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Abstract An obfuscator O is Virtual Grey Box (VGB) for a class C of circuits if,
for any C ∈ C and any predicate π , deducing π(C) given O(C) is tantamount to
deducing π(C) given unbounded computational resources and polynomially many
oracle queries to C . VGB obfuscation is often significantly more meaningful than
indistinguishability obfuscation (IO). In fact, for some circuit families of interest
VGB is equivalent to full-fledged Virtual Black Box obfuscation. We investigate the
feasibility of obtaining VGB obfuscation for general circuits. We first formulate a
natural strengthening of IO, called strong IO (SIO). Essentially, O is SIO for class
C if O(C0) ≈ O(C1) whenever the pair (C0,C1) is taken from a distribution over C
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where, for all x ,C0(x) �= C1(x) only with negligible probability.We then show that an
obfuscator is VGB for a class C if and only if it is SIO for C. This result is unconditional
and holds for any C.We also show that, for some circuit collections, SIO implies virtual
black-box obfuscation. Finally, we formulate a slightly stronger variant of the semantic
security property of graded encoding schemes [Pass-Seth-TelangCrypto 14], and show
that existing obfuscators, such as the obfuscator of Barak et al. [Eurocrypt 14], are
SIO for all circuits in NC1, assuming that the underlying graded encoding scheme
satisfies our variant of semantic security. Put together, we obtain VGB obfuscation for
all NC1 circuits under assumptions that are almost the same as those used by Pass
et al. to obtain IO for NC1 circuits. We also observe that VGB obfuscation for all
polynomial-size circuits implies the existence of semantically-secure graded encoding
schemes with limited functionality known as jigsaw puzzles.

Keywords Cryptography · Obfuscation · Simulation · Learning

1 Introduction

Program obfuscation, namely the ability to efficiently compile a given program into
a functionally equivalent program that is “unintelligible”, is an intriguing concept.
Indeed, much effort has been devoted to understanding this concept from the defini-
tional aspect, the algorithmic aspect, and the applications aspect. Here we concentrate
on the first two aspects.

The first formulation of secure program obfuscation as suggested by Hada [23]. It
requires that the output of any efficient adversary given an obfuscated program can be
efficiently simulated given only black box access to the program. Hada observed that
this strong security requirement is achievable only for learnable programs.

Following the work of Hada [23] a number of weaker security definitions have been
proposed.Webriefly review three notions of interest. The first, virtual black box (VBB)
obfuscation [7], requires that the obfuscation hides any deterministic predicate of the
program. Concretely, focusing on programs represented as circuits, an obfuscator O
for a family of circuits isworst-caseVBB if for any polynomial-time adversaryA, there
exists a polynomial-time simulator S, such that for any circuit C from the family, and
any predicateπ(·),A cannot learnπ(C) fromO(C)with noticeably higher probability
than S can, given only oracle access to C . The obfuscator O is average-case VBB if
the above is only required to hold for circuitsC that are sampled at random from some
distribution on the family.

While VBB obfuscation is natural and expressive notion, Barak et al. [7] showed
that this definition, and variants thereof, are unobtainable in general by demonstrat-
ing a family of unobfuscatable functions where any circuit computing the function
inherently leaks secrets that are infeasible to compute given only black-box access.
Moreover, it turns out that, under cryptographic assumptions, if the simulator S is
universal (or equivalently, works for any adversarial auxiliary input) then VBB obfus-
cation is unobtainable for any circuit family whose functionality has super-polynomial
“pseudo entropy” [5,20].
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A weaker variant of VBB, called indistinguishability obfuscation (IO) [7], allows
the simulatorS to be computationally unbounded. Equivalently,O is an IO for a circuit
collection if for any two circuits C0 and C1 in the collection, having the same size and
functionality, the obfuscated circuits O(C0) and O(C1) are indistinguishable. While
IO has some attractive properties, and strong cryptographic applications [19,22,26],
the security guarantees provided by IO are significantly weaker than those provided
by VBB obfuscation. Consider for example the task of obfuscating a point circuit that
outputs 1 on a single secret point and 0 everywhere else. VBB obfuscation guarantees
that guessing the secret point given the obfuscated circuit is as hard as given no
information at all. Such a guarantee, however, is not known to follow from IO.

A third notion that lies between VBB and IO is virtual grey-box (VGB) obfuscation
[4] where the simulator S is allowed to be semi-bounded, namely it can be compu-
tationally unbounded, while still making only a polynomial number of queries to the
circuit C . While weaker than VBB in general, VGB is still meaningful for circuits
that are unlearnable even by semi-bounded learners. This includes, for example, point
circuits (or, more generally, evasive circuit studied in [3]) where IO may not provide
meaningful security. Furthermore, VGB obfuscators for circuits escape the general
impossibility results that apply to VBB obfuscators.

On the algorithmic level, for many years we had candidate obfuscators only for
very simple functions such as point functions and variants. The landscape has changed
completely with the recent breakthrough work of [19], which proposed a candidate
general-purpose obfuscation algorithm for all circuits. [19] show that their scheme
resists some simple attacks; but beyond that, they do not provide any analytic evidence
for security.

Considerable efforts have been made to analyze the security of the [19] obfus-
cator and variants. The difficulty appears to be in capturing the security properties
required from the graded encodings schemes [18], which is a central component in
the construction. Next, we discuss one line of work that is the starting point for this
work.

As a first step towards understanding the security of the [19] obfuscator, [8,9]
consider an ideal algebraicmodel, where the adversary is given “generic graded encod-
ings” that can only be manipulated via admissible algebraic operations. They show
that, in thismodel, variants of the [19] scheme areVBBobfuscators for all polynomial-
size circuits. In fact, for circuits in NC1, they show security even against semi-bounded
adversaries. In this context, semi-boundedmeans that the adversary is computationally
unbounded, but makes only a polynomial number of generic graded encoding oper-
ations. [8,9] demonstrate an efficient simulator that only invokes the semi-bounded
adversary as a black box.

Pass et al. [25] made the first step towards proving the security of a general
obfuscation scheme based on some natural hardness assumption in the plain model.
Specifically, they define a semantic-security property for graded encoding schemes,
which is aimed at capturing what it means for a graded encoding scheme to “behave
essentially as an ideal multilinear graded encoding oracle”. They then show that a
specially-crafted variant of the [8] obfuscator, with the ideal graded encoding scheme
replaced by a semantically-secure graded encoding scheme, is IO for all circuits.
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While much of the recent progress in obfuscation constructions has been confined
to the notion of IO, in this work we ask whether we can construct obfuscators that go
beyond IO, and under which assumptions.
Our contributionsWe first put forth a new strengthened variant of indistinguishability
obfuscation, called strong IO (SIO). Informally, an obfuscator O is SIO for a class of
circuits C if O(C0) ≈ O(C1) not only when C0,C1 ∈ C have the same functionality,
but also when C0 and C1 come from distributions over circuits in C that are “close
together”, in the sense that for any given input x , the probability that C0(x) �= C1(x)
is negligible.1

We then show that:

1. SIO for a given class of circuits is in fact equivalent to worst-case VGB obfusca-
tion for the same class. Furthermore, for certain classes of functions, such as point
functions, hyperplanes, or fuzzy point functions, we show that SIO is equivalent to
full-fledged worst-case VBB obfuscation. These equivalences hold uncondition-
ally.

2. Assuming the existence of graded encoding schemes that satisfy a somewhat
stronger variant of the semantic-security notion of Pass et al. [25], we show that
known obfuscation schemes are SIO for all circuits in NC1. More generally, we
show that any obfuscator for a class of circuits C that is VBB against semi-bounded
adversaries in the ideal graded encoding model is SIO in the plain model, when
the ideal graded encoding oracle is replaced by a graded encoding scheme that
satisfies the mentioned variant of the [25] assumption. (Currently, VBB obfusca-
tion against semi-bounded adversaries in the ideal graded encoding model is only
known for NC1.)

We also give evidence for the necessity of semantically-secure graded encoding for
obtaining VGB. Specifically we show that, assuming existence of VGB obfuscators
for all circuits, there exist multilinear jigsaw puzzles satisfying a form of semantic
security. Multilinear jigsaw puzzles, defined in [19], are a limited-functionality variant
of multilinear maps. They suffice for obtaining the positive result described in Item 2
above.

The rest of the introduction provides a more detailed overview of our results. Sec-
tion 1.1 presents the implication from SIO to VGB and VBB obfuscation. Section 1.2
provides background on graded encoding schemes and the semantic security assump-
tion. Section 1.3 presents the construction of SIO from semantically-secure graded
encoding schemes.

1.1 From SIO to VGB and VBB Obfuscation

We first define SIO a bit more precisely. A distribution C̃ over circuits is said to be
ν-concentrated around a boolean function f if for any value x in the domain of f
we have that Pr[C̃(x) �= f (x)] ≤ ν. We say that C̃ is simply concentrated if it is

1 An alternative view of the definition (which turns out to be equivalent) is that O(C0) ≈ O(C1) if no
semi-bounded adversary can distinguish oracle access to a circuit sampled from C0 from oracle access to
a circuit sampled from C1.
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ν-concentrated for some negligible function ν and function f . An obfuscator O is
SIO for a class C of circuits if for any two (not necessarily efficiently samplable)
distributions C̃0, C̃1 over circuits in C that are concentrated around the same function,
it holds that O(C̃0) and O(C̃1) are computationally indistinguishable.
We show the following.

Theorem 1.1 (Informal) An obfuscator is SIO for a class C of circuits if and only if
it is worst-case VGB obfuscator for C.

Theorem 1.1 motivates the study of SIO as an independent notion, beyond its
role in the construction of worst-case VGB obfuscation for NC1 from semantically-
secure graded encodings. Future results obtaining SIO for more functions, or based on
different assumptions, will directly apply for VGB obfuscation as well. We note that
existing candidate indistinguishability obfuscators for all circuits [1,2,8–10,19,21,
28], may also be considered as candidates for SIO, and thus also for VGB obfuscation,
for all circuits.

Ideas behind the proof of Theorem 1.1 Showing that VGB implies SIO is straightfor-
ward. In the other direction, we show howSIO implies the existence of a semi-bounded
simulator S for any computationally bounded adversary A.

Recall that, for any target circuit C∗ ∈ C in the given collection C, the all-powerful
simulator S should simulate what A learns from an obfuscation O(C∗), given only
polynomially many oracle queries to C∗. Following previous work in the context
of worst-case obfuscation, the distinguishing gap between the outputs of A and S,
often called the simulation accuracy, can be bounded by an arbitrarily small (inverse)
polynomial, when we allow the number of oracle queries that S makes to grow with
this polynomial. (See Remark 2.2).

The high level idea is as follows: S will use its oracle toC∗ in order to learn enough
information aboutC∗.S does so by gradually reducing the setK of possible candidates
for the circuit C∗, starting from K0 = C, and continuing with progressively smaller
sets of candidates:

K j � K j−1 � · · · � K0 = C.

S will continue this process until it obtains a set K∗ where A cannot distinguish an
obfuscation O(C∗) of the target circuit C∗ from an obfuscation O(C) of a random
circuitC inK∗. S will then simulate the output ofA by executingA on an obfuscation
O(C) of a random circuit C in K∗.

To carry out this plan, SC∗
iteratively performs two main steps: concentration, and

majority separation. After each invocation of the two steps, the set of candidates for
the circuit C∗ shrinks significantly. This process stops when the setK∗ is reached. We
will be able to bound the number of iterations as well as the total number of queries
made by S in the process.
Concentration In the concentration step, S tries to learn C∗ in a straightforward way:
it queries C∗ on a point x j that splits the current set of candidate circuitsK j as evenly
as possible. Based on the value of C∗(x j ), S rules out some of the candidates. This
process is repeated until there is no point that shrinks the set of candidates by a factor

123



Algorithmica (2017) 79:1014–1051 1019

of at least 1− ε. At the end of the concentration step, it is the case that for every point,
all but perhaps an ε-fraction of the candidates inK j agree on the point. Therefore, the
set K j is ε-concentrated ( we say that a set of circuits is concentrated if the uniform
distribution over this set is concentrated). This occurs after at most ε−1 log |C| queries.
Throughout, ε is a parameter of the simulation chosen such that 1/ε is a polynomial,
depending only on A and on the required simulation accuracy.

Note that the concentration step alone essentially suffices to ensure average-case
VGB simulation; indeed, it follows from SIO security that when the target circuit C∗
is chosen at random from a concentrated set K j , A cannot compute any predicate
π(C∗), given O(C∗), better than it can given an obfuscationO(C) of an independent
random circuit C ← K j .
Majority separation The concentration step alone does not guarantee worst-case sim-
ulation. In particular, A may have some hardwired information that allows it to
distinguish C∗ from a random circuit in K j . In this case, however, we show that
S can further reduce the set of candidates K j by making a query x that separates
C∗ from most of the circuits in K j ; namely, C∗(x) �= majK j

(x) where majK j
is the

majority of all circuits in K j . We call such a point x a separating point. In fact, we
show that there is a small setLA(K j ) of separating queries such thatC∗ must disagree
with the majority function in K j on at least one x ∈ LA(K j ).

In more detail, we define the set DA(K j ) of distinguishable circuits in K j as
those circuits C ∈ K j such that A can ε-distinguish O(C) from O(C ′) for a random
C ′ ← K j . The setLA(K j )will consist of roughly ε−1 log |C| points that will separate
any distinguishable circuit in DA(K j ) from the majority majK j

(x), and our simulator
will query the oracle C∗ on all points in LA(K j ). If the oracle C∗ agrees with majK j

on all points x ∈ LA(K j ), then A cannot tell apart O(C∗) from O(C) for a random
C ← K j , in which case, the simulation can be completed. Otherwise, if C∗ disagrees
with majK j

on some point x ∈ LA(K j ), S obtains a new set of candidatesK j+1 � K j

which is necessarily smaller by an ε-factor, since K j is ε-concentrated.
By iteratively applying the two steps, we either reach some K∗ for which A can-

not distinguish O(C∗) from O(C) for a random C ← K∗, or we have completely
exhausted the collection C and found exactly the circuit C∗. Since we reduce K j at
each step by a (1− ε)-factor at the least, the process must end after at most ε−1 log |C|
steps, and at most poly(ε−1 log |C|) queries.
The separating queries But how do we establish the existence of a small set LA(K j )

that separates DA(K j ) from the majority in K j? Here we rely on the SIO security of
O. Specifically, SIO implies that any subset S of the distinguishable circuits DA(K j )

cannot be ε-concentrated around majK j
. Indeed, A distinguishes O(C), for C ← K j

from O(C ′) for C ′ ← S ⊆ DA(K j ).2

Since no S as above is ε-concentrated around majK j
, we can show that it is possible

to separate all of the circuits inDA(K j ) frommajK j
with at most ε−1 log |C| points, as

required. Specifically, S constructs the set of separating points by iteratively selecting
a point that separates as many circuits as possible from the remaining circuits in majK j

2 For simplicity of exposition, we assume here that the distinguishing gap is always of the same sign, and
is thus preserved on any subset of DA(K j ).
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(that were not already separated by previously added points). Since in every iteration
the set of remaining circuits is not ε-concentrated around majK j

, there must be a point
that separates at least an ε-fraction of these circuits from majK j

. It follows that after

adding at most ε−1 log |C| points, no circuit in DA(K j ) remains.
On the possibility of VBBobfuscationThe simulation strategy described above requires
only a polynomial number of queries, however, the overall running time of the sim-
ulator may not be bounded in general. Indeed, in the concentration step, finding a
point x j that significantly splits K j may require super-polynomial time. Also, in the
majority-separation step, while the set LA(K j ) is small, computing it from K j may
also require super-polynomial time.

Nevertheless, we show that for certain classes of circuits, simulation can be done
more efficiently, or even in polynomial time. Specifically, abstracting away from the
above simulation process, we consider the notion of learning via amajority-separation
oracle, where a given circuit C (or more generally a function) in a prescribed family
is learned via oracle access to C and oracle access to the majority separation oracle
M, which takes as input (the description of) a concentrated sub-familyK that includes
C and outputs a point x that separates C from the majority in K.

While the strategy described above shows that any class of circuits can be learned
with polynomiallymanyqueries toC andM, the learner itselfmaybe inefficient,which
results in inefficient simulation. We show that a more efficient learning procedure can
sometimes be translated into amore efficient simulation strategy, depending on pattern
of queries made by the learning algorithm. We identify several function classes, for
which such efficient learning is possible, yielding new feasibility results for worst-
case VBB obfuscation. Examples include fuzzy point functions, conjunctions, and
constant-dimension linear subspaces.

Connection to previous worst-case VBB/VGB obfuscators The majority separation
technique is rooted in the sack of distinguishable points technique of Canetti [11].
There, and in [27], it was used to get worst-case (simulation-based) VBB obfuscation
from an indistinguishability-based notion of obfuscation, for the simple case of point
functions. The techniquewas then extended toVBBobfuscationof constant-dimension
hyperplanes [17] and VGB obfuscation of set functions [4]. The majority separation
technique generalizes the above for arbitrary functions. Indeed, in the above works,
the indistinguishability guarantee considered is equivalent to SIO (for the classes in
question). Thus, we get a unified proof for all existing worst-case VBB obfuscation
results.
Connection to VGB obfuscation of evasive functions Evasive collections are func-
tion collections concentrated around the all-zero function. Barak et al. [3] show that
average-case VGB obfuscation for all evasive collections implies weak average-case
VGB for all collections.3 Here “weak” means that the simulator is allowed to make a
slightly super-polynomial number of queries.

We show that an obfuscator is SIO for a collection C of circuits if and only if it is
IO for C and in addition, it is average-case VGB for any evasive sub-collection of C. In

3 In fact, for concentrated, and in particular evasive, collections, average-case VGB and average-case VBB
are equivalent.
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particular, it follows that if an obfuscator is IO and average-case VGB for all evasive
collections in C, then it is a worst-caseVGB obfuscator for C. This is incomparable to
the Barak et al. result: on the one hand, they do not need to assume that the obfuscator
is IO; on the other hand they only show that it is average-case weak VGB, rather than
worst-case standard VGB.

To better compare the two techniques, let us state the result we would get using our
techniques, assuming only average-case VGB for all evasive collections, and without
assuming IO (in particular, without assuming SIO). Roughly, we would get a weak
kind of obfuscationwhere any adversaryA has anA-designated obfuscatorOA, which
may be inefficient. The security guarantee is that A has a worst-case VGB simulator
S, so that for any circuitC ∈ C, it holds thatA(OA(C)) ≈ε A(SC ); namely,A cannot
tell an A-designated obfuscation of C from a circuit sampled by the semi-bounded
simulator, using only black-box access to C . The size of circuits output by OA(C) is
a polynomial p(|C |) that depends only on the class C, but not on A.

Assuming also IO allows us to “switch quantifiers”, and show that there is a single
efficient obfuscator O that works for all adversaries. This obfuscator would simply
output an IO obfuscation of C (padded up to size p(|C |)). Security against all adver-
saries would then follow from the fact that IO is the “best-possible” obfuscator [7,22],
and thus would achieve the same security as any adversary-designated obfuscator. 4

1.2 Semantically Secure Graded Encoding Schemes: Background

Before describing howweget SIO from semantically secure graded encoding schemes,
we provide some background on the latter.

A graded encoding scheme [18] defines encodings of ring elements R that support
certain homomorphic operations. Each element is encoded relative to some control
set. The scheme consists of the following algorithms: InstGen that given a universe
set [k], outputs public parameters pp and secret parameters sp, where pp contains a
description of a ring R; Encode that given sp, a set S ⊆ [k] and α ∈ R, generates
an encoding [α]S ; Add and Sub that, given encodings [α1]S and [α2]S , generate
encodings [α1 + α2]S and [α1 − α2]S respectively;Mult that, given encodings [α1]S1
and [α2]S2 such that S1 ∩ S2 = ∅, generates an encoding [α1 · α2]S1∪S2 ; and isZero
that given an encoding [α][k] outputs 1 if and only if α = 0 (all the algorithms above
also take as input pp).

Given a sequence of encodings, the operations above can be used to test if certain
arithmetic expressions vanish on the encoded elements. The high-level approach of
Pass et al. [25] is to devise a security property that hides the value of any arithmetic
expression that cannot be evaluated using the permitted operations. In other words, the
encoding scheme should amount to an “ideal encoding scheme”, where encodings are
truly accessed only through permitted algebraic operations. This may, in particular,
allow leveraging the existing proofs of VBB security in the ideal graded encoding
model [1,8,9,28].

4 We note that, in the body, our actual proof relies directly on SIO, which we show to follow from average-
case VGB for evasive collections and standard IO.
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More specifically, Pass et al. take the following approach (described first in an
oversimplified manner). Consider a message sampler M([k], R) that samples a tuple
(S1,m1), . . . , (S�,m�) from one of two distributions D0 or D1, where each Si ⊆ [k],
each mi ∈ R, and � is polynomial in the security parameter. We say that the sampler
is admissible if no polynomially-bounded “algebraic adversary” that is given 
S =
(S1, . . . , S�), and can access the ring elements 
m = (m1, . . . ,m�) only via an ideal
encoding oracle, is able to tell whether (
S, 
m) were taken from D0 or D1. The ideal
encoding oracle only allows the same algebraic manipulations allowed by the graded
encoding interface, or put abstractly, it allows the adversary to choose any arithmetic
circuit C that respects the set structure given by 
S, and test whether C( 
m) = 0. The
requirement is that, for such an admissible sampler, an efficient adversary that obtains
actual encodings

{
[mi ]Si : i ∈ [�]}, along with the corresponding public parameters

pp, also cannot tell whether (
S, 
m) was sampled from D0 or D1.
As noticed by Pass et al., the assumption formulated above is actually false—it

is susceptible to a diagonalization attack in the spirit of the [7] impossibility result
for general VBB obfuscation. To get around this caveat, Pass et al. strengthen the
admissibility requirement to require that D0,D1 are indistinguishable even to a semi-
bounded algebraic adversary, namely an algebraic adversary that is computationally
unbounded, but makes only a polynomial number of queries to the ideal graded encod-
ing oracle. Furthermore, even this relaxed assumption suffices for obtaining IO in the
plain model.

To get IO in the plain model, the idea is to rely on a construction of VBB obfus-
cation for NC1 in the ideal graded encoding model [8,9] and replace the ideal graded
encoding with a concrete graded encoding scheme satisfying semantic security as
stated above. To show that obfuscations of two equivalent circuits C0,C1 are indeed
indistinguishable, consider a message sampler M that samples a pair of distributions
D0,D1 such that the distribution Di is an obfuscation of the circuit Ci in the ideal
graded encodingmodel. The admissibility of this sampler follows from the fact that the
[8] obfuscator is secure even against semi-bounded adversaries. Specifically, an alge-
braic adversary accessing Di via an ideal encoding oracle essentially has black-box
access to the circuit Ci . Since C0,C1 cannot be distinguished given only black-box
access, their obfuscations are indistinguishable as well.

In this work we consider the relaxed semantic security requirement above. Existing
graded encoding candidates [15,16,18] do not satisfy this requirement as demonstrated
by recent attacks [13,14,18,24]. The eventual Pass et al. assumption is further relaxed
in several ways, while still yielding their main application to IO. See [6,25] for a
discussion on relaxations of the semantic security assumption.

1.3 SIO from Semantically Secure Graded Encoding, and Back Again

We sketch our variant of the semantic security assumption, and explain how we obtain
SIO for NC1 circuits from this variant. We also give evidence for the necessity of
semantic security for obtaining SIO.

Essentially, the reason that semantic security of graded encoding schemes implies
SIO is that semantic security considersany admissible distributions over encodings, not
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only ones that come out of obfuscating a given program. In particular, distributions that
consist of ideal-graded-encoding-VBB obfuscations of circuits that are concentrated
around the same function are admissible, thus their instantiations via a semantically
secure graded encoding scheme are guaranteed to be indistinguishable.

However, some care has to be taken here: note that SIO considers even distributions
that are not necessarily efficiently samplable. (Indeed, this property is crucial in the
proof that SIO implies worst-case VGB.) This means that we will need to somewhat
modify the formulation of the semantic security assumption.

A naive attempt to formalize this variant of semantic security may simply allow the
sampler to be computationally unbounded. However, recall that the message sampler
is given the description of a ring R. (This is required in order to sample obfuscations
in the ideal graded encoding model that consist, for example, of random elements
in R.) A computationally unbounded sampler that sees R may be able to recover
information that compromises the security of the encodings (for example, the secret
parameters). The sampler can produce encodings that reveal this secret information.
Note that such a sampler may still be admissible since learning the secret parameters
gives no advantage to an algebraic adversary.

Instead we sample messages in two stages: first, an unbounded sampler S generates
a polynomial-size auxiliary input string s; second, an efficient encoder M gets the ring
R and the auxiliary input string s, and generates the final samples. We call this variant
strong-sampler semantic security.

Theorem 1.2 (Informal) Let O be any obfuscator for a class C of circuits, that is
VBB against semi-bounded adversaries in the ideal graded encoding model. Then
instantiating the graded encoding oracle with a strong-sampler semantically-secure
graded encoding scheme results in an obfuscator O′ that is SIO for C in the plain
model.

Then, relying on the Barak et al. obfuscation for NC1 in the ideal graded encoding
model [8] (which is indeed VBB against semi-bounded adversaries), we obtain the
following corollary.

Corollary 1.1 (Informal) Assume there exists a strong-sampler semantically-secure
encoding scheme. Then there exists SIO for NC1.

We also give evidence for the necessity of semantically-secure graded encoding
schemes for obtaining VGB. To this end, we focus on a version of graded encoding
with restricted functionality called multilinear jigsaw puzzles [19]. Unlike graded
encodings, in multilinear jigsaw puzzles, encodings can only be generated together
with the system parameters. We refer to the public parameters, together with the
set of initialized encodings, as a puzzle. Instead of performing individual permitted
operations over the encodings, all the jigsaw puzzle user can do is to specify an
arithmetic circuit C that respects the set structure of the initialized encodings, and test
whether C evaluates to 0 on these encodings or not.

Semantically secure multilinear jigsaw puzzles are defined similarly to the graded
encoding case and their existence follows from semantically secure graded encodings.
Despite their restricted functionality, semantically secure multilinear jigsaw puzzles
can replace graded encodings in our construction of SIO for NC1. In the body of this
work we present the construction of SIO based on multilinear jigsaw puzzles.
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We observe that the existence of semantically secure jigsaw puzzles is implied by
VGB obfuscation for all circuits. To see why this is the case, consider the circuit P
that has a set of ring elements 
m = (m1, . . . ,m�) hardwired into it, together with the
corresponding sets 
S = (S1, . . . , S�). The circuit P takes as input an arithmetic circuit
C that respects the set structure given by 
S, and tests whether C( 
m) = 0. To initialize
a puzzle from a set of encodings (
S, 
m), we simply VGB obfuscate the circuit P . The
semantic security of this puzzle follows directly from the simulation security of the
VGB obfuscation.

2 Obfuscation: VBB, VGB, Indistinguishability

2.1 Preliminaries

The cryptographic definitions in the paper follow the convention of modeling security
against non-uniform adversaries. A function μ is said to be negligible if μ(n) =
n−ω(1). We denote an arbitrary negligible function of n by negl(n). We consider
collections of polynomial-size circuits C = ⋃

n∈N Cn , such that all circuits C ∈ Cn
are of the same polynomial size nO(1) with nO(1) input and output bits. An efficient
adversaryA ismodeled as a sequence of (perhaps probabilistic) circuitsA = {An}n∈N,
such that each circuitAn is of polynomial size nO(1) with nO(1) input and output bits.
We often omit the subscript n when it is clear from the context and simply refer to
such a collection or an adversary as polynomial-size. For a randomized algorithmAwe
denote by PrA[E] the probability over the randomness of A that the event E occurs.

2.2 Obfuscation

An obfuscator O is a PPT algorithm that takes as input a circuit C and outputs an
obfuscated circuit O(C). We next review three basic definitions of obfuscation that
are used throughout the paper. We start by defining the functionality requirement,
which all the notions share, and then define different security notions.

Definition 2.1 (Functionality) Let C = ⋃
n∈N Cn be a collection of polynomial-size

circuits such that any circuit C ∈ Cn takes inputs of length n. A PPT algorithm O is
an obfuscator for the collection C if for any C ∈ C,

Pr
O
[∀x : O(C)(x) = C(x)] = 1.

Remark 2.1 (Obfuscation of NC1) We say that O is an obfuscator for NC1 if it is
an obfuscator for every collection of equal-depth circuits in NC1. A collection of
polynomial-size circuits C = ⋃

n∈N Cn is said to be in NC1 if there exists a constant
c ∈ N such that the depth of every circuit C ∈ Cn is at most c · log n. The collection
is equal-depth if all circuits are of depth exactly c · log n.
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2.3 VBB and VGB Obfuscation

Virtual Black Box (VBB) obfuscation [7] guarantees that an obfuscated circuitO(C)

does not reveal any predicate π(C) that cannot be learned by an efficient simulator
that is given only black-box access toC . The basic definition isworst-case in the sense
that the simulator needs to be successful for any circuit in a given circuit collection.
We later also address an average-case notion. In the definition below we use a slightly
weaker definition than the standard one, and allow the simulator to depend on the
distinguishing probability p (See Remark 2.2).

Definition 2.2 (Worst-case VBB Obfuscation) An obfuscator O for a collection of
polynomial-size circuits C = ⋃

n∈N Cn is worst-case VBB if for every polynomial-
size adversaryA, and polynomial p, there exists a polynomial-size simulator S, such
that for every n ∈ N, every predicate π : Cn → {0, 1}, and every C ∈ Cn :

∣
∣
∣
∣ PrA,O

[A(O(C)) = π(C)] − Pr
S

[SC (1n) = π(C)]
∣
∣
∣
∣ ≤ 1/p(n).

Virtual Grey Box (VGB) obfuscation [4] relaxes VBB by allowing the simulator
to have unbounded computational power, but still only a bounded number of oracle
queries to C .

Definition 2.3 (Worst-case VGB Obfuscation) An obfuscator O for a collection of
polynomial-size circuits C = ⋃

n∈N Cn is worst-case VGB if for every polynomial-
size adversary A, and polynomial p, there exists an unbounded simulator S, and a
polynomial q, such that for every n ∈ N, every predicateπ : Cn → {0, 1}, andC ∈ Cn :

∣
∣
∣
∣ PrA,O

[A(O(C)) = π(C)] − Pr
S

[SC[q(n)](1n) = π(C)]
∣
∣
∣
∣ ≤ 1/p(n),

where C[q(n)] is an oracle that allows at most q(n) queries.

We also consider relaxed versions of VBB and VGB, where the corresponding
guarantee only holds for a random circuit sampled from a distribution, rather than for
any circuit.

Definition 2.4 (Average-case obfuscation) Each of Definitions 2.2, 2.3 is said to hold
in the average case, for a distribution ensemble C̃ = ⋃

n∈N C̃n on the collection C =⋃
n∈N Cn , if each of the corresponding probability statements is over a random C ←

C̃n , rather than required for every C ∈ C.
Remark 2.2 (Simulation accuracy) In the above definitions (and throughout the paper),
the simulator S, and in VGB, also its number of queries q, are allowed to depend on
the required simulation accuracy 1/p(n). This is the case in all previous works that
have established worst-case VBB or VGB (for specific classes) [4,11,17,27]. This
definition is implied by original definition of [7] where the same simulator S should
be 1/p(n)-accurate for all polynomials p (for large enough security parameter n).
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Indistinguishability Obfuscation We next define the notion of indistinguishability
obfuscation, introduced in [7].

Definition 2.5 (Indistinguishability obfuscation [7]) An obfuscator for a collection of
polynomial-size circuits C = ⋃

n∈N Cn is said to be an indistinguishability obfuscator,
denoted by iO, if for any polynomial-size distinguisher D, there exists a negligible
function μ such that for all n ∈ N, and any two circuits C0,C1 ∈ Cn of the same size
and functionality,

Pr [b ← {0, 1};D(C0,C1, iO(Cb)) = b] ≤ 1

2
+ μ(n).

It can be readily seen that if an obfuscatorO isVBB for a function collectionC then it
is also VGB for C. Furthermore, ifO is VGB for C then it is also an indistinguishability
obfuscator for C.

3 Strong Indistinguishability Obfuscation

In this section we define the notion of strong indistinguishability obfuscation (SIO).
We start by defining the notion of concentrated distributions over circuits.

3.1 Concentrated Circuit Distributions

At a high-level, a distribution ensemble C̃, over a circuit collection C, is concentrated,
if given polynomially many oracle queries to a random circuitC from the distribution,
it is information theoretically hard to find an input x such that C does not agree
with majC̃ on the point x , where majC̃ is the common output of circuits distributed

according to C̃. If C̃ corresponds to the uniform distribution on some collection C,
majC̃ is simply the majority vote. Concentrated distributions naturally generalize the
concept of evasive distributions studied in [3], in which the majority is always the
all-zero function, i.e. majC̃ ≡ 0.

Definition 3.1 (Concentrated circuit distributions)LetC = ⋃
n∈N Cn be apolynomial-

size circuit collection, where Cn consists of circuitsC : {0, 1}n → {0, 1}, and let C̃n be
a distribution on Cn . Let majC̃n(x) := �EC←C̃n

C(x)� be the common output at point x

of circuits drawn from C̃n .
1. For any ε ∈ [0, 1], C̃n is said to be ε-concentrated if

max
x∈{0,1}n Pr

C←C̃n

[
C(x) �= majCn (x)

] ≤ ε.

2. C̃ is said to be concentrated if for some negligible μ(·), and any n ∈ N, C̃n is
μ(n)-concentrated.

3. C̃ is said to be evasive if it is concentrated, and for any n ∈ N and any x ∈ {0, 1}n ,
majC̃n(x) = 0.
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4. We say that the collection C itself is concentrated (evasive) if the uniform distrib-
ution ensemble on circuits in C is concentrated (evasive).

3.2 Strong Indistinguishability Obfuscation

Strong Indistinguishability Obfuscation requires that indistinguishability holds, even
when C0 and C1 do not necessarily compute the exact same function, but are taken
from two distributions C̃0n and C̃1n that are concentrated around the same function;
namely, majC̃0

n
≡ majC̃1

n
:

Definition 3.2 (Strong indistinguishability obfuscation) An obfuscator for C is said
to be a strong indistinguishability obfuscator for C, denoted by iO∗, if for any two
concentrated distribution ensembles C̃0, C̃1 on C, such that ∀n ∈ N : majC̃0

n
≡ majC̃1

n
,

and any polynomial-size distinguisherD, there exists a negligible functionμ such that
for all n ∈ N,

Pr[b ← {0, 1}; (C0,C1) ← (C̃0n , C̃1n);D(iO∗(Cb)) = b] ≤ 1

2
+ μ(n).

We observe that any SIO obfuscator for C is also an IO obfuscator for C. Indeed, for
any two circuits C0,C1 of equivalent functionality, each of these circuits on its own
is trivially concentrated around their common functionality.

4 SIO is Equivalent to Worst-Case VGB

In this section, we prove that the notion of strong indistinguishability obfuscation
(SIO) is equivalent to VGB. Clearly, any VGB obfuscator for a class C is also a SIO
for C. We show that the converse is true as well. Namely, we show that any strong
indistinguishability obfuscator O for a class C of circuits is a worst-case VGB obfus-
cator for C. In addition, we show that for classes C with some additional properties,
O is in fact worst-case VBB. We refer the reader to Sect. 1.1 for an overview.

4.1 Definitions and Statement of Main Theorem

4.1.1 Notation and Terminology

For a function f : {0, 1}n → {0, 1}, we say that a point x ∈ {0, 1}n separates a circuit
C from f if C(x) �= f (x). We say that a set L ⊆ {0, 1}n separates C from f , if some
x ∈ L separates C from f . Given a circuit collection K, we say that L separates K
from f , if L separates any C ∈ K from f . Recall, that we say that a collection K
is concentrated if the uniform distribution on K is concentrated around its majority
function majK.
Definition 4.1 (Majority-separating oracle) Let C be a collection of boolean circuits
defined over {0, 1}n , let C ∈ C, and let ε > 0. An oracle M is said to be (C,C, ε)-
separating if given any ε-concentrated sub-collection K ⊆ C, represented by a circuit
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that samples uniform elements in K, M(K) outputs a point x ∈ {0, 1}n that separates
C from majK, or ⊥ if no such point exists.

Remark 4.1 In the above definition, and throughout this section, we often abuse nota-
tion and denote by K both the sub-collection and the circuit that samples uniform
elements from the sub-collection.

Definition 4.2 (Learnability by majority-separating oracles) A collection C =⋃
n∈N Cn of boolean circuits is said to be (t, σ, c, s, ε)-learnable by a majority-

separation oracle if there exists a deterministic oracle-aided machine L such that,
given oracle access to C ∈ Cn and a (Cn,C, ε(n))-separating oracle M, LC,M(1n)
outputs Ĉ ∈ Cn of equivalent functionality to C , in time t (n), using at most s(n)

queries to M, and most σ(n) queries to C before the last call to M, and at most c(n)

queries to C overall.

Our main technical theorem shows that any strong indistinguishability obfuscator
for a circuit collection C that is learnable via a majority separation oracle is also a
worst-case simulation-based obfuscator. The size and query complexity of the worst-
case simulator, in particular whether it is a VBB or VGB simulator, is determined by
the learnability parameters (t, σ, c, s, ε).

Theorem 4.1 Let C = ⋃
n∈N Cn be a polynomial-size circuit collection, and let O

be a strong indistinguishability obfuscator for C. LetA be a boolean polynomial-size
adversary, and let p be a polynomial. Then there exists a polynomial q, such that
if C is (t, σ, c, s, 1

q )-learnable by a majority-separating oracle, and (t, σ, c, s) are
polynomially bounded, then (A, p) has a simulator S of size O(|A| + t · s · qs · 2σ )

with O(c+q ·s) oracle queries. The simulator works in the worst-case for any C ∈ C.
In Sect. 4.3 we show that for any 2 < q ≤ nO(1), any circuit collection C is

indeed (t, σ, c, s, 1
q )-learnable, for some setting of parameters (t, σ, c, s) that are all

polynomially bounded.

4.2 Proof of Theorem 4.1

Fix C,O,A, p satisfying the conditions of the theorem. The proof of the theorem
will rely on the following key lemma that essentially shows that the set of circuits,
whose obfuscationA can 1/p-distinguish, can always be separated from the majority
of circuits by a small separating set.

Lemma 4.1 There exists a polynomial q, such that for any n ∈ N, and any 1
q(n)

-
concentrated sub-collection K ⊆ Cn, there exists a set L(K) ⊆ {0, 1}n of size at most
q(n), such that for any C ∈ K that is not separated from majK by L(K):

∣
∣
∣
∣Pr[A(O(C)) = 1] − Pr

C ′←K
[A(O(C ′)) = 1]

∣
∣
∣
∣ ≤ 1/2p(n),

where the probability is also over the coins of A and O.
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Proof For anyn ∈ N, and sub-collectionK ⊆ Cn , let us denote byDb(K) the collection
of all circuits C ∈ K such that

(−1)b
(
Pr [A(O(C)) = 1] − Pr

C ′←K
[A(O(C ′)) = 1

]
)

≥ 1/2p(n);

namely, D(K) := D0(K) ∪ D1(K) consist of all the “distinguishable circuits” in K.
Assume towards contradiction that the lemma does not hold. Then there exists a

super-polynomial function T (n) = nω(1), such that for an infinite sequence N∗ ⊆ N,
and any n ∈ N∗, there exists a 1

T (n)
-concentrated sub-collection Kn ⊆ Cn such that

any set L(Kn) separating the distinguishable circuits D0(Kn) ∪ D1(Kn) from majKn

is of size greater than T (n). In particular, for some bn ∈ {0, 1}, any set separating
Dbn (Kn) from majKn

is of size greater than T (n)/2. For ease of notation, let us
assume throughout that bn = 0, and simply denote D(Kn) = D0(Kn). (This is indeed
WLOG, by flipping the output of A if needed.) ��
Claim 4.1 For any n ∈ N∗, there exists a non-empty concentrated sub-collection
D∗(Kn) ⊆ D(Kn). Specifically,

max
x∈{0,1}n

{
Pr

C←D∗(Kn)

[
C(x) �= majKn

(x)
]
}

≤ α(n) := 2 log |Cn|
T (n)

.

Proof We describe an iterative process that results in the required D∗(Kn). Let D0 =
D(Kn), and let L0 = ∅. Given Di , we define Di+1 as follows. If Di satisfies the
property given by the claim, output D∗(Kn) = Di . Otherwise, there exists a point
xi ∈ {0, 1}n that separates an α(n)-fraction of the circuits in Di from majKn

. Then,
add xi to current partial separating set Li+1 = Li ∪ {xi }, and let Di+1 ⊆ Di be the
sub-collection that is not separated from majKn

by xi .
Note that this process ends after at most T (n)/2 steps (we do not require that it is

efficient). Indeed, it holds that for i ≤ T (n)/2 and for α = 2 log |Cn |
T (n)

,

|Di | ≤ (1 − α(n)) |Di−1| ≤ (1 − α(n))i |D| ≤
(
1 − 2 log |Cn|

T

)i

|Cn| ≤ |Cn|1−
2i

T (n) .

Moreover, this process must end with a non-empty set. This is the case since otherwise
after T (n)/2 steps we separated all of the original D(Kn) from majKn

with a set
LT (n)/2 ⊆ {0, 1}n of size less than T (n)/2. This contradicts the fact that D(Kn)

cannot be separated from majKn
by T (n)/2 elements or less.

We now show how to violate the fact thatO is a SIO obfuscator for C. Consider the
concentrated sub-collections D∗ = ⋃

n∈N∗ D∗(Kn), and K = ⋃
n∈NKn . (Formally,

we need to also define these for n ∈ N \N∗. We can do so in an arbitrary way that will
keep them concentrated.) Since both D∗(Kn) and Kn are concentrated around majKn

,
it suffices to show that A distinguishes

{O(C) : C ← Kn}n∈N from
{O(C) : C ← D∗(Kn)

}
n∈N .
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Indeed, for any n ∈ N∗

Pr
C←D∗(Kn)

[A(O(C)) = 1] − Pr
C←Kn

[A(O(C)) = 1] ≥

min
C∈D∗(Kn)

Pr[A(O(C)) = 1] − Pr
C←Kn

[A(O(C)) = 1] ≥ 1

2p(n)
.

��
To complete the proof of Theorem 4.1, let us fix q to be the polynomial given by

Lemma 4.1 corresponding to (A, p), and assume that C is (t, σ, c, s, 1
q )-learnable by

a majority-separating oracle. We next describe the simulator S for (A, p), argue its
validity, and analyze its complexity.
Description of S. Given oracle access to C ∈ Cn , S runs the learner LC,M(1n) given
by Definition 4.2, and emulates for L the oracle C and the majority-separating oracle
M. Any call to C is answered by S using its own oracle to C . Oracle calls to M are
handled as follows. Given a sub-collection K ⊆ Cn that contains C (represented by a
circuit that samples uniform elements in K), S first retrieves the set L(K) separating
the distinguishable circuits D(K) ⊆ K from majK. Then, S queries its oracle C on all
the points x ∈ L(K), and tests whetherC(x) = majK(x), namely whether x separates
C from majK. The computation of majK(x) is done by computing C1(x), . . . ,Cn(x),
where each Ci ← K is a random circuit from K and taking their majority.

If S found a separating point x , then it uses it to answer L’s query, and continues
its emulation. Otherwise, if no point in L(K) separates C from majK, then S stops
the emulation of L, samples a random C ′ ← K, and outputs the result of running
A(O(C ′)). In any case, after running L for at most t (n) steps, Lwould output Ĉ ∈ Cn
of equivalent functionality to C , and S outputs the result of running A(O(Ĉ)).
Validity The validity of S follows from Lemma 4.1, the guarantee on L, and the
correctness of computing majK. In more detail, we first condition on the event that the
simulatorS always computesmajK correctly. In this case, byLemma4.1, if at any point
C agrees with majK on all ofL(K), thenA distinguishes an obfuscationO(C) from an
obfuscation O(C ′) for a random C ′ ← K with probability at most 1

2p(n)
. Otherwise,

we successfully implement a (Cn,C, 1
q(n)

)-majority-separating oracle M, and learn

Ĉ ∈ Cn of equivalent functionality to C . Since O is a strong indistinguishability
obfuscator, and in particular an indistinguishability obfuscator, A’s advantage is also
bounded by 1/2p(n).

To complete the argument, we note that the condition that S always computes majK
holds exceptwith negligible probability 2−	(n)·(c+qs) ≤ 1/2p(n). Indeed, each such
computations is correct except with probability 2−	(n) (see Claim 5.1), and the bound
follows by taking a union bound over the total number of queries (c + qs) = nO(1)

made by S (calculated in detail below). Thus, the overall simulation error is bounded
by 1/2p(n) + 1/2p(n) ≤ 1/p(n), as required.
Complexity of S. The queries of S to C include the c(n) queries that L makes to C ,
and q(n) queries for each of the s(n) queries made by L to M; indeed, remember that
the size of each L(K) is bounded by q(n). Thus the overall query complexity of S is
c(n) + s(n) · q(n).
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The total circuit size of S can be bounded by a fixed polynomial in

1. the size of the adversary |A|,
2. the total size t (n) of L,
3. the number of sets L(K) that the simulator may have to use throughout the simu-

lation, times the size q(n) of each L(K),
4. the time it takes to compute the values majK(x) throughout.

We now count the number of sets L(K) necessary for S. In what follows, for
1 ≤ i ≤ s + 1, we denote by ci (n) the number of queries made by L to the oracle
C between the i − 1-st and i-th queries to M. Note c(n) = ∑s+1

i=1 ci (n) and that
σ(n) = ∑s

i=1 ci (n). For ease of notation, from hereon we suppress the security
parameter n.

Consider the (deterministic) learner L, we consider its tree of possible executions.
We view each node at level 0 ≤ i ≤ s, as corresponding to the state of L before
making ci+1 queries to C and the i + 1-st query to M. In this tree, a node at the i-th
level has 2ci+1 · q sons. Indeed, there are at most 2ci+1 possible sequences of queries
and answers made by L to the oracle C , before the i + 1-st query to M; then, each
such possible sequence determines a set L(K) of q values that L will query M on.
The overall number of sets L(K) is thus

s−1∑

i=0

qi ·
i+1∏

j=1

2c j ≤ s · qs−1
s∏

i=1

2ci = s · qs−1 · 2σ .

Throughout the simulation, majK(x) is computed at most s(n) · q(n) times. The
computation itself is done by computing C1(x), . . . ,Cn(x), where each Ci ← K is a
random circuit from K and taking their majority. Sampling Ci ← K and computing
Ci (x), can be done in time at most t (n) (i.e., the size of L) since we assume that the
learner L represents each of its queries K to its majority-separating oracle M by a
circuit that samples uniform elements in K.

This completes the proof of Theorem 4.1.

4.3 VGB and VBB by Majority-Separation Learning

In this section, we show that any class of circuits is learnable by a majority-separating
oracle, with parameters that yield VGB simulation. We then discuss additional classes
that can be learned with better parameters, yielding VBB simulation. This includes
previously obfuscated classes as well as new ones.

4.3.1 VGB Obfuscation for All Circuits

We show

Theorem 4.2 Let C be any circuit collection and letO be a strong indistinguishability
obfuscator for C. Then O is also a worst-case VGB obfuscator for C.
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To prove Theorem 4.2, we show that any circuit collection is learnable by a
majority-separating oracle, where the learner is of unbounded size, but only performs
a polynomial number of queries to its oracles. Theorem 4.2 then follows from Theo-
rem 4.1.

Lemma 4.2 For any q > 2, any circuit collection C = {Cn}n∈N is (t, σ, c, s, 1
q )-

learnable by a majority-separating oracle for t (n) = ∞, s(n) ≤ σ(n) ≤ c(n) ≤
q(n) · log |Cn|.
Proof We describe the required learner L. LC,M works iteratively; starting from the
entire collection K0 = Cn , it each time reduces the current set of candidates Ki to a
strict sub-collectionKi+1 � Ki , until it finds a circuit Ĉ computing the same function
as C , or C itself. Specifically, as long as Ki contains some x that separates at least a
1
q -fraction of the circuits in Ki from majKi

, L queries C on x and defines Ki+1 to be
the subset of all circuits in Ki that agree with C on x . If no such x exists then Ki is
1
q -concentrated, in which case L asks the majority-separating oracle M for a point x
that separates C from majKi

. If M returns ⊥, then C ≡ majKi
is returned. Otherwise,

L queries C on x and continues as before.
It is left to note that, with each query to C of the first type,Ki is reduced by a factor

of (1 − 1/q(n)), and with each query of the second type it is reduced by a factor of
1/q(n) < 1 − 1/q(n), and thus:

|Ki | ≤ (1 − 1/q(n))i |K0| ≤ 2−i/q(n)|Cn| ≤ |Cn|·
(
1− i

q(n)·log |Cn |
)

.

This implies that L learns some Ĉ ∈ Cn of equivalent functionality to C after at most
q(n) · log |Cn| iterations, and thus s(n) ≤ σ ≤ c ≤ q(n) · log |Cn|. ��

4.3.2 VBB Obfuscation for Sets of Constant Size

A k-set circuit CS is associated with a set S of k points, it accepts all points in S,
and rejects all other points. A special well-studied case of set circuits is that of point
circuits, where k = 1.

Definition 4.3 (Set circuits) For a set S ⊆ {0, 1}n of size k, the set circuit CS

returns 1 for any x ∈ S, and 0 for all x /∈ S. Sk = ⋃
n∈N Sk

n , where Sk
n =

{CS : S ⊆ {0, 1}n, |S| = k(n)}, is the collection of k-set circuits.

Theorem 4.3 LetO be a strong indistinguishability obfuscator for Sk . ThenO is also
a worst-case VGB obfuscator for Sk , with a simulator of size nO(k), and polynomially
many queries. In particular, for k = O(1) it is also a VBB obfuscator.

As for Theorem 4.2, Theorem 4.3 is proven by showing how to learn set circuits
via a majority-separating oracle with certain efficiency parameters, and plugging it in
Theorem 4.1.

Lemma 4.3 Sk is (t, σ, c, s, ε)-learnable by a majority-separating oracle for t (n) =
poly(n), σ(n) = c(n) = 0, s(n) = k(n), and ε(n) = 2−	(n).
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Proof We describe the required learner L. LCS ,M works iteratively, revealing the
points in the set S one by one, as follows. Having already revealed a subset T � S, L
queries M on the sub-collection KT corresponding to all the set circuits CS′ such that
T ⊆ S′ and |S′| = k, where KT is represented via a poly(n)-size circuit that samples
a random element in KT .

Note that each such sub-collection KT is 2−	(n)-concentrated, since for a point
x ∈ T all circuits in KT return 1, whereas for x /∈ T , all but 2−	(n)-fraction of the
circuits in KT return 0. Eventually, after at most k(n) queries to M, the entire set S is
revealed. ��

4.3.3 VBB Obfuscation for Linear Subspaces over Finite Fields

Let F = {Fn}n∈N be a sequence of finite fields such that Fn is of size 2
(n) and
representing elements and computing field operations can be done efficiently as a
function of n. A subspace circuit tests whether a given x ∈ Fd is a member of some
linear subspaceV ⊆ Fd , or equivalently whether x belongs to the kernel of some given
matrix A ∈ Fd×d .

Definition 4.4 (Subspace circuits) Let d(n) be a polynomially bounded function. For
a matrix A ∈ Fd(n)×d(n) let CA be a circuit that returns 1 if and only if x ∈ ker(A).

Let Vd,F = ⋃
n∈N Ld,F

n , where Vd,F
n =

{
CA : A ∈ F

d(n)×d(n)
n

}
is the collection of

subspace circuits.

A special case of subspace circuit obfuscation, studied by [17], is that of hyper-
plane circuits where rank(A) = 1. They show how to VBB obfuscate hyperplanes for
dimension d = O(1), under a strong variant of Decision Diffie Hellman.

We prove the following theorem.

Theorem 4.4 Let O be a strong indistinguishability obfuscator for Vd,F. Then O
is also a worst-case VGB obfuscator for Vd,F, with a simulator of size nO(d), and
polynomially many queries. In particular, for d = O(1) it is also a VBB obfuscator.

As before, the theorem is proven by showing how to learn subspace circuits using
a majority-separating oracle with ceratin efficiency features, and plugging it in Theo-
rem 4.1.

Lemma 4.4 Vd,F is (t, σ, c, s, ε)-learnable by a majority-separating oracle for
t (n) = poly(n), σ(n) = c(n) = 0, s(n) ≤ d(n), and ε(n) = 2−	(n).

Proof We describe the required learner L. Let d = d(n) and let A ∈ Fd×d
n . LCA,M

gradually constructs a basis for ker(A). Having found amatrix B ∈ Fd×i
n of rank(B) =

i , for i < d, and such that AB = 0i , L queries the majority separating oracle M on
the sub-collection KB = {

CA′ : A′B = 0i
}
, where KB is represented by a poly(n)-

size circuit that samples uniform elements from KB . The collection KB is 2−	(n)-
concentrated; indeed, for any x ∈ span(B), x ∈ ker(A′) and CA′(x) = 1 for all
CA′ ∈ KB . For x /∈ B, as long as i < d, x ∈ ker(A′) with probability at most
|Fn|−1 = 2−	(n). Thus, L obtains a separating vector bi+1 ∈ ker(A) \ span(B), and
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can extend B to Bi+1 = (Bi |bi+1). If for some i < d, at the i-th step M returns ⊥, it
holds that ker(A) = span(Bi ), and L outputs some A′ such that ker(A′) = span(Bi ).
Otherwise A = 0d×d . ��

4.3.4 VBB Obfuscation for All-or-Nothing Learnable Circuits

A collection C = ⋃
n∈N Cn of polynomial-size boolean circuits is said to be all-or-

nothing learnable if:

• C is evasive. That is, given oracle access to a random C ∈ Cn is is hard to find a
point x such that C(x) = 1.

• Given oracle access to any C ∈ Cn and given any point x such that C(x) = 1 the
circuit C can be efficiently learned.

Examples of all-or-nothing learnable collections include point circuits (discussed
above), conjunction circuits CT,F (x) = ∧

i∈T xi ∧
i∈F ¬xi , for disjoint T, F ⊂ [n], or

Hamming ball circuits Cy,d(x) = 1 iff |y− x | ≤ d, for y ∈ {0, 1}n and d ∈ [n] (these
are also known as fuzzy point circuits).5

Definition 4.5 (All-or-nothing learnable circuits) An evasive circuit collection C =⋃
n∈N Cn is said to be all-or-nothing learnable, if there exists a polynomial-time learner

R such that for every C ∈ Cn and x ∈ C−1(1), RC (x) = Ĉ , for some Ĉ ∈ Cn that is
functionally equivalent to C .

We prove the following theorem.

Theorem 4.5 Let O be a strong indistinguishability obfuscator for any collection C
of all-or-nothing learnable circuits. Then O is also a worst-case VBB obfuscator for
C.

Again, the theorem is proved by showing how to learn am all-or-nothing learnable
circuit collection using a majority-separating oracle with ceratin efficiency features,
and plugging it in Theorem 4.1.

Lemma 4.5 Any collection C = ⋃
n∈N Cn of all-or-nothing learnable circuits is

(t, σ, c, s, ε)-learnable by a majority-separating oracle for t (n) = poly(n), s(n) = 1,
σ(n) = 0, c(n) = poly(n), and ε(n) = n−ω(1).

Proof We describe the required learner L. LCS ,M queries the majority-separating M

once, on the entire collection Cn (which we assume to have an efficient circuit that
samples uniform elements in Cn), obtains a point x such that C(x) = 1, and uses the
learner R, given by Definition 4.5, to learn Ĉ ∈ Cn with equivalent functionality to
C . Recall that indeed, since C is evasive, majCn ≡ 0 and Cn is μ(n)-concentrated for
some μ(n) = n−ω(1). In particular, no calls are made to C before the query to M,
meaning that σ(n) = 1. All the c calls made to C , are made after the call to M, when
applying the learner R, and thus c(n) = poly(n) ��

5 Indeed, the first two examples are also evasive collections. The Hamming ball collection, for a given d,
is evasive up to a certain threshold d∗ ∈ [n], and beyond that threshold, every function in the collection is
exactly learnable.
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4.3.5 Remarks

Having presented the above results, a few technical remarks are in place.

Remark 4.2 Barak et al. [3] show that if there exists an average-case VBB obfuscator
for every evasive function collection, then for every collection of polynomial-size
circuits, there exists a weak average-case VGB obfuscation, where the simulator is
allowed some super-polynomial number of oracle queries. Their result can also be
scaled down to speak of all collections in NC1. The VGB obfuscators constructed
here are stronger in two aspects: first they are worst-case, rather than average-case,
and second, the obfuscation simulator is only allowed a polynomial number of queries.

Remark 4.3 (Non-boolean functions) Our results are stated for boolean functions. For
our result on VGB obfuscation for all circuits, this is without loss of generality, since
for non-boolean circuit C(x), we can obfuscate the boolean circuit C ′(x, i) = Ci (x)
that returns the i-th output bit, given additional input i . As for our VBB results on
restricted classes, such as set circuits, subspace circuits, or all-or-nothing learnable
circuits, our results can be rather directly generalized to also allow a given multi-
bit output. Namely, the image of any circuit is still boolean, but rather than {0, 1} it
consists of {0, s}, for any given string s. These type of multi-bit output circuits were
previously studied in [4,12,17], and proven useful for strong forms of encryption.

Remark 4.4 (Auxiliary input) The worst-case VBB and VGB definitions considered
here allow a non-universal simulator [5]. In particular, the simulator is allowed to have
non-uniform advice that arbitrarily (and inefficiently) depends on the adversary’s non-
uniform advice. As noted in [4], in the case of VGB this is without loss of generality.
However, for VBB, universal simulation does not follow from non-universal simula-
tion, and we do not know how to extend our results to this setting.

5 SIO is Equivalent to VBB Obfuscation for Concentrated Distributions

In this section we show that SIO for a given collection C is not only equivalent to
VGB for C, but is also equivalent to requiring average-case VBB for any concentrated
distribution on C.
Theorem 5.1 Let C = ⋃

n∈N Cn be a circuit collection, and let O be an obfuscation
algorithm for C. Then the following two conditions are equivalent:

1. O is a strong indistinguishability obfuscator for C.
2. For any concentrated sub-collection B = ⋃

n∈N Bn ⊆ C, O is average-case VBB
for B.
Before proving the theorem, we first prove the following useful lemma regarding

an alternative definition for average-case obfuscation for concentrated distributions.
The lemma, implicitly proven in [3] for the special case of evasive distributions, shows
that, for concentrated distributions, (average-case)VBBobfuscation admits a universal
simulator that essentially runs the adversary on an obfuscation of a random circuit.
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Lemma 5.1 Let C̃ = ⋃
n∈N C̃n be a concentrated distribution ensemble on a circuit

collection C = ⋃
n∈N Cn. ThenO is an average-case VBB obfuscator for C̃ if and only

if for any polynomial-size A there exists a negligible μ(·), such that for any n ∈ N,
and any predicate π : Cn → {0, 1},

∣
∣
∣
∣
∣
Pr

C←C̃n
[A(O(C)) = π(C)] − Pr

C,C ′←C̃n

[A(O(C)) = π(C ′)
]
∣
∣
∣
∣
∣
≤ μ(n). (1)

Proof For the first direction, assume that O is an average-case VBB obfuscator for
C̃. Fix any polynomial-size A. Fix any polynomial p(·), and let S be an average-case
VBB simulator for (A, p) according to Definitions 2.2,2.4. Then, for any n ∈ N and
predicate π : Cn → {0, 1},

∣
∣
∣
∣
∣
Pr

C←C̃n
[A(O(C)) = π(C)] − Pr

C,C ′←C̃n

[A(O(C ′)) = π(C)
]
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
Pr

C←C̃n
[A(O(C)) = π(C)] − Pr

C←C̃n

[
SC (1n) = π(C)

]
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

Pr
C,C ′←C̃n

[A(O(C)) = π(C ′)
] − Pr

C,C ′←C̃n

[
SC (1n) = π(C ′)

]
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
Pr

C←C̃n

[
SC (1n) = π(C)

]
− Pr

C,C ′←C̃n

[
SC (1n) = π(C ′)

]
∣
∣
∣
∣
∣

≤ 1

p(n)
+ 1

p(n)
+ 2q(n) max

x∈{0,1}n Pr
C←C̃n

[
C(x) �= majC̃n (x)

]

≤ 2

p(n)
+ 2q(n) · μ(n),

In the second inequality, the first two summands are bounded by 1/p(n) by the
security of O. The third summand is bounded by the probability that in the two
executions of S, at least one query has a non-zero answer (otherwise the output of
S is independent of its oracle). This probability is bounded by 2q(n) · μ(n), where
q(n) is the polynomial bounding the number of queries made by S, and μ(n) is the
negligible concentration of C̃n .

Note that the above holds for every polynomial p, which implies that

∣
∣
∣
∣
∣
Pr

C←C̃n
[A(O(C)) = π(C)] − Pr

C,C ′←C̃n

[A(O(C ′)) = π(C)
]
∣
∣
∣
∣
∣
= negl(n),

as desired.
For the second direction, let Sn be a simulator that outputs 1 with probability

pn � Pr
A,O,C←C̃n

[A(O(C)) = 1] ,

123



Algorithmica (2017) 79:1014–1051 1037

where pn is non-uniformly hardwired into Sn . By Equation (1), S is a valid simulator
for C̃. ��
Proof of Theorem 5.1 We first prove that (2) implies (1). Specifically, assume that (1)
does not hold, we show that (2) also does not hold. If (1) does not hold then there
exist two concentrated ensembles C̃0, C̃1 such that majC̃0

n
≡ majC̃1

n
, a polynomial-size

adversary A, and a noticeable function δ such that, for infinitely many n ∈ N∗ ⊆ N,

Pr
C←C̃0

n

[A(O(C)) = 1] − Pr
C←C̃1

n

[A(O(C)) = 1] ≥ δ(n)

(the absolute value is discarded WLOG, by flipping A’s output if necessary).
For any circuit C ∈ Cn , let p(C) = PrA,O[A(O(C)) = 1], and for a distribution

D̃ on Cn , let p(D̃) = EC←D̃[p(C)]. Then, for any n ∈ N∗,

p(C̃0n ) − p(C̃1n) ≥ δ(n).

Next, denote

S0n =
{
C : p(C) ≥ p(C̃0n ) − δ(n)/4

}

S1n =
{
C : p(C) ≤ p(C̃1n) + δ(n)/4

}
.

Note that

p(C̃0n ) ≤ Pr
C←C̃0

n

[C ∈ S0n ] + p(C̃0n ) − δ(n)/4

⇒ Pr
C←C̃0

n

[C ∈ S0n ] ≥ δ(n)/4 ,

p(C̃1n) ≥ Pr
C←C̃1

n

[C /∈ S1n ] ·
(
p(C̃1n) + δ(n)/4

)

⇒ Pr
C←C̃1

n

[C ∈ S1n ] ≥ 1 − p(C̃1n)
p(C̃1n) + δ(n)/4

≥ δ(n)/4

p(C̃0n )
≥ δ(n)/4 .

We next consider the following two distributions conditioned on the above events

D̃b
n := C̃bn |Sbn , for b ∈ {0, 1}.

Then

p(D̃0
n) − p(D̃1

n) ≥
(p(C̃0n ) − δ(n)/4) − (p(C̃1n) + δ(n)/4) ≥

p(C̃0n ) − p(C̃1n) − δ(n)/2 ≥ δ(n)/2.
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Wenowconsider the distribution D̃n = D̃0
n+D̃1

n
2 that samples from D̃b

n for a uniform b ∈
{0, 1}.We first claim that the corresponding ensemble D̃ = ⋃

n∈N∗ D̃n is concentrated.
Indeed, since each D̃b

n is distributed like C̃bn , conditioned on Sbn , and since Sbn has
noticeable density δ(n)/4, it holds that D̃b

n is concentrated around majC̃b
n
. Thus,

majD̃0
n

≡ majC̃0
n

≡ majC̃1
n

≡ majD̃1
n
,

and since D is the average of D0
n,D1

n , it is also concentrated and

majD̃n
≡ majD̃0

n
≡ majD̃1

n
.

Next, define a predicate πn on the support of Dn such that πn(C) = b if and only if
C ∈ Sbn . Then, it holds that

Pr
C,C ′←D̃n

[A(O(C ′)) = πn(C)
] − Pr

C←D̃n

[A(O(C)) = πn(C)]

= Pr
C←D̃n

[πn(C) = 0] Pr
C←D̃n

[A(O(C)) = 0]

+ Pr
C←D̃n

[πn(C) = 1] Pr
C←D̃n

[A(O(C)) = 1]

− Pr
C←D̃n

[πn(C) = 1] Pr
C←D̃1

n

[A(O(C)) = 1]

− Pr
C←D̃n

[πn(C) = 0] Pr
C←D̃0

n

[A(O(C)) = 0]

= Pr
C←D̃n

[πn(C) = 0]
(

Pr
C←D̃0

n

[A(O(C)) = 1] − Pr
C←D̃n

[A(O(C)) = 1]

)

+ Pr
C←D̃n

[πn(C) = 1]
(

Pr
C←D̃n

[A(O(C)) = 1] − Pr
C←D̃1

n

[A(O(C)) = 1]

)

= Pr
C←D̃n

[C ∈ S0n ]
(

Pr
C←D̃0

n

[A(O(C)) = 1] − Pr
C←D̃n

[A(O(C)) = 1]

)

+ Pr
C←D̃n

[C ∈ S1n ]
(

Pr
C←D̃n

[A(O(C)) = 1] − Pr
C←D̃1

n

[A(O(C)) = 1]

)

= 1

2

(

Pr
C←D̃0

n

[A(O(C)) = 1] − Pr
C←D̃n

[A(O(C)) = 1]

)

+ 1

2

(

Pr
C←D̃n

[A(O(C)) = 1] − Pr
C←D̃1

n

[A(O(C)) = 1]

)

= 1

2

(

Pr
C←D̃0

n

[A(O(C)) = 1] − Pr
C←D̃1

n

[A(O(C)) = 1]

)
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= 1

2

(
p(D̃0

n) − p(D̃1
n)

)

≥ δ(n)/4.

By Lemma 5.1, this contradicts the fact that O is average-case VBB for the concen-
trated ensemble D̃.

We next prove that (1) implies (2). Fix any concentrated ensemble C̃ on the col-
lection C, and assume that (2) does not hold, we show that (1) also does not hold. By
Lemma 5.1, if (1) does not hold, there exists a polynomial-size A and noticeable δ(·)
such that for infinitely many n ∈ N∗ ⊆ N and predicates πn : Cn → {0, 1}, it holds
that

δ(n) ≤
∣
∣
∣
∣
∣
Pr

C←C̃n
[A(O(C)) = πn(C)] − Pr

C,C ′←C̃n

[A(O(C ′)) = πn(C)
]
∣
∣
∣
∣
∣

≤ Pr
C←C̃n

[πn(C) = 0]
∣
∣
∣
∣
∣

Pr
C←C̃n :πn(C)=0

[A(O(C)) = 1] − Pr
C←C̃n

[A(O(C)) = 1]

∣
∣
∣
∣
∣

+ Pr
C←C̃n

[πn(C) = 1]
∣
∣
∣
∣
∣

Pr
C←C̃n :πn(C)=1

[A(O(C)) = 1] − Pr
C←C̃n

[A(O(C)) = 1]

∣
∣
∣
∣
∣
.

Then, for infinitely many n ∈ N∗, one of the two above summands is at least δ(n)/2,
let us assume WLOG that it is the first (the proof is similar in the second case). Now

consider the distribution C̃0n =
{
C ∈ C̃n : πn(C) = 0

}
. Since PrC←C̃n [πn(C) = 0] ≥

δ(n)
2 , it holds that C̃0n , like C̃n is concentrated around majC̃n . Moreover,

δ(n)/2 ≤
∣
∣
∣
∣
∣
Pr

C←C0
n

[A(O(C)) = 1] − Pr
C←C̃n

[A(O(C)) = 1]

∣
∣
∣
∣
∣
,

implying that strong indistinguishability, required in (2), does not hold. ��

5.1 Equivalence of VBB Obfuscation for Concentrated and Evasive
Distributions

We complete this section by showing that indistinguishability obfuscation, plus
(average-case) VBB obfuscation for evasive distributions implies (average-case) VBB
obfuscation for concentrated distributions.

We start by noting the following fact.

Claim 5.1 Let S̃ be a 1
3 -concentrated distribution over boolean circuits where each

boolean circuit C ∈ supp(S̃) is defined over {0, 1}n and is of depth at most d and size
at most �. Then the majority functionmajS̃ can be computed by a (non-uniform) circuit
of size O(n · �) and depth O(log n + d). Also, if S̃ is samplable by a circuit of size s,
such a majority circuit can be sampled, with overwhelming probability 1 − 2−	(n),
by a circuit of size O(n · s).
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Proof Since S̃ is 1
3 -concentrated, by a Chernoff bound and a union bound on 2n

inputs, the majority of O(n) random circuits from S̃ computes majS̃ with probability
1 − 2−	(n). ��

We next state the equivalence lemma. For a circuitC of size at most �, we denote by
[C]� a canonically zero-padded version of C of size �. For a collection C = ⋃

n∈N Cn ,
and functions �(·), d(·), we denote by [C]d� the class of circuits where each C ∈ C
computes the same function as some C ∈ Cn and is of size �(n), and depth d(n). Let
Mn be a polynomial-size circuit computing the majority majC̃n over C̃n . We denote by

C̃ ⊕ Mn the distribution ensemble
⋃

n∈N
{
C ⊕ Mn : C ← C̃n

}
. Observe that C̃ ⊕ Mn

is evasive.

Lemma 5.2 Let C = ⋃

n∈N
Cn be a circuit collection where each C ∈ Cn is of

polynomial-size �(n) and depth at most d, and let C̃ be a concentrated distribution
ensemble on C. For any n ∈ N let Mn be a circuit of size O(�(n) · n) and depth
O(log n + d(n)) that computes majC̃ . Assume that there exists an average-case VBB

obfuscator for the evasive distribution ensemble C̃ ⊕ Mn that blows up the size of
any circuit C by some polynomial B(·). Then there exist a polynomial �′(n) and a
function d ′(n) = O(d(n) + log n), depending only on (�, B, d ′), such that if iO is an
indistinguishability obfuscator for [C]d ′

�′ , then the obfuscator cO, given by

cO(C) ← iO([C]�′(n))

is an average-case VBB obfuscator for C̃.

Proof Let Mn be the circuit of size O(�(n) · n) that computes majC̃n . Let eO be an

average-case VBB obfuscator for the evasive distribution ensemble C̃ ⊕ Mn such that
|eO(C)| = B(|C |). For C ∈ Cn , consider the circuit

Cr := Mn ⊕ eO(C ⊕ Mn; r)),

which computes the same function as C , but in a different way—it has hardwired an
obfuscation eO(C ⊕ Mn; r), using some randomness r , that computes its difference
from the majority; it first runs this obfuscation on the given input, and then computes
again the difference from the majority, resulting back in C(x). We let �′(n) be the
size of Cr and d ′(n) be its depth. Note that these, indeed, only depend on �, b, d and
d ′(n) = O(depth(C) + depth(Mn)) = O(d(n) + log n).

Next, applying first the IO guarantee and then the guarantee that eO is an average-
caseVBB obfuscator for the evasive ensemble

⋃
n∈N Mn⊕C̃n , as given by Lemma 5.1,

we have
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Pr
A,cO,C←C̃n

[A(cO(C)) = π(C)]

= Pr
A,iO,C←C̃n

[A(iO([C]�′(n))) = π(C)
]

= Pr
A,iO,r,C←C̃n

[A(iO(Cr )) = π(C)] ± n−ω(1)

= Pr
A,iO,r,C←C̃n

[A(iO(Mn ⊕ eO(C ⊕ Mn; r))) = π(C)] ± n−ω(1)

= Pr
A,iO,r,C,C ′←C̃n

[A(iO(Mn ⊕ eO(C ⊕ Mn; r))) = π(C ′)
] ± n−ω(1)

= Pr
A,iO,r,C,C ′←C̃n

[A(iO(Cr )) = π(C ′)
] ± n−ω(1)

= Pr
A,iO,C,C ′←C̃n

[A(iO([C]�′(n))) = π(C ′)
] ± n−ω(1)

= Pr
A,cO,C,C ′←C̃n

[A(cO(C)) = π(C ′)
] ± n−ω(1).

Thus, again by Lemma 5.1, we deduce that cO is an average-case VBB obfuscator for
the concentrated ensemble C̃. ��

6 From Semantically Secure Multilinear Jigsaw Puzzles to SIO for NC1

The obfuscation scheme of [19] is based on the notion of multilinear jigsaw puzzles
that captures a restriction of the multilinear maps functionality. In this section, we
define semantically-secure multilinear jigsaw puzzles, which are a variant of the Pass
et al. [25] definition.We show that any obfuscation scheme for a class C of circuits that
is virtual-black-box secure in the ideal multilinear jigsaw puzzle model against semi-
bounded adversaries, together with semantically-secure multilinear jigsaw puzzles,
implies strong indistinguishability obfuscation for C. Combined with the recent ideal-
model obfuscators forNC1 [1,8,9,28], we obtain SIO forNC1.We also show thatVGB
obfuscation for all polynomial-size circuits implies semantically-secure multilinear
jigsaw puzzles.

6.1 Multilinear Jigsaw Puzzles

Multilinear jigsaw puzzles were introduced by Garg et al. [19] to capture the restricted
graded encoding functionality (described in Sect. 1.2 of the introduction) used in their
obfuscation construction. In graded encoding schemes, elements are encoded one by
one, and any encoding can be combined with any other encoding in a homomor-
phic computation. In contrast, multilinear jigsaw puzzles encode, once and for all, a
sequence of elements (with their respective control sets). The puzzle supports the same
homomorphic operations as graded encodings, but only over the elements encoded in
the puzzle. There is no way to compute on elements encoded in different puzzles.
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Once the sequence of encoded elements is fixed and puzzles is initialized, all the
evaluator can do is homomorphically evaluate some arithmetic expression over these
encodings and test if the polynomial evaluates to zero or not. In contrast to graded
encodings, in multilinear jigsaw puzzles, the homomorphic operations and zero-test
operation are not performed one by one on individual encodings, and the evaluator
does not obtain encoding of intermediate steps of the homomorphic computation.
Instead, the puzzle evaluator specifies a solution in the form of an arithmetic circuit,
and tests if it “solves” the puzzle. If the arithmetic circuit respects the control sets the
the evaluator learns if evaluation of the circuit on the encoded elements is zero or not.
Formally, a multilinear jigsaw puzzle scheme is a given by a tuple of PPT algorithms

(KeyGen,PuzzleGen,Test) ,

with the following syntax

• KeyGen is a randomized algorithm generating a secret key for the scheme. It
takes is input the security parameter 1n and a bound B ∈ N on the solution size.
It outputs a secret key sk including the description of a ring R.

• PuzzleGen is a randomized algorithm for generating puzzles. It takes as input the
secret key sk, a level k ∈ N, a vector of sets 
S ∈ (2[k])� and a vector of elements

m ∈ R�. It outputs a puzzle Z .

• Test is a deterministic algorithm for testing solutions to puzzles. It takes as input
a puzzle Z and an arithmetic circuit C of size at most B. It output a bit.

Next, we recall the definition of set-respecting arithmetic circuits from [25]. An
arithmetic circuit respects a sequence of control sets if it is possible to test if the
circuit evaluates to zero on a sequence of encodings with the given control sets via the
supported graded encoding operations.

Definition 6.1 (Set-respecting arithmetic circuits [25]) Given a level k ∈ N, and a
vector of sets 
S ∈ (2[k])�, we say that an arithmetic circuit C , taking � inputs, is

S-respecting if there exists a function Tag from the wires of C to 2[k] such that the
following holds:

• For every i ∈ [�], the i-th input wire wi
in satisfies Tag(wi

in) = 
S[i].
• Every + or − gate in C connecting input wires u and v to an output wire w,
satisfies Tag(u) = Tag(v) = Tag(w).

• Every × gate in C connecting input wires u and v to output wire w, satisfies
Tag(u) ∩ Tag(v) = ∅ and Tag(u) ∪ Tag(v) = Tag(w).

• The output wire wout satisfies Tag(wout ) = [k].
Next, we define the functionality of multilinear jigsaw puzzles.

Definition 6.2 (Multilinear jigsaw puzzle functionality) A multilinear jigsaw puzzle
scheme (KeyGen,PuzzleGen,Test) satisfies the following functionality require-
ment. For every security parameter n ∈ N, every size bound B ∈ N, every secret key
sk in the support of KeyGen(1n, B) including the description of a ring R, every level
k ∈ N, every a vector of sets 
S ∈ (2[k])�, every vector of elements 
m ∈ R and every
arithmetic circuit C of size at most B the following holds.
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• If C is not 
S-respecting then

Pr[Test(PuzzleGen(sk, k, 
S, 
m),C) = ⊥] = 1.

• If C is 
S-respecting and C( 
m) = 0

Pr[Test(PuzzleGen(sk, k, 
S, 
m),C) = 1] = 1.

• If C is 
S-respecting and C( 
m) �= 0

Pr[Test(PuzzleGen(sk, k, 
S, 
m),C) = 0] = 1.

Garg et al. [19] suggested a simple construction of multilinear jigsaw puzzles based
on graded encodings. Their puzzle contains the public parameters of the graded encod-
ings scheme and individual encodings of the puzzle’s elements.

6.2 Semantic Security

We now define semantically-secure multilinear jigsaw puzzles. The definition follows
that of Pass et al. [25] for graded encodings. (Indeed, semantically-secure multilinear
jigsaw puzzles will be a restriction that is implied by semantically-secure graded
encodings.) We then formulate a variant of semantic security with inefficient massage
samplers (See Remark 6.2). Although it appears to be somewhat stronger than the
notion considered by Pass et al., we find it natural and appealing. See [6] for a number
of relaxations of this basic notion and their relative security.
We first define the ideal oracle implementing the multilinear jigsaw puzzle function-
ality.

Definition 6.3 (Ideal multilinear jigsaw puzzle oracle M ([25])) For a ring R, size
bound B ∈ N, a level k ∈ N, a vector of sets 
S ∈ (2[k])� and a vector of elements

m ∈ R�, the oracle M(R, B, k, 
S, 
m) is defined as follows: for every query C , if
|C | > B or if C is not a description of an 
S-respecting arithmetic circuit, M outputs
⊥. Otherwise, M evaluates C on 
m and outputs 1 if C evaluates to 0, and outputs 0
otherwise.

Central to the definition of semantic security is the notion of an admissible message
sampler (analogous to respecting message samplers in [25]). A message sampler is
admissible if it samples two vectors of elements 
m0, 
m1 that cannot be distinguished
by a semi-bounded adversary that has unbounded in size, but can only access 
m0 or

m1 by making a polynomial number of queries to an ideal multilinear jigsaw puzzle
oracle M.

Definition 6.4 (Efficient message sampler) Let (KeyGen,PuzzleGen,Test) be a
multilinear jigsaw puzzle scheme and let k = k(n), � = �(n), and B = B(n) be
polynomials. A PPT algorithm M is an efficient (k, �, B)-message sampler if for
every n ∈ N, and every secret key sk in the support of KeyGen(1n, B) including the
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description of a ring R, M(1n, R) samples a vector of sets 
S ∈ (2[k])� and two vectors
of elements 
m0, 
m1 ∈ R�. We require that the vector of sets 
S depends only on the
security parameter n an not on randomness of M.

Remark 6.1 In the above definition, we do not allow M to choose the vector of sets

S depending on its randomness or on the circuit C . This restriction simplifies the
presentation of our results. However, all our results hold also with respect to the more
general definitionofmessage samplerswhere 
S canbe sampled fromsomedistribution.

Definition 6.5 (Admissible message sampler) Let (KeyGen,PuzzleGen,Test) be
a multilinear jigsaw puzzle scheme and let k = k(n), � = �(n), and B = B(n) be
polynomials. A (k, �, B)-message samplerM (Definition 6.4) is admissible if for every
polynomial q and for every (unbounded) oraclemachineA (called the ideal adversary)
making at most q(n) oracle queries, where every query describes an arithmetic circuit
of size at most B(n), there exists a negligible function μ such that for every n ∈ N

and every secret key sk in the support of KeyGen(1n, B) including the description of
a ring R,

Pr

[
b ← {0, 1}

(
S, 
m0, 
m1) ← M(1n, R)
;AM(R,B,k,
S, 
mb)(n) = b

]
≤ 1

2
+ μ(n),

where the probability is also over the coins of A.

Loosely speaking, a multilinear jigsaw puzzle scheme is semantically secure if
for a tuple (
S, 
m0, 
m1) generated by an admissible message sampler, given a puzzle
encoding the elements 
mb with the sets 
S, it is hard to predict b with non-negligible
advantage in polynomial time.

Remark 6.2 (Inefficient message samplers) For most of our results, we need to rely
on a stronger notion of semantic security that allows for computationally unbounded
admissible message samplers. Since the message sampler M in Definition 6.4 takes as
input the description of a ring R associated with the secret key of multilinear jigsaw
puzzle, simply allowing M to be unbounded may result in an unachievable definition.
Specifically, consider amultilinear jigsawpuzzle schemewhere it is possible to recover
the secret key sk from the description of the ring R in unbounded time.6 An inefficient
M may recover sk and sample elements that reveal it. M may still be admissible since
knowing the secret key gives no advantage to the ideal adversary, however given sk it
may be possible to distinguish the sampled puzzles (for any non-trivial M).

Instead, in Definition 6.6 we keep the sampler M efficient, but we give it auxiliary
input that is sampled by an inefficient algorithm. Importantly, we do not give the
auxiliary-input sampler the description of the ring.

Definition 6.6 (Inefficient message sampler) Let (KeyGen,PuzzleGen,Test) be a
multilinear jigsaw puzzle scheme and let k = k(n), � = �(n), and B = B(n) be poly-
nomials. An unbounded (k, �, B)-message sampler is defined by a PPT algorithm M

6 We note that this is not the case for existing candidate construction [15,18].
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and an unbounded auxiliary input sampler Z. We require that there exist a polynomial
q such that for every n ∈ N, and every secret key sk in the support of KeyGen(1n, B)

including the description of a ring R, |Z(n)| < q(n), and M(1n, Z(n), R) outputs a
vector of sets 
S ∈ (2[k])� and two vectors of elements 
m0, 
m1 ∈ R�. We require that
the vector of sets 
S depends only on the security parameter n and not on randomness
of M or Z.

The definition of admissability remains as inDefinition 6.5. Inwhat follows,weonly
consider semantic security with respect to inefficient admissible message samplers
(unless we explicitly state otherwise).

Definition 6.7 (Semantically-secure multilinear jigsaw puzzles) A multilinear jig-
saw puzzle scheme (KeyGen,PuzzleGen,Test) is semantically secure if for every
polynomials k = k(n), � = �(n), B = B(n), every inefficient admissible (k, �, B)-
message sampler (Z, M), and every polynomial-size adversary A, there exist a
negligible function μ such that for every n ∈ N,

Pr

⎡

⎣
b ← {0, 1}

sk ← KeyGen(1n, B)

(
S, 
m0, 
m1) ← M(1n, Z(n), R)

;A
(
PuzzleGen(sk, k, 
S, 
mb)

)
= b

⎤

⎦

≤ 1

2
+ μ(n),

where R is described in the secret key sk and the probability is also over the coins
of A.

6.3 Ideal Multilinear Jigsaw Puzzle Obfuscation

Barak et al. [8] construct a virtual black-box obfuscator for NC1 in the ideal multi-
linear jigsaw puzzle model where algorithms have access to an ideal oracle M (See
Definition 6.3). Next, we define virtual-black-box obfuscation in this model. Here an
obfuscation of a circuit consists of a vector of sets 
S, and a vector of elements 
m
used to initialize a multilinear jigsaw puzzle oracle M. The honest evaluator and the
attacker have oracle access toM.

Definition 6.8 (Ideal multilinear jigsaw puzzle obfuscation) Let (KeyGen,

PuzzleGen,Test) be multilinear jigsaw puzzle scheme. A PPT algorithm O is a
virtual black-box (VBB) obfuscator in the ideal multilinear jigsaw puzzle model, for
a family of polynomial-size circuits C = {Cn}n∈N, if it satisfies the following require-
ments:

• Functionality: There exist polynomials k = k(n), � = �(n) and B = B(n) and
there exists a polynomial-time oracle machine EvalO that satisfy the following:
for every n ∈ N, every secret key sk in the support of KeyGen(1n, B) including
the description of a ring R, and for every C ∈ Cn , the obfuscator O(1n, R,C)

outputs a vector of sets 
S ∈ (2[k])� and a vector of elements 
m ∈ R� such that for
every input x to C :
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EvalM(R,B,k,
S, 
m)

O (x) = C(x).

We require that the vector of sets 
S depends only on the security parameter n an
not on the circuit C or the randomness of O.

• Virtual black-box: For every polynomial function q and for every (unbounded)
oracle machineA (called the ideal adversary) making at most q(n) queries, where
every query describes an arithmetic circuit of size at most B(n), there exist a PPT
oracle machine S (called the simulator), and negligible function μ, such that for
every n ∈ N, every secret key sk in the support of KeyGen(1n, B) including the
description of a ring R, and for every C ∈ Cn :

∣
∣
∣
∣
∣
Pr[(
S, 
m) ← O(1n, R,C);AM(R,B,k,
S, 
m)(n) = 1]−
Pr[SA,C (1n) = 1]

∣
∣
∣
∣
∣
≤ μ(n),

where the probabilities are over the coins of the obfuscator O, the adversary A
and the simulator S. The notation SA means that S gets oracle access toA, when
answering A’s oracle queries.

Remark 6.3 In the above definition we do not allow O to choose the vector of sets

S depending on its randomness or on the circuit C . This restriction simplifies the
presentation of our results. Specifically, we rely on the fact that obfuscation of different
circuits of the same size use the same vector 
S. However, all our results hold also with
respect to the more general definition of ideal multilinear jigsaw puzzle obfuscation
where the choice of 
S is not restricted. We note that all existing constructions of ideal
obfuscation [8,9,25] meet the functionality requirement in its restricted form.

Remark 6.4 (Ideal obfuscation in [8].) The syntax for the obfuscator defined above is
different from the one in [8], and is adapted to the way that ideal multilinear jigsaw
puzzles are dealt with in this work. Amore essential difference is that Barak et al. state
their final result for bounded ideal adversaries, whereas we consider semi-bounded
ones. Against bounded ideal adversaries, Barak et al. achieve ideal obfuscation for all
polynomial-size circuits. For semi-bounded ideal adversaries considered in this work,
their result only holds for NC1.

Theorem 6.1 ([8]) There exists an ideal multilinear jigsaw puzzle obfuscation for
every circuit family in NC1.

6.4 Obfuscation from Semantically-Secure Multilinear Jigsaw Puzzles

We show that semantically-secure multilinear jigsaw puzzles imply SIO, and, as a
corollary of our result from Sect. 4, also other forms of obfuscation.

Proposition 6.1 Assume there exists a semantically-secure multilinear jigsaw puzzle
scheme (Definition 6.7), and assume there exists an ideal multilinear jigsaw puzzle
obfuscation (Definition 6.8) for a circuit class C. Then there exists a strong indistin-
guishability obfuscator for the circuit class C, in the plain model (Definition 3.2).
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As a corollary of Theorem 6.1, Proposition 6.1, and the transformation from (stan-
dard) IO for NC1 to (standard) IO for all polynomial-size circuit classes [19], we
obtain the following theorem.

Theorem 6.2 Assume there exists a semantically secure multilinear jigsaw puzzle
scheme. Then there exist:

1. SIO, for any circuit class in NC1,
2. (standard) IO, for any polynomial-size circuit class, assuming also fully-

homomorphic encryption with decryption in NC1.

As a corollary of the above theorem and of our results from Sect. 4, we obtain the
following theorem.

Theorem 6.3 Assume there exists a semantically-secure multilinear jigsaw puzzle
scheme. Then there exist:

1. worst-case VGB for any collection in NC1,
2. worst-case VGB obfuscation for the class of set circuits Sk for any k = poly(n),

and VBB obfuscation for k = O(1),
3. worst-case VGB obfuscation for the class of linear subspaces Vd,F for any d =

poly(n), and VBB obfuscation for d = O(1),
4. worst-caseVBB for any efficiently samplable collection of all-or-nothing learnable

circuits in NC1, in particular, for Hamming balls and conjunctions.

We now turn to give a proof sketch of Proposition 6.1.

Proof of Proposition 6.1 Let C be a class of polynomial-size circuits, let (KeyGen,

PuzzleGen,Test) be a semantically secure multilinear jigsaw puzzle scheme. LetO
be an ideal multilinear jigsaw puzzle obfuscator for C.
The obfuscator Õ for C: Let � = �(n), k = k(n) and B = B(n) be the polynomials
given by the ideal multilinear jigsaw puzzle obfuscator O (Definition 6.8). Given
C ∈ Cn , Õ samples a secret key sk ← KeyGen(1n, B) for the multilinear jigsaw
puzzle scheme, including the description of a ring R. Õ then runsO(1n, R,C) which
outputs a vector of sets 
S ∈ (2[k])�, and a vector of elements 
m ∈ R�, such that for

every input x , EvalM(R,B,k,
S, 
m)

O (x) = C(x). Finally, Õ outputs an obfuscated circuit
that contains, hardcoded into it, a puzzle

Z = PuzzleGen(sk, k, 
S, 
m).

Theobfuscated circuit emulates the evaluationprocedure of the idealmultilinear jigsaw
puzzle obfuscation EvalO, where any query C to the ideal oracle M is answered by
Test(Z ,C).
Functionality and indistinguishability The functionality of Õ follows readily from
that of the multilinear jigsaw puzzle scheme and ofO. We now argue strong indistin-
guishability based on the semantic security of the multilinear jigsaw puzzle scheme.
Let C̃0, C̃1 be two concentrated distribution ensembles on C such that majC̃0

n
≡ majC̃1

n
,

and let D be any polynomial-size distinguisher. We show that D cannot distinguish
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whether it is given an obfuscation Õ(C0) or Õ(C1), for (C0,C1) ← (C̃0n , C̃1n), with
non-negligible advantage.

Assume towards contradiction that D can predict whether it is given Õ(C0) or
Õ(C1) with a noticeable advantage over 1

2 . We construct an inefficient admissible
(k, �, B)-message sampler (Z, M), and show that together with D they violate the
semantic security of themultilinear jigsaw puzzle scheme. The auxiliary input sampler
Z samples (C0,C1) ← (C̃0n , C̃1n) (note that if C̃0n , C̃1n are not efficiently samplable, Z is
inefficient). The message sampler M, given a ring R, and the auxiliary input (C0,C1)

executes the ideal multilinear jigsaw puzzle obfuscator O(1n, R, ·) on each of the
circuits, and obtains a vector of sets 
S and two vectors of messages 
m0, 
m1, which it
then outputs. (Here we use the fact thatO outputs the same the vector of sets 
S in both
executions. See Remark 6.3.)

To argue that the sampler (Z, M) is admissible, we need to show that the following
holds for every (unbounded) oracle machine A (the ideal adversary) making only
polynomially many oracle queries, where every query describes an arithmetic circuit
of size at most B(n), for every n ∈ N, and for every secret key sk in the support of
KeyGen(1n, B) including the description of a ring R,

Pr

[
b ← {0, 1}

(
S, 
m0, 
m1) ← M(1n, Z(n), R)
;AM(R,B,k,
S, 
mb)(n) = b

]
≤ 1

2
+ negl(n),

where the probability is also over the coins of A.
This follows from the ideal virtual-black-box security of O. Indeed, for any ideal

adversaryA as above, let q(n) be the polynomial bound on its number of queries, and
let S be its virtual-black-box simulator (according to Definition 6.8). Therefore,

Pr

[
b ← {0, 1}

(
S, 
m0, 
m1) ← M(1n, Z(n), R)
;AM(R,B,k,
S, 
mb)(n) = b

]

≤ Pr
[
b ← {0, 1}; (C0,C1) ← (C̃0n , C̃1n);SA,Cb (1n) = b

]
+ negl(n)

≤ 1

2
+ q(n) · ν(n) + negl(n) = 1

2
+ negl(n),

where ν(n) = max(ν0(n), ν1(n)), and νb(n) = negl(n) is the negligible concentration
measure of Cbn around majC̃0

n
≡ majC̃1

n
.

It is left to note that, by the construction of (Z, M) and the assumption that D
predicts b with noticeable advantage (given Õ(Cb) for a random b), D breaks the
semantic security of the multilinear jigsaw puzzle scheme (Definition 6.7). ��

6.5 Semantically-Secure Multilinear Jigsaw Puzzles from VGB Obfuscation

We show that VGB obfuscation for all polynomial-size circuits imply semantically
secure multilinear jigsaw puzzles.
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Theorem 6.4 Assume there exists worst-case VGB obfuscation for the class of all
polynomial-size circuits. Then there exists a semantically secure multilinear jigsaw
puzzle scheme.

Proof Let O be a worst-case VGB obfuscation for the class of all polynomial-
size circuits. We construct a semantically secure multilinear jigsaw puzzle scheme
(KeyGen,PuzzleGen,Test) as follows.

Given the security parameter 1n and a bound B, the key generation algorithm
KeyGen output the secret key sk = (1n, B, R), where R is a ring. (Our construction
puts no restriction on the way R is chosen.)

Given the secret key sk, a level k ∈ N, a vector of sets 
S ∈ (2[k])� and a vector of
elements 
m ∈ R�, the puzzle generation algorithm PuzzleGen is defined as follows.
Let ZR,B,k,
S, 
m be a circuit that takes as input a description of an arithmetic circuit
C of size B (if |C | < B the circuit is padded) and answers the similarly to the ideal
oracle M(R, B, k, 
S, 
m). PuzzleGen VGB obfuscates the circuit

Z̃ = O(ZR,B,k,
S, 
m),

and outputs the obfuscated circuit Z̃ as the puzzle.
Given a puzzle Z̃ , and an arithmetic circuit C of size at most B, the solution testing

algorithm Test executes the circuit Z̃ on the description of C and outputs the result.
Functionality and semantic security The functionality of the multilinear jigsaw puzzle
scheme follows readily from that of theO.We now argue that the construction satisfies
semantic security.

Let k = k(n), � = �(n), B = B(n) be polynomial and let (Z, M) be an ineffi-
cient admissible (k, �, B)-message sampler. Assume thete exists a polynomial-size
adversary A, and a polynomial p such that for infinitely many values of n ∈ N

Pr

⎡

⎣
b ← {0, 1}

(1n, B, R) ← KeyGen(1n, B)

(
S, 
m0, 
m1) ← M(1n, Z(n), R)

;A
(
O(ZR,B,k,
S, 
mb

)
)

= b

⎤

⎦ ≥ 1

2
+ 1

p(n)
,

Let πR,B,k,
S, 
m0, 
m0
be a predicate that outputs b given the circuit ZR,B,k,
S, 
mb

. By
the VGB security of O there exists a polynomial q and an unbounded simulator S
making at most q(n) queries, each describing an arithmetic circuit of size at most
B(n) such that for every n as above, for every sk in the support of KeyGen(1n, B)

including the description of a ring R, for every vectors (
S, 
m0, 
m1) in the support of
M(1n, Z(n), R) and for every bit b ∈ {0, 1},

∣
∣
∣
∣ PrA,O

[
A

(
O(ZR,B,k,
S, 
mb

)
)

= b
]

− Pr
S

[SM(R,B,k,
S, 
mb)(1n) = b]
∣
∣
∣
∣ ≤ 1

2p(n)
.

We therefore have that for infinitely many values of n ∈ N there exists a secret key
sk in the support of support of KeyGen(1n, B) including the description of a ring R
such that
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Pr

[
b ← {0, 1}

(
S, 
m0, 
m1) ← M(1n, Z(n), R)
;SM(R,B,k,
S, 
mb)(1n) = b

]
≥ 1

2
+ 1

2p(n)
.

This contradicts the admissibility of the inefficient message sampler (Z, M). ��
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