
Algorithmica (2018) 80:279–299
https://doi.org/10.1007/s00453-016-0254-4

Robust Proximity Search for Balls Using Sublinear
Space

Sariel Har-Peled1 · Nirman Kumar2

Received: 8 September 2015 / Accepted: 14 November 2016 / Published online: 28 November 2016
© Springer Science+Business Media New York 2016

Abstract Given a set of n disjoint balls b1, . . . , bn in IRd , we provide a data structure
of near linear size that can answer (1 ± ε)-approximate kth-nearest neighbor queries
on the balls in O(log n + 1/εd) time, where k and ε may be provided at query time.
If k and ε are provided in advance, we provide a data structure to answer such queries
requiring O(n/k) space; that is, the data structure requires sublinear space if k is
sufficiently large.

Keywords Data structures · Approximation algorithms · Proximity search

1 Introduction

The nearest neighbor problem is a fundamental problem in computer science [1,18].
Here, one is given a set of points P, and a query point q, and one needs to output
the nearest point in P to q. There is a trivial O(n) algorithm for this problem. Typ-

A preliminary version of this paper appeared in FSTTCS 2014 [15].

Work on this paper was partially support by NSF AF awards CCF-0915984, CCF-1421231, and
CCF-1217462.

B Nirman Kumar
nkumar8@memphis.edu

Sariel Har-Peled
sariel@illinois.edu

1 Department of Computer Science, University of Illinois, 201 N. Goodwin Avenue, Urbana,
IL 61801, USA

2 Department of Computer Science, University of Memphis, Dunn Hall 375, Memphis, TN 38152,
USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-016-0254-4&domain=pdf
http://orcid.org/0000-0001-6601-2790

280 Algorithmica (2018) 80:279–299

ically the set of data points is fixed, while different queries keep arriving. Thus, one
can use preprocessing to facilitate a faster query. There are several applications of
nearest neighbor search in computer science including pattern recognition, informa-
tion retrieval, vector compression, computational statistics, clustering, data mining,
learning and many others. See the survey by Clarkson [9].

There is no known way to solve this problem with logarithmic query time for
dimension d > 2, while using near linear space for the data structure.

Approximate Nearest Neighbor (ANN) In light of the above, major effort has been
devoted to developing approximation algorithms for nearest neighbor search [6,9,13,
17]. In the (1 + ε)-approximate nearest neighbor problem, one is additionally given
an approximation parameter ε > 0 and one is required to find a point u ∈ P such
that d(q,u) ≤ (1 + ε)d(q,P). In d dimensional Euclidean space, one can answer
ANN queries in O(log n + 1/εd−1) time using linear space [6,12]. Unfortunately, the
constant hidden in the O notation is exponential in the dimension (and this is true for
all bounds mentioned in this paper), and specifically because of the 1/εd−1 term in the
query time. As such, this approach is only efficient in low dimensions. Interestingly,
for this data structure, the approximation parameter ε need not be specified during the
construction and one can provide it during the query. An alternative approach is to
use Approximate Voronoi Diagrams (AVD), introduced by Har-Peled [11], which is
a partition of space into regions of low total complexity, with a representative point
for each region that is an ANN for any point in the region. In particular, Har-Peled
showed that there is such a decomposition of size O

(
(n/εd) log2 n

)
, see also [13].

This allows ANN queries to be answered in O(log n) time. Arya and Malamatos [2]
showed how to build AVDs of linear complexity – O(n/εd). Their construction uses
WSPD (Well-Separated Pairs Decomposition) [7]. Further trade-offs between query
time and space usage for AVDs were studied by Arya et al. [4].

k-Nearest Neighbors A more general problem is the k-nearest neighbors problem
where one is interested in finding the k points in P nearest to the query point q. This
is widely used in classification, where the majority label is used to label the query
point. A restricted version is to find only the kth-nearest neighbor. This problem and
its approximate version have been considered in [3,14]. For this problem Arya et al.
show in [3] that one can achieve a tradeoff in the space vs query time of the data
structure. If ε is known during preprocessing but k is known only during query they
can achieve a query time of O(log(n/ε)) with space requirement of O(n

εd
log ε−1),

or a query time of O(log n + 1/εd) with a space usage of O(n log ε−1). The latter
result is improved in [14] where a data structure is shown that has a query time of
O(log n + 1/εd−1) and a space usage of O(n) even when both ε and k are only
supplied during query time. Moreover, they also show that if ε, k are supplied during
preprocessing then the query time can be improved to O(log(n

kε)) with a space usage
of O(Cεn/k) where Cε = ε−d log ε−1.

Sublinear Space, Summarizing Data and (k, ε)-ANN Recently, the authors [14]
showed that one can compute a (k, ε)-AVD that (1+ ε)-approximates the distance to
the kth nearest neighbor, and surprisingly, requires O(n/k) space; that is, sublinear

123

Algorithmica (2018) 80:279–299 281

space if k is sufficiently large. For example, for the case k = Ω(
√
n), which is of

interest in practice, the space required is only O
(√

n
)
. Such ANN is of interest when

one is worried that there is noise in the data, and thus one is interested in the distance
to the kth NN which is more robust and noise resistant than the nearest neighbor.
Alternatively, one can think about such data structures as enabling one to summarize
the data in a way that still facilitates meaningful proximity queries.

This Paper Here, we consider a generalization of the kth-nearest neighbor problem.
Specifically, given a set of n disjoint balls in IRd the task is to preprocess them. Now,
given a query point one can find approximately the kth closest ball. The distance of a
query point to a ball is defined as the distance to its boundary if the point is outside
the ball or 0 otherwise. Clearly, this problem is a generalization of the kth-nearest
neighbor problem by viewing points as balls of radius 0. Algorithms for the kth-
nearest neighbor for points, do not extend in a straightforward manner to this problem
because the distance function is no longer a metric. Indeed, there can be two far off
points both close to a single ball, and thus the triangle inequality does not hold. The
problem of finding the closest ball can also be modeled as a problem of approximating
the minimization diagram of a set of functions. Here, a function would correspond
to the distance from one of the given balls. There has been some recent work by
the authors on this topic, see [16], where a fairly general class of functions admits a
near linear sized data structure permitting a logarithmic time query for the problem of
approximating theminimization diagram. However, the problem that we consider here
does not fall under the aforementioned framework [16]. The technical assumptions
of this framework [16] mandate that the set of points which form the 0-sublevel set
of a distance function, i.e., the set of points at which the distance function is 0 is a
single point (or an empty set). This is not the case for the problem under consideration.
Also, we are interested in the more general kth-nearest neighbor problem, while the
previous work [16] considers only the nearest-neighbor problem, i.e., k = 1.

Our Results

We first show how to preprocess the set of balls into a data structure requiring space
O(n), in O(n log n) time. For a query point q, a number 1 ≤ k ≤ n and ε > 0, one can
compute a (1± ε)-approximate kth closest ball in time O(log n + ε−d). If both k and
ε are available during preprocessing, one can preprocess the balls into a (k, ε)-AVD,
using O(n

kεd
log(1/ε)) space. For a query point q, a (k, ε)-ANN ball can be computed,

in O(log(n/k) + log(1/ε)) time.

Plan of Attack, and Highlights The idea is to try and extend our previous work [14]
to the new, more general setup. Since we are dealing with balls instead of points, the
task is more challenging, and we do it in stages:

(A) Approximate range counting on balls. Given a set of disjoint balls, and a query
ball, we want to count the number of input balls that intersect it, while allowing
an approximation only for the query ball. This is somewhat more challenging
than approximate range counting, as done by Arya and Mount [5], as some of
the balls intersecting the query ball might be significantly larger. To this end, we

123

282 Algorithmica (2018) 80:279–299

build a data structure that enables us to quickly count exactly the large input balls
that intersect the query ball. This is described in Sect. 3.

(B) Linear space (k, ε)-ANN on balls.Given a query point, we compute its distance
to the i th nearest center, for i = k − cd , . . . , k, where cd is some constant that
depends on the dimension. Next, we argue that either one of these distances is
the required approximate distance (and this can be verified using the approxi-
mate range counting data structure from above), or alternatively, the distance is
determined by “huge” balls that have radius significantly larger than the desired
distance. As such, we extract the at most cd large balls that might be relevant, add
their distance to the query point to the set of candidate distance, and search these
distances. This yields a constant approximation to the kth ANN, and converting
it to a (1+ ε)-approximation is easy using our tools. This is described in Sect. 4.

(C) Quorumclustering for balls.Somewhat oversimplifying things, the basic strategy
in the previous work [14], was to find the point achieving the global minimum
of the kth ANN distance function, approximate the function correctly in a region
around this point, remove the points that define the minimum from the data-set,
and repeat. This was facilitated by finding the smallest ball that contains k input
points. For balls, it is not clear how to find the smallest ball that intersects k
balls, remove these balls, repeat this process, and moreover, do it efficiently.
Furthermore, it is no longer true that one can remove these k balls, as some
of them might be huge. Instead, conceptually, we remove only the small balls
(the exact details of what we do are more involved, and require significantly
more care) from these k balls. Furthermore, instead of using the smallest ball
intersecting k balls, we use the smallest ball containing k − cd centers of the
balls, and expand it till it intersects k balls. We then repeat this mining process
till all centers are excavated. Surprisingly, since the quorum clustering is done on
the centers and not on the balls, we are able to implement this process efficiently,
and furthermore, we can argue that it yields a meaningful quorum clustering for
the input balls. This is described in Sect. 5.

(D) Sublinear space (k, ε)-AVD on balls.Now, equipped with the new quorum clus-
tering of the balls, we can build a (k, ε)-AVD for the balls. Surprisingly, the
construction now follows [14] in a straightforward fashion. The resulting data
structure uses O(n/k) space, and can answer (k, ε)-ANN queries in O(log n)

time.

Paper Organization In Sect. 2 we define the problem, list some assumptions, and
introduce notation. In Sect. 3 we set up some basic data structures to answer approxi-
mate range counting queries for balls. In Sect. 4 we present the data structure, query
algorithm and proof of correctness for our data structure which can compute (1± ε)-
approximate kth-nearest neighbors of a query point when k, ε are only provided during
query time. In Sect. 5 we present approximate quorum clustering, see [8,14], for a set
of disjoint balls. Using this, in 6, we present the (k, ε)-AVD construction.We conclude
in Sect. 7.

123

Algorithmica (2018) 80:279–299 283

2 Problem Definition and Notation

We are given a set of disjoint1 balls B = {b1, . . . , bn}, where bi = b(ci , ri), for
i = 1, . . . , n. Here b(c, r) ⊆ IRd denotes the closed ball with center c and radius
r ≥ 0. Additionally, we are given an approximation parameter ε ∈ (0, 1). For a point
q ∈ IRd , the distance of q to a ball b = b(c, r) is

d(q, b) = max
(

‖q − c‖ − r, 0
)

.

Observation 2.1 For two balls b1 ⊆ b2 ⊆ IRd , and any point q∈ IRd , we have
d(q, b1) ≥ d(q, b2).

The kth-nearest neighbor distanceofq toB, denoted bydk(q,B), is the kth smallest
number in d(q, b1) , . . . ,d(q, bn). Similarly, for a given set of points P,dk(q,P)

denotes the kth-nearest neighbor distance of q to P.

Problem definition. We aim to build a data structure to answer (1 ± ε)-approximate
kth-nearest neighbor (i.e., (k, ε)-ANN) queries, where for any query point q ∈ IRd

one needs to output a ball b ∈ B such that, (1 − ε)dk(q,B) ≤ d(q, b) ≤ (1 +
ε)dk(q,B) .There are different variants depending on whether ε and k are provided
with the query or in advance.

Notation. We use cube to denote a set of the form [a1, a1 + �] × [a2, a2 + �] × . . . ×
[ad , ad + �] ⊆ IRd , where a1, . . . , ad ∈ IR, and � ≥ 0 is the side length of the cube.

Observation 2.2 For any set of ballsB, the functiondk(q,B) is a1-Lipschitz function;
that is, for any two points u, v, we have that dk(u,B) ≤ dk(v,B) + ‖u − v‖.
Assumption 2.3 We assume that all the input balls are contained inside the cube[
1/2 − δ, 1/2 + δ

]d
,which canbe ensuredby translation and scaling (whichpreserves

order of distances), where δ = ε/4. As such, we can ignore queries outside the unit
cube [0, 1]d , as any input ball is a valid answer in this case.

For a real positive number x and a point p = (p1, . . . ,pd) ∈ IRd , define Gx (p) to
be the grid point (�p1/x	 x, . . . , �pd/x	 x). The number x is the width or side length
of the grid Gx . The mapping Gx partitions IRd into cubes that are grid cells cell.

Definition 2.4 A cube is a canonical cube if it is contained inside the unit cube
U = [0, 1]d , it is a cell in a gridGr , and r is a power of two, i.e., it might correspond to
a node in a quadtree having [0, 1]d as its root cell (see the book [12] for an introduction
to quadtrees). Such a gridGr is a canonical grid canonical grid. Note that all the cells
corresponding to nodes of a compressed quadtree are canonical.

1 Our data structure and algorithm work for the more general case where the balls are interior disjoint,
where we define the interior of a “point ball”, i.e., a ball of radius 0, as the point itself. This is not the usual
topological definition.

123

284 Algorithmica (2018) 80:279–299

Definition 2.5 Given a set b ⊆ IRd , and a parameter δ > 0, letG≈(b, δ) denote the set
of coarsest canonical grid cells whose diameter is at most δ diam (b) and that intersect
b, where diam(b) = maxp,u∈b ‖p − u‖ denotes the diameter of b. Such a cell has side
length 2

⌊
log2 δ diam(b)/

√
d
⌋

. Clearly, the diameter of any grid cell ofG≈(b, δ), is at most
δ diam (b). Let G≈(b) = G≈(b, 1). It is easy to verify that |G≈(b)| = O(1). The set
G≈(b) is the grid approximation to b.

Let B be a family of balls in IRd . Given a set X ⊆ IRd , let

B(X) =
{
b ∈ B

∣∣∣ b ∩ X �= ∅
}

denote the set of balls in B that intersect X .
For two compact sets X,Y ⊆ IRd , X � Y (equivalently, Y � X) if and

only if diam(X) ≤ diam(Y). For a set X and a set of balls B, let B�(X) ={
b ∈ B

∣
∣∣ b ∩ X �= ∅ and b � X

}
. Let cd denote the maximum number of pairwise

disjoint balls of radius at least r, that may intersect a given ball of radius r in IRd .
Clearly, we have

∣∣B�(b)
∣∣ ≤ cd for any ball b. We have the following bounds.

Lemma 2.6 2 ≤ cd ≤ 3d for all d.

Proof This is an easy result that follows from a standard packing argument, and we
include a proof for the sake of completeness. Let b = b(c, r) be a given ball of
radius r. For the lower bound we can take two balls both of radius r which touch b at
diametrically opposite points and lie outside b. We now show the upper bound. Let B
be a set of disjoint balls, each having radius at least r and intersecting b. Consider a
ball b′ ∈ B. If no point of the boundary of b′ intersects b, then clearly b′ contains b in
its interior and it is easy to see that |B| = 1. As such we assume that all balls in B have
some point of their boundary inside b. Take any point p of the boundary of b′ such
that p is in b, and consider a ball of radius r that lies completely inside b′, is of radius
r and is tangent to b′ at p. We can find such a ball for each ball in B. Moreover, these
balls are all disjoint. Thus we have |B| disjoint balls of radius exactly r that intersect b.
It is easy to see that all such balls are completely inside b(c, 3r). By a simple volume
packing bound it follows that |B| ≤ 3d . ��

3 Approximate Range Counting for Balls

In the following, we use cell queries: Given a compressed quadtree T̂ that stores a set
P of n points, and a query canonical grid cell �̂, we would like to find the single node
v ∈ T̂ , such that P ∩ �̂ = Pv (i.e., a single subtree of T̂ containing all the points of
P inside �̂). Such queries can be readily implemented in O(log n) time, see [12].

Data-structure 3.1 (D) For a given set of disjoint balls B = {b1, . . . , bn} in IRd , we
build the following data structure, that is useful in performing several of the tasks at
hand.

123

Algorithmica (2018) 80:279–299 285

(A) Store balls in a (compressed) quadtree. For i = 1, 2, . . . , n, let Gi = G≈(bi),
and let G = ⋃n

i=1 Gi denote the union of these cells. Let T be a compressed
quadtree decomposition of [0, 1]d , such that all the cells of G are cells of T .
We preprocess T to answer point location queries for the cells of G. This takes
O(n log n) time, see [12].

(B) Compute list of “large” balls intersecting each cell. For each node u of T , there
is a list of balls registered with it. Formally, register a ball bi with all the cells of
Gi . Clearly, each ball is registered with O(1) cells, and it is easy to see that each
cell has O(1) balls registered with it, since the balls are disjoint.
Next, for a cell � in T we compute a list storing B�(�), and these balls are
associated with this cell. These lists are computed in a top-down manner. To
this end, propagate from a node u its list B�(�) (which we assume is already
computed) down to its children. For a node receiving such a list, it scans it, and
keeps only the balls that intersect its cell (adding to this list the balls already
registered with this cell). For a node ν ∈ T , let Bν be this list. Since each node
only gets a constant sized list from its parent, and there are O(n) nodes, the total
time spent in the list propagation is only O(n).

(C) Build compressed quadtree on centers of balls. Let C be the set of centers of the
balls of B. Build, in O(n log n) time, a compressed quadtree TC storing C.

(D) ANN for centers of balls. Build a data structureD, for answering 2-approximate
k-nearest neighbor distances on C, the set of centers of the balls, see [14], where
k and ε are provided with the query. The data structure D, returns a distance ρ

such that, dk(q, C) ≤ ρ ≤ 2dk(q, C) The space usage of this data structure is
O(n) and the query time is O(log n).

(E) Answering approximate range searching for the centers of balls. Given a query
ball bq = b(q, x) and a parameter δ > 0, one can, using TC , report (approxi-
mately), in O(log n + 1/δd) time, the points in bq ∩ C. Specifically, the query
process computes O(1/δd) sets of points, such that their union X , has the prop-
erty that bq ∩ C ⊆ X ⊆ (1 + δ)bq ∩ C, where (1 + δ)bq is the scaling of bq by
a factor of 1 + δ around its center. Indeed, compute the set G≈

(
bq

)
, and then

using cell queries in TC compute the corresponding cells (this takes O(log n)

time). Now, descend to the relevant level of the quadtree to all the cells of the
right size, that intersect bq. Clearly, the union of points stored in their subtrees
are the desired set. This takes overall O(log n + 1/δd) time.
A similar data structure for approximate range searching is provided by Arya and
Mount [5], and our description above is provided for the sake of completeness.

Overall, it takes O(n log n) time to build this data structure.

We denote the collection of data structures above byDandwhere necessary, specific
functionality it provides, say for finding the large balls intersecting a cell, by D (B).

3.1 Approximate Range Counting Among Balls

We need the ability to answer approximate range counting queries on a set of disjoint
balls. Specifically, given a set of disjoint balls B, and a query ball b, the target is to

123

286 Algorithmica (2018) 80:279–299

compute the size of the set b ∩ B =
{
b′ ∈ B

∣
∣∣ b′ ∩ b �= ∅

}
. Let q be the center of

b and let its radius be x . Then, the set b ∩ B is precisely B(b(q, x)). To make this
query computationally fast, we allow an approximation. More precisely, we compute

a number N that lies between
∣∣∣B

(
b(q, x)

)∣∣∣ and
∣∣∣B

(
b(q, (1 + δ)x)

)∣∣∣, i.e, N lies

between the number of balls intersecting b and the number of balls intersecting a
(1 + δ) expansion of b.

Lemma 3.2 Given a compressed quadtreeT of size n, a convex set X, and a parameter
δ > 0, one can compute the set of nodes in T , that realizes G≈(X, δ) (see Definition
2.5), in O

(
log n + 1/δd

)
time. Specifically, this outputs a set XN of nodes, of size

O
(
1/δd

)
, such that their cells intersect G≈(X, δ), and their parents cell diameter is

larger than δ diam(X). Note that the cells in XN might be significantly larger if they
are leaves of T .

Proof Let G≈ = G≈(X, 1) be the grid approximation to X . Using cell queries on
the compressed quadtree, one can compute the cells of T that correspond to these
canonical cells. Specifically, for each cube � ∈ G≈(X), the query either returns a
node for which this is its cell, or it returns a compressed edge of the quadtree; that is,
two cells (one is a parent of the other), such that� is contained in of them and contains
the other. Such a cell query takes O(log n) time [12]. This returns O(1) nodes in T
such that their cells cover G≈(X).

Now, traverse down the compressed quadtree starting from these nodes and collect
all the nodes of the quadtree that are relevant. Clearly, one has to go at most O(log 1/δ)
levels down the quadtree to get these nodes, and this takes O(1/δd) time overall. ��
Lemma 3.3 Let X be any convex set in IRd , and let δ > 0 be a parameter. Using
D (B), one can compute, in O

(
log n + 1/δd

)
time, all the balls of B that intersect X,

with diameter ≥ δ diam(X).

Proof We compute the cells of the quadtree realizing G≈(X, δ) using Lemma 3.2.
Now, from each such cell (and its parent), we extract the list of large balls intersecting
it (there are O(1/δd) such nodes, and the size of each such list is O(1)). Next we
check for each such ball if it intersects X and if its diameter is at least δ diam(X). We
return the list of all such balls. ��

3.2 Answering a Query

Given a query ball bq = b(q, x), and an approximation parameter δ > 0, our purpose

is to compute a number N , such that
∣∣∣B

(
b(q, x)

)∣∣∣ ≤ N ≤
∣∣∣B

(
b(q, (1 + δ)x)

)∣∣∣.
The query algorithm works as follows:

(A) Using Lemma 3.3, compute a set X of all the balls that intersect bq and are of
radius ≥ δx/4.

(B) Using D (C), see Data-structure 3.1, compute the O(1/δd) cells of TC that corre-
spond toG≈

(
bq(1 + δ/4), δ/4

)
. Let N ′ be the total number of points in C stored

in these nodes.

123

Algorithmica (2018) 80:279–299 287

(C) The quantity N ′ + |X | is almost the desired quantity, except that we might be
counting some of the balls of X twice. To this end, let N ′′ be the number of balls
in X with centers in G≈

(
bq(1 + δ/4), δ/4

)

(D) Let N ← N ′ + |X | − N ′′. Return N .

We only sketch the proof, as the proof is straightforward. Indeed, the union
of the cells of G≈

(
bq(1 + δ/4), δ/4

)
contains b(q, x(1 + δ/4)) and is contained

in b(q, (1 + δ)x). All the balls with radius smaller than δx/4 and intersecting
b(q, x) have their centers in cells ofG≈

(
bq(1 + δ/4), δ/4

)
, and their number is com-

puted correctly. Similarly, the “large” balls, i.e., those with radius at least δx/4, are
computed correctly. The last stage ensures we do not over-count by 1 each large
ball that also has its center in G≈

(
bq(1 + δ/4), δ/4

)
. It is also easy to check that

|B(b(q, x))| ≤ N ≤ |B(b(q, x(1 + δ)))|. We now analyze the running time. Com-
puting cells of G≈

(
bq(1 + δ/4), δ/4

)
takes O(log n + 1/δd) time. Computing the

“large” balls takes O
(
log n + 1/δd

)
time. Checking for each large ball if it is already

counted by the “small” balls takes O(1/δd) time overall by using a grid. We denote
the above query algorithm by rangeCount (q, x, δ).

The above implies the following.

Lemma 3.4 A given n-element set B of disjoint balls in IRd can be preprocessed in
O(n log n) time into a data structure of size O(n), such that given a query ball b(q, x)
and approximation parameter δ > 0, the query algorithm rangeCount (q, x, δ)
returns, in O(log n + 1/δd) time, a number N satisfying |B(b(q, x))| ≤ N ≤
|B(b(q, (1 + δ)x))|.

4 Answering k-ANN Queries Among Balls

Given a set B of n disjoint balls, a query point q, and integer k with 1 ≤ k ≤ n, in this
section we will show how to compute a constant factor approximation to dk(q,B).
We also show how to refine the approximation factor to be 1± ε. While B is available
for preprocessing, both k and ε need only be provided during query time.

4.1 Computing a Constant Factor Approximation to dk(q,B)

Lemma 4.1 Let B be a set of disjoint balls in IRd , and consider a ball b = b(q, r)
that intersects at least k balls of B. Then, among the k nearest neighbors of q from
B, there are at least max(0, k − cd) balls of radius at most r . The centers of all these
balls are in b(q, 2r).

Proof Consider the k nearest neighbors of q from B. Any such ball that has its center
outside b(q, 2r), has radius at least r , since it intersects b = b(q, r). Since the number
of balls that are of radius at least r and intersect b is bounded by cd , there must be
at least max(0, k − cd) balls among the k nearest neighbors, each having radius less
than r . Clearly, the centers of these balls are in b(q, 2r). ��

123

288 Algorithmica (2018) 80:279–299

Corollary 4.2 Let γ = min(k, cd). Then, dk−γ (q, C) /2 ≤ dk(q,B).

The basic observation is that we only need a rough approximation to the right
radius, as using approximate range counting (i.e., Lemma 3.4), one can improve the
approximation.

We first provide some intuition how we compute dk(q,B) approximately. For 1 ≤
i ≤ n, let xi denote the distance of q to the i th closest center in C. Let dk = dk(q,B).
Let i be the minimum index such that dk ≤ xi . Since dk ≤ xk , it must be that i ≤ k.
There are several possibilities:

(A) If i ≤ k − cd (i.e., dk ≤ xk−cd) then, by Lemma 4.1, the ball b(q, 2dk) contains
at least k − cd centers. As such, dk ≤ xk−cd ≤ 2dk , and xk−cd is a good
approximation to dk .

(B) If i > k − cd , and dk ≤ 4xi−1, then xi−1 is the desired approximation, since we
have xi−1 < dk ≤ 4xi−1.

(C) If i > k − cd , and dk ≥ xi/4, then xi is the desired approximation, since we
have xi/4 ≤ dk ≤ xi .

(D) Otherwise, it must be that i > k − cd , and 4xi−1 < dk < xi/4. Now, the
centers of (i − 1) balls lie within distance xi−1 to q but no centers lie in the
range of distances (xi−1, xi). Let b j = b(c j , r j) be the j th closest ball to q, for
j = 1, . . . , k. All the balls b1, . . . , bk intersect b(q, dk) but on the other hand,
only (i − 1) have centers within this ball, since xi > 4dk .
Thus, at least k − i + 1 balls have centers further than xi but they must come
as close as dk to q. In other words, their radius must be at least 3xi/4 and they
all intersect the ball b(q, xi/4). We can easily compute these at most cd + 1 big
balls using D (B). The kth closest ball is also such a ball, and it turns out we can
then get a good approximation to its distance from the list of balls computed.

In the preprocessing, we build D in O(n log n) time.
To describe our algorithm precisely, first we introduce some notation. For x ≥

0, let N (x) denote the number of balls in B that intersect b(q, x); that is N (x) =∣∣∣
{
b ∈ B

∣∣∣ b ∩ b(q, x) �= ∅
}∣∣∣, and C(x) denote the number of centers in b(q, x), i.e.,

C(x) = |C ∩ b(q, x)|. Also, let #(x) denote the 2-approximation to the number of balls
of B intersecting b(q, x), as computed by Lemma 3.4; that is N (x) ≤ #(x) ≤ N (2x).

We nowprovide our algorithm to answer a query.We are given a query pointq ∈ IRd

and a number k.
Using D (D), compute a 2-approximation for the smallest ball containing k − i

centers of B, for i = 0, . . . , γ , where γ = min(k, cd), and let rk−i be this radius.
That is, for i = 0, . . . , γ , we have C(rk−i/2) ≤ k − i ≤ C(rk−i). For i = 0, . . . , γ ,
compute Nk−i = #(rk−i) (Lemma 3.4).

Let α be the maximum index such that Nk−α ≥ k. Clearly, α is well defined as
Nk ≥ k. The algorithm is executed in the following steps.

(A) If α = γ we return rk−γ .
(B) If #(rk−α/8) < k, we return rk−α .
(C) Otherwise, compute all the balls of B that are of radius at least rk−α/4 and

intersect the ball b(q, rk−α/4), using D (B) (see Data-structure 3.1). For each

123

Algorithmica (2018) 80:279–299 289

such ball b, compute the distance ζ = d(q, b) of q to it. Find the minimum ζ

such that #(2ζ) ≥ k, and return 2ζ .

Lemma 4.3 Given a set of n disjoint balls B in IRd , one can preprocess them in
O(n log n) time into a data structure of size O(n), such that given a query point
q ∈ IRd , and a number k, one can compute, in O(log n) time, a number x, such that,
x/8 ≤ dk(q,B) ≤ 2x.

Proof The data structure and query algorithm are described above. We next prove
correctness, by showing in order that for each of (A)–(C), if the algorithm returned in
that step, its output satisfies the desired properties.

To prove that (A) returns the correct answer observe that under the given assump-
tions,

rk−γ /8 ≤ dk−γ (q, C) /4 ≤ dk(q,B) /2 ≤ rk−γ ,

where the first inequality follows as rk−γ is a valid 2 approximation to dk−γ (q, C),
the second inequality follows from Corollary 4.2, and the third inequality follows
as N (2rk−γ) ≥ #

(
rk−γ

) ≥ k, while dk(q,B) is the smallest number x such that
N (x) ≥ k.

For (B) observe that we have that N (rk−α/8) ≤ #(rk−α/8) < k and as suchwe have
rk−α/8 < dk(q,B). But by assumption, #(rk−α) ≥ k. Thus, N (2rk−α) ≥ #(rk−α) ≥
k, and dk(q,B) ≤ 2rk−α .

For (C), first observe that α < γ as the algorithm did not return in (A). Since α is
the maximum index such that #(rk−α) ≥ k. Namely, N (rk−α−1) ≤ #(rk−α−1) < k
implying, rk−α−1 < dk(q,B). Since the algorithm did not return in (B) we have that,
#(rk−α/8) ≥ k and therefore N (rk−α/4) ≥ #(rk−α/8) ≥ k, implying dk(q,B) ≤
rk−α/4. As such, rk−α−1 < rk−α/4. Now the ball b(q, rk−α−1) contains at least
k − α − 1 centers from C, but it does not contain k − α centers. Indeed, otherwise
we would have dk−α(q, C) ≤ rk−α−1 and rk−α ≤ 2dk−α(q, C) ≤ 2rk−α−1. On the
other hand rk−α−1 < dk(q,B) ≤ rk−α/4, which would be a contradiction. Similarly,
there is no center of any ball whose distance from q is in the range (rk−α−1, rk−α/2)
otherwise we would have that dk−α(q, C) < rk−α/2 and this would mean that rk−α ≤
2dk−α(q, C) < rk−α , a contradiction. Now, the center of the kth closest ball is clearly
more than rk−α−1 away from q, since N (rk−α−1) < k. As such its distance from q is
at least rk−α/2. Since dk(q,B) ≤ rk−α/4 it follows that the kth closest ball intersects
b(q, rk−α/4) and moreover, its radius is at least rk−α/4. Since we compute all such
balls in (C), we do encounter the kth closest ball. Observe that the distance dk(q,B)

to this ball satisfies #(2dk(q,B)) ≥ N (dk(q,B)) = k. Thus we return 2ζ for some
ζ ≤ dk(q,B). Moreover, in this case ζ satisfies, N (4ζ) ≥ #(2ζ) ≥ k. We conclude
that 4ζ ≥ dk(q,B). This leads to, (2ζ)/2 ≤ dk(q,B) ≤ 2(2ζ).

As for the running time, notice that we need to use the algorithm of Lemma 3.4
O(1) times, each iteration taking time O(log n). After this we need another O(log n)

time for the invocation of the algorithm in Lemma 3.3. As such, the total query time
is O(log n). ��

We now show how to refine the approximation.

123

290 Algorithmica (2018) 80:279–299

Lemma 4.4 Given a set B of n balls in IRd , it can be preprocessed in O(n log n) time
into a data structure of size O(n), such that, given a query pointq, numbers k, x, and an
approximation parameter ε > 0 with x/8 ≤ dk(q,B) ≤ 2x, one can find a ball b ∈ B
satisfying (1 − ε)dk(q,B) ≤ d(q, b) ≤ (1 + ε)dk(q,B) in O

(
log n + 1/εd

)
time.

Proof We are going to use the same data structure as Lemma 3.4, for the query ball
bq = b(q, 2x(1 + ε)). We compute all large balls of B that intersect bq. Here a large
ball is a ball of radius > xε, and a ball of radius at most xε is considered to be a small
ball. Consider the O(1/εd) grid cells ofG≈

(
bq, ε/16

)
. In O(1/εd) timewe can record

the number of centers of large balls inside any such cell. Clearly, any small ball that
intersects b(q, 2x) has its center in some cell of G≈

(
bq, ε/16

)
. We use the quadtree

TC to find out exactly the number of centers, N�, of small balls in each cell � of
G≈

(
bq, ε/16

)
, by finding the total number of centers using TC , and decreasing this by

the count of centers of large balls in that cell. This can be done in time O(log n+1/εd).
We pick an arbitrary point in �, and assign it weight N�, and treat it as representing
all the small balls in this grid cell – clearly, this introduces an error of size ≤ εx in the
distance of such a ball from q, and as such we can ignore it in our argument. In the
end of this snapping process, we have O(1/εd) weighted points, and O(1/εd) large
balls. We know the distance of the query point from each one of these points/balls.
This results in O(1/εd) weighted distances, and we want the smallest �, such that the
total weight of the distances ≤ � is at least k. This can be done by weighted median
selection in linear time in the number of distances, which is O(1/εd). Once we get the
required point, we can output any ball b corresponding to the point. Clearly, b satisfies
the required conditions. ��

4.2 The Result

Theorem 4.5 Given a set of n disjoint balls B in IRd , one can preprocess them in time
O(n log n) into a data structure of size O(n), such that given a query point q ∈ IRd ,
a number k with 1 ≤ k ≤ n and ε > 0, one can find in time O

(
log n + ε−d

)
a ball

b ∈ B, such that, (1 − ε)dk(q,B) ≤ d(q, b) ≤ (1 + ε)dk(q,B).

5 Quorum Clustering

For an introduction to quorum clustering on points see [8,14]. Here we compute a
similar clustering on balls, that we refer to as quorum clustering on balls. Later, in
Sect. 6 we use this to get a sublinear space data structure for the (k, ε)-ANN problem.
The following provides both a definition and a computational procedure for computing
a quorum clustering on balls. We are given a set B of n disjoint balls in IRd , and
we describe how to compute quorum clustering for them quickly. We assume that
n ≥ k > 2cd . Let m = �n/(k − cd)�.

Let ξ be some constant. Let B0 = ∅. For i = 1, . . . ,m, let Ri = B \ (
⋃i−1

j=0 B j),
and let Λi = b(wi , xi) be any ball that satisfies,

(A) Λi contains min(k − cd , |Ri |) balls of Ri completely inside it,
(B) Λi intersects at least k balls of B, and

123

Algorithmica (2018) 80:279–299 291

(C) the radius of Λi is at most ξ times the radius of the smallest ball satisfying the
above conditions.

Next, we remove any min(k − cd , |Ri |) balls that are contained in Λi from Ri to
get the set Ri+1. We call the removed set of balls Bi . We repeat this process till all
balls are extracted, thereby taking m steps overall. Notice that at each step i , we only
require thatΛi intersects k balls ofB (and notRi), but that it must contain k−cd balls
from Ri . Also, the last quorum ball may contain fewer balls. The balls Λ1, . . . , Λm ,
are the resulting ξ -approximate quorum clustering.

5.1 Computing an Approximate Quorum Clustering

Definition 5.1 For a set P of n points in IRd , and an integer �, with 1 ≤ � ≤ n, let
ropt(P, �) denote the radius of the smallest ball which contains at least � points from
P, i.e., ropt(P, �) = minq∈IRd d�(q,P).

Similarly, for a set R of n balls in IRd , and an integer �, with 1 ≤ � ≤ n, let
Ropt(R, �) denote the radius of the smallest ball which completely contains at least �
balls fromR.

Lemma 5.2 ([14]) Given a set P of n points in IRd and an integer �, with 1 ≤
� ≤ n, one can compute, in O(n log n) time, a sequence of �n/�� balls, o1 =
b(u1, ψ1), . . . ,o�n/�� = b(u�n/��, ψ�n/��), such that, for all i, 1 ≤ i ≤ �n/��, we
have

(A) For every ball oi , there is an associated subset Pi of min(�, |Qi |) points of
Qi = P \ (Pi−1 ∪ . . . ∪ P0) that it covers, where P0 = ∅.

(B) The ball oi = b(ui , ψi) is a 2-approximation to the smallest ball covering
min(�, |Qi |) points in Qi . That is ψi/2 ≤ ropt(Qi ,min(�, |Qi |)) ≤ ψi .

The algorithm to construct an approximate quorum clustering is as follows. First,
we use the algorithm of Lemma 5.2 with the set of points P = C, and � = k − cd to
get a list ofm = �n/(k−cd)� balls o1 = b(u1, ψ1), . . . ,om = b(um, ψm), satisfying
the conditions of Lemma 5.2. Next we use the algorithm of Theorem 4.5, to compute
(k, ε)-ANN distances from the centers u1, . . . ,um , to the balls of B.

Thus, we get numbers γi satisfying, (1/2)dk(ui ,B) ≤ γi ≤ (3/2)dk(ui ,B). Let
ζi = max(2γi , 3ψi), for i = 1, . . . ,m. Now, if (k − cd) | n we sort the numbers
ζ1, . . . , ζm . Suppose the sorted order is the permutationπ of {1, . . . ,m}.We output the
ballsΛi = b(uπ(i), ζπ(i)), for i = 1, . . . ,m as the approximate quorum clustering. On
the other hand, if (k−cd) � | n, we sort the numbers ζ1, . . . , ζm−1, and suppose the sorted
order is the permutationπ of {1, . . . ,m − 1}.We output the ballsΛi = b(uπ(i), ζπ(i)),
for i = 1, . . . ,m − 1, followed by b(um, ζm) as the approximate quorum clustering.
Thus, for the case (k − cd) � | n, this ensures that except for the last cluster b(um, ζm),
the others each contain at least k − cd balls of B inside them.

123

292 Algorithmica (2018) 80:279–299

5.2 Correctness

Lemma 5.3 LetB = {b1, . . . , bn} be a set of n disjoint balls, where bi = b(ci , ri), for
i = 1, . . . , n. Let C = {c1, . . . , cn} be the set of centers of these balls. Let b = b(c, r)
be any ball that contains at least � centers from C, for some 2 ≤ � ≤ n. Then b(c, 3r)
contains the � balls that correspond to those centers.

Proof Without loss of generality suppose b contains the � centers c1, . . . , c�, from C.
Now consider any index i with 1 ≤ i ≤ �, and consider any j �= i , which exists as
� ≥ 2 by assumption. Since b(c, r) contains both ci and c j , 2r ≥ ∥∥ci − c j

∥∥ by the
triangle inequality. On the other hand, as the balls bi and b j are disjoint we have that∥∥ci − c j

∥∥ ≥ ri + r j ≥ ri . It follows that ri ≤ 2r for all 1 ≤ i ≤ �. As such the ball
b(c, 3r) must contain the entire ball bi , and thus it contains all the � balls b1, . . . , b�,
corresponding to the centers. ��
Lemma 5.4 Let B = {b1 = b(c1, r1), . . . , bn = b(cn, rn)} be a set of n disjoint balls
in IRd . Let C = {c1, . . . , cn} be the corresponding set of centers, and let � be an integer
with 2 ≤ � ≤ n. Then, ropt(C, �) ≤ Ropt(B, �) ≤ 3ropt(C, �).

Proof The first inequality follows since the ball realizing the optimal covering of �

balls, clearly contains their centers as well, and therefore � points from C. To see the
second inequality, consider the ball b = b(c, r) realizing ropt(C, �), and use Lemma
5.3 on it. This implies Ropt(B, �) ≤ 3ropt(C, �). ��
Lemma 5.5 The balls Λ1, . . . Λm computed above are a 12-approximate quorum
clustering of B.

Proof The proof in the case (k − cd) | n is similar and easier than the proof in the
case (k − cd) � | n. As such we only prove this for the case (k − cd) � | n.

Consider the balls o1 = b(u1, ψ1), . . . ,om = b(um, ψm) computed by the algo-
rithm of Lemma 5.2. Suppose Ci , for i = 1, . . . ,m, is the set of centers assigned to
the balls bi . That is, C1, . . . , Cm , form a disjoint decomposition of C, where each of
them except for the last one, is of size k − cd .

For i = 1, . . . ,m, let Bi denote the set of balls corresponding to the centers in Ci .
Now, while constructing the approximate quorum clusters we are going to assign the
set of balls Bπ(i) for i = 1, . . . ,m − 1, to Λi , and the balls of Bm to Λm .

We define π(0) = 0 and B0 = ∅. For i = 1, . . . ,m, let Ri = B \ (
⋃i−1

j=0 Bπ(j))

denote the set of remaining balls to choose from after i − 1 of the quorum clusters
have been output. We show that the required guarantees hold for the quorum clusters.
Fix an i with 0 ≤ i ≤ m − 1, and suppose that the clusters upto i have been output
and satisfy the required properties, and now we need to output the (i + 1)-th cluster.
The balls of

⋃i
j=0 Bπ(j) have been used up, and the balls in Ri+1 remain unused

so far. Consider an optimal ball, i.e., a ball b = b(c, r) that contains completely
min(k − cd , |Ri+1|) balls amongRi+1, intersects k balls from B, and is the smallest
such possible one. Fix somemin(k−cd , |Ri+1|) balls fromRi+1 that this optimal ball
contains. Consider the sets of centers C′ of these balls. The quorum clusters oπ(j) for
j = i + 1, . . . ,m − 1, and om , contain all these centers, by construction. Out of these

123

Algorithmica (2018) 80:279–299 293

indices, i.e., out of the indices {π(i + 1), . . . , π(m − 1),m}, let p be the minimum
index such that op contains one of these centers. Notice that if i + 1 < m, then p
is one of {π(i + 1), . . . , π(m − 1)} because om contains fewer than k − cd centers.
Now, when op was constructed, i.e., at the pth iteration of the algorithm of Lemma
5.2, all the centers from C′ were available. Since the optimal ball b = b(c, r) contains
min(k − cd , |Ri+1|) available centers too, it follows that ψp ≤ 2r since Lemma 5.2
guarantees this. Moreover, by the Lipschitz property, see Observation 2.2, it follows
that dk

(
up,B

) ≤ dk(c,B) + ∥∥up − c
∥∥ ≤ r + (r + ψp) ≤ 4r, where the second last

inequality follows as the balls b = b(c, r) and the ball op = b(up, ψp) intersect.
Therefore, for the index p we have that, 2γp ≤ 3dk

(
up,B

) ≤ 12r, and also that
3ψp ≤ 6r. As such ζp = max(2γp, 3ψp) ≤ 12r. For i + 1 < m, the index π(i + 1)
minimizes this quantity among the indices {π(i + 1), . . . , π(m − 1)} (as we took the
sorted order), as such it follows that ζi+1 ≤ 12r. It is also easy to see that the inequality
holds true if i + 1 = m.

The proof is completed by showing that the ball Λi+1 contains the balls assigned
to it. For the remainder of the proof, let p denote π(i + 1) if i + 1 < m, and m
otherwise. Since k > 2cd it follows that k − cd ≥ 2. Thus, if |Ri+1| ≥ 2 then
min(k − cd , |Ri+1|) ≥ 2 and therefore, by Lemma 5.3, b(up, 3ψp) contains the balls
of Bp. On the other hand, suppose |Ri+1| = 1. Since k − cd ≥ 2 this can only
happen when i + 1 = m. In this case, p = m as well, and ψm = 0. However, since
k ≥ 2, the number dk(um,B) is at least as large as the radius of the only ball b inRm

since all balls are disjoint. But then, dk(um,B) ≤ 2γm and so the ball Λm of radius
ζm = max(2γm, 3ψm) contains b. ��

Lemma 5.6 Given a setB of n disjoint balls in IRd , and a number k with 2cd < k ≤ n,
in O(n log n) time, one can output a sequence of m = �n/(k−cd)� ballsΛ1, . . . , Λm,
such that the following is true for all 1 ≤ i ≤ m.

(A) For each ball Λi , there is an associated subset Bi of min(k − cd , |Ri |) balls of
Ri = B \ (B0 ∪ B1 ∪ . . . ∪ Bi−1), that it completely covers, where B0 = ∅.

(B) The ball Λi intersects at least k balls from B.
(C) The radius of the ball Λi is at most 12 times that of the smallest ball covering

min(k − cd , |Ri |) balls of Ri completely, and intersecting k balls of B.

Proof The correctness was proved in Lemma 5.5. To see the time bound is also easy
as the computation time is dominated by the time in Lemma 5.2, which is O(n log n).

��

6 Construction of the Sublinear Space Data Structure for (k, ε)- ANN

In this section we show that if both k and ε are provided at the time of preprocessing,
we can compute an approximate Voronoi diagram for approximating the kth-nearest
ball, that takes O(n/k) space, thus improving upon the results of Sect. 4. We assume
k > 2cd without loss of generality, and we let m = �n/(k − cd)� = O(n/k). Here k
and ε are prespecified in advance.

123

294 Algorithmica (2018) 80:279–299

6.1 Preliminaries

The following notation was introduced in [14]. A ball b of radius r in IRd , centered at
a point c, can be interpreted as a point in IRd+1, denoted by b′ = (c, r). For a regular
point p ∈ IRd , its corresponding image under this transformation is the mapped point
p′ = (p, 0) ∈ IRd+1. Namely, we view it as a ball of radius 0 and use the mapping
defined on balls. Given a point u =(u1, . . . ,ud) ∈ IRd its Euclidean norm is denoted
by ‖u‖. A point u = (u1,u2, . . . ,ud+1) ∈ IRd+1 can be interpreted as being in the
product metric of IRd × IR and endowed with the product metric norm

‖u‖⊕ =
√
u21 + · · · + u2d + |ud+1| .

It can be verified that the above defines a norm, and for any u ∈ IRd+1 we have
‖u‖ ≤ ‖u‖⊕ ≤ √

2 ‖u‖.

6.2 Construction

The input is a set B of n disjoint balls in IRd , and parameters k and ε.
The construction of the data structure is similar to the construction of the kth-nearest

neighbor data structure from the authors’ paper [14]. We compute, using Lemma 5.6,
a ξ -approximate quorum clustering of B with m = �n/(k − cd)� = O(n/k) balls,
� = {Λ1 = b(w1, x1), . . . , Λm = b(wm, xm)}, where ξ ≤ 12. The algorithm then
continues as follows:

(A) Compute an exponential grid around each quorum cluster. Specifically, let

I =
m⋃

i=1

�log(32ξ/ε)�⋃

j=0

G≈
(
b(wi , 2

jxi),
ε

ζ1

)
(6.1)

be the set of grid cells covering the quorum clusters and their immediate environ,
where ζ1 is a sufficiently large constant (say, ζ1 = 256ξ).

(B) Intuitively, I takes care of the region of space immediately next to a quorum clus-
ter2. For the other regions of space,we can apply a construction of an approximate
Voronoi diagram for the centers of the clusters (the details are somewhat more
involved). To this end, lift the quorum clusters into points in IRd+1, as follows

�′ = {
Λ′

1, . . . , Λ
′
m

}
,

where Λ′
i = (wi , xi) ∈ IRd+1, for i = 1, . . . ,m. Note that all points in �′

belong to U ′ = [0, 1]d+1 by Assumption 2.3. Now build a (1 + ε/8)-AVD for
�′ using the algorithm of Arya andMalamatos [2], for distances specified by the
‖·‖⊕ norm. The AVD construction provides a list of canonical cubes covering
[0, 1]d+1 such that in the smallest cube containing the query point, the associated

2 That is, intuitively, if the query point falls into one of the grid cells of I, we can answer a query in constant
time.

123

Algorithmica (2018) 80:279–299 295

point of�′, is a (1+ε/8)-ANN to the query point. (Note that these cubes are not
necessarily disjoint. In particular, the smallest cube containing the query point q
is the one that determines the assigned approximate nearest neighbor to q.)
Clip this collection of cubes to the hyperplane xd+1 = 0 (i.e., throw away cubes
that do not have a face on this hyperplane). For a cube� in this collection, denote
by nn′(�), the point of �′ assigned to it. Let S be this resulting set of canonical
d-dimensional cubes.

(C) LetW be the space decomposition resulting from overlaying the two collection
of cubes, i.e. I and S. Formally, we compute a compressed quadtree T that has
all the canonical cubes of I andS as nodes, andW is the resulting decomposition
of space into cells. One can overlay two compressed quadtrees representing the
two sets in linear time [10,12]. Here, a cell associated with a leaf is a canonical
cube, and a cell associated with a compressed node is the set difference of two
canonical cubes. Each node in this compressed quadtree contains two pointers
– to the smallest cube of I, and to the smallest cube of S, that contains it. This
information can be computed by doing a BFS on the tree.
For each cell � ∈ W we store the following.

(I) An arbitrary representative point �rep ∈ �.
(II) The point nn′(�) ∈ �′ that is associated with the smallest cell of S that

contains this cell. We also store an arbitrary ball, b(�) ∈ B, that is one of the
balls completely inside the cluster specified by nn′(�) – we assume we stored
such a ball inside each quorum cluster, when it was computed.

(III) A number βk
(
�rep

)
that satisfies dk

(
�rep,B

) ≤ βk
(
�rep

) ≤ (1 +
ε/4)dk

(
�rep,B

)
, and a ball nnk

(
�rep

) ∈ B that realizes this distance. In
order to compute βk

(
�rep

)
and nnk

(
�rep

)
use the data structure of Sect. 4, see

Theorem 4.5.

6.3 Answering a Query

Given a query point q, compute the leaf cell (equivalently the smallest cell) inW that
contains q by performing a point-location query in the compressed quadtree T . Let
� be this cell. Let,

λ∗ = min
(∥∥q′ − nn′(�)

∥∥⊕ , βk
(
�rep

) + ∥∥q − �rep
∥∥
)

. (6.2)

If diam (�) ≤ (ε/8)λ∗ we return nnk
(
�rep

)
as the approximate kth-nearest neighbor,

else we return b(�).

6.4 Correctness

Lemma 6.1 The number λ∗ = min
(∥∥q′ − nn′(�)

∥∥⊕ , βk
(
�rep

) + ∥∥q − �rep
∥∥
)
sat-

isfies, dk(q,B) ≤ λ∗.

Proof This follows by the Lipschitz property, see Observation 2.2. ��

123

296 Algorithmica (2018) 80:279–299

Lemma 6.2 Let � ∈ W be any cell containing q. If diam (�) ≤ εdk(q,B) /4, then
nnk

(
�rep

)
is a valid (1 ± ε)-approximate kth-nearest neighbor of q.

Proof For the point �rep, by Observation 2.2, we have that

dk
(
�rep,B

) ≤ dk(q,B) + ∥
∥q − �rep

∥
∥ ≤ dk(q,B) + diam (�)

≤ (1 + ε/4)dk(q,B) .

Therefore, the ball nnk
(
�rep

)
satisfies

d
(
�rep, nnk

(
�rep

)) ≤ (1 + ε/4)dk
(
�rep,B

) ≤ (1 + ε/4)2dk(q,B)

≤ (1 + 3ε/4)dk(q,B) .

As such we have that

d
(
q, nnk

(
�rep

)) ≤ d
(
�rep, nnk

(
�rep

)) + ∥∥q − �rep
∥∥

≤ ((1 + 3ε/4) + ε/4) dk(q,B) ≤ (1 + ε)dk(q,B) .

Similarly, using the Lipschitz property, we can argue that, d
(
q, nnk

(
�rep

)) ≥
(1 − ε)dk(q,B), and therefore we have, (1 − ε)dk(q,B) ≤ d

(
q, nnk

(
�rep

)) ≤ (1 +
ε)dk(q,B), and the required guarantees are satisfied. ��
Lemma 6.3 For any point q ∈ IRd there is a quorum ball Λi = b(wi , xi) such that

(A) Λi intersects b(q,dk(q,B)),
(B) xi ≤ 3ξdk(q,B), and
(C) ‖q − wi‖ ≤ 4ξdk(q,B).

Proof By assumption, k > 2cd , and by Lemma 4.1 among the k nearest neighbor
of q, there are k − cd balls of radius at most dk(q,B). Let B′ denote the set of
these balls. Among the indices 1, . . . ,m, let i be the minimum index such that one
of these k − cd balls is completely covered by the quorum cluster Λi = b(wi , xi).
Since b(q,dk(q,B)) intersects the ball while Λi completely contains it, clearly Λi

intersects b(q,dk(q,B)). Now consider the time Λi was constructed, i.e, the i th
iteration of the quorum clustering algorithm. At this time, by assumption, all of B′
was available, i.e., none of its balls were assigned to earlier quorum clusters. The ball
b(q, 3dk(q,B)) contains k − cd unused balls and touches k balls from B, as such
the smallest such ball had radius at most 3dk(q,B). By the guarantee on quorum
clustering, xi ≤ 3ξdk(q,B). As for the last part, as the balls b(q,dk(q,B)) and
Λi = b(wi , xi) intersect and xi ≤ 3ξdk(q,B), we have by the triangle inequality that
‖q − wi‖ ≤ (1 + 3ξ)dk(q,B) ≤ 4ξdk(q,B), as ξ ≥ 1. ��
Definition 6.4 For a given query point, any quorum cluster that satisfies the conditions
of Lemma 6.3 is defined to be an anchor cluster. By Lemma 6.3 an anchor cluster
always exists.

123

Algorithmica (2018) 80:279–299 297

Lemma 6.5 Suppose that among the quorum cluster ballsΛ1, . . . , Λm, there is some
ball Λi = b(wi , xi) which satisfies that ‖q − wi‖ ≤ 8ξdk(q,B) and εdk(q,B) /4 ≤
xi ≤ 8ξdk(q,B) then the output of the algorithm is correct.

Proof We have

32ξxi
ε

≥ 32ξ(εdk(q,B) /4)

ε
= 8ξdk(q,B) ≥ ‖q − wi‖ .

Thus, by construction, the expanded environ of the quorum cluster b(wi , xi) contains
the query point, see Eq. (6.1)p17. Let j be the smallest non-negative integer such that
2 jxi ≥ d(q,wi). We have that, 2 jxi ≤ max(xi , 2d(q,wi)). As such, if � is the
smallest cell inW containing the query point q, then

diam (�) ≤ ε

ζ1
2 j+1xi ≤ ε

ζ1
· max(2xi , 4d(q,wi))

≤ ε

ζ1
· max

(
16ξdk(q,B) , 32ξdk(q,B)

)
≤ ε

8
dk(q,B) ,

by Eq. (6.1)p17, and if ζ1 ≥ 256ξ . Now, by Lemma 6.1we have that λ∗ ≥ dk(q,B). As
such, diam (�) ≤ (ε/8)λ∗. Therefore, the algorithm returns nnk

(
�rep

)
as the (1± ε)-

approximate kth-nearest neighbor, but then by Lemma 6.2 it is a correct answer. ��
Lemma 6.6 The query algorithm always outputs a correct approximate answer, i.e.,
the output ball b satisfies (1 − ε)dk(q,B) ≤ d(q, b) ≤ (1 + ε)dk(q,B).

Proof Suppose that among the quorum cluster balls Λ1 = b(w1, x1), . . . , Λm =
b(wm, xm), there is some ball Λi such that we have, ‖q − wi‖ ≤ 8ξdk(q,B) and
(ε/4)dk(q,B) ≤ xi ≤ 8ξdk(q,B), then by Lemma 6.5 the algorithm returns a
valid approximate answer. Assume this condition is not satisfied. Let the anchor
cluster be Λ = b(w, x). Since the anchor cluster satisfies ‖q − w‖ ≤ 4ξdk(q,B)

and x ≤ 3ξdk(q,B), it must be the case that, x < (ε/4)dk(q,B). Since the
anchor cluster intersects b(q,dk(q,B)), we have that ‖q − w‖ ≤ (1+ ε/4)dk(q,B).
Thus,

∥∥q′ − Λ′∥∥⊕ = ‖q − w‖ + x ≤ (1 + ε/2)dk(q,B). Let � be the small-
est cell in which q is located. Now consider the point nn′(�) ∈ �′. Suppose it
corresponds to the cluster Λ j , i.e., Λ′

j = nn′(�). Since nn′(�) is a (1 + ε/8)-

ANN to q among the points of �′,
∥∥q′ − nn′(�)

∥∥⊕ ≤ (1 + ε/8)
∥∥q′ − Λ′∥∥⊕ ≤

(1 + ε/8)(1 + ε/2)dk(q,B) ≤ (1 + ε)dk(q,B) ≤ 2dk(q,B) ≤ 8ξdk(q,B). It
follows that,

∥∥q − w j
∥∥ ≤ 8ξdk(q,B), and x j ≤ 8ξdk(q,B). By our assumption,

it must be the case that, x j < (ε/4)dk(q,B). Now, there are two cases. Suppose
that, diam (�) ≤ (ε/8)λ∗. Then, since we have λ∗ ≤ ∥

∥q′ − nn′(�)
∥
∥⊕. Namely,

λ∗ ≤ 2dk(q,B). As such, diam (�) ≤ (ε/4)dk(q,B). In this casewe return nnk
(
�rep

)

by the algorithm, but the result is correct by Lemma 6.2. On the other hand, if we return
b(�), it is easy to see that d(q,b(�)) ≤ ∥∥q − w j

∥∥ + x j ≤ (1 + ε)dk(q,B). Also,
as b(�) lies completely inside Λ j it follows by Observation 2.1, that d(q,b(�)) ≥
d
(
q,Λ j

) ≥ ∥∥q − w j
∥∥−x j ≥ (

∥∥q − w j
∥∥+x j)−2x j ≥ dk(q,B)−(ε/2)dk(q,B) ≥

(1 − ε/2)dk(q,B), where the second last inequality follows by Lemma 6.1. ��

123

298 Algorithmica (2018) 80:279–299

6.5 The Result

Theorem 6.7 Given a set B of n disjoint balls in IRd , a number k, with 1 ≤ k ≤
n, and ε ∈ (0, 1), one can preprocess B, in O

(
n log n + n

k
Cε log n + n

k
C ′

ε

)
time,

where Cε = O
(
ε−d log ε−1

)
and C ′

ε = O
(
ε−2d log ε−1

)
. The space used by the data

structure is O(Cεn/k). Given a query point q, this data structure outputs a ball b ∈ B
in O

(
log

n

kε

)
time, such that (1 − ε)dk(q,B) ≤ d(q, b) ≤ (1 + ε)dk(q,B).

Proof If k ≤ 2cd then Theorem 4.5 provides the desired result. For k > 2cd , the
correctness was proved in Lemma 6.6. We only need to bound the construction time
and space as well as the query time. Computing the quorum clustering takes time

O(n log n) by Lemma 5.6. Observe that |I| = O
(

n
kεd

log 1
ε

)
. From the construction

of Arya and Malamatos [2], we have |S| = O
(

n
kεd

log 1
ε

)
(note, that since we clip

the construction to a hyperplane, we get 1/εd in the bound and not 1/εd+1). A careful

implementation of this stage takes time O
(
n log n + |W|

(
log n + 1

εd

))
. Overlaying

the two compressed quadtrees representing them takes linear time in their size, that is
O(|I| + |S|).

Themost expensive step is to perform the (1±ε/4)-approximate kth-nearest neigh-
bor query for each cell in the resulting decomposition ofW , seeEq. 6.2 (i.e., computing
βk

(
�rep

)
for each cell � ∈ W). Using the data structure of Sect. 4 (see Theorem 4.5)

each query takes O
(
log n + 1/εd

)
time.

O

(
n log n + |W|

(
log n + 1

εd

))
= O

(
n log n + n

kεd
log

1

ε
log n + n

kε2d
log

1

ε

)

time, and this bounds the overall construction time.
The query algorithm is a point location query followed by anO(1) time computation

and takes time O
(
log

(n
kε

))
. ��

Note that the space decomposition generated by Theorem 6.7 can be interpreted
as a space decomposition of complexity O(Cεn/k), where every cell has two input
balls associated with it, which are the candidates to be the desired (k, ε)-ANN. That
is, Theorem 6.7 computes a (k.ε)-AVD of the input balls.

7 Conclusions

In this paper, we presented a generalization of the usual (1 ± ε)-approximate kth-
nearest neighbor problem in IRd , where the input are balls of arbitrary radius, while
the query is a point. We first presented a data structure that takes O(n) space, and the
query time is O(log n + ε−d). Here, both k and ε could be supplied at query time.
Next we presented an (k, ε)-AVD taking O(n/k) space. Thus showing, surprisingly,
that the problem can be solved in sublinear space if k is sufficiently large.

123

Algorithmica (2018) 80:279–299 299

References

1. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high
dimensions. Commun. ACM 51(1), 117–122 (2008)

2. Arya, S., Malamatos, T.: Linear-size approximate Voronoi diagrams. In: Proceedings of the 13th ACM-
SIAM Symposium Discrete Algorithms (SODA), pp. 147–155 (2002)

3. Arya, S.,Malamatos, T.,Mount, D.M.: Space–time tradeoffs for approximate spherical range counting.
In: Proceedings of the 16th ACM-SIAM Symposium Discrete Algs (SODA), pp. 535–544 (2005)

4. Arya, S., Malamatos, T., Mount, D.M.: Space–time tradeoffs for approximate nearest neighbor search-
ing. J. Assoc. Comput. Mach. 57(1), 1–54 (2009)

5. Arya, S., Mount, D.M.: Approximate range searching. Comput. Geom. Theory Appl. 17, 135–152
(2000)

6. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approxi-
mate nearest neighbor searching in fixed dimensions. J. Assoc. Comput. Mach. 45(6), 891–923 (1998)

7. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to
k-nearest-neighbors and n-body potential fields. J. Assoc. Comput. Mach. 42, 67–90 (1995)

8. Carmi, P., Dolev, S., Har-Peled, S., Katz,M.J., Segal,M.: Geographic quorum systems approximations.
Algorithmica 41(4), 233–244 (2005)

9. Clarkson, K.L.: Nearest-neighbor searching and metric space dimensions. In: Shakhnarovich, G.,
Darrell, T., Indyk, P. (eds.) Nearest-Neighbor Methods for Learning and Vision: Theory and Practice,
pp. 15–59. MIT Press, Cambridge (2006)

10. de Berg, M., Haverkort, H., Thite, S., Toma, L.: Star-quadtrees and guard-quadtrees: I/O-efficient
indexes for fat triangulations and low-density planar subdivisions. Comput. Geom. Theory Appl. 43,
493–513 (2010)

11. Har-Peled, S.: A replacement for Voronoi diagrams of near linear size. In: Proceedings of the 42nd
Annual IEEE Symposium Foundations of Computer Science (FOCS), pp. 94–103 (2001)

12. Har-Peled, S.: Geometric Approximation Algorithms. Mathematical Surveys and Monographs, vol.
173. American Mathematical Society, Boston (2011)

13. Har-Peled, S., Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of
dimensionality. Theory Comput. 8, 321–350 (2012). Special issue in honor of Rajeev Motwani

14. Har-Peled, S., Kumar, N.: Down the rabbit hole: robust proximity search in sublinear space. SIAM J.
Comput. 43(4), 1486–1511 (2014)

15. Har-Peled, S.,Kumar,N.:Robust proximity search for balls using sublinear space. In: Proceedings of the
34th Conference Foundation of Software Technology and Theoretical Computer Science (FFSTTCS),
LIPIcs, vol. 29, pp. 315–326 (2014)

16. Har-Peled, S., Kumar, N.: Approximating minimization diagrams and generalized proximity search.
SIAM J. Comput. 44(4), 944–974 (2015)

17. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality.
In: Proceedings of the 30th Annual ACMSymposiumTheory Computing (STOC), pp. 604–613 (1998)

18. Shakhnarovich, G., Darrell, T., Indyk, P.: Nearest-Neighbor Methods in Learning and Vision: Theory
and Practice. Neur. Info. Proc. The MIT Press, Cambridge (2006)

123

	Robust Proximity Search for Balls Using Sublinear Space
	Abstract
	1 Introduction
	Our Results
	2 Problem Definition and Notation
	3 Approximate Range Counting for Balls
	3.1 Approximate Range Counting Among Balls
	3.2 Answering a Query

	4 Answering k-ANN Queries Among Balls
	4.1 Computing a Constant Factor Approximation to dkq,mathcalB
	4.2 The Result

	5 Quorum Clustering
	5.1 Computing an Approximate Quorum Clustering
	5.2 Correctness

	6 Construction of the Sublinear Space Data Structure for (k,ε)- ANN
	6.1 Preliminaries
	6.2 Construction
	6.3 Answering a Query
	6.4 Correctness
	6.5 The Result

	7 Conclusions
	References

