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Abstract Astatic binary search treewhere every search starts fromwhere the previous
one ends (lazy finger) is considered. Such a search method is more powerful than that
of the classic optimal static trees, where every search starts from the root (root finger),
and less powerful than when rotations are allowed—where finding the best rotation
based tree is the topic of the dynamic optimality conjecture of Sleator and Tarjan. The
runtime of the classic root-finger tree can be expressed in terms of the entropy of the
distribution of the searches, but we show that this is not the case for the optimal lazy
finger tree. A non-entropy based asymptotically-tight expression for the runtime of
the optimal lazy finger trees is derived, and a dynamic programming-based method is
presented to compute the optimal tree.
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1 Introduction

1.1 Static Trees

A binary search tree is one of the most fundamental data structures in computer
science. In response to a search operation, some binary trees perform changes in the
data structure, while others do not. For example, the splay tree [18] data structure
performs a sequence of rotations that moves the searched item to the root. Other
binary search tree data structures do not change at all during a search, for example,
red-black trees [13] and AVL trees [1]. We will call BSTs that do not perform changes
in the structure during searches static and call trees that perform changes BSTs with
rotations. In this work we do not consider insertions and deletions, only searches in the
comparison model, and thus can assume without loss of generality that all structures
under consideration store the integers from 1 to n and that all searches are to these
items.

We consider two variants of static BSTs: root finger and lazy finger. In the classic
method, the root finger method, the first search proceeds from the root to the item
being searched. In the second and subsequent searches, a root finger BST executes
the searches in the same manner, always starting each search from the root. Here we
consider lazy finger BSTs to be those which start each search at the destination of
the previous search and move to the item being searched. In general, this movement
involves going up to the least common ancestor (LCA) of the previous and current
items being searched, and then moving down from the LCA to the current item being
searched. In order to facilitate such a search, each node of the tree needs to be aug-
mented with the minimal and maximal elements in its subtree. (In fact, this can be
reduced by observing that if one is willing to look at the data in the parent of the LCA,
only the minimum or maximum needs to be stored depending on whether a node is
the left or right child of its parent).

1.2 Notation and Definitions

A static tree T is a fixed binary search tree containing n elements. No rotations are
allowed. The data structure must process a sequence of searches, by moving a single
pointer in the tree. Let r(T, i, j) be the time to move the pointer in the tree T from
node i to j . If dT (i) represents the depth of node i , with the root defined as having
depth zero, then

r(T, i, j) = dT (i) − dT (LCAT (i, j)) + dT ( j) − dT (LCAT (i, j))

= dT (i) + dT ( j) − 2dT (LCAT (i, j)).

Observe that if i is the root, r(T, i, j) is simply dT ( j), as the other two terms are the
depth of the root, which is zero.

The runtime to execute a sequence X = x1, x2, . . . xm of searches on a tree T using
the root finger method is
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Rroot(T, X) =
m∑

i=1

r(T, root (T ), xi ) =
m∑

i=1

dT (xi )

and the runtime to execute the same sequence on a tree T using the lazy finger method
is

Rlazy(T, X) =
m∑

i=1

r(T, xi−1, xi )

=
(
2

m∑

i=1

(dT (xi ) − dT (LCAT (xi , xi−1)))

)
− dT (xm)

where x0 is defined to be the root of T , which is where the first search starts.

1.3 History of Optimal Static Trees with Root Finger

For the root finger method, once the tree T is fixed, the cost of any single search in tree
T depends only on the search and the tree, not on any of the search history. Thus, the
optimal search tree for the root finger method is a function only of the frequency of
the searches for each item. Let fX (a) denote the number of searches in X to a. Given
fX , computing the optimal static BST with root finger has a long history. In 1971,
Knuth gave a O(n2) dynamic programming solution that finds the optimum tree [15].
More interesting is the discovery of a connection between the runtime of the optimal
tree and the entropy of the frequencies:

H( fX ) =
n∑

a=1

fX (a)

m
lg

m

fX (a)
.

Melhorn [16] showed that a simple greedy heuristic proposed by Knuth [15] and
shown to have a linear-time implementation by Fredman [11] produced a static tree
where an average search takes time 2 + 1

1−lg(
√
5−1)

H( fX ). Furthermore, Melhorn

demonstrated a lower bound of 1
lg 3H( fX ) for an average search in an optimal static

tree, and showed this bound was tight for infinitely many distributions. (The lg 3 come
from the fact that the comparisons at the node of a BST are in fact three-way and
thus yield at most lg 3 bits of information). Thus, by 1975, it was established that the
runtime for an average search in an optimal search treewith root fingerwasΘ(H( fX )),
and that such a tree could easily be computed in linear time.

1.4 Our Results

We wish to study the natural problem of what we call search with a lazy finger in a
static tree, i.e. have each search start where the last one ended. We seek to characterize
the optimal tree for this search strategy, and describe how to build it.

123



Algorithmica (2016) 76:1264–1275 1267

The lazy finger method is asymptotically clearly no worse then the root finger
method; moving up to the LCA and back down is better than moving to the root and
back down, which is exactly double the cost of the root finger method. But, in general,
is the lazy finger method better? For the lazy finger method, the cost of a single
search in a static tree depends only on the current search and the previous search.
Thus the optimal search tree for the lazy finger method only depends on the frequency
of each search transition; let fX (a, b) be the number of searches in X to b where
the previous search was to a. This is between the power of root finger, which only
depends on the current search, and trees with rotations where the runtime can depend
on a superconstant number of the previous searches. Given these pairwise frequencies
(from which the frequencies fX (a) can easily be computed), is there a nice closed
form for the runtime of the optimal BST with lazy finger? One candidate runtime to
consider is the conditional entropy, which takes into account the entropy of one event
given another:

Hc( fX ) =
n∑

a=1

n∑

b=1

fX (a, b)

m
lg

fX (a)

fX (a, b)

This is of interest as information theory gives this as an expected lower bound1 if the
search sequence is derived from a Markov chain where n states represents searching
each item; this is because the conditional entropy gives the expected information (and
thus a lower bound on binary decisions) in a search given the previous search.

While a runtime related to the conditional entropy is the best achievable by any
algorithm parameterized solely on the pairwise frequencies, however, we will show
in Lemma 5 that the conditional entropy is impossible to be asymptotically achieved
for any BST, static or dynamic, within any o(log n) factor. Thus, for the root finger,
the lower bound given by information theory is achievable, yet for lazy finger it is not
related to the runtime of the optimal tree. In Sect. 7 we will present a simple static
non-tree structure whose runtime is related to the conditional entropy.

This still leaves us with the question: is there a simple closed form for the runtime
of the optimal BST with lazy finger? We answer this in the affirmative by showing an
equivalence between the runtime of BSTs with lazy finger and something known as
the weighted dynamic finger runtime. In the weighted dynamic finger runtime, if item
i is given weight wi , then the time to execute search xi is

lg

∑max(xi ,xi−1)

k=min(xi ,xi−1)
wk

min(wxi−1 , wxi )
.

Our main theorem is that the runtime of the best static tree with lazy finger, LF(X), is
given by the weighted dynamic finger runtime bound with the best choice of weights:

1 Whenmultiplied by 1
lg 3 , as the information theory lower bound holds for binary decisions and as observed

in [16] needs to be adjusted to the ternary decisions that occur at each node when traversing a BST.
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LF(X) = min
T

Rlazy(T, X) = Θ

⎛

⎝min
W

⎧
⎨

⎩

m∑

i=1

lg

∑max(xi ,xi−1)

k=min(xi ,xi−1)
wk

min(wxi−1, wxi )

⎫
⎬

⎭

⎞

⎠

To prove this, we first state the result of Seidel and Aragon [17] in Sect. 2 of how
to construct a tree with the weighted dynamic finger runtime given a set of weights.
Then, in Sect. 3, we show how, given any static tree T , there exist weights such that
the runtime of T on a sequence using a lazy finger can be lower bounded using the
weighted dynamic finger runtime with these weights. These results are combined in
Sect. 4 to give the main theorem.

While a nice closed-form formula for the runtime of splay trees is not known, there
are several different bounds on their runtime: working set, static finger, dynamic finger,
and static optimality [7,8,18]. One implication of our result is that the runtime of the
optimal lazy finger tree is asymptotically as good as that of all of the aforementioned
bounds with the exception of the working set bound (see Theorem 3 for why the
working set bound does not hold on a lazy finger static structure).

While these results have served to characterize the best runtime for the optimal BST,
a concrete method is needed to compute the best tree given the pairwise frequencies.
We present a dynamic programming solution in Sect. 6; this solution takes time O(n3)
to compute the optimal tree for lazy finger, given a table of size n2 with the frequency
of each pair of searches occurring adjacently. This method could be extended using the
ideas of Iacono andMulzer [14] into onewhich periodically rebuilds the static structure
using the observed frequencies so far; the result would be an online structure that for
sufficiently long search sequences achieves a runtime that is within a constant factor
of the optimal tree without needing to be initialized with the pairwise frequencies.

1.5 Relation to Finger Search Structures

The results here have a relation to the various finger search structures that have been
proposed. We note, first of all, that the trees we are considering are not level linked;
the only pointers are to the parent and children. Secondly, while the basic finger search
runtime of O(

∑m
i=2 log |xi − xi−1|) (recall that we are assuming the xi are integers

from 1 to n) is long known to be easily achievable in a static tree, it is easily shown
that there are some search sequences X for which the optimal tree performs far better.
For example, the search sequence xi = i

√
n mod n where n is a perfect square can be

easily executed in time O(m) on the best static tree with lazy finger, which is much
better than the Θ(m log n) of dynamic finger.

But this limitation of the O(
∑m

i=2 log |xi − xi−1|) runtime has been long known,
which is why the weighted version of finger search was proposed. Our main contri-
bution is to realize that the weighted dynamic finger runtime bound, which was not
proposed in the context of lazy finger, is the asymptotically tight characterization of
BSTs with lazy finger when used with the best choice of weights.

1.6 Why Static Trees?

Static trees are less powerful than dynamic ones in terms of the classes of search
sequence distributions that can be executed quickly, so why are we studying them?
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One should use the simplest structure with the least overhead that gets the job done.
By completely categorizing the runtime of the optimal tree with lazy finger, one can
know if such a structure is appropriate for a particular application or whether one
should instead use the more powerful dynamic trees, or simpler root-finger trees.

Rotation-based trees have horrible cache performance. However, there are methods
to map the nodes of a static tree to memory so as to have optimal performance in the
disk-access model and cache-oblivious models of the memory hierarchy [6,9,12,19].
One leading cache oblivious predecessor query data structure that supports insertion
and deletion works by having a static tree and moves the data around in the fixed static
tree in response to insertions and deletions and only periodically rebuilds the static
structure [4]—in such a structure an efficient static structure is the key to obtaining
good performance even with insertions and deletions.

Also, concurrency becomes a real issue in dynamic trees, which requires another
layer of complexity to resolve (see, for example Bronson et al. [5]), while static trees
trivially support concurrent operations.

2 Weights Give a Tree

We use the following theorem:

Theorem 1 (Seidel and Aragon [3]) Given a set of positive weights W =
w1, w2, . . . wn, there is a randomized method to choose a tree TW such that the
expected runtime (with repect to the choice of tree) of search with lazy finger is

r(TW , i, j) = O

(
lg

∑max(i, j)
k=min(i, j) wk

min(wi ,w j )

)
.

The method to randomly create TW is a straightforward random tree construction
using the weights: recursively pick the root using the normalized weights of all nodes
as probabilities. Thus, by the probabilistic method [2], there is a deterministic tree,
call it TW whose runtime over the sequence X is at most the runtime bound of Seidel
and Aragon for the sequence X on the best possible choice of weights.

Corollary 1 For any set of positive weights W = w1, w2, . . . wn there is a tree TW (X)

such that

m∑

i=1

r(TW (X), xi−1, xi ) = O

⎛

⎝
m∑

i=1

lg

∑max(xi ,xi−1)

k=min(xi ,xi−1)
wk

min(wxi−1, wxi )

⎞

⎠

Proof This follows directly from Seidel and Aragon, where TW (X) is a tree that
achieves the expected runtime of their randomized method for the best choice of
weights. ��

3 Trees Can Be Represented by Weights

We show that a tree can be represented by weights:
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Lemma 1 For each tree T there is a set of weights WT = wT
1 , wT

2 , . . . wT
n such that

for all i, j r(T, i, j) = Θ

(
lg

∑max(i, j)
k=min(i, j) wT

k

min(wT
i ,wT

j )

)
.

Proof These weights are simple: give a node at depth d in T a weight of 4−d .
Consider a search that starts at node i and goes to node j . Such a path goes up
from i to LCAT (i, j) and down to j . A lower bound on

∑max(i, j)
k=min(i, j) wT

k is the

weight of LCAT (i, j) which is included in this sum and is 4−dT (LCAT (i, j)). Thus

we can bound lg
∑max(i, j)

k=min(i, j) wT
k

min(wT
i ,wT

j )
as follows: lg

∑max(i, j)
k=min(i, j) wT

k

min(wT
i ,wT

j )
≥ lg 4−dT (LCAT (i, j))

min
(
4−dT (i),4−dT ( j)

) =
2max(dT (i), dT ( j)) − 2dT (LCAT (i, j)) ≥ dT (i) + dT ( j) − 2dT (LCAT (i, j)) =
r(T, i, j).

Similarly, an upper bound on
∑max(i, j)

k=min(i, j) wT
k is twice the weight of LCAT (i, j):

2 · 4−dT (LCAT (i, j)). This is because each of the two paths down from the LCA have
weights that when summed are geometric and sum to less than half that of the LCA:

lg
∑max(i, j)

k=min(i, j) wT
k

min(wT
i ,wT

j )
≤ lg 2·4−dT (LCAT (i, j))

min
(
4−dT (i),4−dT ( j)

) = 1 + lg 4−dT (LCAT (i, j))

min
(
4−dT (i),4−dT ( j)

) which is 1 +
2r(T, i, j) using the same math as in the previous paragraph. ��

4 Proof of Main Theorem

Here we combine the results of the previous two sections to show that the runtime of
the optimal tree with lazy finger is asymptotically the weighted dynamic finger bound
for the best choice of weights.

Theorem 2

min
T

{∑m
i=1 r(T, xi−1, xi )

} = Θ

(
min
W

{
∑m

i=1 lg
∑max(xi ,xi−1)

k=min(xi ,xi−1)
wk

min(wxi−1 ,wxi )

})

Proof Start by setting Tmin, to be the optimal tree. That is, Tmin = argminT{∑m
i=1 r(T, xi−1, xi )

}
:

min
T

{∑m
i=1 r(T, xi−1, xi )

} = ∑m
i=1 r(T

min, xi−1, xi )

Using Lemma 1 there is a constant c such and a set of weights wTmin
such that:

≥ c
∑m

i=1 lg
∑max(xi ,xi−1)

k=min(xi ,xi−1)
wTmin
k

min(wTmin
xi−1

,wTmin
xi

)

The weights wTmin
are a lower bound on the sum with the optimal weights

≥ cmin
W

m∑

i=1

lg

∑max(xi ,xi−1)

k=min(xi ,xi−1)
wk

min(wxi−1, wxi )
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Using Theorem 1, there is a constant c′ such that:

≥ c′ ∑m
i=1 r(TW , xi−1, xi )

The sum with Tw is at most the sum for optimal T :

≥ c′ min
T

{∑m
i=1 r(T, xi−1, xi )

}

��

5 Hierarchy and Limitations of Models

In this section we show there is a strict hierarchy of runtimes from the root finger static
BST model to the lazy finger static BST model to the rotation-based BST model. Let
OPT (X) be the fastest any binary search with rotations can execute X .

Theorem 3 For any sequence X,minT Rroot(T, X) = Ω
(
minT Rlazy(T, X)

) =
Ω(OPT (X)). Furthermore there exist classes of search sequences of any length
m, X ′

m and X ′′
m such that minT Rroot(T, X ′

m) = ω
(
minT Rlazy(T, X ′

m)
)

and
minT Rlazy(T, X ′′

m) = ω(OPT (X ′′
m)).

Proof We address each of the claims of this theorem separately.
Root finger can be simulated with lazy finger minT Rroot(T, X) = Ω(minT Rlazy

(T, X)). For lazy finger, moving up to the LCA and back down is no more work than
than moving to the root and back down, which is exactly the double of the cost of the
root finger method.

Lazy finger can be simulated with a rotation-based tree minT Rlazy(T, X) =
Ω(OPT (X)). The normal definition of a tree allowing rotations has a finger that
starts at the root at every operation and can move around the tree performing rotations,
where following pointers and performing rotations can be done at unit cost. The work
of Demaine et al. [10] shows how to simulate with constant-factor overhead any num-
ber of lazy fingers in a tree that allows rotations in the normal tree with rotations and
one single pointer that starts at the root. This transformation can be used on a static
tree with lazy finger to get the result.

Some sequences can be executed quickly with lazy finger but not with root finger:
There is a X ′

m such that minT Rroot(T, X ′
m) = ω

(
minT Rlazy(T, X ′

m)
)
. One choice

of X ′
m is the sequential search sequence 1, 2, . . . n, 1, 2, . . . repeated until a search

sequence of length m is created. So long as m ≥ n, this takes time O(m) to execute
on any tree using lazy finger, but takes Ω(m lg n) time to execute on every tree using
root finger.

Some sequences can be executed quickly using a BST with rotations, but not with
lazy finger Pick some small k, say k = lg n. Create the sequence X ′′

m in rounds as
follows: In each round pick k random elements from 1, . . . , n, search each of them
once, and then perform n random searches on these k elements. Continue with more
rounds until a total of m searches are performed. A splay tree can perform this in time
O(m lg k). This is because splay trees have the working-set bound, which states that
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the amortized time to search an item is at most big-O of the logarithm of the number of
different things searched since the last time that item was searched. For the sequence
X ′′
m , the n random searches in each round have been constructed to have a working set

bound of O(lg k) amortized, while the k other searches in each round have a working
set bound of O(lg n) amortized. Thus the total cost to execute X ′′

m on a splay tree is

O
(

m
n+k (n lg k + k lg n)

)
which is O(m lg lg n) since k = lg n.

However, for a static tree with lazy finger, X ′′
m is basically indistinguishable from a

random sequence and takes Ω(m lg n) expected time. This is because the majority of
the searches are random searches where the previous item was a random search, and
in any static tree the expected distance between two random items is Ω(lg n). ��
Lemma 2 The runtime of a BST in any model cannot be related to the conditional
entropy of the search sequence.

Proof Wilber [20] proved that there is a particular sequence, known as the bit reversal
sequence, that if one searches the items in the sequence it takes Ω(n lg n) time in
an optimal dynamic BST. This sequence is a precise permutation of all elements in
the tree. However, any single permutation repeated over and over has a conditional
entropy of 0, since every search is completely determined by the previous one. ��

6 Constructing the Optimal Lazy Finger BST

Recall that fa,b = fX (a, b) is the number of searches in X where the current search
is to b and the previous search is to a, and fX (a) is the number of searches to a in
X . We will first describe one method to compute the cost to execute X on some tree
T . Suppose the nodes in [a, b] constitute the nodes of some subtree of T , call it Ta,b

and denote the root of the subtree as r(Ta,b). We now present a recursive formula
for computing the expected cost of a single search in T . Let Rlazy(T, X, a, b) be the
number of edges traversed in Ta,b when executing X . Thus, Rlazy(T, X, 1, n) equals
the runtime Rlazy(T, X). There is a recursive formula for Rlazy(T, X, a, b):

Rlazy(T, X, a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if b < a
(a)︷ ︸︸ ︷

Rlazy(T, X, a, r(Ta,b) − 1)

+
(b)︷ ︸︸ ︷

Rlazy(T, X, r(Ta,b) + 1, b)

+
(c)︷ ︸︸ ︷

2
∑

i∈[a,r(Ta,b)−1]
j∈[r(Ta,b)+1,b]

( fi, j + f j,i )

+
(d)︷ ︸︸ ︷∑

i 	=r(Ta,b)
( fi,r(Ta,b) + fr(Ta,b),i )

+
(e)︷ ︸︸ ︷∑

i∈[a,b]
i 	=r(Ta,b)
j /∈[a,b]

( fi, j + f j,i )

otherwise
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The formula is long but straightforward. First we recursively include the number of
edges traversed in the left (a) and right (b) subtrees of the root r(Ta,b). Thus, all that
is left to account for is traversing the edges between the root of the subtree and its up
to two children. Both edges to its children are traversed when a search moves from
the left to right subtree of ra,b or vice-versa (c). A single edge to a child of the r(Ta,b)

traversed if a search moves from either the left or right subtrees of r(Ta,b) to r(Ta,b)

itself or vice-versa (d), or if a search moves from any node but the root in the current
subtree containing the nodes [a, b] out to the rest of T or vice-versa (e).

This formula can easily be adjusted into one to determine the optimal cost over all
trees—since at each step the only dependence on the tree was is root of the current
subtree, the minimum can be obtained by trying all possible roots. Here is the resultant
recursive formulation for the minimum number of edges traversed in and among all
subtrees containing [a, b]:

min
T

Rlazy(T, X, a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if b < a

minr∈[a,b]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minT Rlazy(T, X, a, r − 1)

+minT Rlazy(T, X, r + 1, b)

+2
∑

i∈[a,r−1]
j∈[r+1,b]

( fi, j + f j,i )

+∑
i 	=r ( fi,r + fr,i )

+∑
i∈[a,b]

i 	=r(Ta,b)
j /∈[a,b]

( fi, j + f j,i )

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

otherwise

This formula can trivially be evaluated using dynamic programming in O(n5) time
as there are O(n3) choices for a, b, and r and evaluating the summations in the brute-
force way takes time O(n2). The dynamic programming gives not only the cost of the
best tree, but the minimum roots chosen at each step gives the tree itself. The runtime
can be improved to O(n3) by observing that when f is viewed as a 2-D array, each of
the sums is simply a constant number of partial sum queries (queries that ask for the
sum of a contiguous block in the array) on the array f , each of which can be answered
in O(1) time after O(n2) preprocessing. (The folklore method of doing this is to store
all the 2-D partial sums from the origin; a generic partial sum can be computed from
these with a constant number of additions and subtractions).

We summarize this result in the following theorem:

Theorem 4 Given the pairwise frequencies fX finding the tree that minimizes the
execution time of search sequence X using lazy finger takes time O(n3).

This algorithm computes an optimal tree. Computing f from X can be done in
O(m) time, for a total runtime of O(m + n3). It remains open if there is any approach
to speed up the computation of the optimal tree, or an approximation thereof. Note
that although our closed form expression of the asymptotic runtime of the best tree
was stated in terms of an optimal choice of weights, the dynamic program presented
here in no way attempts to compute these weights. It would be interesting if some
weight-based method were to be discovered.
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7 Multiple Trees Structure

Here we present a static data structure in the comparison model on a pointer machine
that guarantees an average search time of O(Hc( fX ) logd n) for any fixed value 1 ≤
d ≤ n, a runtime which we have shown to be impossible for any BST algorithm, static
or dynamic. This data structure requires O(dn) space. In particular, setting d = nε

gives a search time of O(Hc( fX )) with space O(n1+ε) for any ε > 0. The purpose
of this structure is to demonstrate that while no tree can have a runtime related to the
conditional entropy, pointer based structures can.

As a first attempt, a structure could be made of n binary search trees T1, T2, . . . Tn
where each tree Ti is an optimal static tree given the previous search was to i . By
using tree Txi−1 to execute search Ti , the asymptotic conditional entropy can be easily
obtained. However the space of this structure is O(n2). Thus space can be reduced by
observing the nodes not near the root of every tree are being executed slowly and thus
need not be stored in every tree.

The multiple trees structure has two main parts. It is composed first by a complete
binary search tree T ′ containing all of set of keys to be stored, S = [1, . . . , n]. Thus
the height of T ′ is O(lg n). The second part is n binary search trees {T1, T2, . . . , Tn}.
A tree Ti contains the d elements j that have the greatest frequencies fX (i, j); these
are the j elements most frequently searched after that i has been searched. The depth
of an element j in Ti is O(lg fX (i)

fX (i, j) ). For each element j in the entire structure we
add a pointer linking j to the root of Tj . The tree T ′ uses O(n) space and every tree
Tj uses O(d) space. Thus the space used by the entire structure is O(dn).

Suppose we have just searched the element i and our finger search is located on
the root of Ti . Now we proceed to the next search to the element j in the following
way: Search j in Ti . If j is in Ti then we are done, otherwise search j in T ′. After
we found j either in Tj or T ′ we move the finger to the root of Tj by following the
aforementioned pointer.

If j is in Ti then it is found in time O(lg fX (i)
fX (i, j) ). Otherwise if j is found in T

′, then
it is found in O(lg n) time. We know that if j is not in Tx this means that optimally it
requires Ω(lg d) comparisons to be found since Tx contains the d elements that have
the greatest probability to be searched after that x has been accessed. Hence every
search is at most O(lg n/ lg d) times the optimal search time of O(lg fX (i)

fX (i, j) ). Thus a

search for xi in X takes time O
(
logd n lg

fX (xi )
fX (xi−1,xi )

)
. Summing this up over all m

searches xi in X gives the runtime to execute X :

O

(
m∑
i=1

logd n lg
fX (xi )

fX (xi−1,xi )

)
= O

(
n∑

a=1

n∑
b=1

fX (a, b) logd n lg
fX (a)

fX (xa ,xb)

)

= O(mHc( fX ) logd n)

We summarize this result in the following theorem:

Theorem 5 Given the pairwise frequencies fX and a constant d, 1 ≤ d ≤ n, the
multiple trees structure executes X in time O(mHc( fX ) logd n) and uses space O(nd).
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8 Open Problems

We conjecture that no pointer-model structure has space O(n) and search cost
O(Hc( fX )).

One interesting implication of this result is that any search treewhich is dynamically
optimal must have the weighted dynamic finger runtime for any choice of weights
including the minimizing one. However, no rotation-based binary search tree algo-
rithms are known which have this runtime bound. The closest thing that is known is
the dynamic finger property of spay trees, which is equivalent to the weighted dynamic
finger with unit weights [7,8]. However, the proof found in [7,8] does not lend itself
to an obvious extension to non-unit weights.
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