
Algorithmica (2017) 79:798–813
DOI 10.1007/s00453-016-0193-0

Parameterized Complexity of Superstring Problems

Ivan Bliznets1 · Fedor V. Fomin1,2 ·
Petr A. Golovach1,2 · Nikolay Karpov1 ·
Alexander S. Kulikov1 · Saket Saurabh2,3

Received: 11 September 2015 / Accepted: 22 July 2016 / Published online: 28 July 2016
© Springer Science+Business Media New York 2016

Abstract In the Shortest Superstring problem we are given a set of strings
S = {s1, . . . , sn} and integer � and the question is to decide whether there is a super-
string s of length at most � containing all strings of S as substrings. We obtain several
parameterized algorithms and complexity results for this problem. In particular, we
give an algorithm which in time 2O(k) poly(n) finds a superstring of length at most �
containing at least k strings of S. We complement this by a lower bound showing that
such a parameterization does not admit a polynomial kernel up to some complexity
assumption. We also obtain several results about “below guaranteed values” parame-
terization of the problem. We show that parameterization by compression admits a
polynomial kernel while parameterization “below matching” is hard.

Keywords Shortest superstring · Parameterized complexity · Kernelization

1 Introduction

We consider the Shortest Superstring problem defined as follows:

The research leading to these results has received funding from the Government of the Russian Federation
(Grant 14.Z50.31.0030) and the Grant of the President of Russian Federation (MK-6550.2015.1). A
preliminary version of the paper appeared in the proceedings of CPM 2015.

B Petr A. Golovach
Petr.Golovach@ii.uib.no

1 St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy of
Sciences, Saint Petersburg, Russia

2 Department of Informatics, University of Bergen, Bergen, Norway

3 Institute of Mathematical Sciences, Chennai, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-016-0193-0&domain=pdf


Algorithmica (2017) 79:798–813 799

Shortest Superstring

Input: A set of n strings S = {s1, . . . , sn} over an alphabet � and a non-negative
integer �.
Question: Is there a string s of length at most � containing all strings from S as
substrings?

This is a well-known NP-complete problem [11] with a range of practical applications
from DNA assembly [8] to data compression [10]. Due to this fact approximation
algorithms for it are widely studied. The currently best known approximation guar-
antee 211

23 is due to Mucha [17]. At the same time the best known exact algorithms
run in roughly 2n steps and are known for more than 50 years already. More pre-
cisely, using known algorithms for the Traveling Salesman problem, Shortest
Superstring can be solved either in time O∗(2n) and the same space by dynamic
programming over subsets [2,14] or in time O∗(2n) and only polynomial space by
inclusion-exclusion [15,16] (here,O∗(·) hides factors that are polynomial in the input
length, i.e.,

∑n
i=1 |si |). Such algorithms can only be used in practice to solve instances

of very moderate size. Stronger upper bounds are known for a special case when
input strings have bounded length [12,13]. There are heuristic methods for solving
Traveling Salesman, and hence also Shortest Superstring, they are efficient
in practice, however have no efficient provable guarantee on the running time (see,
e.g., [1]).

In this paper, we study the Shortest Superstring problem from the parame-
terized complexity point of view. This field studies the complexity of computational
problems with respect not only to input size, but also to some additional parameters
and tries to identify parameters of input instances that make the problem tractable.
Interestingly, prior to our work, except observations following from the known reduc-
tions to Traveling Salesman, not much about the parameterized complexity of
Shortest Superstring was known. We refer to the survey of Bulteau et al. [4]
for a nice overview of known results on parameterized algorithms and complexity of
strings problems. Thus our work can be seen as the first non-trivial step towards the
study of this interesting and important problem from the perspective of parameterized
complexity.
Our results In this paper we study two types of parameterization for Shortest

Superstring and present two types of results. The first set of results concerns “nat-
ural” parameterizations of the problem. We consider the following generalization of
Shortest Superstring:

Partial Superstring

Input: A collection (multiset) of strings S over an alphabet �, and non-negative
integers k, �.
Question: Is there a string s of length at most � such that s is a superstring of a
collection of at least k strings S′ ⊆ S?

If k = |S|, then this is Shortest Superstring. Notice that S can contain copies of
the same string and a string of S can be a substring of another string of the collection.
For Shortest Superstring, such cases could be easily avoided, but it is natural to
assume that we have such possibilities for Partial Superstring.

123



800 Algorithmica (2017) 79:798–813

Here we show that Partial Superstring is fixed parameter tractable (FPT) when
parameterized by k or �. We complement this result by showing that it is unlikely that
the problem admits a polynomial kernel with respect to these parameters.

The second set of results concerns “below guaranteed value” parameterizations.
Note that an obvious (non-optimal) superstring of S = {s1, . . . , sn} is a string of
length

∑n
i=1 |si | formed by concatenating all strings from S. For a superstring s of S

the value
∑n

i=1 |si |−|s| is called the compression of s with respect to S. We first show
that it is FPT with respect to r to check whether one can achieve a compression at least
r by constructing a kernel of size O(r4). We complement this result by a hardness
result about a “stronger” parameterization. Let us partition n input strings into n/2
pairs such that the sum of the n/2 resulting overlaps is maximized. Such a partition
can be found in polynomial time by constructing a maximum weight matching in
an auxiliary graph. Then this total overlap provides a lower bound on the maximum
compression (or, equivalently, an upper bound on the length of a shortest superstring).
We show that deciding whether at least one additional symbol can be saved beyond
the maximum weight matching value is already NP-complete.

2 Basic Definitions and Preliminaries

Strings. Let s be a string. By |s| is denoted the length of s. By s[i], where 1 ≤ i ≤ |s|,
is denoted the i-th symbol of s, and s[i, j] = s[i] . . . s[ j] for 1 ≤ i ≤ j ≤ |s|. We
assume that s[i, j] is the empty string if i > j . A nonempty string s′ is a substring of
s if s′ = s[i, j] for some 1 ≤ i ≤ j ≤ |s|; the empty string is a substring of any string.
A string s′ is a proper substring of s if s′ is a substring of s and s′ �= s. Respectively,
if s′ is a (proper) substring of s, then s is a (proper) superstring of s′. We write s′ ⊆ s
(s′ ⊇ s) to denote that s′ is a substring (superstring) of s and we write s′ ⊂ s and
s′ ⊃ s to denote proper sub- and superstrings. We denote prefixi (s) = s[1, i] and
suffixi (s) = s[|s| − i + 1, |s|] the i -th prefix and i -th suffix of s respectively for
i ∈ {1, . . . , |s|}; prefix0(s) = suffix0(s) is the empty string. For a collection of strings
S, a string t is a superstring of S if t is a superstring of each string in S. The compression
measure of a superstring t of a collection of strings S is

∑
x∈S |x | − |t |. We denote

by uv the concatenation of u and v. The overlap of two strings u and v, denoted by
overlap(u, v), is the longest suffix of u which is also a prefix of v.

For a sequence of strings s1, . . . , sn , we define the function σ that maps s1, . . . , sn
to a string as follows:

σ(s1, . . . , sn) = prefixr1(s1)prefixr2(s2) · · · prefixrn−1
(sn−1)sn

where ri = |si |−|overlap(si , si+1)|. It is easy to see that σ(s1, . . . , sn) is a superstring

of s1, . . . , sn of length
n∑

i=1
|si |−

n−1∑

i=1
|overlap(si , si+1)|.We need the following folklore

property of superstrings.

Lemma 1 Let s be a superstring of a collection of strings S = {s1, . . . , sn} that does
not contain a pair of distinct strings si , s j such that si ⊂ s j . Let also si = s[pi , qi ]

123



Algorithmica (2017) 79:798–813 801

for i ∈ [n] and assume that pi < p j for i < j . Then σ(s1, . . . , sn) is a superstring of
S of length at most |s|.
This lemma allows to consider the shortest superstring problem for a set S =
{s1, . . . , sn}with no si ⊂ s j as finding a permutation π of the given n strings minimiz-

ing
n∑

i=1
|si | −

n−1∑

i=1
|overlap(sπi , sπi+1)| or, equivalently, maximizing

n−1∑

i=1
|overlap(sπi ,

sπi+1)|. For the case when S is allowed to contain a string that is a proper substring
of another string from S, we need a generalized definition. For a sequence of strings
s1, . . . , sn , the concatenation with overlaps �(s1, . . . , sn) is defined as follows: if
si+1 ⊂ si and i is the minimal such an index then �(s1, . . . , si , si+1, . . . , sn) =
�(s1, . . . , si , si+2, . . . , sn); if there is no such i then �(s1, . . . , sn) = σ(s1, . . . , sn).
The following lemma is a counterpart of Lemma 1.

Lemma 2 Let t be a superstring of a collection of strings S = {s1, . . . , sn} then
|t | ≥ min

π∈Sn
|�(sπ1, . . . , sπn )|.

Proof This can be proved by induction on the size of S. The base case |S| = 1 is clear. If
no si ∈ S is a substring of s j ∈ S then the statement follows fromLemma 1. Otherwise
assumewithout loss of generality that sn ⊂ si . By the induction hypothesis, there exists
a permutation π ∈ Sn−1 such that |t | ≥ |�(sπ1, . . . , si , . . . , sπn−1)|. Inserting sn after
si in π gives us a required permutation from Sn :

|t | ≥ |�(sπ1, . . . , si , . . . , sπn−1)| = |�(sπ1, . . . , si , sn, . . . , sπn−1)| .

�
Graphs.We consider finite directed and undirected graphs without loops or multiple
edges. The vertex set of a (directed) graph G is denoted by V (G), the edge set of
an undirected graph and the arc set of a directed graph G is denoted by E(G). To
distinguish edges and arcs, the edge with two end-vertices u, v is denoted by {u, v},
and we write (u, v) for the corresponding arc. For an arc e = (u, v), v is the head
of e and u is the tail. Let G be a directed graph. For a vertex v ∈ V (G), we say
that u is an in-neighbor of v if (u, v) ∈ E(G). The set of all in-neighbors of v

is denoted by N−
G (v). The in-degree d−

G (v) = |N−
G (v)|. Respectively, u is an out-

neighbor of v if (v, u) ∈ E(G), the set of all out-neighbors of v is denoted by N+
G (v),

and the out-degree d+
G (v) = |N+

G (v)|. For a directed graph G, a (directed) trail of
length k is a sequence v0, e1, v1, e2, . . . , ek, vk of vertices and arcs of G such that
v0, . . . , vk ∈ V (G), e1, . . . , ek ∈ E(G), the arcs e1, . . . , ek are pairwise distinct, and
for i ∈ {1, . . . , k}, ei = (vi−1, vi ). We omit the word “directed” if it does not create a
confusion. Slightly abusing notations we often write a trail as a sequence of its vertices
v0, . . . , vk or arcs e1, . . . , ek . If v0, . . . , vk are pairwise distinct, then v0, . . . , vk is a
(directed) path. Recall that a path of length |V (G)| − 1 is a Hamiltonian path. For an
undirected graphG, a setU ⊆ V (G) is a vertex cover ofG if for any edge {u, v} ofG,
u ∈ U or v ∈ U . A set of edges M with pairwise distinct end-vertices is a matching.

We consider the following auxiliary problem:

123



802 Algorithmica (2017) 79:798–813

Long Trail

Input: A directed graph G and a non-negative integer �.
Question: Is there a trail of length at least � in G?

Lemma 3 Long Trail is NP-complete. In particular, the problem is NP-complete
if � = |V (G)| − 1.

Proof We reduce the Hamiltonian Path problem for directed graphs that is well
known to be NP-complete (see, e.g., [11]). Let G be a directed graph with n vertices.
We construct the graph G ′ as follows.

• For each v ∈ V (G), construct two vertices v−, v+ and an arc (v−, v+).
• For each (u, v) ∈ E(G), construct an arc (u+, v−).
• Construct two vertices s, t and for each v ∈ V (G), construct arcs (s, v−), (v+, t).

We claim that G ′ has a trail of length at least 2n + 1 = |V (G ′)| − 1 if and only if G
has a Hamiltonian path.

Suppose that G has a Hamiltonian path v1, . . . , vn . Then the trail s, v−
1 , v+

1 , v−
2 ,

v+
2 , . . . , v−

n , v+
n , t in G ′ has length 2n + 1.

Assume that G ′ has a trail P of length at least 2n + 1. Without loss of generality
we can assume that s is the first vertex of P and t is the last. To see it, suppose that
x �= s is the first vertex of P . Notice that s is not in P , because d−

G ′(s) = 0. If
x = v− for v ∈ V (G), then we can consider the extended trail s, (s, x), P . If x = v+
for v ∈ V (G), then let u− be the next vertex in P after x . We consider the trail P ′
obtained from P by the replacement of x and (x, u−) by s and (s, u−) respectively.
Clearly, P ′ has the same length as P . By the symmetric arguments, we obtain that we
can assume that t is the last vertex of P . We have that any vertex of G ′ occurs exactly
once in P , because d−

G ′(s) = d+
G ′(t) = 0 and d+

G ′(v−) = d−
G ′(v+) = 1 for v ∈ V (G).

Moreover, for each vertex v ∈ V (G), (v−, v+) in P , because v− is the unique in-
neighbor of v+ and v+ is the unique out-neighbor of v− respectively for v ∈ V (G).
Hence, P can be written as s, v−

1 , v+
1 , v−

2 , v+
2 , . . . , v−

n , v+
n , t for v1, . . . , vn ∈ V (G).

It remains to observe that v1, . . . , vn is a Hamiltonian path in G. �
Circuits. An arithmetic circuit is a directed acyclic graph whose nodes of in-degree
zero are labeled with variables x1, . . . , xn and are called inputs while nodes of non-
zero in-degree are labeled with + (summation) and × (multiplication) and are called
gates. Each gate of a circuit computes a polynomial of x1, . . . , xn . One gate of a circuit
is also designated as an output gate and we say that a circuit computes a polynomial
of this gate. The size of a circuit is its number of gates.
Parameterized Complexity. Parameterized complexity is a two dimensional frame-
work for studying the computational complexity of a problem. One dimension is the
input size and another one is a parameter. We refer to the recent books of Cygan
et al. [5] and Downey and Fellows [6] for detailed introductions to parameterized
complexity.

Formally, a parameterized problem P ⊆ �∗ ×N, where � is a finite alphabet, i.e.,
an instance of P is a pair (I, k) for I ∈ �∗ and k ∈ N, where I is an input and k is a
parameter. It is said that a problem is fixed-parameter tractable (or FPT), if it can be

123



Algorithmica (2017) 79:798–813 803

solved in time f (k) · |I |O(1) for some function f . A kernelization for a parameterized
problem is a polynomial algorithm that maps each instance (I, k) to an instance (I ′, k′)
such that

(i) (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance of the problem, and
(ii) The size of I ′ and k′ are bounded by f (k) for a computable function f .

The output (I ′, k′) is called a kernel. The function f is said to be the size of a kernel.
Respectively, a kernel is polynomial if f is polynomial.

While a decidable parameterized problem is FPT if and only if it has a kernel,
it is widely believed that not all FPT problems have polynomial kernels (see [5] for
details). In particular, Bodlaender et al. [3] introduced the cross-composition technique
that allow to show that a parameterized problem has no polynomial kernel unless
NP ⊆ coNP /poly. To introduce this technique, we need some definitions.

Let � be a finite alphabet. An equivalence relation R on the set of strings �∗ is
called a polynomial equivalence relation if the following two conditions hold:

(i) There is an algorithm that given two strings x, y ∈ �∗ decides whether x and y
belong to the same equivalence class in time polynomial in |x | + |y|,

(ii) For any finite set S ⊆ �∗, the equivalence relation R partitions the elements of
S into a number of classes that is polynomially bounded in the size of the largest
element of S.

Let L ⊆ �∗ be a language, letR be a polynomial equivalence relation on �∗, and
let P ⊆ �∗ × N be a parameterized problem. An OR-cross-composition of L into P
(with respect to R) is an algorithm that, given t instances x1, x2, . . . , xt ∈ �∗ of L
belonging to the same equivalence class ofR, takes time polynomial in

∑t
i=1 |xi | and

outputs an instance (y, k) ∈ �∗ × N such that:

(i) The parameter value k is polynomially bounded in max{|x1|, . . . , |xt |} + log t ,
(ii) The instance (y, k) is a yes-instance for P if and only if at least one instance xi is

a yes-instance for L and i ∈ {1, . . . , t}.
It is said that L OR-cross-composes into P if a cross-composition algorithm exists for
a suitable relationR.

The following theorem was proved by Bodlaender, Jansen and Kratsch [3].

Theorem 1 ([3]) If an NP-hard language L OR-cross-composes into the para-
meterized problem P , then P does not admit a polynomial kernelization unless
NP ⊆ coNP /poly.

3 FPT-Algorithms for Partial Superstring

In this section we show that Partial Superstring is FPT, when parameterized by
k or �. For technical reasons, we consider the following variant of the problem with
weights:

123



804 Algorithmica (2017) 79:798–813

Partial Weighted Superstring

Input:Acollection of strings S over an alphabet�with aweight functionw : S →
N0, and non-negative integers k, � and W .
Question: Is there a string s of length at most � such that s is a superstring of a
collection of k strings S′ ⊆ S with w(S′) = ∑

s∈S′ w(s) ≥ W?

Clearly, if w ≡ 1 and W = k, then we have the Partial Superstring problem.
Belowwepresent an algorithm for Partial Superstring andPartial Weighted

Superstring based on the following multilinear monomial detection tests.

Theorem 2 ([18]) Let P(x1, . . . , xn) be a polynomial of degree at most k, represented
by an arithmetic circuit of size s(n) with + gates (of unbounded in-degree), × gates
(of in-degree two), and no scalar multiplications. There exists a randomized algorithm
with running time O∗(2ks(n)) that given P outputs yes with probability at least 1

5 if
there is a multilinear monomial in sum-product expansion of P, and always outputs
no if there is no such monomial.

Theorem 3 ([9]) Let P(x1, . . . , xn) be a polynomial of degree at most k, represented
by an arithmetic circuit of size s(n)with+ gates (of unbounded in-degree),× gates (of
in-degree two), and no scalar multiplications;w : 2{1,...,n} → N be an additive weight
function andW be themaximumvalue ofw. There exists a deterministic algorithmwith
running time O(3.8408ks(n)n log2 n logW ) that given P outputs minimum possible
weight of multilinear monomial is such monomials exist.

Theorem 4 Partial Superstring can be solved in time O∗(2k) by a randomized
algorithm that outputs “no” with probability 1 if there is no superstring and outputs a
superstringwith probability at least1/5 if it exists.Partial Weighted Superstring

can be solved in time O∗(3.8408k) by a deterministic algorithm.

Proof We will assume that � <
n∑

i=1
|si | as otherwise the problem is trivial.

Wefirst obtain the algorithmic result for Partial Superstring. Due toTheorem2,
it suffices to construct a polynomial size circuit C that computes a polynomial Pk
containing a multilinear monomial if and only if there is a string of length at most l
that contains k strings from S as substrings.

The required polynomial contains a monomial for each possible concatenation with
overlaps of k strings of total length at most �:

Pk(x1, . . . , xn) =
∑

(i1,...,ik )∈[n]k
[|�(si1, . . . , sik )| ≤ �]·xi1xi2 · · · xik

(note that we do not require i1, . . . , ik to be pairwise different). Slightly abusing
notation in this definition, we use [·] to denote two different things: for an integer m,
by [m] we denote the set {1, 2, . . . ,m}; for a Boolean predicate P , by [P] we denote
the characteristic function: it is equal to 1 if P is true and is equal to 0 otherwise.
By Lemma 2, there is a superstring of length at most � of k strings if and only if
Pk(x1, . . . , xn) contains a multilinear monomial.

123



Algorithmica (2017) 79:798–813 805

We now describe a polynomial size arithmetic circuit C computing the polyno-
mial Pk . For this, we introduce the following auxiliary polynomials. For 1 ≤ j ≤ n,
1 ≤ t ≤ n, and 0 ≤ w ≤ �, let Q(t, j, w) be a polynomial of variables x1, . . . , xn
containing a monomial for each concatenation with overlaps of t + 1 strings starting
with s j of total length at most w:

Q(t, j, w) =
∑

(i1,...,it )∈[n]t
[|�(s j , si1 , . . . , sit )| ≤ w]·x j xi1xi2 · · · xit (1)

Note that Pk = ∑

j∈[n]
Q(k − 1, j, �).

Below we show how to compute the polynomials Q(·, ·, ·) inductively, that is, we
express Q(t, ·, ·) through Q(t − 1, ·, ·). The base case is easy: Q(0, j, w) is equal to
x j if |s j | ≤ w and is equal to 0 otherwise. Assume now that t > 0. We show that

Q(t, j, w) =
∑

i : si⊂s j

xi Q(t−1, j, w)+
∑

i : si �⊂s j

x j Q(t−1, i, w−(|s j |−|overlap(s j , si )|)).

(2)
In this recurrence relation, we treat Q(·, ·, w) for w < 0 as zero.

To give a formal proof we show that the right-hand sides of equations (1) and (2)
contain exactly the same summands. First, we divide the right side of (1) into
two parts. There are two cases: either si1 ⊂ s j or si1 �⊂ s j . If si1 ⊂ s j then
�(s j , si1 , si2 , . . . , sit ) = �(s j , si2 , . . . , sit ). Then

∑
i : si⊂s j xi Q(t − 1, j, w) is equal

to

∑

i : si⊂s j

xi

⎛

⎝
∑

(i1,...,it−1)∈[n]t−1

[|�(s j , si1 , . . . , sit−1)| ≤ w]·x j xi1 · · · xit−1

⎞

⎠

=
∑

(i,i1,...,it−1)∈[n]t ,si⊂s j

[|�(s j , si , si1 . . . , sit−1)| ≤ w]·x j xi xi1 · · · xit−1 .

If si1 �⊂ s j then �(s j , si1 , si2 , . . . , sit ) = prefix|s j |−|overlap(s j ,si1 )|(s j )�(si1, si2 , . . . ,

sit ). Then
∑

i : si �⊂s j x j Q(t − 1, i, w − (|s j | − |overlap(s j , si )|)) is equal to

∑

i : si �⊂s j

x j

⎛

⎝
∑

(i1,...,it−1)∈[n]t−1

[|�(si , si1 , . . . , sit−1)| ≤ w

−(|s j | − |overlap(s j , si )|)]·xi xi1 · · · xit−1

⎞

⎠

=
∑

(i,i1,...,it−1)∈[n]t ,si �⊂s j

[|�(s j , si , si1 . . . , sit−1)| ≤ w]·x j xi xi1 · · · xit−1 .

123



806 Algorithmica (2017) 79:798–813

Thus,

∑

(i,i1,...,it−1)∈[n]t ,si⊂s j

[|�(s j , si , si1 . . . , sit−1)| ≤ w]·x j xi xi1 · · · xit−1

+
∑

(i,i1,...,it−1)∈[n]t ,si �⊂s j

[|�(s j , si , si1 . . . , sit−1)|≤w]·x j xi xi1 · · · xit−1

=
∑

(i,i1,...,it−1)∈[n]t
[|�(s j , si , si1 , . . . , sit−1)| ≤ w]·x j xi xi1 · · · xit−1

To upper bound the size of the resulting arithmetic circuitmwe rewrite 2 as follows:

Q(t, j, w) =
⎛

⎝
∑

i : si⊂s j

xi

⎞

⎠ Q(t − 1, j, w)

+ x j

⎛

⎝
∑

i : si �⊂s j

Q(t − 1, i, w − (|s j | − |overlap(s j , si )|))
⎞

⎠

This gives an arithmetic circuit of sizeO(kn2�). To see this, note that there areO(kn2�)
different Q’s and an arithmetic circuit representing Q(t, j, w) can be constructed
through the circuits representing Q(t − 1, ·, ·)’s by (2) using just two multiplication
gates (of in-degree 2) and three summation gates (of in-degree at most n).

The result for the Partial Weighted Superstring problem follows from The-
orem 3. For this, we assign a variable xi the weight wmax − w(si ) where wmax =
max1≤i≤n w(si ). This way, each monomial is assigned a non-negative weight. Search-
ing for a superstring s such that |s| ≤ l, s is a superstring of k′ ≤ k strings S′ ⊆ S with
maximal w(S) corresponds to searching for a minimal weight multilinear monomial
in Pk′ . So, we just apply the algorithm from Theorem 3 to all Pk′ , k ≤ k, and return
the best answer. �
Corollary 1 Partial Superstring is FPT when parameterized by �.

Proof Consider an instance (S, k, �) of Partial Superstring. Recall that S can
contain several copies of the same string. We construct a set of weighted strings S′ by
replacing a string s that occurs r times in S by a single copy of s of weight w(s) = r .
Let W = k. Observe that there is a string s of length at most � such that s is a
superstring of a collection of at least k strings of S if and only if there a string s of
length at most � such that s is a superstring of a set of strings of S′ of total weight
at least W . A string of length at most � has at most �(� − 1)/2 distinct substrings.
We consider the instances (S′, w, k′, �,W ) of Partial Weighted Superstring

for k′ ∈ {1, . . . , �(� − 1)/2}. For each of these instances, we solve the problem using
Theorem 4. It remains to observe that there is a string s of length at most � such that s is
a superstring of a set of strings of S′ of total weight at leastW if and only if one of the
instances (S′, w, k′, �,W ) is a yes-instance of Partial Weighted Superstring. �

123



Algorithmica (2017) 79:798–813 807

We complement the above algorithmic results by showing that we hardly can expect
that Partial Superstring has a polynomial kernel when parameterized by k or �.

Theorem 5 Partial Superstring does not admit a polynomial kernel when para-
meterized by k+m or �+m for strings of length atmostm over the alphabet� = {0, 1}
unless NP ⊆ coNP /poly.

Proof We show that Long Trail OR-cross-composes into Partial Superstring.
Recall that Long Trail was shown to be NP-complete in Lemma 3.

We assume that two instances (G, �) and (G ′, �′) of Long Trail are equivalent
if |V (G)| = |V (G ′)| and � = �′. Consider equivalent instances (Gi , �) of Long

Trail for i ∈ {1, . . . , t}. Let V (Gi ) = {vi1, . . . , vin} for i ∈ {1, . . . , t}. Let r =
max{�log n�, �log t�} + 2. Denote by xi the string of length r that encodes a positive
integer i in binary for i ≤ 2r −1. Let x∗ = xi for i = 2r −1, i.e., x∗ = ’1 . . . 1’. Notice
that if i ≤ max{n, t}, then the first symbol of xi is ’0’. For each arc e = (vip, v

i
q) of

Gi , we construct a string se = xi x∗xi x pxi x∗xi xq xi x∗xi . Clearly, |se| = 11r . Notice
also that if e = (vip, v

i
q) and e′ = (viq , v

i
t ), then the suffix xi x∗xi xq xi x∗xi of se is a

prefix of se′ . In particular, it means that overlap(se, se′) ≥ 7r . We define

S = {se | e ∈ E(Gi ), 1 ≤ i ≤ t}
and let k = �, �′ = 4r� + 7r . We claim that there is i ∈ {1, . . . , t} such that Gi has a
trail of length � if and only if there is a string s of length at most �′ that is a superstring
of k strings of S.

Suppose that there is i ∈ {1, . . . , t} such that Gi has a trail e1, . . . , e�. Consider
s = σ(se1, . . . , se� ). Because the length of each sei is 11r and |overlap(sei−1, sei )| ≥
7r , we obtain that |s| ≤ 11r� − 7r(� − 1) = �′. Hence, s is a string of length at most
�′ that is a superstring of k = � strings.

Assume now that there is a string s of length at most �′ that is a superstring of k
strings of S. Because no string of S is a substring of another one, we can assume that
s = σ(se1, . . . , sek ) for some e1, . . . , ek ∈ E(G1) ∪ . . . ∪ E(Gt ) by Lemma 1. We
use the following properties of the overlap of two strings se, se′ ∈ S. Recall that if e =
(vip, v

i
q) ofGi , then se = xi x∗xi x pxi x∗xi xq xi x∗xi , x∗ = ’1 . . . 1’ and the first symbol

of xi is ’0’. It implies that |overlap(se, se′)| ≤ 7r and |overlap(se, se′)| = 7r if and
only if e, e′ ∈ E(Gi ) for some i ∈ {1, . . . , t} and e = (vip, v

i
q), e

′ = (viq , v
i
z) for some

p, q, z ∈ {1, . . . , n}. Since |s| ≤ �′ = 4r� + 7r and k = �, |overlap(se j−1, se j )| = 7r
for j ∈ {2, . . . , k}. Hence, e1, . . . , e� is a trail in some Gi .

It remains to observe that k + m = O(n + log t) and �′ + m = O((n + log t)2) to
complete the proof. �

4 Shortest Superstring Below Guaranteed Values

In this section we discuss Shortest Superstring parameterized by the difference
between upper bounds for the length of a shortest superstring and the length of a
solution superstring. For a collection of strings S, the length of the shortest superstring
is trivially upper bounded by

∑
x∈S |x |.We show that Shortest Superstring admits

a polynomial kernel when parameterized by the compression measure of a solution.

123



808 Algorithmica (2017) 79:798–813

Theorem 6 Shortest Superstring admits a kernel of sizeO(r4) when parameter-
ized by r = ∑

x∈S |x | − �.

Proof Let (S, �) be an instance of Shortest Superstring, r = ∑
x∈S |x |−�. First,

we apply the following reduction rules for the instance.
Rule 1. If there are distinct elements x and y of S such that x ⊆ y, then delete x and
set r = r − |x |. If r ≤ 0, then return a yes-answer and stop.
Rule 2. If there is x ∈ S such that for any y ∈ S \ {x}, |overlap(x, y)| =
|overlap(y, x)| = 0, then delete x and set � = � − |x |. If S = ∅ and � ≥ 0, then
return a yes-answer and stop. If � < 0, then return a no-answer and stop.
Rule 3. If there are distinct elements x and y of S such that |overlap(x, y)| ≥ r , then
return a yes-answer and stop.

It is straightforward to verify that these rules are safe, i.e., by the application of
a rule we either solve the problem or obtain an equivalent instance. We exhaustively
apply Rules 1–3. To simplify notations, we assume that S is the obtained set of strings
and � and r are the obtained values of the parameters. Notice that all strings in S are
distinct and no string is a substring of another. Our next aim is to bound the lengths
of considered strings.
Rule 4. If there is x ∈ S with |x | > 2r , then set � = � − |x | + 2r and x =
prefixr (x)suffixr (x). If � < 0, then return a no-answer and stop.

To see that the rule is safe, recall that x is not a sub- or superstring of any
other string of S, and |overlap(x, y)| < r and |overlap(y, x)| < r for any y ∈ S
distinct from x after the applications of Rule 3. As before, we apply Rule 4 exhaus-
tively.

Now we construct an auxiliary graph G with the vertex set S such that two
distinct x, y ∈ S are adjacent in G if and only if |overlap(x, y)| > 0 or
|overlap(y, x)| > 0. We greedily select a maximal matching M in G and apply the
following rule.
Rule 5. If |M | ≥ r , then return a yes-answer and stop.

To show that the rule is safe, it is sufficient to observe that if M = {x1, y1}, . . . ,
{xh, yh}, |overlap(xi , yi )| > 0 for i ∈ {1, . . . , h} and h ≥ r , then the string s obtained
by the consecutive concatenations with overlaps of x1, y1, . . . , xh, yh and then all the
other strings of S in arbitrary order, then the compression measure of s is at least
r .

Assume from now that we do not stop here, i.e., |M | ≤ r − 1. Let X ⊆ S be the
set of end-vertices of the edges of M and Y = S \ X . Let X = {x1, . . . , xh}. Clearly,
h ≤ 2(r − 1). Observe that X is a vertex cover of G and Y is an independent set of
G.

For each ordered pair (i, j) of distinct i, j ∈ {1, . . . , h}, find an ordering y1, . . . , yt
of the elements of Y sorted by the decrease of |overlap(xi , yp)|+|overlap(yp, x j )| for
p ∈ {1, . . . , t}. We construct the set R(i, j) that contains the first min{2h, t} elements
of the sequence.

For each i ∈ {1, . . . , h}, find an ordering y1, . . . , yt of the elements of Y sorted
by the decrease of |overlap(yp, xi )| for p ∈ {1, . . . , t}. We construct the set Si that
contains the first min{2h, t} elements of the sequence.

123



Algorithmica (2017) 79:798–813 809

For each i ∈ {1, . . . , h}, find an ordering y1, . . . , yt of the elements of Y sorted
by the decrease of |overlap(xi , yp)| for p ∈ {1, . . . , t}. We construct the set Ti that
contains the first min{2h, t} elements of the sequence. �

Let

S′ = X ∪ ( ⋃

(i, j), i, j∈{1,...,h},i �= j

R(i, j)
) ∪ ( ⋃

i∈{1,...,h}
Si

) ∪ ( ⋃

i∈{1,...,h}
Ti

)
.

Claim (∗). There is a superstring s of S with the compression measure at least r if
and only if there is a superstring s′ of of S′ with the compression measure at least r .

Proof of Claim (*) If s′ is a superstring of S′ with the compression measure at least
r , then the string s obtained from s′ by the concatenation of s′ and the strings of S \ S′
(in any order) is a superstring of S with the same compression measure as s′.

Suppose that s is a shortest superstring of S and the compression measure at least
r . By Lemma 1, s = σ(s1, . . . , sn), where S = {s1, . . . , sn}. Let

Z = {si | si ∈ Y, |overlap(si−1, si )| > 0 or |overlap(si , si+1)| > 0, 1 ≤ i ≤ n};

we assume that s0, sn+1 are empty strings.
We show that |Z | ≤ 2h. Suppose that si ∈ Z . If |overlap(si−1, si )| > 0, then

si−1 ∈ X , because si ∈ Y and any two strings of Y have the empty overlap. By the
same arguments, if |overlap(si , si+1)| > 0, then si+1 ∈ X . Because |X | = h, we have
that |Z | ≤ 2h.

Suppose that the shortest superstring s is chosen in such a way that |Z \ S′| is
minimum. We prove that Z ⊆ S′ in this case. To obtain a contradiction, assume that
there is si ∈ Z \ S′. We consider three cases.
Case 1. |overlap(si−1, si )| > 0 and |overlap(si , si+1)| > 0. Recall that si−1, si+1 ∈ X
in this case. Since si /∈ S′, si /∈ R(p,q) for xp = si−1 and xq = si+1. In particular, it
means that |R(p,q)| = 2h. As |Z | ≤ 2h and |R(p,q)| = 2h, there is s j ∈ R(p,q) such that
s j /∈ Z , i.e., |overlap(s j−1, s j )| = |overlap(s j , s j+1)| = 0. By the definition of R(p,q),
|overlap(si−1, s j )| + |overlap(s j , si+1)| ≥ |overlap(si−1, si )| + |overlap(si , si+1)|.
Consider s∗ = σ(s1, . . . , si−1, s j , si+1, . . . , s j−1, si , s j+1, . . . , sn) assuming that
i < j (the other case is similar). Because |overlap(si−1, s j )| + |overlap(s j , si+1)| ≥
|overlap(si−1, si )| + |overlap(si , si+1)|, |s∗| ≤ |s|. Moreover, since s is a shortest
superstring of S, |s| ≤ |s∗| and, therefore, |overlap(s j−1, si )| = |overlap(si , s j+1)| =
0. But then for the set Z∗ constructed for s∗ in the same way as the set Z for s, we
obtain that |Z∗ \ S′| < |Z \ S′|; a contradiction.
Case 2. |overlap(si−1, si )| = 0 and |overlap(si , si+1)| > 0. Then si+1 ∈ X . Since
si /∈ S′, si /∈ Sp for xp = si+1 and |Sp| = 2h. As |Z | ≤ 2h and |Sp| = 2h, there
is s j ∈ Sp such that s j /∈ Z , i.e., |overlap(s j−1, s j )| = |overlap(s j , s j+1)| = 0. By
the definition of Sp, |overlap(s j , si+1)| ≥ |overlap(si , si+1)|. As in Case 1, consider
s∗ obtained by the exchange of si and s j in the sequence of strings that is used for
the concatenations with overlaps. In the same way, we obtain a contradiction with the
choice of Z , because for the set Z∗ constructed for s∗ in the same way as the set Z for
s, we obtain that |Z∗ \ S′| < |Z \ S′|.

123



810 Algorithmica (2017) 79:798–813

Case 3. |overlap(si−1, si )| > 0 and |overlap(si , si+1)| = 0. To obtain contradiction
in this case, we use the same arguments as in Case 2 using symmetry. Notice that we
should consider Tp instead of Sp.

Now let s′ = σ(si1, . . . , si p ), where si1, . . . , si p is the sequence of strings of S′
obtained from s1, . . . , sn by the deletion of the strings of S \ S′. Because we have that
Z ⊆ S′, the overlap of each deleted string with its neighbors is empty and, therefore,
s′ has the same compression measure as s. This completes the proof of the claim.

To finish the construction of the kernel, we define �′ = � − ∑
x∈S\S′ |x | and apply

the following rule that is safe by Claim (∗).
Rule 6. If �′ < 0, then return a no-answer and stop. Otherwise, return the instance
(S′, �′) and stop.

Since |X | = h ≤ 2(r − 1), |S′| ≤ h + h2 · 2h + h · 2h + h · 2h = 2h3 + 4h2 + h =
O(h3) = O(r3). Because each string of S′ has length at most 2r , the kernel has size
O(r4).

It is easy to see that **Rules 1–3 can be applied in polynomial time. Then graph
G and M can be constructed in polynomial time and, trivially, Rule 5 demands O(1)
time. The sets X , Y , R(i, j), Si and Ti can be constructed in polynomial time. Hence,
S′ and �′ can be constructed in polynomial time. Because Rule 6 can be applied in
time O(1), we conclude that the kernel is constructed in polynomial time. �

Now we consider another upper bound for the length of the shortest superstring.
Let S be a collection of strings.We construct an auxiliaryweighted graphG(S)with the
vertex set S byassigning theweightw({x, y}) = max{|overlap(x, y)|, |overlap(y, x)|}
for any two distinct x, y ∈ S. Let μ(S) be the size of a maximum weighted matching
in G(S). Clearly, G(S) can be constructed in polynomial time and the computa-
tion of μ(S) is well known to be polynomial [7]. If M = {x1, y1}, . . . , {xh, yh}
and |overlap(xi , yi )| = w({xi , yi }) for i ∈ {1, . . . , h}, then the string s obtained
by the consecutive concatenations with overlaps of x1, y1, . . . , xh, yh and then (pos-
sibly) the remaining string of S has the compression measure at least μ(S). Hence,∑

x∈S |x | −μ(S) is an upper bound for the length of the shortest superstring of S. We
show that it is NP-hard to find a superstring that is shorter than this bound.

Theorem 7 Shortest Superstring is NP-complete for � = ∑
x∈S |x | − μ(S) − 1

even if restricted to the alphabet � = {0, 1}.

Proof We reduce Long Trail that was shown to be NP-complete in Lemma 3 for
� = |V (G)| − 1. Let (G, �) be an instance of the problem, n = |V (G)| = � + 1. We
assume that n ≥ 26 = 64. Let V (G) = {v1, . . . , vn} and E(G) = {e1, . . . , em}. Let
also p = �(n−1)/3� and q = n−1−2p. Denote by z = ’01 . . . 1’ and z∗ = ’1 . . . 1’
the strings of length p such that the first symbol of z is ’0’ and all the other symbols
are ’1’-s and z∗ is a strings of ’1’-s. For a positive integer i ≤ 2q−1 − 1, denote by
xi the string of length q − 1 that encodes i in binary and by yi the string of length q
that encodes 2i . Notice that q ≥ n/3− 4 and log n2 ≤ q − 3, because n ≥ 26. Hence,
the first symbols of xi and yi are ’0’ if i ≤ n2. Observe also that the last symbol of
each yi is ’0’. For each h ∈ {1, . . . ,m}, we consider the arc eh = (vi , v j ) of G and
construct two strings:

123



Algorithmica (2017) 79:798–813 811

• sh = zyhz∗zxi z∗zx j z∗,
• s′

h = zxi z∗zx j z∗zyhz∗.

We define S = {sh, s′
h | 1 ≤ h ≤ m}.

We need the following properties of the strings of S.

(i) For h ∈ {1, . . . ,m}, |overlap(sh, s′
h)| = 2(n − 2) and |overlap(s′

h, sh)| = n − 1.
(ii) For distinct h, h′ ∈ {1, . . . ,m}, |overlap(sh, s′

h′)| = n − 2 if the head of eh
coincides with the tail of eh′ and |overlap(sh, s′

h′)| = 0 otherwise.
(iii) For distinct h, h′ ∈ {1, . . . ,m}, |overlap(s′

h, sh′)| = |overlap(sh, sh′)| =
|overlap(s′

h, s
′
h′)| = 0.

These properties immediately follow from the definition of sh, s′
h and the facts that

|z| = |z∗| ≥ |yh | = |xi | + 1 = |x j | + 1, the strings z, yh, xi , x j start with ’0’, the last
symbol of yh is ‘0’, and z = ’01 . . . 1’, z∗ = ’1 . . . 1’. It is sufficient to notice that if
the overlap of two strings is not empty, then the p-th prefix and suffix of the overlap
is always z and z∗ respectively.

Now we consider the weighted graph G(S) and observe that M = {{sh, s′
h} | 1 ≤

h ≤ m} is a maximum weight matching in G(S) and μ(S) = 2(n − 2)m by (i)–(iii).
We claim that G has a trail of length at least � = n − 1 if and only if S has a

superstring of length at most �′ = ∑
x∈S |x | − μ(S) − 1.

Suppose that the sequence of arcs ei1 , . . . , ei� composes a trail in G. Let
{e j1, . . . , e jm−�

} = E(G) \ {ei1 , . . . , ei�}. Consider

s = σ(s′
i1, si1 , . . . , s

′
i� , si� , s j1 , s

′
j1 , . . . , s jm−�

, s′
jm−�

).

Since |overlap(s′
ih

, sih )| = n−1 for h ∈ {1, . . . , �} by (i), |overlap(sih−1, s
′
ih

)| = n−2
for h ∈ {2, . . . , �} by (ii), overlap(si� , s j1) = 0 by (iii)and |overlap(s jh , s′

jh
)| = 2(n−

2) by (i), the compressionmeasure of s is t = (n−1)�+(n−2)(�−1)+2(n−2)(m−�).
Recall that μ(S) = 2(n − 2)m and � = n − 1. Hence,

t − μ(S) = (n − 1)� + (n − 2)(� − 1) + 2(n − 2)(m − �) − 2(n − 2)m

= � − n + 2 = 1.

Hence, s is a superstring of S of length at most �′.
Assume that s is a shortest superstring of S and |s| ≤ �′. By Lemma 1, we can

assume that s is obtained from a sequence σ of the strings of S by the concatenations
with overlaps.

We show that for every h ∈ {1, . . . ,m}, either sh, s′
h or s′

h, sh are consecutive in
σ . To obtain a contradiction, assume first that for some h ∈ {1, . . . ,m}, sh occurs in
σ before s′

h but these strings are not consecutive. Let a be the predecessor of sh , b be
a predecessor of s′

h and c be a successor of s′
h in σ ; if sh is the first element of σ or

s′
h is the last element, we assume that a or c is the empty string respectively. Then

|overlap(a, sh)| = |overlap(s′
h, c)| = 0 by (iii) and |overlap(b, s′

h)| ≤ n − 2 by (ii)
and (iii). Consider the sequence σ ′ obtained from σ by the placement of s′

h between
a and sh . Because |overlap(s′

h, sh)| = n − 1 by (1), the string s′ obtained from σ ′ by
the concatenations with overlaps has length at most |s| − 1; a contradiction. Suppose

123



812 Algorithmica (2017) 79:798–813

now that for some h ∈ {1, . . . ,m}, s′
h occurs in σ before sh but these strings are not

consecutive. Let a be the successor of s′
h , b be a predecessor of sh and c be a successor

of sh in σ ; if sh is the last element of σ , we assume that c is the empty string. We
have that |overlap(s′

h, a)| = |overlap(b, sh)| = 0 by (iii) and |overlap(sh, c)| ≤ n − 2
by (ii) and (iii). Consider the sequence σ ′ obtained from σ by the placement of sh
between s′

h and a. Because |overlap(s′
h, sh)| = n−1 by (i), the string s′ obtained from

σ ′ by the concatenations with overlaps has length at most |s| − 1; a contradiction.
We decompose σ into inclusion maximal subsequences σ1, . . . , σr such that the

overlap between any two consecutive strings in each subsequence is not empty.
Because either sh, s′

h or s′
h, sh are consecutive in σ for h ∈ {1, . . . ,m} and

|overlap(sh, s′
h)| = 2(n − 2) and |overlap(s′

h, sh)| = n − 1 by (i), each pair sh, s′
h

is in the same subsequence. In particular, it means that the number of elements in each
subsequence is even. Let ni be the size of σi and let wi be the string obtained by the
concatenation with overlaps from σi for i ∈ {1, . . . , r}. Because n1 + . . . + nr = 2m,
|M | = m and the compression measure of s is at leastμ(S)+1, there is i ∈ {1, . . . , r}
such that the compressionmeasureα ofwi is at least ni/2·μ(S)/m+1 = ni (n−2)+1.

Suppose that sh, s′
h are in σi for some h ∈ {1, . . . ,m}. Then they are consecutive.

If sh has a predecessor a in σ , then |overlap(a, sh)| = 0, and if s′
h has a successor b in

σ , then |overlap(s′
h, b)| = 0 by (iii). Hence, σi = sh, s′

h and ni = 2 in this case, but
then by (i), α = 2(n − 2) < ni (n − 1)/2 + 1; a contradiction. It follows that wi =
σ(s′

i1
, si1 , . . . , s

′
ik
, sik ), where distinct i1, . . . , ik ∈ {1, . . . ,m} and k = ni/2. Since for

j ∈ {2, . . . , k}, the overlap between si j−1 and s′
i j
is not empty, |overlap(si j−1 , s

′
i j
)| =

n − 2 and the head of the arc ei j−1 is the tail of ei j . Hence, ei1 , . . . , eik is a trail in
G. By (i) and (ii), we have that α = k(n − 1) + (k − 1)(n − 2) ≥ 2k(n − 2) + 1.
Therefore, k ≥ n − 1, i.e., G has a trail of length at least � = n − 1. �

5 Conclusions

In the paper we provide a number of results about the parameterized complexity of
the Shortest Superstring problem under different parameterizations. Recall that
the well-known Shortest Supersequence problem asks for a set of strings S over
an alphabet �, about a string s of minimum length such that every string x ∈ S is
a subsequence of s, that is, there are indices 1 ≤ i1 < . . . < i|x | ≤ |s| such that
s[i j ] = x[ j] for j ∈ {1, . . . , |x |}. We leave it as an open question whether it is
possible to obtain similar results about the parameterized complexity of some variants
of Shortest Supersequence.

References

1. Concorde TSP Solver. http://www.math.uwaterloo.ca/tsp/concorde.html
2. Bellman, R.: Dynamic programming treatment of the travelling salesman problem. J. ACM (JACM)

9(1), 61–63 (1962)
3. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition.

SIAM J. Discret. Math. 28(1), 277–305 (2014)
4. Bulteau, L., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Multivariate algorithmics for NP-hard

string problems. Bull. EATCS 114 (2014)

123

http://www.math.uwaterloo.ca/tsp/concorde.html


Algorithmica (2017) 79:798–813 813

5. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M.: Para-
meterized Algorithms. Springer, Berlin (2015)

6. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, Texts in Com-
puter Science (2013)

7. Edmonds, J.: Maximum matching and a polyhedron with 0, 1-vertices. J. Res. Nat. Bur. Stand. Sect.
B 69B, 125–130 (1965)

8. Evans, P.A., Wareham, T.: Efficient restricted-case algorithms for problems in computational biology.
Algorithms in Computational Molecular Biology: Techniques. Approaches and Applications, pp. 27–
49. Wiley, Wiley Series in Bioinformatics (2011)

9. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Representative sets of product families. In:
Algorithms-ESA 2014, pp. 443–454. Springer (2014)

10. Gallant, J., Maier, D., Storer, J.A.: On finding minimal length superstrings. J. Comput. Syst. Sci. 20(1),
50–58 (1980)

11. Garey,M.R., Johnson, D.S.: Computers and Intractability: AGuide to the Theory of NP-Completeness.
Freeman, New York (1979)

12. Golovnev, A., Kulikov, A.S., Mihajlin, I.: Solving 3-superstring in 3n/3 time. In: Mathematical Foun-
dations of Computer Science 2013, pp. 480–491. Springer (2013)

13. Golovnev, A., Kulikov, A.S., Mihajlin, I.: Solving SCS for bounded length strings in fewer than 2n

steps. Inf. Process. Lett. 114(8), 421–425 (2014)
14. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl.

Math. 10(1), 196–210 (1962)
15. Karp, R.M.: Dynamic programmingmeets the principle of inclusion and exclusion. Op. Res. Lett. 1(2),

49–51 (1982)
16. Kohn, S., Gottlieb, A., Kohn, M.: A generating function approach to the traveling salesman problem.

In: Proceedings of the 1977 annual conference. pp. 294–300. ACM (1977)
17. Mucha,M.: Lyndon words and short superstrings. In: Proceedings of the Twenty-Fourth Annual ACM-

SIAM Symposium on Discrete Algorithms. pp. 958–972. SIAM (2013)
18. Williams, R.: Finding paths of length k in O∗(2k ) time. Inf. Process. Lett. 109(6), 315–318 (2009)

123


	Parameterized Complexity of Superstring Problems
	Abstract
	1 Introduction
	2 Basic Definitions and Preliminaries
	3 FPT-Algorithms for Partial Superstring
	4 Shortest Superstring Below Guaranteed Values
	5 Conclusions
	References




