
Algorithmica (2017) 79:598–623
DOI 10.1007/s00453-016-0209-9

On the Value of Job Migration in Online Makespan
Minimization

Susanne Albers1 · Matthias Hellwig2

Received: 8 September 2015 / Accepted: 2 September 2016 / Published online: 8 September 2016
© Springer Science+Business Media New York 2016

Abstract Makespan minimization on identical parallel machines is a classical
scheduling problem. We consider the online scenario where a sequence of n jobs
has to be scheduled non-preemptively on m machines so as to minimize the max-
imum completion time of any job. The best competitive ratio that can be achieved
by deterministic online algorithms is in the range [1.88, 1.9201]. Currently no ran-
domized online algorithm with a smaller competitiveness is known, for general m.
In this paper we explore the power of job migration, i.e. an online scheduler is
allowed to perform a limited number of job reassignments. Migration is a common
technique used in theory and practice to balance load in parallel processing envi-
ronments. As our main result we settle the performance that can be achieved by
deterministic online algorithms. We develop an algorithm that is αm-competitive, for
any m ≥ 2, where αm is the solution of a certain equation. For m = 2, α2 = 4/3
and limm→∞ αm = W−1(−1/e2)/(1 + W−1(−1/e2)) ≈ 1.4659. Here W−1 is the
lower branch of the Lambert W function. For m ≥ 11, the algorithm uses at most
7m migration operations. For smaller m, 8m to 10m operations may be performed.
We complement this result by a matching lower bound: No online algorithm that uses
o(n) job migrations can achieve a competitive ratio smaller than αm . We finally trade
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performance for migrations. We give a family of algorithms that is c-competitive, for
any 5/3 ≤ c ≤ 2. For c = 5/3, the strategy uses at most 4m job migrations. For
c = 1.75, at most 2.5m migrations are used.

Keywords Scheduling · Makespan minimization · Online algorithm ·
Competitive analysis · Job migration

1 Introduction

Makespan minimization on identical machines is a fundamental scheduling problem
that has received considerable research interest over the last forty years. Let σ =
J1, . . . , Jn be a sequence of jobs that has to be scheduled non-preemptively on m
identical parallelmachines. Each job Ji is specified by a processing time pi , 1 ≤ i ≤ n.
The goal is to minimize the makespan, i.e. the maximum completion time of any job
in a schedule. In the offline setting all jobs are known in advance. In the online setting
the jobs arrive one by one. Each job Ji has to be scheduled immediately on one of the
machines without knowledge of any future jobs Jk , k > i . An online algorithm A is
called c-competitive if, for any job sequence, the makespan of A’s schedule is at most
c times the optimum makespan for that sequence [23].

Early work on makespan minimization studied the offline setting. Already in 1966,
Graham [12] presented the List scheduling algorithm that schedules each job on a
least loaded machine. List can be used both as an offline and as an online strategy and
achieves a performance ratio of 2 − 1/m. Hochbaum and Shmoys devised a famous
polynomial time approximation scheme [15]. More recent research, published mostly
in the 1990s, investigated the online setting. The best competitive factor that can be
attained by deterministic online algorithms is in the range [1.88, 1.9201]. Due to this
relatively high factor, compared to List’s ratio of 2− 1/m, it is interesting to consider
scenarios where an online scheduler has more flexibility to serve the job sequence.

In this paper we investigate the impact of job migration. At any time an online
algorithm may perform reassignments, i.e. a job already scheduled on a machine may
be removed and transfered to another machine. Process migration is a well-known
and widely used technique to balance load in parallel and distributed systems. It leads
to improved processor utilization and reduced processing delays. Migration policies
have been analyzed extensively in theory and practice.

It is natural to investigate makespan minimization with job migration. In this paper
we present a comprehensive study and develop tight upper and lower bounds on the
competitive ratio that can be achieved by deterministic online algorithms. It shows
that even with a very limited number of migration operations, significantly improved
performance guarantees are obtained.

Previous work We review the most important results relevant to our work. As
mentioned above, List is (2 − 1/m)-competitive. Deterministic online algorithms
with a smaller competitive ratio were presented in [2,4,10,11,16]. The best algorithm
currently known is 1.9201-competitive [10]. Lower bounds on the performance of
deterministic strategies were given in [2,3,9,14,18,19]. The best bound currently
known is 1.88, for general m, see [18]. Randomized online algorithms cannot achieve
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a competitive ratio smaller than e/(e − 1) ≈ 1.58 [6,21]. No randomized algorithm
whose competitive ratio is provably below the deterministic lower bound is currently
known, for general m. If job preemption is allowed, the best competitiveness of online
strategies is equal to e/(e − 1) ≈ 1.58 [7].

Makespan minimization with job migration was first addressed by Aggarwal et
al. [1]. They consider an offline setting. An algorithm is given a schedule, in which all
jobs are already assigned, and a budget. The algorithm may perform job migrations
up to the given budget. The authors design strategies that perform well with respect to
the best possible solution that can be constructed with the budget. Online makespan
minimization with migration on m = 2 machines was considered in [17,22]. The best
competitiveness is 4/3. Sanders et al. [20] study an online setting in which before the
assignment of each job Ji , jobs up to a total processing volume ofβpi may bemigrated,
for some constant β. For β = 4/3, they present a 1.5-competitive algorithm. They also
show a (1+ ε)-competitive algorithm, for any ε > 0, where β depends exponentially
on 1/ε. The algorithms are robust in that the stated competitive ratios hold after
each job assignment. However in this framework, over time, �(n) migrations may be
performed and jobs of total processing volume β

∑n
i=1 pi may be moved.

Englert et al. [8] study online makespan minimization if an algorithm is given a
buffer that may be used to partially reorder the job sequence. In each step an algorithm
assigns one job from the buffer to the machines. Then the next job in σ is admitted to
the buffer. Englert et al. show that, using a buffer of size �(m), the best competitive
ratio is W−1(−1/e2)/(1 + W−1(−1/e2)), where W−1 is the Lambert W function.

Our contributionWe investigate onlinemakespanminimizationwith limitedmigra-
tion. The number of job reassignments does not depend on the length of the job
sequence. We determine the exact competitiveness achieved by deterministic algo-
rithms, for general m.

In Sect. 2 we develop an optimal algorithm. For any m ≥ 2, the strategy is αm-
competitive, where αm is the solution of an equation representing load in an ideal
machine profile for a subset of the jobs. For m = 2, the competitive ratio is 4/3. The
ratios are non-decreasing and converge to W−1(−1/e2)/(1+W−1(−1/e2)) ≈ 1.4659
as m tends to infinity. Again, W−1 is the lower branch of the Lambert W function. The
algorithm uses at most (�(2−αm)/(αm −1)2�+4)m job migrations. For m ≥ 11, this
expression is at most 7m. For smaller machine numbers it is 8m to 10m. We note that
the competitiveness of 1.4659 is considerably below the factor of roughly 1.9 obtained
by deterministic algorithms in the standard online setting. It is also below the ratio of
e/(e − 1) attainable if randomization or job preemption are allowed.

In Sect. 3 we give amatching lower bound.We show that no deterministic algorithm
that uses o(n) job migrations can achieve a competitive ratio smaller than αm , for any
m ≥ 2. Hence in order to beat the factor of αm , �(n) reassignments are required.
Finally, in Sect. 4 we trade migrations for performance. We develop a family of algo-
rithms that is c-competitive, for any constant c with 5/3 ≤ c ≤ 2. Setting c = 5/3 we
obtain a strategy that uses at most 4m job migrations. For c = 1.75, the strategy uses
no more than 2.5m migrations.

Our algorithms rely on a number of new ideas. All strategies classify incoming jobs
into small and large depending on a careful estimate on the optimum makespan. The
algorithms consist of a job arrival phase followed by a migration phase. The optimal
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algorithm, in the arrival phase, maintains a load profile on the machines with respect to
jobs that are currently small. In the migration phase, the algorithm removes a certain
number of jobs from each machine. These jobs are then rescheduled using strategies
by Graham [12,13]. Our family of algorithms partitions the m machines into two sets
A and B. In the arrival phase the algorithms prefer to place jobs on machines in A so
that machines in B are available for later migration. In general, the main challenge in
the analyses of the various algorithms is to bound the number of jobs that have to be
migrated from each machine.

We finally relate our contributions to some existing results. First we point out
that the goal in online makespan minimization is to construct a good schedule when
jobs arrive one by one. Once the schedule is constructed, the processing of the jobs
may start. It is not stipulated that machines start executing jobs while other jobs
of σ still need to be scheduled. This framework is assumed in all the literature on
online makespan minimization mentioned above. Consequently it is no drawback to
perform job migrations when the entire job sequence has arrived. Nonetheless, as for
the algorithms presented in this paper, the machines can start processing jobs except
for the up to 10 largest jobs on each machine. A second remark is that the algorithms
by Aggarwal et al. [1] cannot be used to achieve good results in the online setting.
The reason is that those strategies are designed to perform well relative to the best
possible makespan attainable from an initial schedule using a given migration budget.
The strategies need not perform well compared to a globally optimal schedule. The
algorithms by Aggarwal et al. and ours are different, see [1].

On the other hand, our results exhibit similarities to those by Englert et al. [8] where
a reordering buffer is given. The optimal competitive ratio of αm is the solution of an
equation that also arises in [8]. This is due to the fact that our optimal algorithm and
that in [8] maintain a certain load profile on the machines. Our strategy does so w.r.t.
jobs that are currently small while the strategy in [8] considers all jobs assigned to
machines. In our framework the profile is harder to maintain because of shrinking
jobs, i.e. jobs that are large at some time t but small at later times t ′ > t . In the
job migration phase our algorithm reschedules jobs removed from some machines.
This operation corresponds to the ”final phase” of the algorithm in [8]. However,
our algorithm directly applies policies by Graham [12,13] while the algorithm in [8]
computes a virtual schedule.

In general, an interesting question is if makespan minimization with limited migra-
tion is equivalent to makespan minimization with a bounded reordering buffer. We
cannot prove this in the affirmative. As for the specific algorithms presented in [8]
and in this paper, the following relation holds. All our algorithms can be transformed
into strategies with a reordering buffer. The competitive ratios are preserved and the
number of job migrations is equal to the buffer size. This transformation is possible
because our algorithms are monotone: If a job does not have to be migrated at time t ,
assuming σ ended at time t , then there is no need to migrate it at times t ′ > t . Hence,
at any time a buffer can store the candidate jobs to be migrated. On the other hand,
to the best of our knowledge, the algorithms by Englert et al. [8] do not translate into
strategies with job migration. All the algorithms in [8] use the given buffer of size cm,
for some constant c, to store the cm largest jobs of the job sequence. However in our
setting, a migration of the largest jobs does not generate good schedules. The problem
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are again shrinking jobs, i.e. jobs that are among the largest jobs at some time t but not
at later times. We cannot afford to migrate all shrinking jobs, unless we invest �(n)

migrations. With limited job migration, scheduling decisions are final for almost all
of the jobs. Hence the corresponding algorithms are more involved than in the setting
with a reordering buffer.

2 An Optimal Algorithm

For the description of the algorithm and the attained competitive ratio we define
a function fm(α). Intuitively, fm(α) represents accumulated normalized load in a
“perfect” machine profile for a subset of the jobs. In such a profile the load fractions
of the first 
m/α� machines follow a Harmonic series of the form (α − 1)/(m −
1), . . . , (α −1)/(m −
m/α�) while the remaining ratios are α/m. Summing up these
ratios we obtain fm(α). Formally, let

fm(α) = (α − 1)(Hm−1 − H�(1−1/α)m�−1) + �(1 − 1/α)m�α/m,

for any machine number m ≥ 2 and real-valued α > 1. Here Hk = ∑k
i=1 1/ i denotes

the k-th Harmonic number, for any integer k ≥ 1. We set H0 = 0. For any fixed
m ≥ 2, let αm be the value satisfying fm(α) = 1. Lemma 1 below implies that αm is
well-defined. The algorithm we present is exactly αm-competitive. By Lemma 2, the
values αm form a non-decreasing sequence. There holds α2 = 4/3 and limm→∞ αm =
W−1(−1/e2)/(1+W−1(−1/e2)) ≈ 1.4659, see also [8]. The following two technical
lemmas are proven in the “Appendix”.

Lemma 1 The function fm(α) is continuous and strictly increasing in α, for any
integer m ≥ 2 and real number α > 1. There holds fm(1 + 1/(3m)) < 1 and
fm(2) ≥ 1.

Lemma 2 The sequence (αm)m≥2 is non-decreasing withα2=4/3and limm→∞ αm =
W−1(−1/e2)/(1 + W−1(−1/e2)).

We point out that αm is a rational number, for any m ≥ 2. This follows from the fact
that, for any α > 1, Hm−1− H�(1−1/α)m�−1 and �(1−1/α)m�/m are rational numbers
so that the solution to fm(α) = 1 is a rational number as well.

2.1 Description of the Algorithm

Let m ≥ 2 and M1, . . . , Mm be the given machines. Furthermore, let αm be as defined
above. The algorithm, called ALG(αm), operates in two phases, a job arrival phase
and a job migration phase. In the job arrival phase all jobs of σ = J1, . . . , Jn are
assigned one by one to the machines. In this phase no job migrations are performed.
Once σ is scheduled, the job migration phase starts. First the algorithm removes some
jobs from the machines. Then these jobs are reassigned to other machines.

Job arrival phase In this phase ALG(αm) classifies jobs into small and large and,
moreover, maintains a load profile with respect to the small jobs on the machines. At
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any time the load of a machine is the sum of the processing times of the jobs currently
assigned to it. Let time t be the time when Jt has to be scheduled, i.e. Jt has arrived
but not yet been scheduled on any machine, 1 ≤ t ≤ n.

In order to classify jobs ALG(αm) maintains a lower bound Lt on the optimum
makespan, assuming that Jt as already been placed in an optimal schedule. Let p+

t =∑t
i=1 pi be the sum of the processing times of the first t jobs. Furthermore, for i =

1, . . . , 2m + 1, let pi
t denote the processing time of the i-th largest job in J1, . . . , Jt ,

provided that i ≤ t . More formally, if i ≤ t , let pi
t be the processing time of the i-th

largest job; otherwise we set pi
t = 0. Obviously, when t jobs have been scheduled, the

optimum makespan cannot be smaller than the average load 1
m p+

t on the m machines.
This lower bound was already used in [12]. A second lower bound, used e.g. in [2,4],
is that the optimum makespan cannot be smaller than twice the processing time of the
(m + 1)-st largest job. We slightly generalize this bound. The optimum makespan is
lower bounded by three times the processing time of (2m + 1)-st largest job seen so
far, i.e. it is at least 3p2m+1

t . Define

Lt = max
{

1
m p+

t , 3p2m+1
t

}
.

The estimates Lt are non-decreasing over time. Hence a job that is large relative
to Lt might not be large relative to Lt ′ , where t ′ > t . Therefore we need a careful
notion of small and large. A job Ji , with i ≤ t , is small at time t if pi ≤ (αm − 1)Lt ;
otherwise it is large at time t . In particular Jt is small at time t if pt ≤ (αm − 1)Lt ;
otherwise Jt is large at time t . We introduce a final piece of notation. In the sequence
p1t , . . . , p2m

t of the 2m largest processing times up to time t we focus on those that are
large at time t . More specifically, for i = 1, . . . , 2m, let p̂i

t = pi
t if pi

t > (αm − 1)Lt ;
otherwise let p̂i

t = 0. Define

L∗
t = 1

m (p+
t − ∑2m

i=1 p̂i
t ).

Intuitively, L∗
t is the average machine load ignoring jobs that are large at time t . Note

again that this includes job Jt .We verify that there exist atmost 2m jobs that are large at
time t : If there were at least 2m+1 such jobs, then Lt ≥ 3p2m+1

t > 3(αm −1)Lt ≥ Lt

because αm ≥ 4/3, see Lemma 2.
We describe the scheduling steps in the job arrival phase. Initially, the machines

are numbered in an arbitrary way and this numbering M1, . . . , Mm remains fixed
throughout the execution of ALG(αm). As mentioned above the algorithm maintains
a load profile on the machines as far as small jobs are concerned. Define

β( j) =
{

(αm − 1) m
m− j if j ≤ 
m/αm�

αm otherwise.

We observe that fm(αm) = 1
m

∑m
j=1 β( j), taking into account that m − 
m/αm� =

�(1 − 1/αm)m�. For any machine M j 1 ≤ j ≤ m, let �( j, t) denote its load at time t
before Jt is assigned to a machine. Let �s( j, t) be the load caused by the jobs on M j

that are small at time t ; again this is the load before Jt is scheduled. The algorithm’s
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Fig. 1 The algorithm ALG(αm )

classification of small and large jobs ensures that at any time t there exists a machine
M j satisfying �s( j, t) ≤ β( j)L∗

t . Lemma 3 in Sect. 2.2 gives a formal proof.
For t = 1, . . . , n, each Jt is scheduled as follows. If Jt is small at its arrival time t ,

then it is scheduled on a machine with �s( j, t) ≤ β( j)L∗
t . In Lemma 3 we show that

such a machine always exists. If Jt is large at its arrival time t , then it is assigned to
a machine having the smallest load among all machines. At the end of the phase let
L = Ln and L∗ = L∗

n .
Job migration phase This phase consists of a job removal step followed by a job

reassignment step. At any time during the phase, let �( j) denote the current load of
M j , 1 ≤ j ≤ m. In the removal step ALG(αm) maintains a set R of removed jobs.
Initially R = ∅. During the removal step, while there exists a machine M j whose load
�( j) exceeds max{β( j)L∗, (αm − 1)L}, ALG(αm) removes the job with the largest
processing time currently residing on M j and adds the job to R.

If R = ∅ at the end of the removal step, then ALG(αm) terminates. If R �= ∅,
then the reassignment step is executed. Let R′ ⊆ R be the subset of the jobs that are
large at the end of σ , i.e. whose processing time is greater than (αm − 1)L . As shown
above, the can exist at most 2m such jobs. ALG(αm) first sorts the jobs of R′ in order
of non-increasing processing time; ties are broken arbitrarily. Let J i

r , 1 ≤ i ≤ |R′|, be
the i-th job in this sorted sequence and pi

r be its processing time. For i = 1, . . . , m,
ALG(αm) forms jobs pairs consisting of the i-th largest and the (2m +1− i)-th largest
jobs provided that the processing time of the latter job is sufficiently high. A pairing
strategy combining the i-th largest and the (2m + 1− i)-th largest jobs was also used
by Graham [13]. Formally, ALG(αm) builds sets P1, . . . , Pm that contain up to two
jobs. Initially, all these sets are empty. In a first step J i

r is assigned to Pi , for any
i with 1 ≤ i ≤ min{m, |R′|}. In a second step J 2m+1−i

r is added to Pi provided
that p2m+1−i

r > pi
r/2, i.e. the processing time of J 2m+1−i

r must be greater than half
times that of J i

r . This second step is executed for any i such that 1 ≤ i ≤ m and
2m + 1 − i ≤ |R′|. For any set Pi , 1 ≤ i ≤ m, let πi be the total summed processing
time of the jobs in Pi . ALG(αm) now renumbers the sets in order of non-increasing
πi values such that π1 ≥ . . . ≥ πm . Then, for i = 1, . . . , m, it takes the set Pi and
assigns the jobs of Pi to a machine with the smallest current load. If Pi contains two
jobs, then both are placed on the same machine. Finally, if R\(P1 ∪ . . . ∪ Pm) �= ∅,
then ALG(αm) takes care of the remaining jobs. These jobs may be scheduled in an
arbitrary order. Each job of R\(P1 ∪ . . . ∪ Pm) is scheduled on a machine having
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Table 1 The values of αm and μm , for small m

m 2 3 4 5 6 7 8 9 10 11

αm
4
3

15
11

11
8

125
89

137
97

273
193

586
411

1863
1303

5029
3517

58091
40451

≈ 1.3636 1.375 1.4045 1.4124 1.4145 1.4258 1.4298 1.4299 1.4360

μm 10 9 9 8 8 8 8 8 8 7

the smallest current load. This concludes the description of ALG(αm). A summary in
pseudo-code is given in Fig. 1.

Theorem 1 ALG(αm) is αm-competitive and uses at most (�(2−αm)/(αm−1)2�+4)m
job migrations.

As we shall see in the analysis of ALG(αm) in the job migration phase the algorithm
has to remove at most μm = �(2 − αm)/(αm − 1)2� + 4 jobs from each machine.
Table 1 depicts the competitive ratios αm (exactly and approximately) and the migra-
tion numbers μm , for small values of m. We point out that αm is a rational number,
for any m ≥ 2.

2.2 Analysis of the Algorithm

We first show that the assignment operations in the job arrival phase are well defined.
A corresponding statement was shown by Englert et al. [8]. The following proof is
more involved because we have to take care of large jobs in the current schedule.

Lemma 3 At any time t there exists a machine M j satisfying �s( j, t) ≤ β( j)L∗
t .

Proof Suppose that there exists a time t , 1 ≤ t ≤ n, such that �s( j, t) > β( j)L∗
t

holds for all M j , 1 ≤ j ≤ m. We will derive a contradiction.
As argued before, among the jobs J1, . . . , Jt , at most 2m can be large at

time t . Hence each of the jobs that is large at time t is represented by a pos-
itive entry in the sequence p̂1t , . . . , p̂2m

t . Conversely, every positive entry in this
sequence corresponds to a job that is large at time t and resides on one of the m
machines or is equal to Jt if Jt is large at time t . Hence if Jt is large at time
t ,

∑m
j=1 �( j, t) + pt = ∑m

j=1 �s( j, t) + ∑2m
i=1 p̂i

t . If Jt is small at time t , then
∑m

j=1 �( j, t) + pt ≥ ∑m
j=1 �( j, t) = ∑m

j=1 �s( j, t) + ∑2m
i=1 p̂i

t . In either case

m∑

j=1

�( j, t) + pt ≥
m∑

j=1

�s( j, t) +
2m∑

i=1

p̂i
t >

m∑

j=1

β( j)L∗
t +

2m∑

i=1

p̂i
t

= m(αm − 1)L∗
t


m/αm�∑

j=1

1/(m − j)

+ (m − 
m/αm�)αm L∗
t +

2m∑

i=1

p̂i
t .
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Taking into account that m − 
m/α� = �(1 − 1/αm)m� and that fm(αm) = 1, we
obtain

m∑

j=1

�( j, t) + pt > mL∗
t ((αm − 1)(Hm−1 − H�(1−1/αm )m�−1)

+�(1 − 1/αm)m�αm/m) +
2m∑

i=1

p̂i
t

= mL∗
t fm(αm) +

2m∑

i=1

p̂i
t = m

(

1/m
t∑

i=1

pt − 1/m
2m∑

i=1

p̂i
t

)

+
2m∑

i=1

p̂i
t =

t∑

i=1

pi .

This contradicts the fact that
∑m

j=1 �( j, t) + pt is equal to the total processing time
∑t

i=1 pi of J1, . . . , Jt . ��
We next analyze the job migration phase.

Lemma 4 In the job removal step ALG(αm) removes at most �(2−αm)/(αm −1)2�+4
jobs from each of the machines.

Proof Consider any M j , with 1 ≤ j ≤ m. We show that it suffices to remove at
most �(2 − αm)/(αm − 1)2� + 4 so that M j ’s resulting load is upper bounded by
max{β( j)L∗, (αm −1)L}. Since ALG(αm) always removes the largest jobs the lemma
follows.

Let time n + 1 be the time when the entire job sequence σ is scheduled and the job
migration phase with the removal step starts. A job Ji , with 1 ≤ i ≤ n, is small at
time n + 1 if pi ≤ (αm − 1)L; otherwise it is large at time n + 1. Since L = Ln any
job that is small (large) at time n + 1 is also small (large) at time n. Let �( j, n + 1) be
the load of M j at time n +1. Similarly, �s( j, n +1) is M j ’s load consisting of the jobs
that are small at time n + 1. Throughout the proof let k := �(2 − αm)/(αm − 1)2�.

First assume �s( j, n + 1) ≤ β( j)L∗. If at time n + 1 machine M j does not contain
any jobs that are large at time n + 1, then �( j, n + 1) = �s( j, n + 1) ≤ β( j)L∗. In
this case no job has to be removed and we are done. If M j does contain jobs that are
large at time n + 1, then it suffices to remove these jobs. Let time l be the last time
when a job Jl that is large at time n + 1 was assigned to M j . Since Ll ≤ L , Jl was
also large at time l and hence it was assigned to a least loaded machine. This implies
that prior to the assignment of Jl , M j has a load of at most p+

l /m ≤ Ll ≤ L . Hence
it could contain at most 1/(αm − 1) jobs that are large at time n + 1 because any such
job has a processing time greater than (αm − 1)L . Hence at most 1/(αm − 1) + 1 jobs
have to be removed from M j , and the latter expression is upper bounded by k + 4.

Next assume �s( j, n +1) > β( j)L∗. If �s( j, n) ≤ β( j)L∗ = β( j)L∗
n , then Jn was

assigned to M j . In this case it suffices to remove Jn and, as in the previous case, at
most 1/(αm − 1)+ 1 jobs that are large at time n + 1. Again 1/(αm − 1)+ 2 ≤ k + 4.

In the remainder of this proof we consider the case that �s( j, n + 1) > β( j)L∗ and
�s( j, n) > β( j)L∗

n . Let t∗ be the earliest time such that �s( j, t) > β( j)L∗
t holds for
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all times t∗ ≤ t ≤ n. We have t∗ ≥ 2 because �s( j, 1) = 0 ≤ β( j)L∗
1. Hence time

t∗ − 1 exists. We partition the jobs residing on M j at time n + 1 into three sets. Set
T1 is the set of jobs that were assigned to M j at or before time t∗ − 1 and are small at
time t∗ − 1. Set T2 contains the jobs that were assigned to M j at or before time t∗ − 1
and are large at time t∗ −1. Finally T3 is the set of jobs assigned to M j at or after time
t∗. We show a number of claims that we will use in the further proof.

Claim 4.1 Each job in T2 ∪ T3 is large at the time it is assigned to M j .
Claim 4.2 There holds

∑
Ji ∈T1\{Jl } pi ≤ β( j)L∗

t∗−1, where Jl is the job of T1 that
was assigned last to M j .

Claim 4.3 There holds |T2| ≤ 3.
Claim 4.4 For any Jl ∈ T3, M j ’s load immediately before the assignment of Jl is at

most Ll .
Claim 4.5 Let Jl ∈ T3 be the last job assigned to M j . If M j contains at least k jobs,

different from Jl , each having a processing time of at least (αm − 1)2L ,
then it suffices to remove these k jobs and Jl such that M j ’s resulting load
is upper bounded by (αm − 1)L .

Claim 4.6 If there exists a Jl ∈ T3 with pl < (αm −1)2L , then M j ’s load immediately
before the assignment of Jl is at most (αm − 1)L .

Proof of Claim 4.1. The jobs of T2 are large at time t∗ − 1 and hence at the time they
were assigned to M j . By the definition of t∗, �s( j, t) > β( j)L∗

t for any t∗ ≤ t ≤ n.
Hence at or after time t∗ ALG(αm) does not assign jobs that are small at their arrival
time to this machine M j .

Proof of Claim 4.2. All jobs of T1\{Jl} are small at time t∗ −1 and their total process-
ing time is at most �s( j, t∗ − 1). In fact, their total processing time is equal to
�s( j, t∗ − 1) if l = t∗ − 1. By the definition of t∗, �s( j, t∗ − 1) ≤ β( j)L∗

t∗−1.

Proof of Claim 4.3. We show that for any t , 1 ≤ t ≤ n, when Jt has been placed
on a machine, M j can contain at most three jobs that are large at time t . The claim
then follows by considering t∗ − 1. Suppose that when Jt has been scheduled, M j

contained more than three jobs that are large as time t . Among these jobs let Jl be the
one that was assigned last to M j . Immediately before the assignment of Jl machine
M j had a load greater than Ll because the total processing time of three large jobs is
greater than 3(αm − 1)Lt ≥ 3(αm − 1)Ll ≥ Ll since αm ≥ 4/3, see Lemma 2. This
contradicts the fact that Jl is placed on a least loaded machine, which has a load of at
most p+

l−1/m < p+
l /m ≤ Ll .

Proof of Claim 4.4. By Claim 4.1 Jl is large at time l and hence is assigned to a least
loaded machine, which has a load of at most p+

l /m ≤ Ll .

Proof of Claim 4.5. Claim 4.4 implies that immediately before the assignment of Jl

machine M j has a load of at most Ll ≤ L . If M j contains at least k jobs, different
from Jl , with a processing time of at least (αm − 1)2L , then the removal of these
k jobs and Jl from M j leads to a machine load of at most L − k(αm − 1)2L ≤
L − �(2 − αm)/(αm − 1)2�(αm − 1)2L ≤ (αm − 1)L , as desired.
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Proof of Claim 4.6. By Claim 4.1 Jl is large at time l and hence pl > (αm − 1)Ll .
Since pl < (αm − 1)2L , it follows Ll < (αm − 1)L . By Claim 4.4, M j ’s load prior
to the assignment of Jl is at most Ll and hence at most (αm − 1)L .

We now finish the proof of the lemma and distinguish two cases depending on the
cardinality of T2 ∪ T3.

Case 1: If |T2 ∪ T3| < k + 4, then by Claim 4.2 it suffices to remove the jobs of
T2 ∪ T3 and the last job of T1 assigned to M j .

Case 2: Suppose |T2 ∪ T3| ≥ k +4. By Claim 4.3, |T2| ≤ 3 and hence |T3| ≥ k +1.
Among the jobs of T3 consider the last k + 1 ones assigned to M j . If each of them
has a processing time of at least (αm − 1)2L , then Claim 4.5 ensures that it suffices
to remove these k + 1 jobs. If one of them, say Jl , has a processing time smaller than
(αm − 1)2L , then by Claim 4.6 M j ’s load prior to the assignment of Jl is at most
(αm − 1)L . Again it suffices to remove these k + 1 jobs from M j . ��

After the job removal step each machine M j , 1 ≤ j ≤ m, has a load of at most
max{β( j)L∗, (αm − 1)L}. We first observe that this load is at most αm L . If (αm −
1)L ≥ β( j)L∗, there is nothing to show. We evaluate β( j)L∗. If j > 
m/αm�,
then β( j) = αm and β( j)L∗ = αm L∗ ≤ αm L . If j ≤ 
m/αm�, then β( j) =
(αm −1)m/(m− j) ≤ (αm −1)m/(m−
m/αm�) = (αm −1)m/�(1−1/αm)m�) ≤ αm

and thus β( j)L∗ ≤ αm L . Hence M j ’s load is upper bounded by αmOPT , whereOPT
denotes the value of the optimum makespan for the job sequence σ . The following
lemma ensures that after the reassignment step, each machine still has a load of at
most αmOPT .

Lemma 5 After the reassignment step each machine M j , 1 ≤ j ≤ m, has a load of
at most αmOPT .

Proof We show that all scheduling operations in the reassignment step preserve a load
of at most αmOPT on each of the machines. We first consider the assignment of the
sets P1, . . . , Pm . Suppose that these sets are already sorted in order of non-increasing
total processing times, i.e. π1 ≥ . . . ≥ πm . We first argue that π1 and hence any πi ,
1 ≤ i ≤ m, is upper bounded by OPT . If P1 contains at most one job, there is nothing
to show because OPT cannot be smaller than the processing time of any job in σ .
Assume that P1 contains two jobs. Then it consists of jobs J i1

r and J 2m+1−i1
r , for some

i1 with 1 ≤ i1 ≤ m. Since the two jobs are paired there holds p2m+1−i1
r > pi1

r /2 and
hence p2m+1−i1

r > π1/3. LetOPT ′ denote the optimummakespan for the job sequence
J 1

r , . . . , J 2m+1−i1
r . Since J i1

r and J 2m+1−i1
r are paired, jobs J i

r and J 2m+1−i
r are also

paired, for any i1 < i ≤ m, because p2m+1−i
r ≥ p2m+1−i1

r > pi1
r /2 ≥ pi

r/2. Hence
the sets P1, . . . , Pm contain all the jobs J 1

r , . . . , J 2m+1−i1
r , which implies π1 ≥ OPT ′

and p2m+1−i1
r > OPT ′/3. It follows pi

r > OPT ′/3, for all i with 1 ≤ i ≤ 2m +
1 − i1. Graham [13] showed that given a sequence of up to 2m jobs, each having a
processing time greater than a third times the optimummakespan, an optimal schedule
is obtained by repeatedly pairing the i-th largest and (2m +1− i)-th largest jobs of the
sequence. This is exactly the assignment computed byALG(αm ) for J 1

r , . . . , J 2m+1−i1
r .

We conclude π1 = OPT ′ and π1 ≤ OPT .
A final observation is that each job of R′ that is not contained in P1 ∪ . . . ∪ Pm

has a processing time of at most OPT/3. A job in R′\(P1 ∪ . . . ∪ Pm) is equal to a
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job J 2m+1−i0
r , with 1 ≤ i0 ≤ m. Since J 2m+1−i0

r is not paired with J i0
r , there holds

p2m+1−i0
r ≤ pi0

r /2. Assume that p2m+1−i0
r > OPT/3. Then p2m+1−i0

r is greater than
a third times the optimum makespan for the jobs J 1

r , . . . , J 2m+1−i0
r . Using again the

results by Graham [13], we obtain that an optimal schedule for the latter job sequence
in obtained by repeatedly pairing J i

r with J 2m+1−i
r . However, since p2m+1−i0

r ≤ pi0
r /2,

the processing time p2m+1−i0
r is at most a third times the resulting optimummakespan

for J 1
r , . . . , J 2m+1−i0

r . Hence p2m+1−i0
r is at most a third times OPT , which is a

contradiction.
Next we compare the processing time of the jobs of P1 ∪ . . . ∪ Pm to

∑2m
i=1 p̂i

n . Set
R′ contains the jobs of R that are large at time n + 1. There exist at most 2m jobs that
are large at time n + 1 and hence the processing time of each job in R′ is represented
by a positive entry in the sequence p̂1n, . . . , p̂2m

n . It follows that the total processing
time of the jobs in R′ and hence the total processing time of the jobs in P1 ∪ . . . ∪ Pm

is at most
∑2m

i=1 p̂i
n . Recall that π1 ≥ . . . ≥ πm . Then, for any j with 1 ≤ j ≤ m, the

product jπ j is upper bounded by the total processing time of P1 ∪ . . .∪ Pm and hence
jπ j ≤ ∑2m

i=1 p̂i
n .

Now consider the assignment of the sets P1, . . . , Pm to the machines. Each set is
assigned to a least loaded machine. Hence when Pj , 1 ≤ j ≤ m, is scheduled, it is
assigned to a machine whose current load is at most max{β( j)L∗, (αm − 1)L}. If the
load is at most (αm − 1)L , then the machine’s load after the assignment is at most
(αm − 1)L + π j ≤ (αm − 1)L + OPT ≤ αmOPT . If the current load is only upper
bounded by β( j)L∗, then we distinguish two cases.

If j ≤ 
m/αm�, then j ≤ m/αm , which is equivalent tom/(m− j) ≤ αm/(αm −1).
The resulting machine load is at most

β( j)L∗ + π j = (αm − 1)
m

m − j

(
1

m

n∑

i=1

pi − 1

m

2m∑

i=1

p̂ j
t

)

+π j ≤ (αm − 1)
1

m − j
(mL − jπ j ) + π j .

The last inequality follows because, as argued above, jπ j ≤ ∑2m
i=1 p̂i

t . It follows that
the machine load is upper bounded by

(αm − 1) 1
m− j (mL − mπ j ) + αmπ j ≤ αm(L − π j ) + αmπ j = αm L .

The last inequality holds because m/(m − j) ≤ αm/(αm − 1), as mentioned above.
If j > 
m/αm�, then j ≥ m/αm because j is integral. In this case the machine

load is upper bounded by

β( j)L∗+π j =αm

(
n∑

i=1

pi −
2m∑

i=1

p̂i
t

)

/m+π j ≤αm

(
n∑

i=1

pi − jπ j

)

/m+π j ≤αm L ,

because jαm ≥ m.
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Finally we consider the jobs R\(P1 ∪ . . .∪ Pm). Each job of R\R′ has a processing
time of at most (αm − 1)L . As argued above, each job of R′\(P1 ∪ . . . ∪ Pm) has a
processing time of at most OPT /3, which is upper bounded by (αm − 1)OPT since
αm ≥ 4/3. Hence each job of R\(P1 ∪ . . . ∪ Pm) has a processing time of at most
(αm −1)OPT . Each of these jobs is scheduled on a least loaded machine and thus after
the assignment the correspondingmachine has a load of atmostOPT+(αm−1)OPT ≤
αmOPT . ��
The proof of Theorem 1 is complete.

3 A Lower Bound

We present a lower bound showing that ALG(αm) is optimal.

Theorem 2 Let m ≥ 2. No deterministic online algorithm can achieve a competitive
ratio smaller than αm if o(n) job migrations are allowed.

Proof Let A be any deterministic online algorithm that is allowed to use up to g(n)

job migrations on a job sequence of length n. Suppose that A achieves a competitive
ratio smaller than αm . We will derive a contradiction.

Choose an ε > 0 such that A has a competitive ratio strictly smaller than αm − ε.
Let ε′ = ε/3. Since g(n) = o(n) there exists an n0 such that g(n)/n ≤ ε′/(2m), for
all n ≥ n0. Hence there exists an n0 such that g(n + m)/(n + m) ≤ ε′/(2m), for all
n ≥ max{m, n0}. Let n′, with n′ ≥ max{m, n0}, be the smallest integer multiple of
m. We have g(n′ + m)/n′ ≤ ε′/m because n′ + m ≤ 2n′. An adversary constructs
a job sequence consisting of n′ + m jobs. Let p1 = m/n′. By our choice of n′, there
holds p1 ≤ ε′/g(n′ + m). The following adversarial sequence is similar to that used
by Englert et al. [8]. However, here we have to ensure that in migrating o(n) jobs, an
online algorithm cannot benefit much.

First the adversary presents n′ jobs of processing time p1. We will refer to them
as p1-jobs. If after the assignment of these jobs A has a machine M j , 1 ≤ j ≤ m,
whose load is at least αm , then the adversary presents m jobs of processing time
p2 = ε′/m. Using job migration, A can remove at most g(n′ + m) p1-jobs from M j .
Since g(n′ + m)p1 ≤ ε′, after job migration M j still has a load of at least αm − ε.
On the other hand the optimal makespan is 1 + ε′/m. In an optimal assignment each
machine contains n′/m p1-jobs and one p2-job. The ratio (αm − ε′)/(1+ ε′/m) is at
least αm − ε by our choice of ε′ and the fact that αm ≤ 2, see Lemma 1. We obtain a
contradiction.

In the following we study the case that after the assignment of the p1-jobs each
machine in A’s schedule has a load strictly smaller than αm . We number the machines
in order of non-decreasing load such that �(1) ≤ . . . ≤ �(m). Here �( j) denotes the
load of M j after the p1-jobs have arrived, 1 ≤ j ≤ m. For j = 1, . . . , m − 1, define
β( j) = (αm − 1)m/(m − j). We remark that these values are identical to those used
by ALG(αm) for j ≤ 
m/αm�. For larger j , the values are different. We first argue
that there must exist a machine M j , 1 ≤ j ≤ m − 1, in A’s schedule whose load is
at least β( j). Suppose that each machine M j , 1 ≤ j ≤ m − 1, had a load strictly
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smaller than β( j). By Lemma 1, αm > 1 and hence �(1 − 1/αm)m� ≥ 1. Consider
the �(1 − 1/αm)m� machines with the highest load in A’s schedule. Each of these
machines has a load strictly smaller than αm . The remaining machines have a load
strictly smaller than β( j) = (αm −1)m/(m − j), for j = 1, . . . , m −�(1−1/αm)m�.
We conclude that after the arrival of the p1-jobs the total load on the machines is
strictly smaller than

(αm − 1)m
m−�(1−1/αm )m�∑

j=1

1

m − j
+ �(1 − 1/αm)m�αm

= m((αm − 1)(Hm−1 − H�(1−1/αm )m�−1) + �(1 − 1/αm)m�αm/m)

= m fm(αm) = m.

The last equation holds because fm(αm) = 1, by the choice of αm . We obtain a
contradiction to the fact that after the arrival of the p1-jobs a total load of exactly m
resides on the machines.

Let M j0 , with 1 ≤ j0 ≤ m − 1, be a machine whose load is at least β( j0).
Since A’s machines are numbered in order of non-decreasing load there exist at most
j0 − 1 machines having a smaller load than β( j0). The adversary presents j0 jobs of
processing time p2 = m/(m− j0). Using jobmigration A can remove atmost g(n′+m)

p1-jobs from any of themachines, thereby reducing the load by atmost ε′. Hence in A’s
final schedule there exists a machine having a load of a least β( j0)+m/(m − j0)− ε′.
This holds true if the p2-jobs reside on different machines. If there exists a machine
containing two p2-jobs, then its load is at least 2m/(m − j0) ≥ (αm − 1)m/(m −
j0) + m/(m − j0) = β( j0) + m/(m − j0) as desired. The inequality holds because
αm ≤ 2, by Lemma 1. Hence A’s makespan is at least β( j0) + m/(m − j0) − ε′.

The optimummakespan for the job sequence is upper bounded by m/(m − j0)+ε′.
In an optimal schedule the j0 p2-jobs are assigned to different machines. The n′
p1-jobs are distributed evenly among the remaining m − j0 machines. If n′ is an
integer multiple of m − j0, then the load on each of these m − j0 machines is exactly
n′ p1/(m− j0) = m/(m− j0), which is exactly equal to the processing time of a p2-job.
If n′ is not divisible bym− j0, then themaximum load on any of thesem− j0 machines
cannot be higher thanm/(m− j0)+p1 ≤ m/(m− j0)+ε′/g(n′+m) ≤ m/(m− j0)+ε′.

Dividing the lower bound on A’s makespan by the upper bound on the optimum
makespan we obtain (αmm/(m − j0)−ε′)/(m/(m − j0)+ε′) ≥ (αm −ε′)/(1+ε′) ≥
αm − ε. The last inequality holds because ε′ = ε/3 and αm ≤ 2, see Lemma 1. We
obtain a contradiction to the assumption that A’s competitiveness is strictly smaller
than αm − ε. ��

4 Algorithms Using Fewer Migrations

Wepresent a family of algorithmsALG(c) that uses a smaller number of jobmigrations.
We first describe the family and then analyze its performance.
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4.1 Description of ALG(c)

ALG(c) is defined for any constant c with 5/3 ≤ c ≤ 2, where c is the targeted
competitive ratio. An important feature of ALG(c) is that it partitions the machines
M1, . . . , Mm into two sets A = {M1, . . . , M
m/2�} and B = {M�m/2�, . . . , Mm} of
roughly equal size. In a job arrival phase the jobs are preferably assigned to machines
in A, provided that their load it not too high. In the job migration phase, jobs are
mostly migrated from machines of A (preferably to machines in B) and this policy
will allow us to achieve a smaller number of migrations. Setting c = 5/3 we obtain an
algorithm ALG(5/3) that is 5/3-competitive using 4m migrations. For c = 1.75 the
resulting algorithm ALG(1.75) is 1.75-competitive and uses at most 2.5m migrations.
In the following let 5/3 ≤ c ≤ 2.

Algorithm ALG(c): job arrival phaseAt any time t ALG(c)maintains a lower bound
Lt on the optimummakespan, which is defined as Lt = max{ 1

m p+
t , p1t , 2pm+1

t }.Here
we use the same notation as in Sect. 2. Recall that p1t and pm+1

t are the processing
times of the largest and (m + 1)-st largest jobs in J1, . . . , Jt , respectively. A job Ji ,
with i ≤ t , is small at time t if pi ≤ (2c − 3)Lt ; otherwise the job is large at time
t . For any machine M j and any time t , �( j, t) is M j ’s load immediately before Jt is
assigned and �s( j, t) is its load consisting of the jobs that are small at time t .

Any job Jt , 1 ≤ t ≤ n, is processed as follows. If Jt is small at its arrival time t ,
then ALG(c) checks if there is a machine in A whose load value �s( j, t) is at most
(c − 1)Lt . If this is the case, then among the machines in A with this property, Jt is
assigned to one having the smallest �s( j, t) value. If there is no such machine in A,
then Jt is assigned to a least loaded machine in B. If Jt is large at time t , then ALG(c)
checks if there is machine in A whose load value �( j, t) is at most (3− c)Lt . If this is
the case, then Jt is scheduled on a least loaded machine in A. Otherwise Jt is assigned
to a least loaded machine in B. At the end of the phase let L = Ln .

Job migration phase At any time during the phase let �( j) denote the current load
of M j , 1 ≤ j ≤ m. We first describe the job removal step. For any machine M j ∈ B,
ALG(c) removes the largest job from that machine. Furthermore, while there exists a
machine M j ∈ A whose current load exceeds (c − 1)L , ALG(c) removes the largest
job from the machine. Let R be the set of all removed jobs. In the job reassignment
step ALG(c) first sorts the jobs in order of non-increasing processing times. For any
i , 1 ≤ i ≤ |R|, let J i

r be the i-th largest job in this sequence, and let pi
r be the

corresponding processing time. For i = 1, . . . , |R|, J i
r is scheduled as follows. If

there exists a machine M j ∈ B such that �( j)+ pi
r ≤ cL , i.e. J i

r can be placed on M j

without exceeding a makespan of cL , then J i
r is assigned to this machine. Otherwise

the job is scheduled on a least loaded machine in A. A pseudo-code description of
ALG(c) is given in Fig. 2.

Theorem 3 ALG(c) is c-competitive, for any constant c with 5/3 ≤ c ≤ 2.

The proof of the above theorem is presented in Sect. 4.2.1. In order to obtain good
upper bounds on the number of job migrations, we focus on specific values of c. First,
set c = 5/3. In ALG(5/3) a job Jt is small if pt ≤ 1/3 · Lt . In the arrival phase a
small job is assigned to a machine in A if there exists a machine in this set whose load
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Fig. 2 The algorithm ALG(c)

consisting of jobs that are currently small is at most 2/3 · Lt . A large job is assigned
to a machine in A if there exists a machine in this set whose load is at most 4/3Lt .

Theorem 4 ALG(5/3) is 5
3 -competitive and uses at most 4m job migrations.

In fact, for any c with 5/3 ≤ c ≤ 2, ALG(c) uses at most 4m job migrations. Finally,
let c = 1.75. In ALG(1.75) a job Jt is small if pt ≤ 0.5 · Lt . In the arrival phase a small
job is assigned to a machine in A if there is a machine in this set whose load consisting
of jobs that are currently small is no more than 0.75Lt . A large job is assigned to a
machine in A if there exists a machine in this set whose load is at most 1.25Lt .

Theorem 5 ALG(1.75) is 1.75-competitive and uses at most 2.5m job migrations.

Again, for any c with 1.75 ≤ c ≤ 2, ALG(c) uses at most 2.5m job migrations. The
proofs of Theorems 4 and 5 are contained in Sect. 4.2.2.

4.2 Analysis of ALG(c)

In this section we analyze ALG(c), for any c with 5/3 ≤ c ≤ 2, and prove Theorems 3,
4 and 5.We first determine the competitive ratio ofALG(c) and then bound the number
of job migrations performed for c = 5/3 and c = 1.75.

4.2.1 Analysis of the Competitive Ratio

Westart by showing two lemmas thatwill allowus to bound load onmachines in B. The
lemmaswill be applied depending on the final loads of small jobs residing onmachines
in A. In particular, for any time t , Lemma 6 bounds the load of any machine in B when
ignoring the last job assigned to that machine. Again, let time n + 1 be the time when
the entire job sequence σ = J1, . . . , Jn has been scheduled and the migration phase
starts. A job Ji , 1 ≤ i ≤ n, is small at time n + 1 if pi ≤ (2c − 3)L = (2c − 3)Ln ;
otherwise the job is large at time n + 1. For any M j , 1 ≤ j ≤ m, let �( j, n + 1) be its
load at time n + 1 and let �s( j, n + 1) be the load consisting of the jobs that are small
at time n + 1. Let Ln+1 := L .
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Lemma 6 For any t, 1 ≤ t ≤ n + 1, and any M j ∈ B, there holds �( j, t) − pl ≤
(3 − c)Lt−1, where Jl with l < t is the last job assigned to M j .

Proof By the definition of ALG(c), when Jl is assigned to M j , all machines of A have
a load greater than (c − 1)Ll and M j is a least loaded machine in B. Hence M j ’s load
at time l is at most (3− c)Ll since otherwise the total load on the m machines would
be greater than 
m/2�(c − 1)Ll + �m/2�(3 − c)Ll ≥ mLl ≥ ∑l

i=1 pi , which is a
contradiction. Hence �( j, t) = �( j, l) + pl ≤ (3 − c)Ll + pl ≤ (3 − c)Lt−1 + pl . ��
Lemma 7 Suppose that there exists a machine M j∗ ∈ A with �s( j∗, n+1) < (2−c)L.
Then, for any B ∈ M j , �( j, n + 1) − pl ≤ (c − 1)L, where Jl is the last job assigned
to M j .

Proof Consider any M j ∈ B and let Jl be the last job assigned to it. First assume
that Jl is large at time l. By the definition of ALG(c), at time l all machines of A
have a load greater than (3 − c)Ll . Moreover, M j is a least loaded machine in B at
time l. We argue that a least loaded machine in B has a load of at most (c − 1)Ll . If
this were not the case, then immediately after the assignment of Jl the total load on
the m machines would be greater than 
m/2�(3 − c)Ll + �m/2�(c − 1)Ll + pl ≥
(m/2 − 1/2)(3 − c)Ll + (m/2 + 1/2)(c − 1)Ll + (2c − 3)Ll = mLl + (3c − 5)Ll .
The inequality holds because 3 − c ≥ c − 1. Since c ≥ 5/3 it follows 
m/2�(3 −
c)Ll + �m/2�(c − 1)Ll + pl ≥ mLl ≥ ∑l

i=1 pi , which is a contradiction. Hence
�( j, n + 1) = �( j, l) + pl ≤ (c − 1)Ll + pl ≤ (c − 1)L + pl .

Next assume that Jl is small at time l. This implies �s( j, l) > (c−1)Ll , for all M j ∈
A. In particular, �s( j∗, l) > (c − 1)Ll . Since �s( j∗, l) ≤ �s( j∗, n + 1) < (2− c)L it
follows Ll < (2− c)/(c − 1) · L . By Lemma 6, �( j, l + 1) ≤ (3− c)Ll + pl and we
conclude �( j, n+1) = �( j, l +1) ≤ (3−c)Ll + pl ≤ (3−c)(2−c)/(c−1)·L + pl ≤
(c −1)L + pl . The last inequality holds because (3− c)(2− c)/(c −1) ≤ c −1 holds
since c ≥ 5/3. ��

We next analyze the job migration phase assuming that the job removal step has
already taken place, i.e. each machine of A has a load of at most (c − 1)L and the
largest job was removed from each machine of B. We show that, given such a machine
configuration, each job of R can be assigned to a machine so that a load bound of cL is
preserved. For the analysis of the reassignment step we study two cases depending on
whether or not at time n +1 all machines M j ∈ A have a load �s( j, n +1) ≥ (2−c)L .

Lemma 8 If �s( j, n + 1) ≥ (2 − c)L, for all M j ∈ A, then in the reassignment step
all jobs of R are scheduled so that the resulting load on any of the machines is at most
cL.

Proof By assumption, at the end of the job arrival phase �s( j, n+1) ≥ (2−c)L , for all
M j ∈ A.Wefirst show that this property ismaintained throughout the job removal step.
Suppose that a job Ji that is small at time n + 1 is removed from a machine M j ∈ A.
Since ALG(c) always removes the largest jobs from a machine, M j currently contains
no jobs that are large at time n +1. Hence M j ’s current load �( j) is equal to its current
load �s( j) consisting of jobs that are small at time n+1. Since a job removal needs to be
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performed, �s( j) = �( j) > (c−1)L . Since pi ≤ (2c−3)L , the removal of Ji leads to
a load consisting of small jobs of at least �s( j)− pl > (c−1)L−(2c−3)L = (2−c)L .

After the job removal step each machine M j ∈ A has a load of at most (c − 1)L .
By Lemma 6 each machine of B has a load of at most (3 − c)L < cL after ALG(c)
has removed the largest job from any of these machines. We show that each Jk ∈ R
can be scheduled on a machine such that the resulting load is at most cL . Consider any
Jk ∈ R. There holds pk ≤ L . Suppose that Jk cannot be feasibly scheduled on any
of the machines. Let �( j) denote M j ’s load immediately before the assignment of Jk ,
1 ≤ j ≤ m. If Jk cannot be placed on amachine in A, then eachmachine M j ∈ A must
have a load greater than (c − 1)L: If �( j) ≤ (c − 1)L , then �( j) + pk ≤ cL and the
assignment of Jk to M j would be feasible. Hence since the start of the reassignment
step each machine M j ∈ A must have received at least one job Ji j and its current
load is �( j) ≥ (2 − c)L + pi j . When Ji j was reassigned, it could not be scheduled
on any machine in B without exceeding a load of cL . This implies, in particular, that
�(
m/2�+ j)+ pi j > cL . Recall that the machines of A are numbered 1, . . . , 
m/2�
and those of B are numbered 
m/2� + 1, . . . , m. Finally, since Jk cannot be placed
on a machine in B, we have �(m) + pk > cL .

It follows that when Jk has to be scheduled the total processing time of the jobs is
at least

m∑

j=1

�( j) + pk ≥ 
m/2�(2 − c)L +

m/2�∑

j=1

pi j +
m∑

j=
m/2�+1

�( j) + pk .

If m is even, then
∑m

j=
m/2�+1 �( j) = ∑m/2
j=1 �(m/2 + j). In this case we have

m∑

j=1

�( j) + pk ≥ m/2 · (2 − c)L

+
m/2∑

j=1

(�(m/2 + j) + pi j ) + pk > m/2 · (2 − c)L + m/2 · cL = mL .

If m is odd, then
∑m

j=
m/2�+1 �( j) = ∑
m/2�
j=1 �(
m/2� + j) + �(m) and

m∑

j=1

�( j) + pk ≥ 
m/2� · (2 − c)L +

m/2�∑

j=1

(�(
m/2� + j) + pi j ) + �(m) + pk

> 
m/2� · (2 − c)L + 
m/2� · cL + cL

= (m/2 − 1/2)2L + cL > mL .

In both cases with obtain
∑n

i=1 pi ≥ ∑m
j=1 �( j) + pk > mL , which contradicts the

definition of L . ��
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Lemma 9 If �s( j∗, n + 1) < (2 − c)L, for some M j∗ ∈ A, then in the reassignment
step all jobs of R are scheduled so that the resulting load on any of the machines is at
most cL.

Proof In the removal stepALG(c) removes the largest job from eachmachine M j ∈ B.
Hence, if �s( j∗, n +1) < (2−c)L for some M j ∈ A, then by Lemma 7 each machine
of B has a load of at most (c − 1)L after the removal step. Moreover, each machine
of A has a load of at most (c − 1)L after the job removal.

Hence when the reassignment step starts, all machines have a load of at most
(c − 1)L . By the definition of L each job has a processing time of at most L . Hence
in the reassignment step the first m jobs can be scheduled without exceeding a load
of cL on any of the machines. ALG(c) sorts the jobs of R in order of non-increasing
processing times. Thus when m jobs of R have been scheduled, each of the remaining
jobs has a processing time of at most 1/2L . This holds true because by the definition
of L there cannot exist m + 1 jobs of processing time greater than 1/2L . Each job
of processing time at most 1/2L can be scheduled on a least loaded machine without
exceeding a load of cL since L + 1/2L < cL . Hence every remaining job can be
scheduled on a machine of B and A. ��

Lemmas 8 and 9 imply Theorem 3.

4.2.2 Analysis of the Job Migrations

It remains to evaluate the number of job removals in the job migration phase. ALG(c)
removes one job from each machine in B. Hence, in the following we analyze the
number of jobs removed by ALG(c) from any machine in A. To this end we consider
the final machine loads consisting of small jobs.

Lemma 10 Let M j ∈ A. If �s( j, n + 1) ≤ (c − 1)L or if �s( j, n + 1) > (c − 1)L
and �s( j, n) ≤ (c − 1)Ln, then ALG(c) removes less than (3− c)/(2c − 3) + 2 jobs
from M j .

Proof We show that it suffices to remove less than (3− c)/(2c −3)+2 jobs from M j

such that the resulting load is upper bounded by (c − 1)L . The lemma then follows
because in each removal operation ALG(c) removes the largest job.

First assume that �s( j, n + 1) ≤ (c − 1)L . In this case it suffices to remove all jobs
that are large at time n +1. Each such job has a processing time greater than (2c−3)L
and was large at the time it was assigned to M j . Consider the last time when such a
job was assigned to M j . At that time M j had a load of at most (3 − c)L and hence
contained less than (3 − c)/(2c − 3) jobs of processing time greater than (2c − 3)L .
Thus at time n + 1 machine M j contains less than (3− c)/(2c − 3) + 1 of these large
jobs.

Next assume �s( j, n+1) > (c−1)L and �s( j, n) ≤ (c−1)Ln . The latter inequality
implies that Jn is assigned to M j because L = Ln . Hence it suffices to remove Jn

and, as shown in the last paragraph, less than (3− c)/(2c − 3) + 1 additional jobs of
processing time greater than (2c − 3)Ln = (2c − 3)L . ��
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In the followingwe concentrate on amachine M j ∈ A such that �s( j, n+1) > (c−
1)L and �s( j, n) > (c−1)Ln . Let t∗ be the earliest time such that �s( j, t) > (c−1)Lt

holds for all times t ≥ t∗. We have t∗ > 1 because �s( j, 0) = 0. We partition the jobs
that reside on M j at time n + 1 into three sets. Set T1 (set T2) contains those jobs that
were assigned to M j at or before time t∗ − 1 are small (large) at time t∗ − 1. Set T3
contains the remaining jobs, which have arrived at or after time t∗.
Claim 1 Each job of T2 ∪ T3 is large at the time it is assigned to M j .

Claim 2 There holds
∑

Ji ∈T1\{Jl } pi ≤ (c − 1)Lt∗−1, where Jl is the job of T1 that
was assigned last to M j .

Claim 3 |T2| is smaller than (3 − c)/(2c − 3) + 1.

Claim 4 For any Jl ∈ T3, M j ’s load immediately before the assignment of Jl is at
most (3 − c)Ll .

Claim 5 Let Jl ∈ T3 be the last job assigned to M j . If M j contains at least �12(2−c)�
jobs, different from Jl , each having a processing time of at least 1/6L, then it suffices
to remove these �12(2−c)� jobs and Jl such that M j ’s resulting load is upper bounded
by (c − 1)L.

Proof of Claim 1 The jobs of T2 are large at time t∗ − 1 and hence at the time they
were assigned to M j . By the definition of t∗, �s( j, t) > (c −1)Lt , for any t∗ ≤ t ≤ n,
and hence ALG(c) does not assign small jobs to M j . ��
Proof of Claim 2 By the choice of t∗, all jobs of T1\{Jl} are small at time t∗ − 1 and
their total processing time is at most �s( j, t∗ − 1) ≤ (c − 1)Lt∗−1. ��
Proof of Claim 3 Each job of T2 has a processing time greater than (2c − 3)Lt∗−1.
Consider the last time l when a job Jl ∈ T2 was assigned to M j . Before the assignment,
M j had a load of at most (3− c)Lt∗−1 and hence contained less than (3− c)/(2c − 3)
jobs of processing time greater than (2c − 3)Lt∗−1. ��
Proof of Claim 4 Consider any Jl ∈ T3. By Claim 1 Jl is large at time l and hence
M j ’s load prior to the assignment of Jl is at most (3 − c)Ll . ��
Proof of Claim 5 By Claim 4 M j ’s load immediately before the assignment of Jl is at
most (3− c)Ll . Removing �12(2 − c)� jobs of processing time at least 1/6L each as
well as Jl reduces M j ’s load to a value of atmost (3−c)Ll −12(2−c)/6·L ≤ (c−1)L .

��
We are ready to analyze ALG(5/3).

Lemma 11 In the removal step ALG(5/3) removes at most seven jobs from each
machine M j ∈ A.

Proof Consider any M j ∈ A. If �s( j, n + 1) ≤ (c − 1)L or if �s( j, n + 1) >

(c − 1)L and �s( j, n) ≤ (c − 1)Ln , then by Lemma 10 ALG(5/3) removes less than
(3 − c)/(2c − 3) + 2 = 6 jobs from M j . In the remainder of this proof we assume
that �s( j, n + 1) > (c − 1)L and �s( j, n) > (c − 1)Ln . In this case Claims 1–5 hold.
We need two additional statements.
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Claim 6 If there exists a Jl ∈ T3 with pl < 1/6L, then M j ’s load immediately before
the assignment of Jl is at most (c − 1)L = 2/3L.

Claim 7 If there exists a Jk ∈ T2 with pk < 1/6L, then
∑

Ji ∈T1 pi + pk ≤ (c−1)L =
2/3L.

Proof of Claim 6 ByClaim 1 Jl is large at time l and hence pl > (2c−3)Ll = 1/3Ll .
Since pl < 1/6L , we have Ll < 1/2L . By Claim 4, M j ’s load immediately before
the assignment of Jl is at most (3 − c)Ll = 4/3Ll and hence at most 2/3L . ��
Proof of Claim 7 Job Jk is large at time t∗ − 1 and hence pk > (2c − 3)Lt∗−1 =
1/3Lt∗−1. Since pk < 1/6L it follows Lt∗−1 < 1/2L . By Claim 2, we have∑

Ji ∈T1 pi ≤ (c − 1)Lt∗−1 + pl , where Jl is the last job of T1 assigned to M j .
Since pl is small at time t∗ − 1 we have pl ≤ (2c − 3)Lt∗−1 = 1/3Lt∗−1 < 1/6L . In
summary

∑
Ji ∈T1 pi + pk ≤ 1/3L + 1/6L + 1/6L = 2/3L . ��

We distinguish two cases.
Case 1: Suppose that |T2 ∪ T3| ≤ 4. By Claim 2 it suffices to remove the jobs of

T2 ∪ T3 and the last job of T1 assigned to M j .
Case 2: Assume |T2 ∪ T3| ≥ 5. Then by Claim 3 |T2| is smaller than (3− c)/(2c −

3) + 1 = 5. Thus |T2| ≤ 4 and T3 �= ∅. Let Jl be the last job of T3 assigned to M j . If
T2 ∪ T3\{Jl} contains at least �12(2 − c)� = 4 jobs of processing time at least 1/6L ,
then by Claim 5 it suffices to remove these four jobs and Jl . So suppose that this is not
the case. Then T2 ∪ T3\{Jl} must contain a job of processing time smaller than 1/6L .

Assume there exists a job in T3\{Jl} with this property. Then let Jl ′ be the last job
assigned to M j having a processing time smaller than 1/6L . By Claim 6, immediately
before the assignment of Jl ′ machine M j has a load of at most 2/3L . Therefore it
suffices to remove Jl ′ and the jobs of T3 subsequently scheduled on M j . In addition
to Jl , this sequence consists of at most three jobs Jk �= Jl , because T3\{Jl} contains
less than four jobs of processing time at least 1/6L .

Finally consider the case that all jobs of T3\{Jl} have a processing time of at least
1/6L and there is a job Jl ′ ∈ T2 having a processing time smaller than 1/6L . By
Claim 7 it suffices to remove T2\{Jl ′ } ∪ T3. By Claim 3 we have |T2\{Jl ′ }| ≤ 3. Since
T3\{Jl} contains less than four jobs, each having a processing time of at least 1/6L ,
we have |T3| ≤ 4. We conclude that at most seven jobs have to be removed. ��

Lemma 11 ensures that in the job removal step ALG(5/3) removes at most 7 jobs
from any machine in A. For any machine in B, one job is removed. Hence the total
number of migrations is at most 7
m/2� + �m/2� ≤ 4m. Combined with Theorem 3,
this concludes the proof of Theorem 4. We next turn to the algorithm ALG(1.75).

Lemma 12 In the job removal step ALG(1.75) removes at most four jobs from each
machine M j ∈ A.

Proof Let M j be any machine in A. If �s( j, n + 1) ≤ (c − 1)L or if �s( j, n + 1) >

(c − 1)L and �s( j, n) ≤ (c − 1)Ln , then by Lemma 10 ALG(1.75) removes less
than (3 − c)/(2c − 3) + 2 = 4.5 jobs from M j . Therefore, we focus on the case that
�s( j, n + 1) > (c − 1)L and �s( j, n) > (c − 1)Ln . Again, Claims 1–5 hold and we
need two additional claims.
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Claim 8 If there exists a Jl ∈ T3 with pl < 1/6L, then M j ’s load immediately after
the assignment of Jl is at most (c − 1)L = 0.75L.

Claim 9 If T ′
2 ⊆ T2 is a subset with 1 ≤ |T2| ≤ 2 and pi ≤ 1/6L, for all Ji ∈ T2,

then
∑

Ji ∈T1 pi + ∑
Ji ∈T ′

2
pi ≤ (c − 1)L = 0.75L.

Proof of Claim 8 By Claim 1 Jl is large at time l and hence pl > (2c−3)Ll = 0.5Ll .
Since pl < 1/6L , we have Ll < 1/3L . Using Claim 4 we obtain that M j ’s load
immediately after the assignment of Jl is at most (3 − c)Ll + pl = 1.25Ll + pl ≤
5/12L + 1/6L < 0.75L . ��
Proof of Claim 9 Any job Ji ∈ T ′

2 is large at time t∗ − 1 and hence pi > (2c −
3)Lt∗−1 = 0.5Lt∗−1. Since pi < 1/6L it follows Lt∗−1 < 1/3L . By Claim 2, we
have

∑
Ji ∈T1 pi ≤ 0.75Lt∗−1 + pl ≤ 0.25L + 1/6L , where Jl is the last job of T1

assigned to M j . Thus
∑

Ji ∈T1 pi + ∑
Ji ∈T ′

2
pi ≤ 0.25L + 3 · 1/6L ≤ 0.75L . ��

We finish the proof of the lemma using a case distinction on the size of T3. By
Claim 3, T2 contains no more than three jobs. Moreover, �12(2− c)� = 3, which is a
quantity used in Claim 5.

• |T3| = 0: Then by Claim 2 is suffices to remove T2 and the last job of T1 assigned
to M j .

• |T3| = 1: We may assume that the only job Jl ∈ T3 has a processing time of at
least 1/6L since otherwise by Claim 8 no job has to be removed. Moreover, we
may assume that |T2| = 3 since otherwise, by Claim 2 it suffices to remove T2∪T3
and the last job of T1 assigned to M j . If all the jobs of T2 have a processing time
of at least 1/6L , then Claim 5 ensures that it suffices to remove T2 ∪ T3. If one job
in T2 has a processing time of at most 1/6L , then Claim 9 ensures that it suffices
to remove the other two jobs of T2 and T3.

• |T3| = 2: We assume that both jobs in T3 have a processing time of at least 1/6L
since otherwise, by Claim 8, we can just remove one job of T3 and T2. If |T2| = 1,
then by Claim 2 it suffices to remove T2 ∪ T3 and the last job of T1 assigned to M j .
It remains to consider the case |T2| ≥ 2. If none of the jobs in T2 has a processing
time smaller than 1/6L , then Claim 5 applies. If one of the jobs has a processing
time smaller than 1/6L , then Claim 9 applies and it suffices to remove the at most
two other jobs of T2 and the jobs of T3.

• |T3| = 3: Again we assume that all jobs in T3 have a processing time of at least
1/6L since otherwise the desired statement follows from Claim 8. Moreover, we
assume |T2| > 0; otherwise we can apply again Claim 2. If there is one job in
T2 having a processing time of at least 1/6L , the desired number of job removals
follows from Claim 5. If this is not the case, then Claim 9 ensures that it suffices
to remove the last job of T2 assigned to M j as well as T3.

• |T3| ≥ 4: If four jobs in T3 have a processing time of at least 1/6L , then by
Claim 5 it is sufficient to remove these four jobs. If at most three jobs have a
processing time of at least 1/6L , then let Jl ∈ T3 be last jobs assigned to M j

having a processing time smaller than 1/6L . By Claim 8 it suffices to remove the
jobs of T3 subsequently assigned to M j , and there exist at most three of these.
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This concludes the proof. ��
Recall that ALG(1.75) migrates �m/2� jobs from machines in B. Hence, using the

above Lemma 12, we obtain that the total number of migrations is at most 4
m/2� +
�m/2� ≤ 2.5m. Combined with Theorem 3, this finishes the proof of Theorem 5.

Appendix

Proof of Lemma 1 Fix m ≥ 2. We first evaluate fm(2) and fm(1 + 1/(3m)). For
α = 2, we have �(1−1/α)m� ≥ m/2. Hence �(1−1/α)m�α/m ≥ 1 and fm(2) ≥ 1.
For α = 1 + 1/(3m), there holds �(1 − 1/α)m� = 1. Thus fm(1 + 1/(3m)) =
1/(3m)Hm−1 + 1/m + 1/(3m2) < 1/3 + 1/2 + 1/12 < 1. It remains to show that
fm(α) is continuous and strictly increasing. To this end we show that, for any α > 1
and small ε > 0, fm(α)− fm(α − ε) and fm(α + ε)− fm(α) converge to 0 as ε → 0.
Moreover fm(α + ε) − fm(α) is strictly positive.

First consider an α > 1 such that (1 − 1/α)m /∈ N. In this case we choose ε > 0
such that �(1 − 1/(α − ε))m� = �(1 − 1/(α + ε))m� = �(1 − 1/α)m�. We have

fm(α) = (α − 1)(Hm−1 − H�(1−1/α)m�−1) + �(1 − 1/α)m�α/m

fm(α − ε) = (α − ε − 1)(Hm−1 − H�(1−1/α)m�−1) + �(1 − 1/α)m�(α − ε)/m

fm(α + ε) = (α + ε − 1)(Hm−1 − H�(1−1/α)m�−1) + �(1 − 1/α)m�(α + ε)/m.

Thus fm(α)− fm(α−ε) = fm(α+ε)− fm(α) = ε(Hm−1− H�(1−1/α)m�−1)+�(1−
1/α)m�ε/m. Hence fm(α) − fm(α − ε) and fm(α + ε) − fm(α) tend to 0 as ε → 0.
Since α > 1 there holds �(1 − 1/α)m� ≥ 1 and thus fm(α + ε) − fm(α) > 0.

Next let α > 1 such that (1 − 1/α)m ∈ N. In this case we choose ε > 0 such that
�(1− 1/(α − ε))m� = �(1− 1/α)m� and �(1− 1/(α + ε))m� = �(1− 1/α)m� + 1.
There holds

fm(α) = (α − 1)(Hm−1 − H�(1−1/α)m�−1) + �(1 − 1/α)m�α/m

fm(α − ε) = (α − ε − 1)(Hm−1 − H�(1−1/α)m�−1) + �(1 − 1/α)m�(α − ε)/m

fm(α + ε) = (α + ε − 1)(Hm−1 − H�(1−1/α)m�) + (�(1 − 1/α)m� + 1)(α + ε)/m.

As above fm(α) − fm(α − ε) = ε(Hm−1 − H�(1−1/α)m�−1) + �(1− 1/α)m�ε/m and
the latter expression tends to 0 as ε → 0. Taking into account that (1 − 1/α)m ∈ N

we obtain

fm(α + ε) − fm(α) = −(α − 1) · 1/((1 − 1/α)m) + ε(Hm−1 − H�(1−1/α)m�)
+(�(1 − 1/α)m� + 1)ε/m + α/m

= ε(Hm−1 − H�(1−1/α)m�) + (�(1 − 1/α)m� + 1)ε/m.

Again, fm(α + ε) − fm(α) is strictly positive and tends to 0 as ε → 0. ��
Proof of Lemma 2 We first prove that (αm)m≥2 is non-decreasing. A first observation
is that αm ≤ m because fm(m) ≥ 1.Wewill show that, for anym ≥ 3 and 1 < α ≤ m,
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there holds fm−1(α) ≥ fm(α). This implies 1 = fm−1(αm−1) ≥ fm(αm−1). By
Lemma 1, fm is strictly increasing and thus αm ≥ αm−1. Consider a fixed α with
1 < α ≤ m. We study two cases depending on whether or not �(1− 1/α)(m − 1)� =
�(1 − 1/α)m�.

If �(1 − 1/α)(m − 1)� = �(1 − 1/α)m�, then

fm(α) = (α − 1)(Hm−1 − H�(1−1/α)m�−1) + �(1 − 1/α)m�α/m

fm−1(α) = (α − 1)(Hm−2 − H�(1−1/α)m�−1) + �(1 − 1/α)m�α/(m − 1).

We obtain fm−1(α) − fm(α) = −(α − 1)/(m − 1) + �(1− 1/α)m�α/(m(m − 1)) ≥
−(α − 1)/(m − 1) + (α − 1)/(m − 1) = 0 and thus fm−1(α) ≥ fm(α).

If �(1−1/α)(m−1)� < �(1−1/α)m�, then �(1−1/α)(m−1)� = �(1−1/α)m�−1
and

fm(α) = (α − 1)(Hm−1 − H�(1−1/α)m�−1) + �(1 − 1/α)m�α/m

fm−1(α) = (α − 1)(Hm−2 − H�(1−1/α)m�−2) + (�(1 − 1/α)m� − 1)α/(m − 1).

Since α > 1 there holds �(1−1/α)(m −1)� ≥ 1. Hence in our case �(1−1/α)m� ≥ 2
and �(1 − 1/α)m� − 1 > 0. We obtain

fm−1(α) − fm(α) = − α−1
m−1 + α−1

�(1−1/α)m�−1 + �(1 − 1/α)m� α
m(m−1) − α

m−1 .

Choose x , with 0 ≤ x < 1, such that �(1 − 1/α)m� = (1 − 1/α)m + x . Then

fm−1(α) − fm(α) = − α−1
m−1 + α−1

(1−1/α)m+x−1 + (1 − 1/α)m α
m(m−1) + αx

m(m−1) − α
m−1

= α−1
(1−1/α)m+x−1 + αx

m(m−1) − α
m−1

In order to establish fm−1(α) − fm(α) ≥ 0 is suffices to show

α−1
(1−1/α)m+x−1 ≥ α(m−x)

m(m−1) .

This is equivalent to (α − 1)m(m − 1) ≥ (m − x)((α − 1)m + αx − α). Standard
algebraic manipulation yield that this is equivalent to m ≥ mx − αx2 + αx . Let
g(x) = mx − αx2 + αx , for any real number x . This function is increasing for any
x < (m + α)/(2α). Since α ≤ m, the function is increasing for any x < 1. As
g(0) = 0 and g(1) = m, it follows that m ≥ mx − αx2 + αx holds for all 0 ≤ x < 1.
We conclude fm−1(α) − fm(α) ≥ 0.

It is easy to verify that f2(4/3) = 1. We show that limm→∞ αm is upper bounded
by W−1(−1/e2)/(1 + W−1(−1/e2)). Cesáro [5] proved

0 < Hm − 1

2
ln (m(m + 1)) − γ <

1

6m(m + 1)
, (1)
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where γ ≈ 0.577 is the Euler-Mascheroni constant. Using this inequality we find, for
any c with 0 < c ≤ 1 and �cm� − 2 > 0,

Hm−1 − H�cm�−2 >
1

2
ln((m − 1)m) + γ − 1

2
ln((�cm� − 2)(�cm� − 1))

−γ − 1

6(�cm� − 2)(�cm� − 1)

≥ 1

2
(ln(m − 1) + lnm − ln(cm − 1) − ln(cm)) − 1

2(�cm� − 1)

= 1

2
(ln(m − 1) + lnm − ln(c(m − 1/c)) − ln(cm)) − 1

2(�cm� − 1)

= 1

2
(ln(m − 1) − ln(m − 1/c) − 2 ln(c)) − 1

2(�cm� − 1)

≥ 1

2
(2 ln(1/c)) − 1

2(�cm� − 1)

≥ ln(1/c) − 1

2(cm − 1)
,

where the second to last inequality holds since ln(m−1/c) ≤ ln(m−1). for 0 < c ≤ 1
and sufficiently large m. We obtain

fm(α) = (α − 1)(Hm−1 − H�(1−1/α)m�−1) + (�(1 − 1/α)m�) α

m

> (α − 1)

(

ln(
α

α − 1
) − 1

2((1 − 1/α)m − 1)
− 1

�(1 − 1/α)m� − 1

)

+ (�(1 − 1/α)m�) α

m

≥ (α − 1)

(

ln

(
α

α − 1

)

− 1

(1 − 1/α)m − 1

)

+ α − 1 =: F(m).

Obviously, limm→∞ F(m) = (α−1) ln( α
α−1 )+α−1.We show that (α−1) ln( α

α−1 )+
α − 1 = 1, for α = 1

1−δ
, where δ = −1/W−1(−1/e2).

Equation (α − 1) ln( α
α−1 ) + α − 1 = 1 is equivalent to ln( α

α−1 ) + 1 = 1
α−1 , which

in turn is equivalent to

α

α − 1
· e = e

1
α−1 .

Substituting x = 1/(α − 1), which is equivalent to α = 1/x + 1, we find that the
above is equivalent to xe + e = ex . Applying the Lambert W function we find that
x = −W−1(−1/e2)− 1 is a solution of the former equality. Substituting we conclude
that in factα = W−1(−1/e2)/(1+W−1(−1/e2)) satisfies the equality. Using the same
techniques we can show that limm→∞ αm is lower bounded by W−1(−1/e2)/(1 +
W−1(−1/e2)). In the calculations, (1) yields that Hm−1− H�cm� < ln(1/c)+1/(2m).

��
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