of combinatorial
arguments with quantum walks [12].

Triangle Finding in Sparse Graphs. The problem we will consider in this paper is
triangle finding over sparse graphs (the graphs considered are, as usual, undirected and
unweighted). If we denotem the number of edge of the graph (i.e.,m = |E |), the goal
is to design algorithms with complexity expressed as a function of m and n. Ideally,
we would like to show that if m = n2−c for any constant c > 0 then triangle finding
can be solved significantly faster than in the dense case (i.e., m ≈ n2). Besides its
theoretical interest, this problem is of practical importance since in many applications
the graphs considered are sparse.

Classically, Alon et al. [1] constructed an algorithm exploiting the sparsity of
the graph and working in time O(m1.41), which gives better complexity than the
O(n2.38)-time complexity mentioned above when m ≤ n1.68. Understanding whether
an improvement over the dense case is also possible for larger valuesm is a longstand-

1 In this paper the notation Õ(·) removes polylogn factors.

123

Algorithmica (2017) 79:941–959 943

ing open problem. Note that in the classical setting, the query complexity of triangle
finding is �(n2), independently of the value of m (indeed, if the graph contains only
one triangle, any randomized algorithm would need to hit the edges of this triangle,
which requires �(n2) queries).

In the quantum setting, using amplitude amplification, Buhrman et al. [6] showed
how to construct a quantum algorithm for triangle finding with time and query com-
plexity O(n + √

nm). This upper bound is tight when m ≤ n since the �(n)-query
lower bound for the quantum query complexity of triangle finding already mentioned
also holds when m is a constant. Childs and Kothari [7] more recently developed
an algorithm, based on quantum walks, that detects the existence of subgraphs in a
given graph. Their algorithm works for any constant-size subgraph. For detecting the
existence of a triangle, however, the upper bound they obtain is Õ(n2/3

√
m) queries

for m ≥ n, which is worse that the bound obtained in [6]. Buhrman et al.’s result
in particular gives an improvement over the Õ(n5/4)-query quantum algorithm algo-
rithm whenever m ≤ n3/2. A natural question is whether a similar improvement can
be obtained for larger values of m. For instance, can we obtain query complexity
Õ(n5/4−ε) for some constant ε > 0 when m ≈ n1.99? A positive answer would show
that even a little amount of sparsity can be exploited in the quantum query setting,
which is not known to be true in the classical setting as mentioned in the previous
paragraph.

Our Results. In this paper we answer positively to the above question. Our main result
is as follows.

Theorem 1 There exists a quantum algorithm that solves, with high probability, the
triangle finding problem over graphs of n vertices and m edges with query complexity

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

O(n + √
nm) if 0 ≤ m ≤ n7/6,

Õ(nm1/14) if n7/6 ≤ m ≤ n7/5,

Õ(n1/6m2/3) if n7/5 ≤ m ≤ n3/2,

Õ(n23/30m4/15) if n3/2 ≤ m ≤ n13/8,

Õ(n59/60m2/15) if n13/8 ≤ m ≤ n2.

The complexity bounds of Theorem 1 are depicted in Fig. 1. For the dense case (i.e.,
m ≈ n2) we recover the same complexity Õ(n5/4) as in [12]—in this case it turns
out that our procedure directly applies the algorithm from [12]. Whenever m = n2−c

for some constant c > 0 (in particular, for m ≈ n1.99), we indeed obtain query
complexity Õ(n5/4−ε) for some constant ε > 0 depending on c. The query complexity
of our algorithm is better than the query complexity of Buhrman et al.’s algorithm [6]
wheneverm � n7/6. Whenm � n7/6 we obtain the same complexity O(n+√

nm) as
in [6]—in this case it turns out that our procedure directly applies the algorithm from
[6].

Overview of Our Techniques.
The main idea is to adapt the Õ(n5/4)-query quantum algorithm for triangle finding
[12] to handle sparse graphs. This algorithm works in two steps: a first step based on

123

944 Algorithmica (2017) 79:941–959

Fig. 1 Quantum query complexity of triangle finding on a graph with n vertices and m edges

Grover search that detects the existence of a triangle in a well-chosen small part of the
graphG, and a second step based on recursive quantumwalks that detects the existence
of a triangle in the remaining (large) part of the graph. A first simple observation is
that the first step can be implemented faster in the case of sparse graphs by applying
the quantum algorithm by Buhrman et al. [6] on the small part of G instead of using
Grover search. This observation alone however does not give any interesting speed-
up unless sparsity is exploited in the second step as well. The hard part is actually
to adapt the recursive quantum walk approach to the case of sparse graphs, and we
outline below our main ideas to achieve this goal.

Themain issue is that the implementation of the recursive quantumwalks described
in [12] is really tailored for their application on dense graphs; when trying to use
the same implementation for sparse graphs prohibitive intermediate costs (of order
Õ(n5/4), which is fine for the dense case, but not for the sparse case) appear. To
overcome this difficulty, we need to modify partially the original approach in several
ways, such as modifying how the inner quantum walk checks if it has found a solution
and adjusting how the sets of marked states of the walk are defined, to fully exploit
the sparsity of the graph.

Several more technical issues have also to be dealt with. The complexity of a
quantum walk basically depends on the complexity of three operations performed by
the walk: the set up cost (creating the data structure corresponding to the initial state of
the walk), the update cost (updating the database after updating the current state of the
walk) and the checking cost (checking if the current state of the walk is marked or not).
The sparsity of the graph G can be immediately exploited to reduce the cost of these
three operations if the graph is “perfectly balanced”, i.e., if each vertex of the graph has

123

Algorithmica (2017) 79:941–959 945

degree�(m/n). However, while the average degreewill indeed be�(m/n), in general
the graph can have many vertices with degree exceeding this estimate (in particular
this can happen for vertices of the triangle we are looking for). This is a significant
complication since to analyze a quantum walk one need an upper bound on the worst
case (i.e., for the worse state of the walk) complexity of the three operations. Indeed,
there is no general technique to analyze quantum walks when only an upper bound on
the average update cost or checking cost is available. To overcome this difficulty, our
approach is to partition the vertices of V into two sets: the set of vertices with degree
larger than nd (which we call below high-degree vertices) and the set of vertices with
degree smaller than nd (low-degree vertices), where d is a parameter. Obtaining the
classification can be done by combining quantum search and quantum counting, but
is costly when d is small, which means that we need to be careful when choosing
d. Once this classification has been obtained, we only need to search separately for
four types of triangles: triangles with three low-degree vertices, triangles with two
low-degree vertices and one high-degree vertex, triangles with one low-degree vertex
and two high-degree vertices, and triangles with three high-degree vertices. Since we
know that each low-degree vertex has degree at most nd , we can derive a worst-case
upper bound for the corresponding update costs and checking costs. For high-degree
vertices we do not have any upper bound on their degree, but we know that the number
of high-degree vertices is at most m/nd , which will be significantly smaller than n if
d is well chosen and lead to some improvement for the corresponding complexity of
the walks, since the graph has at most m edges. Combined with the ideas described
in the previous paragraph, this strategy enables us to obtain the upper bounds given in
Theorem 1.

2 Preliminaries

2.1 Query Complexity for Graph-Theoretic Problems

In this paper we adopt the standard model of quantum query complexity for graph-
theoretic problems. The presentation given below will follow the description of this
notions given in [12].

For any finite set T and any r ∈ {1, . . . , |T |} we denote S(T, r) the set of all
subsets of r elements of T . We use the notation E(T) to represent S(T, 2), i.e., the set
of unordered pairs of elements in T .

LetG = (V, E) be an undirected and unweighted graph, where V represents the set
of vertices and E ⊆ E(V) represents the set of edges. We write n = |V |. In the query
complexity setting, we assume that V is known, and that E can be accessed through a
quantum unitary operationOG defined as follows. For any pair {u, v} ∈ E(V), any bit
b ∈ {0, 1}, and any binary string z ∈ {0, 1}∗, the operation OG maps the basis state
|{u, v}〉|b〉|z〉 to the state

OG |{u, v}〉|b〉|z〉 =
{ |{u, v}〉|b ⊕ 1〉|z〉 if {u, v} ∈ E,

|{u, v}〉|b〉|z〉 if {u, v} /∈ E,

123

946 Algorithmica (2017) 79:941–959

where⊕ denotes the bit parity (i.e., the logical XOR).We say that a quantum algorithm
computing some property of G uses k queries if the operationOG , given as an oracle,
is called k times by the algorithm. We also assume that we know the number of edges
of the input graph (i.e., we know m = |E |). All the results in this paper can actually
be generalized to the case where m is unknown, in the following sense. When m is
unknown we can use quantum counting [5] to estimate at negligible cost, and with
very high probability, the value m within a constant multiplicative factor (such an
estimation is enough for us). This gives an algorithm with expected query complexity
similar to the bounds given in Theorem 1. Note that it is unclear how to obtain a similar
result for the worst case query complexity whenm is unknown, since in the worst case
the value output by the quantum counting procedure may be wrong.

Quantum Enumeration. Let fG : {1, . . . , N } → {0, 1} be a Boolean function
depending on the input graph G, and let us write M = f −1(1). Assume that for
any x ∈ {1, . . . , N } the value fG(x) can be computed using at most t queries to OG .
Grover search enables us to find an element x such that fG(x) = 1, if such an element
exists, using Õ(

√
N/M × t) queries toOG . A folklore observation is that we can then

repeat this procedure to find all the elements x ∈ {1, . . . , N } such that fG(x) = 1

with Õ

((√
N
M +

√
N

M−1 + · · · +
√

N
1

)

× t

)

= Õ
(√

N × M × t
)
queries. We call

this procedure quantum enumeration.

Quantum Walk Over Johnson Graphs. Let T be a finite set and r be a positive
integer such that r ≤ |T |. Let fG : S(T, r) → {0, 1} be a Boolean function depending
on the input graph G. We say that a set A ∈ S(T, r) is marked if fG(A) = 1. Let us
consider the following problem. The goal is to find a marked set, if such a set exists,
or otherwise report that there is no marked set. We are interested in the number of
calls to OG to solve this problem. The quantum walk search approach developed by
Ambainis [2] solves this problem using a quantum walk over a Johnson graph.

The Johnson graph J (T, r) is the undirected graph with vertex set S(T, r) where
two vertices R1, R2 ∈ S(T, r) are connected if and only if |R1 ∩ R2| = r − 1. In a
quantumwalk over a Johnson graph J (T, r), the state of thewalk corresponds to a node
of the Johnson graph (i.e., to an element A ∈ S(T, r)). A data structure D(A), which in
general depends on G, is associated to each state A. There are three costs to consider:
the set up cost S representing the number of queries to OG needed to construct the
data structure of the initial state of the walk, the update costU representing the number
of queries to OG needed to update the data structure when one step of the quantum
walk is performed (i.e., updating D(A) to D(A′) for some A′ ∈ S(T, r) such that
|A∩ A′| = r − 1), and the checking cost C representing the number of queries toOG

needed to check if the current state A is marked (i.e., checking whether fG(A) = 1).
Let ε > 0 be such that, for all input graphs G for which at least one marked set exists,
the fraction of marked states is at least ε. Ambainis [2] (see also [15]) has shown
that the quantum walk search approach outlined above finds with high probability a
marked set if such set exists (or otherwise report that there is no marked set) and has

query complexity Õ
(
S + 1√

ε

(√
r × U + C

))
.

123

Algorithmica (2017) 79:941–959 947

2.2 Quantum Algorithm for Dense Triangle Finding

In this subsectionwe outline the Õ(n5/4)-query quantum algorithm for triangle finding
over a dense graph by Le Gall [12].We actually present a version of this algorithm that
solves the following slightly more general version of triangle finding, since this will be
more convenient when describing our algorithms for sparse graphs in the next section:
given two (non necessarily disjoint) sets V1, V2 ⊆ V , find a triangle {v1, v2, v3} of
G such that v1 ∈ V1 and v2, v3 ∈ V2, if such a triangle exists. Note that the original
triangle finding problem is the special case V1 = V2 = V .

Definitions and Lemmas.Let V1 be any subset of V . For any sets X ⊆ V1 and Y ⊆ V ,
we define the set �G(X,Y) ⊆ E(Y) as follows:

�G(X,Y) = E(Y) \
⋃

u∈X
E(NG(u)),

where NG(u) denotes the set of neighbors of u. This set �G(X,Y) is the set of all
pairs of vertices in Y that are not in the neighborhood of a same vertex from X . For
any vertex w ∈ V , we define the set �G(X,Y, w) ⊆ �G(X,Y) as follows:

�G(X,Y, w) =
{
{u, v} ∈ �G(X,Y) | {u, w} ∈ E and {v,w} ∈ E

}
.

An important concept used in [12] is the notion of k-good sets.

Definition 2.1 Let k be any constant such that 0 ≤ k ≤ 1, and V1 be any subset of
V . A set X ⊆ V1 is k-good for (G, V1) if the inequality

∑
w∈V1 |�G(X,Y, w)| ≤

|Y |2|V1|1−k holds for all Y ⊆ V .

Note that [12] considered only Definition 2.1 for the case V1 = V . In our paper
we will need the slightly generalized version described here. The point is that k-good
sets can be constructed very easily.

Lemma 2.1 ([12]) Let k be any constant such that 0 ≤ k ≤ 1. Suppose that X is a set
obtained by taking uniformly at random, with replacement,

⌈
3|V1|k log n

⌉
elements

from V1. Then X is k-good for (G, V1) with probability at least 1 − 1/n.

Lemma 2.1 was proved in [12] only for the case V1 = V , but the generalization is
straightforward.

Quantum Algorithm for Dense Triangle Finding. Let a, b and k be three constants
such that 0 < b < a < 1 and 0 < k < 1. The values of these constants will be set
later. The quantum algorithm in [12] works as follows.

The algorithm first takes a set X ⊆ V1 obtained by choosing uniformly at random⌈
3|V1|k log n

⌉
elements from V1, and checks if there exists a triangle of G with a

vertex in X and two vertices in V2. This can be done using Grover search with

O
(√|X | × |E(V2)|

)
= Õ

(
|V1|k/2|V2|

)
(1)

123

948 Algorithmica (2017) 79:941–959

queries. If no triangle has been reported, we know that any triangle of G with one
vertex in V1 and two vertices in V2 must have an edge in �G(X, V2).

Now, in order to find a triangle with an edge in�G(X, V2), if such a triangle exists,
the idea is to search for a set A ∈ S(V2, �|V2|a�) such that �G(X, A) contains an
edge of a triangle. To find such a set A, the algorithm performs a quantum walk over
the Johnson graph J (V2, �|V2|a�). The states of this walk correspond to the elements
in S(V2, �|V2|a�). The state corresponding to a set A ∈ S(V2, �|V2|a�) is marked if
�G(X, A) contains an edge of a triangle of G. In case the set of marked states is not
empty, the fraction of marked states is

ε = �
(
|V2|2(a−1)

)
.

The data structure of the walk stores the set �G(X, A). Concretely, this is done by
storing the couple (v, NG(v) ∩ X) for each v ∈ A, since this information is enough
to construct �G(X, A) without using any additional query. The setup cost is S =
|A|×|X | = Õ(|V2|a |V1|k) queries. The update cost isU = 2|X | = Õ(|V1|k) queries.
The query complexity of the quantum walk is

Õ
(
S +√1/ε

(
|V2|a/2 × U + C

))
, (2)

where C is the cost of checking if a state is marked.
The checking procedure is done as follows: check if there exists a vertex w ∈ V1

such that �G(X, A) contains a pair {v1, v2} for which {v1, v2, w} is a triangle of G.
For any w ∈ V1, let Q(w) denote the query complexity of checking if there exists a
pair {v1, v2} ∈ �G(X, A) such that {v1, v2, w} is a triangle of G. Using Ambainis’
variable cost search [3] this checking procedure can be implemented using

C =
√∑

w∈V1
Q(w)2

queries. It thus remains to give an upper bound on Q(w). Let us fix w ∈ V1. First, a
tight estimator of the size of �G(X, A, w) is computed: the algorithm computes an
integer δ(X, A, w) such that |δ(X, A, w) − |�G(X, A, w)|| ≤ 1

10 × |�G(X, A, w)|,
which can be done in Õ(|V1|k) queries using (classical) sampling. The algorithm then
performs a quantum walk over the Johnson graph J (A,

⌈|V2|b
⌉
). The states of this

walk correspond to the elements in S(A,
⌈|V2|b

⌉
). We now define the set of marked

states of the walk. The state corresponding to a set B ∈ S(A,
⌈|V2|b

⌉
) is marked if B

satisfies the following two conditions:

(i) there exists a pair {v1, v2} ∈ �G(X, B, w) such that {v1, v2} ∈ E (i.e., such that
{v1, v2, w} is a triangle of G);

(ii) |�G(X, B, w)| ≤ 10 × |V2|2(b−a) × δ(X, A, w).

The fraction of marked states is

ε′ = �
(
|V2|2(b−a)

)
,

123

Algorithmica (2017) 79:941–959 949

as shown in Lemma 4.3 of [12]. The data structure of the walk will store�G(X, B, w).
Concretely, this is done by storing the couple (v, ev) for each v ∈ B, where ev = 1 if
{v,w} ∈ E and ev = 0 if {v,w} /∈ E . The setup cost is S′ = ⌈|V2|b

⌉
queries since

it is sufficient to check if {v,w} is an edge for all v ∈ B. The update cost is U′ = 2
queries. The checking cost is

C′
w = O

(√|�G(X, B, w)|
)

= O

(|V2|b
|V2|a

√
δ(X, A, w)

)

= O

(|V2|b
|V2|a

√|�(X, A, w)|
)

.

We thus obtain the bound

Q(w) = Õ
(
|V1|k + S′ +√1/ε′

(
|V2|b/2 × U′ + C′

w

))
,

and conclude that

C = Õ

⎛

⎝
√|V1|

(

|V1|k + S′ + |V2|b/2 × U′
√

ε′

)

+ |V2|b−a

√
ε′ ×

√∑

w∈V1
|�(X, A, w)|

⎞

⎠ .

The final key observation is that, since the set X is k-good for (G, V1) with high
probability, as guaranteed by Lemma 2.1, the term

∑
w∈V |�(X, A, w)| in the above

expression can be replaced by O(|V2|2a |V1|1−k), which enables us to express C as a
function of a, b and k, and then the complexity of the second part of the algorithm
(Expression (2)) as a function of a, b and k. The complexity of the whole algorithm
(the maximum of Expressions (1) and (2)) can thus be written as a function of a, b
and k as well.

For the original triangle finding problem (i.e., for the case V1 = V2 = V), taking
a = 3

4 and b = k = 1
2 gives query complexity Õ(n5/4).

3 Quantum Algorithm for Sparse Triangle Finding

In this section we describe our quantum algorithm for triangle finding in sparse graphs
and prove Theorem 1.

Let d be a real number such that 0 ≤ d ≤ 1. The value of this parameter will be
set later. Define the following two subsets of V :

Vd
h = {v ∈ V | deg(v) ≥ 9

10
× nd},

Vd
l = {v ∈ V | deg(v) ≤ 11

10
× nd}.

A crucial observation is that |Vd
h | = O(m/nd), since the graph G has m edges. More

precisely, we have |Vd
h | ≤ 20

9 × m
nd
.

123

950 Algorithmica (2017) 79:941–959

The following proposition shows how to efficiently obtain all the vertices in Vd
h .

Proposition 3.1 Let d ∈ [0, 1] be any real number such that 1 ≤ m/nd ≤ n. There
exists a quantum algorithm using Q1 = Õ(n1−d√m) queries that partitions the set V
into two sets V d

h and V d
l such that with high probability the following two conditions

hold:

(i) V d
l ⊆ Vd

l , and
(ii) m

nd
≤ |V d

h | ≤ 20
9 × m

nd
.

We will see in the proof that the quantum algorithm of Proposition 3.1 actually
identifies (with high probability) all the vertices in Vd

h . We nevertheless only require
that it outputs (with high probability) a superset of Vd

h since it enables us to impose the
lower bound |V d

h | = �(m
nd

) on the size of V d
h , which will be much more convenient

in our analysis.

Proof of Proposition 3.1 Let v be any vertex in V . Using quantum counting [5] we can

compute, using Õ
(√

n
nd

)
queries, a value a(v) such that |a(v) − deg(v)| ≤ nd/100

with probability at least 1−1/poly(n). We use a(v) to classify v as follows: we decide
“ v is in Vd

h ” if a(v) ≥ nd , and decide “ v is in Vd
l ” if a(v) < nd . This decision is

correct with probability at least 1 − 1/poly(n).
We can thus apply quantum enumeration as described in Sect. 2.1 to obtain a set

V
′ ⊆ V of vertices such that, with high probability, all the vertices in V

′
are in Vd

h

and all the vertices in V \ V
′
are in Vd

l . We then put all the vertices from V ′ in V d
h . If

|V ′ | < m
nd
, we add arbitrary vertices from V \V ′

to V d
h so that |V d

h | satisfies Condition
(ii). We then set V d

l = V \ V d
h .

The overall complexity of this algorithm is

Õ

(√

n × m

nd
×
√

n

nd

)

= Õ(n1−d√m)

queries. ��
In the remaining of the section we assume that the algorithm of Proposition 3.1

outputs a correct classification (i.e., V d
h and V d

l satisfy Conditions (i) and (ii)), which
happens with high probability. We will choose d carefully such that m/nd = o(n),
which implies |V d

l | = �(n) since V d
h and V d

l are a partition of V . We will say that a
vertex v ∈ V is d-high if v ∈ V d

h , and say it is d-low if v ∈ V d
l . Once the vertices have

been classified, checking if G has a triangle can be divided into four subproblems:
checking if G has a triangle with three d-low vertices, checking if G has a triangle
with two d-low vertices and one d-high vertex, checking if G has a triangle with one
d-low-degree vertex and two d-high vertices, and checking if G has a triangle with
three high-degree vertices. We now present six procedures (summarized in Table1) to
handle these cases (for some cases we present more than one procedure to allow us to
choose which procedure to use according to the value of m).

123

Algorithmica (2017) 79:941–959 951

Table 1 Subproblems solved in Proposition 3.2–3.7

Proposition 3.2 Cost Q2 Triangles with three d-low vertices

Proposition 3.3 Cost Q3 Triangles with two d-low vertices and one d-high vertex

Proposition 3.4 Cost Q4 Triangles with two d-high vertices and one d-low vertex

Proposition 3.5 Cost Q5 Triangles with three d-high vertices

Proposition 3.6 Cost Q6 Triangles with three d-low vertices

Proposition 3.7 Cost Q7 Triangles with at least one d-high vertex

Proposition 3.2 Let a1, k1 and b1 be any constants such that 0 < a1, k1 < 1 and
0 < b1 < a1. There exists a quantum algorithm that finds a triangle of G consisting of
three d-low vertices, if such a triangle exists, with high probability using Q2 = Õ(n+
nk1/2m1/2 + na1+d/2+k1−1/2 + n1/2+d/2+k1−a1/2 + n3/2+k1/2−a1 + n1+b1+d/2−a1 +
n3/2−b1/2 + n3/2−k1/2) queries.

The proof of Proposition 3.2 will use the following key lemma.

Lemma 3.1 Let k be any constant such that 0 < k < 1. Suppose that X is a set of
size |X | = ⌈3nk log n⌉ obtained by taking uniformly at random vertices from V ′ ⊆ V .
Then, with probability at least

1 − |V d
l |

n2 exp(231|V ′|nd+k log n)
,

the inequality

|NG(v) ∩ X | <
231

|V ′|n
d+k log n + 2 log n

holds for all vertices v ∈ V d
l .

Proof For any v ∈ V d
l , the quantity |NG(v) ∩ X | ≤ 11

10n
d (remember that we assume

that V d
l ⊆ Vd

l) is a random variable distributed according to the hypergeometric

distribution. The expected value of |NG(v) ∩ X | is μ = |NG(v) ∩ V d
l | × |X |

|V ′| ≤
11
10n

d × 3nk log n+1
|V ′| < 33

|V ′| × nd+k log n. By Corollary 2.4 and Theorem 2.10 of [10],

Pr[|NG(v) ∩ X | ≥ 7μ + 2 log n] < exp(−7μ) 1
n2
. Thus the inequality

|NG(v) ∩ X | <
231

|V ′|n
d+k log n + 2 log n

holds for all v ∈ V d
l with probability at least

1 − |V d
l | × 1

n2 exp(231|V ′|nd+k log n)
,

as claimed. ��

123

952 Algorithmica (2017) 79:941–959

Proof of Proposition 3.2 We adapt the algorithm for the dense case presented in
Sect. 2.2. We take V1 = V2 = V d

l , and X ⊆ V1 of size |X | = ⌈3|V1|k1 log n
⌉
.

We replace the first step of the algorithm, which checks if there exists a triangle of G
with a vertex in X and two vertices in V2, by the following procedure based on [6].
We take a random edge {u, v} ∈ E(V2) ∩ E and then try to find a vertex w from X
such that {u, v, w} is a triangle of G. Note that this can be implemented using two
Grover searches in Õ(

√|E(V2)|/|E(V2) ∩ E | + √|X |) queries, and that in the worst
case (i.e., when there is only one triangle) the success probability of this approach
is �(1/|E(V2) ∩ E |). Using amplitude amplification we can then check with high
probability the existence of such a triangle with total query complexity

Õ
(√|E(V2) ∩ E | × (

√|E(V2)|/|E(V2) ∩ E | +√|X |)
)

= Õ(n +
√
nk1m). (3)

We now show how to adapt the second step of the algorithm presented in Sect. 2.2
to exploit the sparsity of the graph. First, as observed in [12], the cost of estimating the
size of �G(X, A, w) can be reduced to Õ(

√
nk1) queries by using quantum counting

instead of random sampling (quantum counting was not used in [12] since it did not
result in any speed-up for the dense case, but for the sparse case this is necessary).
We now describe our main ideas to exploit the sparsity of the graph, and show how to
reduce the cost of two quantum walks.

First, we describe how to reduce the setup cost S and the update cost U as follows.
By Lemma 3.1 and |V d

l | = �(n), we know that |NG(v)∩X | < t for all v ∈ V2, where
t = Õ(nd+k1−1). Therefore we can use quantum enumeration to find all vertices in
NG(v) ∩ X with

Õ

(√ |X |
t

+ · · · +
√ |X |

1

)

= Õ(
√|X |t)

queries. The setup cost S is thus

S = Õ
(
|A| ×√|X |t

)
= Õ(na1+d/2+k1−1/2)

queries, and the update cost U = Õ(
√|X |t) = Õ(nd/2+k1−1/2) queries.

Next, we describe how to reduce the setup costS′. This set up requires to obtain the
couple (v, ev) for each v ∈ B, where w is a fixed vertex in V1, ev = 1 if {v,w} ∈ E
and ev = 0 if {v,w} /∈ E . Let μw be the average of |NG(w) ∩ B| over all B. A key
observation is that μw = O(nd × |B|

|V |) = O(nb1+d−1). We use quantum enumeration
to find at most 10×μw vertices in NG(w)∩ B from B. Thus the cost of this procedure
is

S′ = Õ

(√
|B|
μw

+ · · · +
√ |B|

1

)

= Õ(
√|B| × μw) = Õ(nb1+d/2−1/2)

123

Algorithmica (2017) 79:941–959 953

queries. Note that this procedure will not correctly prepare the database for all B’s
(since |NG(w) ∩ B| may exceed 10 × μw for some B’s); it will prepare correctly the
database only for a large fraction of the B’s. This is nevertheless not a problem since
the initial state of the quantum walk is a uniform superposition of all the B’s: this
procedure will thus prepare a state close enough to the ideal state, which will modify
only in a negligible way the final success probability of the whole walk.

We also modify the definition of a marked state for the second walk (we add one
condition). Namely, the state corresponding to a set B ∈ S(A,

⌈|V2|b1
⌉
) will be

marked if B satisfies the following three conditions:

(i) there exist two vertices v1, v2 ∈ B such that {v1, v2} ∈ E (i.e., such that
{v1, v2, w} is a triangle of G);

(ii) |�G(X, B, w)| ≤ 10 × |V2|2(b1−a1) × δ(X, A, w);
(iii) |NG(w) ∩ B| ≤ 10 × μw.

It is easy to show that adding the third condition does not change significantly the
fraction of marked states:

ε′ = Pr[v1 ∈ B and v2 ∈ B and |NG(w) ∩ B| ≤ 10μw]
= Pr[v1 ∈ B]Pr[v2 ∈ B | v1 ∈ B]Pr[|NG(w) ∩ B| ≤ 10μw | v1 ∈ B and v2 ∈ B]
= Pr[v1 ∈ B]Pr[v2 ∈ B | v1 ∈ B]Pr[|NG(w) ∩ B ′| ≤ 10μw − 2]
≥ (1 − Pr[|NG(w) ∩ B ′| ≥ 10μw − 2])× Pr[v1 ∈ B]Pr[v2 ∈ B | v1 ∈ B]
≥
(
1 − Pr[|NG(w) ∩ B ′| ≥ 10μ

′
w − 2]

)
× Pr[v1 ∈ B]Pr[v2 ∈ B | v1 ∈ B]

≥
(
1 − Pr[|NG(w) ∩ B ′| ≥ 2μ

′
w]
)

× Pr[v1 ∈ B]Pr[v2 ∈ B | v1 ∈ B]

≥
(

1 − 1

2

)

× Pr[v1 ∈ B]Pr[v2 ∈ B | v1 ∈ B] = �
(
n2(b1−a1)

)
,

where B ′ ∈ S(A\{v1, v2},
⌈|V2|b1

⌉−2) andμ
′
w be the average of |NG(w)∩ B ′| over

all B ′. The checking procedure of the second walk (and thus its cost C′
w) is the same

as in the dense case. From Expression (2), the query complexity of the first walk is

Õ
(
na1+d/2+k1−1/2 +

√
n2(1−a1)

(√
na1 × nd/2+k1−1/2 + C

))
.

By replacing the quantitiesS′ and the cost of estimating |�G(X, A, w)| by the expres-
sions we just derived, we obtain the checking cost of the first walk

C = Õ

(
√|V1|

(

|V1|k1/2 + S′ + |V2|b1/2 × U′
√

ε′

)

+ |V2|b1−a1
√

ε′ ×
√∑

w∈V1
|�(X, A, w)|

⎞

⎠

123

954 Algorithmica (2017) 79:941–959

= Õ

⎛

⎜
⎝n1/2+k1/2 + n1/2 × S′ + n1/2+a1−b1/2 +

√
√
√
√

∑

w∈V d
l

|�(X, A, w)|
⎞

⎟
⎠

= Õ
(
n1/2+k1/2 + nb1+d/2 + n1/2+a1−b1/2 + n1/2+a1−k1/2

)

queries. This thus gives query complexity

Õ
(
n + nk1/2m1/2 + na1+d/2+k1−1/2 +

√
n2(1−a1)

(√
na1 × nd/2+k1−1/2 + C

))

for the whole algorithm, as claimed. ��
Proposition 3.3 Let a2, k2 and b2 be any constants such that 0 < b2 < a2 < 1 and
1 < nk2 < |V d

h |. A triangle of G consisting of two d-low vertices and one d-high vertex
can be detectedwith high probability using Q3 = Õ(n+nk2/2m1/2+na2+d+k2m−1/2+
n1+d+k2−a2/2m−1/2 + n1+k2/2−a2−d/2m1/2 + n1+b2−a2−d/2m1/2 + n1−b2/2−d/2m1/2

+n1−d/2−k2/2m1/2) queries.

Proof We again adapt the algorithm for the dense case presented in Sect. 2.2. We take
V1 = V d

h , V2 = V d
l , a = a2, b = b2 and X ⊆ V1 of size |X | = ⌈3nk2 log n⌉ (i.e.,

choose k such that |V1|k = nk2). The algorithm is exactly the same as the algorithm
of Proposition 3.2, except that this time we cannot use the sparsity of the graph (since
the vertices in V1 are not d-low anymore) to reduce S′. We check if there exists
a triangle of G with a vertex in X and two vertices in V2 using Õ(n + √

nk2m)

queries with high probability. By Lemma 3.1 and |V d
h | = �(m/nd), we know that

|NG(v) ∩ X | = Õ(nd+k2/|V d
h |) = Õ(n2d+k2m−1). In the first walk, we use the same

set up and update procedures as the algorithm of Proposition 3.2. The setup cost is
thus S = Õ(na2+d+k2m−1/2) queries and the update cost is U = Õ(nd+k2m−1/2)

queries. From Expression (2), the query complexity of the first walk is thus

Õ
(
na2+d+k2m−1/2 +

√
n2(1−a2)

(√
na2 × nd+k2m−1/2 + C

))
.

The analysis of C is similar to the analysis done for the algorithm of Proposition 3.2,
but this time we have to use the same set up procedure as for the dense case in the
second walk, i.e., we have S′ = ⌈|V2|b2

⌉
as in Sect. 2.2. The checking cost of the first

walk is thus

C= Õ

⎛

⎝
√|V1|

(

|V1|k/2+S′+ |V2|b2/2×U′
√

ε′

)

+ |V2|b2−a2
√

ε′ ×
√∑

w∈V1
|�(X, A, w)|

⎞

⎠

= Õ

⎛

⎜
⎝nk2/2|V d

h |1/2 + |V d
h |1/2 × S′ + na2−b2/2|V d

h |1/2 +
√
√
√
√

∑

w∈V d
h

|�(X, A, w)|
⎞

⎟
⎠

= Õ
(
nk2/2−d/2m1/2 + nb2−d/2m1/2 + na2−b2/2−d/2m1/2 + na2−d/2−k2/2m1/2

)

123

Algorithmica (2017) 79:941–959 955

queries. This gives query complexity

Õ
(
n + nk2/2m1/2 + na2+d+k2m−1/2 +

√
n2(1−a2)

(√
na2 × nd+k2m−1/2 + C

))

for the whole algorithm, as claimed. ��
Proposition 3.4 Let a3, k3 and b3 be constants such that 1 < nb3 < na3 < |V d

h |
and 0 < k3 < 1. A triangle of G consisting of two d-high vertices and one d-low
vertex can be detected with high probability using Q4 = Õ(n+nk3/2m1/2 +na3+k3 +
nk3−a3/2−dm + n1/2+k3/2−a3−dm + nb3−a3−d/2m + n1/2−b3/2−dm + n1/2−d−k3/2m)

queries.

Proof We adapt the algorithm for the dense case presented in Sect. 2.2 to the case we
are considering. This time we choose V1 = V d

l , V2 = V d
h , k = k3, take a such that

|V2|a = na3 and b such that |V2|b = nb3 . The algorithm is again almost the same
as the algorithm of Proposition 3.2, except that this time we cannot use the sparsity
of the graph to reduce S and U since the vertices in V2 are not d-low anymore (but
we can use the sparsity to reduce S′ exactly as in the algorithm of Proposition 3.2).
We check if there exists a triangle of G with a vertex in X and two vertices in V2
using Õ(n + √

nk3m) queries with high probability. The setup cost is S = Õ(na3+k3)

queries and the update cost is U = Õ(nk3) queries. From Expression (2), the query
complexity of the first walk is

Õ

⎛

⎝na3+k3 +
√

|V d
h |2

n2a3

(√
na3 × nk3 + C

)
⎞

⎠

= Õ
(
na3+k3 + m

na3+d

(√
na3 × nk3 + C

))
.

The analysis ofC is identical to the analysis done for the algorithm of Proposition 3.2.
In particular we have S′ = Õ(nb3+d/2−1/2), and obtain

C = Õ

⎛

⎝
√|V1|

(

|V1|k3/2+S′+ |V2|b/2×U′
√

ε′

)

+ |V2|b−a

√
ε′ ×

√∑

w∈V1
|�(X, A, w)|

⎞

⎠

= Õ

⎛

⎜
⎝n1/2+k3/2 + n1/2 × S′ + n1/2+a3−b3/2 +

√
√
√
√

∑

w∈V d
l

|�(X, A, w)|
⎞

⎟
⎠

= Õ
(
n1/2+k3/2 + nb3+d/2 + n1/2+a3−b3/2 + n1/2+a3−k3/2

)
.

This gives query complexity

Õ
(
n + nk3/2m1/2 + na3+k3 + m

na3+d

(√
na3 × nk3 + C

))

for the whole algorithm, as claimed. ��

123

956 Algorithmica (2017) 79:941–959

Proposition 3.5 A triangle of G consisting of three d-high vertices can be detected
with high probability using Q5 = Õ((m/nd)5/4) queries.

Proof We simply apply the original algorithm by Le Gall [12] for dense triangle
finding over the subgraph of G induced by the vertices in V d

h , and use the bound
|V d

h | = O(m/nd). ��
Proposition 3.6 Let b4 be any constant such that 0 < b4 < 1. A triangle of G
consisting of three d-low vertices can be detected with high probability using Q6 =
Õ(nb4+d/2 + n3/2−b4/2 + n1/2+d) queries.

Proof We take V1 = V2 = V d
l , and adapt the algorithm for the dense case as in

Proposition 3.2, but we choose X = ∅ and a = 1, i.e., we do not perform the first step
of the algorithm and do not perform the first walk in the second step. That is, we only
perform the second walk of the algorithm, with parameter b = b4. The sparsity of the
graph can again be used to reduceS′, exactly as in the algorithmof Proposition 3.2. The
main difference is that we now use directly the sparsity of the graph for the checking
step C′: instead of performing a Grover search over �G(X, B, w), as in the dense
case, we simply do a Grover search over E(N (w) ∩ B), at cost

Õ(
√|E(N (w) ∩ B)|) = Õ(10 × μw),

which gives a new upper boundC′
w . Replacing in the analysis of Sect. 2.2 the quantities

S′ and C′
w by these upper bounds, we obtain query complexity

Q6 = Õ

(
√|V1|

(

S′ +
√

1

ε′
(
|V2|b4/2 × U′ + C′

w

)
))

= Õ(n1/2 × S′ + n3/2−b4/2 + n3/2−b4 × C′
w)

= Õ(nb4+d/2+n3/2−b4/2+n3/2−b4 × μw) = Õ(nb4+d/2 + n3/2−b4/2 + n1/2+d),

as claimed. ��
Proposition 3.7 A triangle consisting of at least one d-high vertex can be detected
with high probability using Q7 = O(n + n−d/2m) queries.

Proof We use an algorithm similar to the procedure described in the first part of the
proof of Proposition 3.2, based on [6]. We take a random edge {u, v} ∈ E and then
try to find a vertex w from V d

h such that {u, v, w} is a triangle of G. This can be

implemented using two Grover searches in Õ(
√
n2/m +

√

|V d
h |) queries, and that in

the worst case (i.e., when there is only one triangle) the success probability of this
approach is �(1/m). Using amplitude amplification we can then check with high
probability the existence of such a triangle with total query complexity

Õ

(√
m ×

(√

n2/m +
√

|V d
h |
))

= Õ

(

n + m√
nd

)

,

since |V d
h | = O(m/nd). ��

123

Algorithmica (2017) 79:941–959 957

We are now ready to prove Theorem 1.

Proof of Theorem 1 Propositions 3.1–3.7 can be combined in several ways to design
an algorithm detecting if the graph has a triangle. We found that for n13/8 ≤ m ≤ n2

the best combination is Propositions 3.1–3.5 (giving cost Q1 + Q2 + Q3 + Q4 + Q5),
for n3/2 ≤ m ≤ n13/8 the best combination is Propositions 3.1 and 3.3–3.6 (giving
cost Q1 + Q3 + Q4 + Q5 + Q6), for n7/6 ≤ m ≤ n3/2 the best combination is
Propositions 3.1, 3.6 and 3.7 (giving cost Q1 + Q6 + Q7), while for n ≤ m ≤ n7/6

the best strategy is to use the original algorithm by Buhrman et al. [6] alone.
Let us give an intuitive explanation of why these choices are optimal. Buhrman

et al.’s algorithm works very well for sparse graphs; it is not surprising that this
algorithm is the best choice for small values of m, either alone (for n ≤ m ≤ n7/6)
or combined with the algorithms of Propositions 3.1 and 3.6 (for n7/6 ≤ m ≤ n3/2).
For larger values of m it is better to use the algorithms of either Proposition 3.6 (for
n3/2 ≤ m ≤ n13/8) or Proposition 3.2 (for n13/8 ≤ m ≤ n2). The former algorithm is
better than the latterwhenm ≤ n13/8 since in the latter algorithmobtaining the relevant
information about �G(X, A, w) and implementing the checking step of the quantum
walk has reasonable cost only when the graph is very dense. We write m = n�, for
0 ≤ � ≤ 2, and optimize below the parameters.

If 7
6 ≤ � ≤ 7

5 , the query complexity is upper bounded by

Q1 + Q6 + Q7 = Õ(n1+�/2−d + n3/2−b4/2 + nb4+d/2),

which is optimized by taking b4 = 1 − �
7 and d = 3�

7 , giving the upper bound
Õ(n1+�/14).

If 7
5 ≤ � ≤ 3

2 , the query complexity is upper bounded by

Q1 + Q6 + Q7 = Õ(n3/2−b4/2 + n1/2+d + n�−d/2),

which is optimized by taking b4 = 8
3 − 4�

3 and d = 2�
3 − 1

3 , giving the upper bound
Õ(n1/6+2�/3).

If 3
2 ≤ � ≤ 13

8 , the query complexity is upper bounded by

Q1 + Q3 + Q4 + Q5 + Q6 = Õ(n3/2−b4/2 + n1/2+d + na2+d+k2−�/2

+ n1+b2+�/2−a2−d/2 + n1+�/2−b2/2−d/2

+ n1+�/2−d/2−k2/2 + nb3+�−a3−d/2

+ n1/2+�−b3/2−d + n1/2+�−d−k3/2),

which is optimized by taking a2 = 3
10 + 3�

10 , a3 = 23�
15 − 59

30 , b2 = k2 = 1
5 + �

5 ,
b3 = k3 = 14�

15 − 16
15 , b4 = 22

15 − 8�
15 and d = 4

15 + 4�
15 , giving the upper bound

Õ(n23/30+4�/15).

123

958 Algorithmica (2017) 79:941–959

If 13
8 ≤ � ≤ 2, the query complexity is upper bounded by

Q1 + Q2 + Q3 + Q4 + Q5 = Õ(na1+d/2+k1−1/2 + n1+b1+d/2−a1

+ n3/2−b1/2 + n3/2−k1/2

+ na2+d+k2−�/2 + n1+b2+�/2−a2−d/2

+ n1+�/2−b2/2−d/2 + n1+�/2−d/2−k2/2

+ nb3+�−a3−d/2 + n1/2+�−b3/2−d+n1/2+�−d−k3/2),

which is optimized by taking a1 = 3
4 , a2 = 19

20 − �
10 , a3 = 3�

5 − 9
20 , b1 = k1 = 31

30 − 4�
15 ,

b2 = k2 = 19
30 − �

15 , b3 = k3 = 7
30 + 2�

15 and d = 4�
5 − 3

5 , giving the upper bound
Õ(n59/60+2�/15).

For the case � ≤ 7
6 we can obtain a better upper bound by using the O(n + √

nm)-
query algorithm by Buhrman et al. [6]. This upper bound actually corresponds to
a degenerate case appearing in our approach: the case d = 0. Indeed, observe that
without loss of generality we can assume that deg(v) ≥ 1 for all vertices v ∈ V (for
instance by adding dummy vertices to the graph). In this case we have Vd

h = V for
d = 0, which means that we do not need to apply the algorithm of Proposition 3.1 in
order to obtain a classification: we simply output V 0

h = V and V 0
l = ∅ (i.e., all the

vertices of the graph are 0-high). The only type of triangles we need to consider is
triangles with three 0-high vertices, which can be found with complexity O(n+√

nm)

by Proposition 3.7 (in this case the algorithm of Proposition 3.7 is exactly the same
as the algorithm in [6]). ��
Acknowledgements The authors are grateful to Mathieu Laurière, Frédéric Magniez, Keiji Matsumoto,
Harumichi Nishimura and Seiichiro Tani for helpful comments. This work is supported by the Grant-in-Aid
for Young Scientists (B) No. 24700005 and the Grant-in-Aid for Scientific Research (A) No. 24240001 of
the Japan Society for the Promotion of Science, and the Grant-in-Aid for Scientific Research on Innovative
Areas No. 24106009 of the Ministry of Education, Culture, Sports, Science and Technology in Japan.

References

1. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica 17, 354–364
(1997)

2. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239
(2007)

3. Ambainis, A.: Quantum search with variable times. Theory Comput. Syst. 47(3), 786–807 (2010)
4. Belovs, A.: Span programs for functions with constant-sized 1-certificates: extended abstract. In:

Proceedings of the 44th Symposium on Theory of Computing, pp. 77–84 (2012)
5. Brassard, G., Høyer, P., Tapp, A.: Quantum counting. In: Proceedings of the 25th International Collo-

quium on Automata, Languages and Programming, pp. 820–831 (1998)
6. Buhrman, H., Dürr, C., Heiligman, M., Høyer, P., Magniez, F., Santha, M., de Wolf, R.: Quantum

algorithms for element distinctness. SIAM J. Comput. 34(6), 1324–1330 (2005)
7. Childs, A.M., Kothari, R.: Quantum query complexity of minor-closed graph properties. SIAM J.

Comput. 41(6), 1426–1450 (2012)
8. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th

Symposium on the Theory of Computing, pp. 212–219 (1996)
9. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. 7(4), 413–423 (1978)

10. Janson, S., Luczak, T.: Random Graphs. Wiley, New York (2011)

123

Algorithmica (2017) 79:941–959 959

11. Jeffery, S., Kothari, R., Magniez, F.: Nested quantum walks with quantum data structures. In: Proceed-
ings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1474–1485 (2013)

12. Le Gall, F.: Improved quantum algorithm for triangle finding via combinatorial arguments. In: Pro-
ceedings of the 55th IEEE Annual Symposium on Foundations of Computer Science, pp. 216–225
(2014)

13. Lee, T., Magniez, F., Santha, M.: Improved quantum query algorithms for triangle finding and asso-
ciativity testing. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1486–1502 (2013)

14. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput.
37(2), 413–424 (2007)

15. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40(1),
142–164 (2011)

16. Patrascu, M.: Towards polynomial lower bounds for dynamic problems. In: Proceedings of the 42nd
Symposium on Theory of Computing, pp. 603–610 (2010)

17. Vassilevska Williams, V., Williams, R.: Subcubic equivalences between path, matrix and triangle
problems. In: Proceedings of the 51th Symposium on Foundations of Computer Science, pp. 645–654
(2010)

18. Vassilevska Williams, V., Williams, R.: Finding, minimizing, and counting weighted subgraphs.
SIAM J. Comput. 42(3), 831–854 (2013)

123

	Quantum Algorithm for Triangle Finding in Sparse Graphs
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Query Complexity for Graph-Theoretic Problems
	2.2 Quantum Algorithm for Dense Triangle Finding

	3 Quantum Algorithm for Sparse Triangle Finding
	Acknowledgements
	References

