
Algorithmica (2017) 78:914–944
DOI 10.1007/s00453-016-0184-1

Identification, Location-Domination and Metric
Dimension on Interval and Permutation Graphs. II.
Algorithms and Complexity

Florent Foucaud1 · George B. Mertzios2 ·
Reza Naserasr3 · Aline Parreau4 · Petru Valicov5

Received: 4 June 2015 / Accepted: 6 July 2016 / Published online: 14 July 2016
© Springer Science+Business Media New York 2016

Abstract We consider the problems of finding optimal identifying codes, (open)
locating-dominating sets and resolving sets (denoted Identifying Code, (Open)
Open Locating- Dominating Set and Metric Dimension) of an interval or
a permutation graph. In these problems, one asks to distinguish all vertices of
a graph by a subset of the vertices, using either the neighbourhood within the
solution set or the distances to the solution vertices. Using a general reduction

G. B. Mertzios: Partially supported by the EPSRC Grant EP/K022660/1.

A short version of this paper, containing only the results about location-domination and metric dimension,
appeared in the proceedings of the WG 2015 conference [28].

B Aline Parreau
aline.parreau@univ-lyon1.fr

Florent Foucaud
florent.foucaud@gmail.com

George B. Mertzios
george.mertzios@durham.ac.uk

Reza Naserasr
reza@irif.fr

Petru Valicov
petru.valicov@lif.univ-mrs.fr

1 LIMOS - CNRS UMR 6158, Université Blaise Pascal, Clermont-Ferrand, France

2 School of Engineering and Computing Sciences, Durham University, Durham, UK

3 CNRS - IRIF, Université Paris Diderot, Paris, France

4 University Lyon, Université Claude Bernard Lyon 1, CNRS, LIRIS, UMR 5205,
69622 Villeurbanne, France

5 Aix-Marseille Université, CNRS, LIF, UMR 7279, Marseille, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-016-0184-1&domain=pdf

Algorithmica (2017) 78:914–944 915

for this class of problems, we prove that the decision problems associated to
these four notions are NP-complete, even for interval graphs of diameter 2 and
permutation graphs of diameter 2.While Identifying Code and (Open) Locating-

Dominating Set are trivially fixed-parameter-tractable when parameterized by
solution size, it is known that in the same setting Metric Dimension is W [2]-hard.
We show that for interval graphs, this parameterization of Metric Dimension is
fixed-parameter-tractable.

Keywords Metric dimension ·Resolving set · Identifying code ·Locating-dominating
set · Interval graph · Permutation graph · Complexity

1 Introduction

Combinatorial identification problems have been widely studied in various contexts.
The common characteristic of these problems is that we are given a combinatorial
structure (graph or hypergraph), and we wish to distinguish (i.e. uniquely identify)
its vertices by the means of a small set of selected elements. In this paper, we study
several such related identification problems where the instances are graphs. In the
problem metric dimension, we wish to select a set S of vertices of a graph G such
that every vertex of G is uniquely identified by its distances to the vertices of S. The
notions of identifying codes and (open) locating-dominating sets are similar. Roughly
speaking, instead of the distances to S, we ask for the vertices to be distinguished by
their neighbourhood within S. These problems have been widely studied since their
introduction in the 1970s and 1980s. They have been applied in various areas such
as network verification [4,5], fault-detection in networks [41,56], graph isomorphism
testing [3] or the logical definability of graphs [43]. We note that the similar problem
of finding a test cover of a hypergraph (where hyperedges distinguish the vertices) has
been studied under several names by various authors, see e.g. [9,10,15,30,46,49].

1.1 Important Concepts and Definitions

All considered graphs are finite and simple. We will denote by N [v], the closed neigh-
bourhood of vertex v, and by N (v) its open neighbourhood, i.e. N [v] \ {v}. A vertex
is universal if it is adjacent to all the vertices of the graph. A set S of vertices of G
is a dominating set if for every vertex v, there is a vertex x in S ∩ N [v]. It is a total
dominating set if instead, x ∈ S ∩ N (v). In the context of (total) dominating sets we
say that a vertex x (totally) separates two distinct vertices u, v if it (totally) dominates
exactly one of them. Set S (totally) separates the vertices of a set X if every pair in X
has a vertex in S (totally) separating it. We have the three key definitions, that merge
the concepts of (total) domination and (total) separation:

Definition 1 (Slater [52,53], Babai [3]) A set S of vertices of a graph G is a locating-
dominating set if it is a dominating set and it separates the vertices of V (G) \ S.

123

916 Algorithmica (2017) 78:914–944

The smallest size of a locating-dominating set of G is the location-domination
number of G, denoted γ LD(G). This concept has also been used under the name
distinguishing set in [3] and sieve in [43].

Definition 2 (Karpovsky et al. [41]) A set S of vertices of a graph G is an identifying
code if it is a dominating set and it separates all vertices of V (G).

The smallest size of an identifying code of G is the identifying code number of G,
denoted γ ID(G).

Definition 3 (Seo and Slater [50])A set S of vertices of a graph G is an open locating-
dominating set if it is a total dominating set and it totally separates all vertices of V (G).

The smallest size of an open locating-dominating set of G is the open location-
domination number of G, denoted γOLD(G). This concept has also been called
identifying open code in [38].

Another kind of separation based on distances is used in the following concept:

Definition 4 (Harary and Melter [34], Slater [51]) A set R of vertices of a graph G
is a resolving set if for each pair u, v of distinct vertices, there is a vertex x of R with
d(x, u) �= d(x, v).1

The smallest size of a resolving set of G is the metric dimension of G, denoted
dim(G).

It is easy to check that the inequalities dim(G) ≤ γ LD(G) ≤ γ ID(G) and
γ LD(G) ≤ γOLD(G) hold, indeed every locating-dominating set of G is a resolving
set, and every identifying code (or open locating-dominating set) is a locating-
dominating set. Moreover it is proved that γ ID(G) ≤ 2γ LD(G) [32] (using the same
proof idea onewould get a similar relation betweenγ LD(G) andγOLD(G) and between
γ ID(G) and γOLD(G), perhaps with a different constant). There is no strict relation
between γ ID(G) and γOLD(G).

In a graph G of diameter 2, one can easily see that the concepts of resolving set and
locating-dominating set are almost the same, as γ LD(G) ≤ dim(G) + 1. Indeed, let
S be a resolving set of G. Then all vertices in V (G) \ S have a distinct neighbourhood
within S. There might be (at most) one vertex that is not dominated by S, in which
case adding it to S yields a locating-dominating set.

While a resolving set and a locating-dominating set exist in every graph G (for
example the whole vertex set), an identifying code may not exist in G if it contains
twins, that is, two vertices with the same closed neighbourhood. However, if the graph
is twin-free the set V (G) is an identifying code of G. Similarly, a graph admits an
open locating-dominating set if and only if it has no open twins, i.e. vertices sharing
the same open neighbourhood. We say that such a graph is open twin-free.

The focus of this paper is the following set of four decision problems:

1 Resolving sets are also known under the name of locating sets [51]. Optimal resolving sets have sometimes
been called metric bases in the literature; to avoid an inflation in the terminology we will only use the term
resolving set.

123

Algorithmica (2017) 78:914–944 917

Locating- Dominating- Set

Instance: A graph G, an integer k.
Question: Is it true that γ LD(G) ≤ k?

Identifying Code

Instance: A graph G, an integer k.
Question: Is it true that γ ID(G) ≤ k?

Open Locating- Dominating Set

Instance: A graph G, an integer k.
Question: Is it true that γOLD(G) ≤ k?

Metric Dimension

Instance: A graph G, an integer k.
Question: Is it true that dim(G) ≤ k?

We will study these four concepts and decision problems on graphs belonging to
specific subclasses of perfect graphs (i.e. graphs whose induced subgraphs all have
equal clique and chromatic numbers). Many standard graph classes are perfect, for
example bipartite graphs, split graphs, interval graphs. For precise definitions, we
refer to the books of Brandstädt et al. [13] and of Golumbic [31]. Some of these
classes are classes defined using a geometric intersection model, that is, the vertices
are associated to the elements of a set S of (geometric) objects, and two vertices are
adjacent if and only if the corresponding objects intersect. The graph defined by the
intersection model S is its intersection graph. An interval graph is the intersection
graph of intervals of the real line, and a unit interval graph is an interval graph whose
intersection model contains only (open) intervals of unit length. Given two parallel
lines B and T , a permutation graph is the intersection graph of segments of the plane
which have one endpoint on B and the other endpoint on T .

Interval graphs and permutation graphs are classic graph classes that have many
applications and are widely studied. They can be recognized efficiently, and many
combinatorial problems have simple and efficient algorithms for these classes.

1.2 Previous Work

The complexity of distinguishing problems has been studied bymany authors. Identi-
fying Codewas first proved to beNP-complete byCharon et al. [18], andLocating-
Dominating- Set, by Colbourn et al. [19]. Regarding their instance restriction to
specific graph classes, Identifying Code and Locating- Dominating- Set were
shown to beNP-complete for bipartite graphs by Charon et al. [14]. This was improved
byMüller andSereni [47] to planar bipartite unit disk graphs, byAuger to planar graphs
with arbitrarily large girth [2], and by Foucaud [26] to planar bipartite subcubic graphs.
Foucaud et al. [27] proved that Identifying Code is NP-complete for graphs that
are both planar and line graphs of subcubic bipartite graphs. Berger-Wolf et al. [7] and
Suomela [55] independently showed that both Identifying Code and Locating-

Dominating- Set are hard to approximatewithin factorα for anyα = o(log n) (where
n denotes the order of the graph), with no restriction on the input graph. This result
was recently extended to bipartite graphs, split graphs and co-bipartite graphs by Fou-
caud [26]. Moreover, Bousquet et al. [12] proved the same non-approximability result
for bipartite graphs with no 4-cycles. On the positive side, Identifying Code and
Locating- Dominating- Set are constant-factor approximable for bounded degree
graphs (showed by Gravier et al. [32]), line graphs [26,27], interval graphs [12] and
are linear-time solvable for graphs of bounded clique-width (using Courcelle’s theo-

123

918 Algorithmica (2017) 78:914–944

rem [20]). Furthermore, Slater [52] and Auger [2] gave explicit linear-time algorithms
solving Locating- Dominating- Set and Identifying Code, respectively, in trees.

The complexity of Open Locating- Dominating Set was not studied much;
Seo and Slater showed that it is NP-complete [50], and the inapproximability results
of Foucaud [26] for bipartite, co-bipartite and split graphs transfer to it.

The problem Metric Dimension is widely studied. It was shown to be NP-
complete by Garey and Johnson [30, ProblemGT61]. This result has recently been
extended to bipartite graphs, co-bipartite graphs, split graphs and line graphs of bipar-
tite graphs by Epstein et al. [24], to a special subclass of unit disk graphs by Hoffmann
and Wanke [39], and to planar graphs by Diaz et al. [21].

Epstein et al. [24] also gave polynomial-time algorithms for the weighted version of
Metric Dimension for paths, cycles, trees, graphs of bounded cyclomatic number,
cographs and partial wheels. Diaz et al. [21] gave a polynomial-time algorithm for
outerplanar graphs, and Fernau et al. [25] gave one for chain graphs.Metric Dimen-

sion can most likely not be expressed inMSOL and it is an open problem to determine
its complexity for bounded treewidth (even treewidth 2).

Metric Dimension is hard to approximate within any o(log n) factor for general
graphs, as shown by Beerliova et al. [5]. This is even true for subcubic graphs, as
shown by Hartung and Nichterlein [36] (a result extended to bipartite subcubic graphs
in Hartung’s thesis [35]).

In light of these results, the complexity of Locating- Dominating- Set, Open
Locating- Dominating Set, Identifying Code and Metric Dimension for
interval and permutation graphs is a natural open question (as asked by Manuel et
al. [45] and by Epstein et al. [24] for Metric Dimension on interval graphs), since
these classes are standard candidates for designing efficient algorithms to solve oth-
erwise hard problems.

Let us say a few words about the parameterized complexity of these problems.
A decision problem is said to be fixed-parameter tractable (FPT) with respect to a
parameter k of the instance, if it can be solved in time f (k)nO(1) for an instance of
size n, where f is a computable function (for definitions and concepts in parame-
terized complexity, we refer to the books [22,48]). It is known that for the problems
Locating- Dominating- Set, Open Locating- Dominating Set and Identify-

ing Code, for a graph of order n and solution size k, the bound n ≤ 2k holds (see
e.g. [41,53]). Therefore, when parameterized by k, these problems are (trivially) FPT:
one can first check whether n ≤ 2k holds (if not, return “no”), and if yes, use a brute-
force algorithm checking all possible subsets of vertices. This is an FPT algorithm.
However, Metric Dimension (parameterized by solution size) is W[2]-hard even
for bipartite subcubic graphs [35,36] (and hence unlikely to be FPT). Remarkably,
the bound n ≤ Dk + k holds [16] (where n is the graph’s order, D its diameter, and
k is the solution size of Metric Dimension), and therefore for graphs of diameter
bounded by a function of k, the same arguments as the previous ones yield an FPT
algorithm. This holds, for example, for the class of (connected) split graphs, which
have diameter at most 3. Also, it was recently proved thatMetric Dimension is FPT
when parameterized by the largest possible number of leaves in a spanning tree of a
graph [23]. Besides this, as remarked in [36], no non-trivial FPT algorithm forMetric

Dimension was previously known.

123

Algorithmica (2017) 78:914–944 919

Finally, we also mention a companion paper [29], in which we study problems
Identifying Code, Locating- Dominating- Set,Open Locating- Dominating

Set andMetric Dimension on interval and permutation graphs from a combinatorial
point of view, proving several bounds involving the order, the diameter and the solution
size of a graph.

1.3 Our Results

We continue the classification of the complexity of problems Identifying Code,
Locating- Dominating- Set, Open Locating- Dominating Set and Metric

Dimension by giving a unified reduction showing that all four problems are NP-
complete even for graphs that are interval graphs and have diameter 2 or permutation
graphs of diameter 2. The reductions are presented in Sect. 2. Then, in Sect. 3, we use
dynamic programming on a path-decomposition to show that Metric Dimension is
FPT on interval graphs, when the parameter is the solution size. Up to our knowledge,
this is the first non-trivial FPT algorithm for this problem when parameterized by
solution size. We then conclude the paper with some remarks in Sect. 4.

2 Hardness Results

We will provide a general framework to prove NP-hardness for distinguishing prob-
lems in interval graphs and permutation graphs. We just need to assume few generic
properties about the problems, and then provide specific gadgets for each problem.

We will reduce our problems from 3- Dimensional Matching which is known
to be NP-complete [40].

3- Dimensional Matching

Instance: Three disjoint sets A, B and C each of size n, and a set T of m triples of
A × B × C .
Question: Is there a perfect 3-dimensional matching M ⊆ T of the hypergraph
(A, B, C, T), i.e. a set of disjoint triples of T such that each element of A ∪ B ∪ C
belongs to exactly one of the triples?

We give the general framework and the gadgets we will use in Sect. 2.1, then
prove the general reduction using this framework in Sect. 2.2 and apply it to obtain
the NP-hardness for Identifying Code, Locating- Dominating- Set and Open

Locating- Dominating Set in Sect. 2.3. We finally deduce from the results for
graphs of diameter 2 the hardness of Metric Dimension in Sect. 2.4. We give the
reduction using interval graphs and prove subsequently that it can be built as a per-
mutation graph too.

2.1 Preliminaries and Gadgets

In the three distinguishing problems Locating- Dominating- Set, Identifying
Code and Open Locating- Dominating Set, one asks for a set of vertices that

123

920 Algorithmica (2017) 78:914–944

dominates all vertices and separates all pairs of vertices (for suitable definitions of
domination and separation). Since we give a reduction which applies to all three prob-
lems (and others that share certain properties with them), we will generally speak of
a solution as a vertex set satisfying the two properties.

For two vertices u, v let us denote by Iu,v the set N [u] \ N [v]. In the reduction,
we will only make use of the following properties (that are common to Locating-

Dominating- Set, Identifying Code and Open Locating- Dominating Set):

Property 5 Let G be a graph with a solution S to Locating- Dominating- Set,
Identifying Code or Open Locating- Dominating Set.

(1) For each vertex v, any vertex from N (v) dominates v;
(2) For each vertex v, at least one element of N [v] belongs to S;
(3) For every pair u, v of adjacent vertices, any vertex of Iu,v ∪ Iv,u separates u, v;
(4) For every pair u, v of adjacent vertices, S contains a vertex of Iu,v ∪ Iv,u ∪{u, v}.

The problems Identifying Code and Open Locating- Dominating Set

clearly satisfy these properties. For Locating- Dominating- Set, the vertices of
a solution set S do not need to be separated from any other vertex. However one can
say equivalently that two vertices u, v are separated if either u or v belongs to S, or
if there is a vertex of S in Iu,v ∪ Iv,u . Therefore, Locating- Dominating- Set also
satisfies the above properties.

Before describing the reduction, we define the following dominating gadget
independently of the considered problem (we describe the specific gadgets for
Locating- Dominating- Set, Open Locating- Dominating Set and Identify-

ing Code in Sect. 2.3). The idea behind this gadget is to ensure that specific vertices
are dominated locally—and are therefore separated from the rest of the graph. We will
use it extensively in our construction.

Definition 6 (Dominating gadget) A dominating gadget D is an interval graph such
that there exists an integer d ≥ 1 and a subset SD of V (D) of size d (called standard
solution for D) with the following properties:

– SD is an optimal solution for D with the property that no vertex of D is dominated
by all the vertices of SD;2

– if D is an induced subgraph of an interval graph G such that each interval of
V (G) \ V (D) either contains all intervals of V (D) or does not intersect any of
them, then for any solution S for G, |S ∩ V (D)| ≥ d.3

In the following, a dominating gadget will be represented graphically as shown in
Fig. 1, where D is an induced subgraph of an interval graph G. In our constructions,
we will build a graph G with many isomorphic copies of D as its induced subgraphs,
where D will be a fixed graph. Denote by S an optimal solution for G: the size of each

2 Note that this implies d ≥ 2.
3 By this property, an interval of V (G) \ V (D) may only be useful to dominate a vertex in D (but not to
separate a pair in D). Hence the property holds if any optimal solution for the separation property only, has
the same size as an optimal solution for both separation and domination.

123

Algorithmica (2017) 78:914–944 921

Fig. 1 Representation of
dominating gadget D

D

local optimal solution S ∩ V (D) for D will always be d. Moreover, the conditions of
the second property in Definition 6 (that each interval of V (G)\ V (D) either contains
all intervals of V (D) or does not intersect any of them) will always be satisfied.

Claim 7 Let G be an interval graph containing a dominating gadget D as an induced
subgraph, such that each interval of V (G)\V (D) either contains all intervals of V (D)

or does not intersect any of them. Then, for any optimal solution S of G, |S∩V (D)| = d
and we can obtain an optimal solution S′ with |S′| = |S| by replacing S ∩ V (D) by
the standard solution SD.

Proof By the second property of a dominating gadget, we have |S ∩ V (D)| ≥ d ≥ 1.
Since each interval of V (G) \ V (D) either contains all intervals of V (D) or does not
intersect any of them, a pair of intervals of V (G) \ V (D) either cannot be separated
by any interval in V (D), or is separated equally by any interval in V (D). Since d ≥ 1,
there is at least one interval in S∩V (D) but the structure of S∩D does not influence the
rest of the graph. Hence, S∩V (D) can be replaced by SD and we have |S∩V (D)| ≤ d
(otherwise the solution with SD would be better and S would not be optimal).
�
Definition 8 (Choice pair) A pair {u, v} of intervals is called choice pair if u, v both
contain the intervals of a common dominating gadget (denoted D(uv)), and such that
none of u, v contains the other.

See Fig. 2 for an illustration of a choice pair. Intuitively, a choice pair gives us the
choice of separating it from the left or from the right: since none of u, v is included in
the other, the intervals intersecting u but not v (the set Iu,v) can only be located at one
side of u; the same holds for v. In our construction, we will make sure that all pairs of
intervals will be easily separated using domination gadgets. It will remain to separate
the choice pairs.

We have the following claim:

Claim 9 Let S be a solution of a graph G and {u, v} be a choice pair in G. If the
solution S ∩ V (D(uv)) for the dominating gadget D(uv) is the standard solution SD,
both vertices u and v are dominated, separated from all vertices in D(uv) and from
all vertices not intersecting D(uv).

Fig. 2 Choice pair u, v

u

v

D(uv)Iu

Iv

123

922 Algorithmica (2017) 78:914–944

Proof If S is such a solution, by the definition of a dominating gadget, |S ∩ D(uv)| ≥
d ≥ 1. Since all vertices of D(uv) are in the open neighbourhood of u and v, by Prop-
erty 5(1)–(3), u and v are dominated and separated from the vertices not intersecting
D(uv). Moreover, both u, v are adjacent to all vertices of D(uv)∩ S. By Definition 6,
no vertex of D(uv) is dominated by the whole set SD , hence u, v are separated from
all vertices in D(uv).
�

We now define the central gadget of the reduction, the transmitter gadget. Roughly
speaking, it allows to transmit information across an interval graph using the separation
property.

Definition 10 (Transmitter gadget) Let P be a set of two or three choice pairs in an
interval graph G. A transmitter gadget T r(P) is an induced subgraph of G consisting
of a path on seven vertices {u, uv1, uv2, v, vw1, vw2, w} and five dominating gadgets
D(u), D(uv), D(v), D(vw), D(w) such that the following properties are satisfied:

– u and w are the only vertices of T r(P) that separate the pairs of P;
– the intervals of the dominating gadget D(u) (resp. D(v), D(w)) are included in
interval u (resp. v, w) and no interval of T r(P) other than u (resp. v, w) intersects
D(u) (resp. D(v), D(w));

– pair {uv1, uv2} is a choice pair and no interval of V (T r(P)) \ (D(uv1, uv2) ∪
{uv1, uv2}) intersects both intervals of the pair. The same holds for pair
{vw1, vw2}.

– the choice pairs {uv1, uv2} and {vw1, vw2} cannot be separated by intervals of G
other than u, v and w.

Figure 3 illustrates a transmitter gadget and shows the succinct graphical represen-
tation that we will use. As shown in the figure, we may use a “box” to denote Tr (P).
This box does not include the choice pairs of P but indicates where they are situated.
Note that the middle pair {y1, y2} could also be separated (from the left) by u instead
of w, or it may not exist at all.

The following claim shows how transmitter gadgets will be used in the main reduc-
tion.

Claim 11 Let G be an interval graph with a transmitter gadget T r(P) and let S be
a solution. We have |S ∩ T r(P)| ≥ 5d + 1 and if |S ∩ T r(P)| = 5d + 1, no pair of
P is separated by a vertex in S ∩ T r(P).

x1

x2

u

uv1

uv2

v

y1

y2

vw1

vw2

w

z1

z2

D(u)

D(uv)

D(v)

D(vw)

D(w)

Tr({x1, x2}, {y1, y2}, {z1, z2})

Fig. 3 Transmitter gadget T r({x1, x2}, {y1, y2}, {z1, z2}) and its “box” representation

123

Algorithmica (2017) 78:914–944 923

Moreover, there exist two sets of vertices of T r(P), S−
T r(P) and S+

T r(P) of size 5d +1
and 5d + 2 respectively, such that the following holds.

– The set S−
T r(P) dominates all the vertices of T r(P) and separates all the pairs of

T r(P) but no pairs in P.
– The set S+

T r(P) dominates all the vertices of T r(P), separates all the pairs of
T r(P) and all the pairs in P.

Proof By the definition of the dominating gadget, we must have |S ∩ T r(P)| ≥ 5d
with 5d vertices of S belonging to the dominating gadgets. By Property 5(4) on the
choice pair {uv1, uv2}, at least one vertex of {u, uv1, uv2, v} belongs to S (recall that
the intervals not in T r(P) cannot separate the choice pairs in T r(P)), and similarly,
for the choice pair {vw1, vw2}, at least one vertex of {v, vw1, vw2, w} belongs to S.
Hence |S ∩ T r(P)| ≥ 5d + 1 and if |S ∩ T r(P)| = 5d + 1, vertex v must be in S and
neither u norw are in S. Therefore, no pair of P is separated by a vertex in S ∩T r(P).

We now prove the second part of the claim. Let Sdom be the union of the five
standard solutions SD of the dominating gadgets of T r(P). Let S−

T r(P) = Sdom ∪ {v}
and S+

T r(P) = Sdom ∪ {u, w}. The set Sdom has 5d vertices and so S−
T r(P) and S+

T r(P)

have respectively 5d + 1 and 5d + 2 vertices. Each interval of T r(P) either contains
a dominating gadget or is part of a dominating gadget and is therefore dominated by a
vertex in Sdom . Hence, pairs of vertices that are not intersecting the same dominating
gadget are clearly separated. By the first property in Definition 6, a vertex adjacent to a
whole dominating gadget is separated from all the vertices of the dominating gadget.
Similarly, by definition, pairs of vertices inside a dominating gadget are separated
by Sdom . Therefore, the only remaining pairs to consider are the choice pairs. By
Property 5(3), they are separated both at the same time either by v or by {u, w}. Hence
the two sets S−

T r(P) and S+
T r(P) are both dominating and separating the vertices of

T r(P). Moreover, since S+
T r(P) contains u and w, it also separates the pairs of P .
�

A transmitter gadget with a solution set of size 5d + 1 (resp. 5d + 2 vertices) is
said to be tight (resp. non-tight). We will call the sets S−

T r(P) and S+
T r(P) the tight and

non-tight standard solutions of T r(P).

2.2 The Main Reduction

We are now ready to describe the reduction from 3- Dimensional Matching. Each
element x ∈ A ∪ B ∪ C is modelled by a choice pair { fx , gx }. Each triple of T is
modelled by a triple gadget defined as follows.

Definition 12 (Triple gadget) Let T = {a, b, c} be a triple of T . The triple gad-
get Gt (T) is an interval graph consisting of four choice pairs p = {p1, p2},
q = {q1, q2}, r = {r1, r2}, s = {s1, s2} together with their associated dominating
gadgets D(p), D(q), D(r), D(s) and five transmitter gadgets T r(p, q), T r(r, s),
T r(s, a), T r(p, r, b) and T r(q, r, c), where:

– a = { fa, ga}, b = { fb, gb} and c = { fc, gc};

123

924 Algorithmica (2017) 78:914–944

p1

p2
q1

q2
r1

r2
s1

s2

fa

ga

fb

gb

fc

gc

D(p) D(q) D(r) D(s) D(a) D(b) D(c)

Tr(p, q) Tr(r, s)

Tr(p, r, b)

Tr(q, r, c)

Tr(s, a)

Fig. 4 Triple gadget Gt ({a, b, c}) together with choice pairs of elements a, b and c

– Except for the choice pairs p, q, r , s, a, b, c, for each pair of intervals of Gt (T),
its two intervals intersect different subsets of dominating gadgets of Gt (T).

– In each transmitter gadget T r(P) and for each choice pair π ∈ P , the intervals of
π intersect the same intervals except for the vertices u, v, w of T r(P);

– The intervals of V (G) \ V (Gt (T)) that are intersecting only a part of the gadget
intersect accordingly to the transmitter gadget definition and do not separate the
choice pairs p, q, r and s.

Note that there are several ways to obtain a triple gadget that is an interval graph
and that satisfies the properties in Definition 12. The one in Fig. 4 represents one of
these possibilities. We remark that p, q, r and s in Gt ({a, b, c}), are all functions of
{a, b, c} but to simplify the notations we simply write p, q, r and s.

Claim 13 Let G be a graph with a triple gadget Gt (T) and S be a solution. We have
|S ∩ Gt (T)| ≥ 29d + 7 and if |S ∩ Gt (T)| = 29d + 7, no choice pair corresponding
to a, b or c is separated by a vertex in S ∩ Gt (T).

Moreover, there exist two sets of vertices of Gt (T), S−
Gt (T) and S+

Gt (T) of size 29d+7
and 29d + 8 respectively, such that the following holds.

– The set S−
Gt (T) dominates all the vertices of Gt (T) and separates all the pairs of

Gt (T) but does not separate any choice pairs corresponding to {a, b, c}.
– The set S+

Gt (T) dominates all the vertices of Gt (T), separates all the pairs of Gt (T)

and separates the choice pairs corresponding to {a, b, c}.
Proof The proof is similar of the proof of Claim 11. Each transmitter gadget must
contain at least 5d + 1 vertices, and each of the four dominating gadgets of the choice
pairs p, q, r , s must contain d vertices. Hence there must be already 29d +5 vertices of
Gt (T) in the solution. Furthermore, to separate the choice pair s, T r(r, s) or T r(s, a)

must be non-tight (since s is not separated by other vertices of the graph). In the same
way, to separate the choice pair p, T r(p, q) or T r(p, r, b) must be non-tight. Then
at least two transmitter gadgets are non-tight and we have |S ∩ Gt (T)| ≥ 29d + 7. If
|S ∩ Gt (T)| = 29d + 7, exactly two transmitter gadgets are non-tight and they can
only be T r(r, s) and T r(p, q) (otherwise some of the choice pairs p, q, r, s would
not be separated). Hence the choice pairs corresponding to {a, b, c} are not separated
by the vertices of Gt (T) ∩ S.

For the second part of the claim, the set S−
Gt (T) is defined by taking the union of the

tight standard solutions of T r(s, a), T r(q, r, c) and T r(p, r, b)), the non-tight stan-
dard solutions of T r(p, q) and T r(r, s) and the standard solutions of the dominating

123

Algorithmica (2017) 78:914–944 925

gadgets D(p), D(q), D(r) and D(s). The set S+
Gt (T) is defined by taking the union

of the non-tight standard solutions of T r(s, a), T r(q, r, c) and T r(p, r, b), the tight
standard solutions of T r(p, q) and T r(r, s) and the standard solutions of the dominat-
ing gadgets D(p), D(q), D(r) and D(s). By Claim 11, the definition of a dominating
gadget and the fact that the only intervals sharing the same sets of dominating gadgets
are the choice pairs, all intervals of Gt (T) are dominated and all the pairs of intervals
except the choice pairs are separated by both S−

Gt (T) and S+
Gt (T). The choice pairs p,

q, r and s are separated by the non-tight solutions of the transmitter gadgets. Hence
S−

Gt (T) and S+
Gt (T) are dominating and separating all the intervals of Gt (T).

When the solution contains S−
Gt (T), the transmitter gadgets T r(s, a), T r(q, r, c)

and T r(p, r, b) are tight. Hence S−
Gt (T) does not separate any choice pairs among

{a, b, c}. On the other hand, since S+
Gt (T) contains the non-tight solution of T r(s, a),

T r(q, r, c) and T r(p, r, b), the three choice pairs {a, b, c} are separated by S+
Gt (T).
�

As before, a triple gadget with 29d + 7 vertices (resp. 29d + 8) is said to be
tight (resp. non-tight). We will call the sets S−

Gt (T) and S+
Gt (T) the tight and non-tight

standard solutions of Gt (T).
Given an instance (A, B, C, T) of 3- Dimensional Matchingwith |A| = |B| =

|C | = n and |T | = m, we construct the interval graph G = G(A, B, C, T) as follows.

– Asmentioned previously, to each element x of A∪B∪C , we assign a distinct choice
pair { fx , gx } in G. The intervals of any two distinct choice pairs { fx , gx }, { fy, gy}
are disjoint and they are all in R+.

– For each triple T = {a, b, c} of T we first associate an interval IT in R− such that
for any two triples T1 and T2, IT1 and IT2 do not intersect. Then inside IT , we build
the choice pairs {p1, p2}, {q1, q2}, {r1, r2}, {s1, s2}. Finally, using the choice pairs
already associated to elements a, b and c we complete this to a triple gadget.

– When placing the remaining intervals of the triple gadgets, we must ensure that
triple gadgets do not “interfere”: for every dominating gadget D, no interval in
V (G)\ V (D)must have an endpoint inside D. Similarly, the choice pairs of every
triple gadget or transmitter gadget must only be separated by intervals among u,
v and w of its corresponding private transmitter gadget.

For intervals of distinct triple gadgets, this is easily done by our placement of
the triple gadgets. To ensure that the intervals of transmitter gadgets of the same
triple gadget do not interfere, we proceed as follows. We place the whole gadget
T r(p, q) inside interval u of T r(p, r, b). Similarly, the whole T r(r, s) is placed
inside intervalw of T r(q, r, c) and thewhole T r(s, a) is placed inside interval v of
T r(p, r, b). One has to be more careful when placing the intervals of T r(p, r, b)

and T r(q, r, c). In T r(p, r, b), we must have that interval u separates p from the
right of p.We also place u so that it separates r from the left of r . Intervals uv1, uv2

both start in r1, so that u also separates uv1, uv2 and also to ensure that uv1, uv2

does not separate the choice pair r . Intervals uv1, uv2 continue until after pair s.
In T r(q, r, c), we place u so that it separates q from the right, and we place w so
that it separates r from the right; intervals uv1, uv2, v lie strictly between q and
r ; intervals vw1, vw2 intersect r1, r2 but stop before the end of r2 (so that w can

123

926 Algorithmica (2017) 78:914–944

separate both pairs vw1, vw2 and r but without these pairs interfering). It is now
easy to place T r(s, a) between s and a. An example is given in Fig. 5.

The graph G(A, B, C, T) has (29vD + 43)m + 3(vD + 2)n vertices (where vD

is the order of a dominating gadget) and the interval representation described by our
procedure can be obtained in polynomial time. We are now ready to state the main
result of this section.

Theorem 14 (A, B, C, T) has a perfect 3-dimensional matching if and only if G =
G(A, B, C, T) has a solution with (29d + 7)m + (3d + 1)n vertices.

Proof LetM be a perfect 3-dimensional matching of (A, B, C, T). Let S+ (resp. S−)
be the union of all the non-tight (resp. tight) standard solutions S+

Gt (T) for T ∈ M
(resp. S−

Gt (T) for T /∈ M). Let Sd be the union of all the standard solutions of the
dominating gadgets corresponding to the choice pairs of the elements.

Then S = S+ ∪ S− ∪ Sd is a solution of size (29d +7)m +(3d +1)n. Indeed, by the
definition of the dominating gadgets, all the intervals inside a dominating gadget are
dominated and separated from all the other intervals. All the other intervals intersect at
least one dominating gadget and thus are dominated. Furthermore, two intervals that
are not a choice pair do not intersect the same set of dominating gadgets and thus are
separated by one of the dominating gadgets. Finally, the choice pairs inside a triple
gadget are separated by Claim 13 and the choice pairs corresponding to the elements
of A ∪ B ∪ C are separated by the non-tight standard solutions of the triple gadgets
corresponding to the perfect matching.

Now, let S be a solution of size (29d + 7)m + (3d + 1)n. We may assume that the
solution is standard on all triple gadgets and on the dominating gadgets. Let n2 be the
number of non-tight triple gadgets in the solution S. ByClaim 13, theremust by at least
(29d +7)m +n2 vertices of S inside the m triple gadgets and 3dn vertices of S for the
dominating gadgets of the 3n elements of A∪ B ∪C . Hence (29d +7)m +n2+3dn ≤
(29d +7)m +(3d +1)n and we have n2 ≤ n. Each non-tight triple gadget can separate
three choice pairs corresponding to the elements of A ∪ B ∪ C . Hence, if n2 < n, it
means that at least 3(n −n2) choice pairs corresponding to elements are not separated
by a triple gadget. By the separation property, the only way to separate a choice pair
{ fx , gx } without using a non-tight triple gadget is to have fx or gx in the solution.
Hence we need 3(n − n2) vertices to separate these 3(n − n2) choice pairs, and these
vertices are not in the triple gadgets nor in the dominating gadgets. Hence the solution
has size at least (29d + 7)m + n2 + 3dn + 3(n − n2) > (29d + 7)m + (3d + 1)n,
leading to a contradiction.

Therefore, n2 = n and there are exactly n non-tight triple gadgets. Each of them
separates three choice element pairs and since there are 3n elements, the non-tight triple
gadgets separate distinct choice pairs. Hence, the set of triples M corresponding to
the non-tight triple gadgets is a perfect 3-dimensional matching of (A, B, C, T).
�
Corollary 15 Any graph distinguishing problem P based on domination and sepa-
ration satisfying Property 5 and admitting a dominating gadget that is an interval
graph, is NP-complete even for the class of interval graphs.

A similar hardness result can be derived for the class of permutation graphs as
follows.

123

Algorithmica (2017) 78:914–944 927

D
(b

)

p
1p

2

u

T
r
(p

,
q
)

q
1

q
2

D
(p

)

T
r
(r

,
s
)

r
1

r
2

s
1

s
2

u
v
1

u
v
2

v

f
a

g
a

f
b

g
b

f
c

g
c

w

T
r(
p
,r
,b
)

D
(r

)

u

D
(u

v
)

D
(a

)
D

(c
)

v

u
v
1 u
v
2

D
(u

v
)

T
r(
q,
r,
c)

v
w

1

v
w

2

D
(v

w
)

D
(s

)

D
(v

)
D

(u
)

D
(u

)
D

(v
)

D
(w

)

T
r
(s

,
a
)

D
(q

)

v
w

1

v
w

2

D
(v

w
)

w

D
(w

)

F
ig
.5

T
he

de
ta
ile
d
co
ns
tr
uc
tio

n
of

a
tr
ip
le
ga
dg
et

123

928 Algorithmica (2017) 78:914–944

Fig. 6 Representation of a
dominating gadget as a
permutation diagram D

x1

x2 u

D(u)

uv1uv2

D(uv)

v

D(v)

vw2

vw1

D(uv)

w

D(w)

y2

y1 z1

z2

Fig. 7 Representation of a the transmitter gadget as a permutation diagram

Corollary 16 Any graph distinguishing problem P based on domination and sepa-
ration satisfying Property 5 and admitting a dominating gadget that is a permutation
graph, is NP-complete even for the class of permutation graphs.

Proof We can use the same reduction as the one that yields Theorem 14. We repre-
sent a permutation graph using its intersection model of segments as defined in the
introduction. A dominating gadget will be represented as in Fig. 6. The transmitter
gadget of Definition 10 is also a permutation graph, see Fig. 7 for an illustration.
Using these gadgets, we can build a triple gadget that satisfies Definition 12 and is a
permutation graph. A simplified permutation diagram (without dominating gadgets)
of such a triple gadget is given in Fig. 8. Now, similarly as for interval graphs, given
an instance (A, B, C, T) of 3- Dimensional Matching, one can define a graph
G = G(A, B, C, T) that is a permutation graph and for which (A, B, C, T) has a
perfect 3-dimensional matching if and only if G = G(A, B, C, T) has a solution with
(29d + 7)m + (3d + 1)n vertices. The proof is the same as the one in Theorem 14.
�

2.3 Applications to the Specific Problems

We now apply Theorem 14 to Locating- Dominating- Set, Identifying Code

and Open Locating- Dominating Set by providing corresponding dominating
gadgets.

Corollary 17 Locating- Dominating- Set, Identifying Code and
Open Locating- Dominating Set are NP-complete for interval graphs and per-
mutation graphs.

Proof We prove that the path graphs P4, P5 and P6 are dominating gadgets
for Locating- Dominating- Set, Identifying Code and Open Locating-

Dominating Set, respectively. These graphs are clearly interval and permutation

123

Algorithmica (2017) 78:914–944 929

F
ig
.8

R
ep
re
se
nt
at
io
n
of

a
th
e
tr
ip
le
ga
dg

et
as

a
pe
rm

ut
at
io
n
di
ag
ra
m

123

930 Algorithmica (2017) 78:914–944

graphs at the same time. To comply with Definition 6, we must prove that a domi-
nating gadget D (i) has an optimal solution SD of size d such that no vertex of D is
dominated by all the vertices of SD , and (ii) if D is an induced subgraph of an interval
graph G such that each interval of V (G) \ V (D) either contains all intervals of V (D)

or does not intersect any of them, then for any solution S for G, |S ∩ V (D)| ≥ d.

– Locating- Dominating- Set. Let V (P4) = {x1, . . . , x4} and d = 2. The set
SD = {x1, x4} satisfies (i). For (ii), assume that S is a locating-dominating set of
a graph G containing a copy P of P4 satisfying the conditions. If S ∩ P = ∅ or
S ∩ P = {x1}, then x3 and x4 are not separated. If S ∩ P = {x2}, then x1 and x3
are not separated. Hence, by symmetry, there at least two vertices of P in S, and
(ii) is satisfied.

– Identifying Code. Let V (P5) = {x1, . . . , x5} and d = 3. The set SD =
{x1, x3, x5} satisfies (i). For (ii), assume that S is an identifying code of a graph G
containing a copy P of P5 satisfying the conditions. To separate the pair {x1, x2},
we must have x3 ∈ S, since the other vertices cannot separate any pair inside P .
To separate the pair {x2, x3}, we must have {x1, x4} ∩ S �= ∅ and to separate the
pair {x3, x4}, we must have {x2, x5} ∩ S �= ∅. Hence there at least three vertices
of P in S, and (ii) is satisfied.

– Open Locating- Dominating Set. Let V (P6) = {x1, . . . , x6} and d = 4. The
set SD = {x1, x3, x4, x6} satisfies (i). For (ii), assume that S is an open locating-
dominating set of a graph G containing a copy P of P6 satisfying the conditions.
To separate the pair {x1, x3}, we must have x4 ∈ S. Symmetrically, x3 ∈ S. To
separate the pair {x2, x4}, we might have {x1, x5} ∩ S �= ∅ and symmetrically,
{x2, x6} ∩ S �= ∅. Hence there at least four vertices of P in S, and (ii) is satisfied.

�

2.4 Reductions for Diameter 2 and Consequence for METRIC DIMENSION

We now describe self-reductions for Identifying Code, Locating- Dominating-
Set and Open Locating- Dominating Set for graphs with a universal vertex
(hence, graphs of diameter 2). We also give a similar reduction from Locating-

Dominating- Set toMetric Dimension.
Let G be a graph. We define f1(G) to be the graph obtained from G by adding a

universal vertex u and then, a neighbour v of u of degree 1. Similarly, f2(G) is the
graph obtained from f1(G) by adding a twin w of v. See Figs. 9a, b for an illustration.

Lemma 18 For any graph G, we have γ LD(f1(G)) = γ LD(G) + 1. If G is twin-free,
γ ID(f1(G)) = γ ID(G) + 1. If G is open twin-free, γ OLD(f2(G)) = γ OLD(G) + 2.

Proof Let S be an identifying code of G. Then S ∪ {v} is also an identifying code of
f1(G): all vertices within V (G) are distinguished by S as they were in G; vertex v is
dominated only by itself; vertex u is the only vertex dominated by the whole set S ∪
{v}. The same argument works for a locating-dominating set. Hence, γ LD(f1(G)) ≤
γ LD(G) + 1 and γ ID(f1(G)) ≤ γ ID(G) + 1. If S is an open locating-dominating set
of G, then similarly, S ∪{v,w} is one of f2(G), hence γOLD(f2(G)) ≤ γOLD(G)+2.

123

Algorithmica (2017) 78:914–944 931

G

u

v

G

u

v w

G

u u

v w

(a) (b) (c)

Fig. 9 Three reductions for diameter 2.aTransformation f1(G).bTransformation f2(G). cTransformation
f3(G)

It remains to prove the converse. Let S1 be an identifying code (or locating-
dominating set) of f1(G). Observe that |S1 ∩ {u, v}| ≥ 1 since v must be dominated.
Hence if S1 \ {u, v} is an identifying code (or locating-dominating set) of G, we are
done. Let us assume the contrary. Then, necessarily u ∈ S1 since v does not dominate
any vertex of V (G). But u is a universal vertex, hence u does not separate any pair of
vertices of V (G). Therefore, S1 \ {u} separates all pairs, but does not dominate some
vertex x ∈ V (G): we have N [x] ∩ S1 = {u}. Note that x is the only such vertex of
G. This implies that v ∈ S1 (otherwise x and v are not separated by S1). But then
(S1 \ {u, v}) ∪ {x} is an identifying code (or locating-dominating set) of G of size
|S1| − 1. This completes the proof.

A similar proof works for open location-domination: if S2 is an open locating-
dominating set of f2(G), then |S2 ∩ {u, v, w}| ≥ 2 since v,w must be separated and
totally dominated. Similarly, if S2 \ {u, v, w} is an open locating-dominating set of G,
we are done. Otherwise, again u must belong to S2, and is needed only for domination.
But then if there is a vertex among v,w that is not in S2, the other one would not be
separated from the vertex x only dominated by u. But then S2 \ {u, v, w} ∪ {y}, for
any vertex y ∈ N (x), is an open locating-dominating set of size |S2| − 2 and we are
done.
�

Lemma 18 directly implies the following theorem:

Theorem 19 Let C be a class of graphs that is closed under the graph transformation
f1 (f2, respectively). If Identifying Code or Locating- Dominating- Set (Open
Locating- Dominating Set, respectively) is NP-complete for graphs in C, then it
is also NP-complete for graphs in C that have diameter 2.

Theorem 19 can be applied to the classes of split graphs (for f1), interval graphs and
permutation graphs (for both f1 and f2). By the results about split graphs from [26]
and about interval graphs and permutation graphs of Corollary 17, we have:

Corollary 20 Identifying Codeand Locating- Dominating- Setare NP-comple-
te for split graphs of diameter 2. Identifying Code, Locating- Dominating- Set
and Open Locating- Dominating Set are NP-complete for interval graphs of
diameter 2 and for permutation graphs of diameter 2.

We now a give a similar reduction from Locating- Dominating- Set toMetric

Dimension. Given a graph G, let f3(G) be the graph obtained from G by adding two

123

932 Algorithmica (2017) 78:914–944

adjacent universal vertices u, u′ and then, two non-adjacent vertices v and w that are
only adjacent to u and u′ (see Fig. 9c for an illustration).

Lemma 21 For any graph G, dim(f3(G)) = γ LD(G) + 2.

Proof Let S be a locating-dominating set of G. We claim that S3 = S ∪ {u, v} is
a resolving set of f3(G). Every vertex of S3 is clearly distinguished. Every original
vertex of G is determined by a distinct set of vertices of S that are at distance 1 of it.
Vertex u′ is the only vertex to be at distance 1 of each vertex in S3. Finally, vertex w is
the only vertex to be at distance 1 of u and at distance 2 from all other vertices of S3.

For the other direction, assume B is a resolving set of f3(G). Then necessarily
one of u, u′ (say u) belongs to B; similarly, one of v,w (say v) belongs to B. Hence,
if the restriction BG = B ∩ V (G) is a locating-dominating set of G, we are done.
Otherwise, since no vertex among u, u′, v, w may distinguish any pair of G and since
vertices of G are at distance at most 2 in f3(G), all the sets N [x] ∩ B are distinct for
x ∈ V (G) \ BG . But BG is not a locating-dominating set, so there is a (unique) x
vertex of G that is not dominated by BG in G. If |B ∩ {u, u′, v, w}| ≥ 3, BG ∪ {x}
is a locating-dominating set of size at most |B| − 2 and we are done. Otherwise, note
that in f3(G), x is at distance 1 from u and at distance 2 from all other vertices of
B. But this is also the case for w, which is not separated from x by B, which is a
contradiction.
�

We obtain the following results:

Theorem 22 Let C be a class of graphs that is closed under the graph transformation
f3. If Locating- Dominating- Set is NP-complete for graphs in C, then Metric

Dimension is also NP-complete for graphs in C that have diameter 2.

Again, using the results about split graphs from [26] and about interval graphs and
permutation graphs of Corollary 17, we have:

Corollary 23 Metric Dimension is NP-complete for split graphs of diameter 2, for
interval graphs of diameter 2 and for permutation graphs of diameter 2.

3 METRIC DIMENSION Parameterized by Solution Size is FPT on
Interval Graphs

The purpose of this section is to prove that Metric Dimension (parameterized by
solution size) is FPT on interval graphs. We begin with preliminary results, before
describing our algorithm and proving its correctness. The algorithm is based on
dynamic programming over a path-decomposition.

3.1 Preliminaries

We start by stating a few properties and lemmas that are necessary for our algorithm.

123

Algorithmica (2017) 78:914–944 933

3.1.1 Interval Graphs

Given an interval graph G, we can assume that in its interval model, all endpoints are
distinct, and that the intervals are closed intervals. Given an interval I , we will denote
by �(I) and by r(I) its left and right endpoints, respectively. We define two natural
total orderings of V (G) based on this model: x <L y if and only if the left endpoint
of x is smaller then the left endpoint of y, and x <R y if and only if the right endpoint
of x is smaller than the right endpoint of y.

Given a graph G, its distance-power Gd is the graph obtained from G by adding
an edge between each pair of vertices at distance at most d in G. We will use the
following result.

Theorem 24 ([1]) Let G be an interval graph with an interval model inducing orders
<L and <R, and let d ≥ 2 be an integer. Then the power graph Gd is an interval
graph with an interval model inducing the same orders <L and <R as G (that can be
computed in linear time).

3.1.2 Tree-Decompositions

Definition 25 A tree-decomposition of a graph G is a pair (T ,X), whereT is a tree
and X := {Xt : t ∈ V (T)} is a collection of subsets of V (G) (called bags), such that
they satisfy the following conditions:

(i)
⋃

t∈V (T) Xt = V (G);
(ii) for every edge uv ∈ E(G), there is a bag of X that contains both u and v;
(iii) for every vertex v ∈ V (G), the set of bags containing v induces a subtree of T .

Given a tree-decomposition of (T ,X), the maximum size of a bag Xt over all
tree nodes t of T minus one is called the width of (T ,X). The minimum width of a
tree-decomposition of G is the treewidth of G. The notion of tree-decomposition has
been used extensively in algorithm design, especially via dynamic programming over
the tree-decomposition.

We consider a rooted tree-decomposition by fixing a root of T and orienting the
tree edges from the root toward the leaves. A rooted tree-decomposition is nice (see
Kloks [44]) if each node t ofT has at most two children and falls into one of the four
types:

(i) Join node: t has exactly two children t1 and t2, and Xt = Xt1 = Xt2 .
(ii) Introduce node: t has a unique child t ′, and Xt = Xt ′ ∪ {v}.
(iii) Forget node: t has a unique child t ′, and Xt = Xt ′ \ {v}.
(iv) Leaf node: t is a leaf node in T .

Given a tree-decomposition, a nice tree-decomposition of the same width always
exists and can be computed in linear time [44].

If G is an interval graph, we can construct a tree-decomposition of G (in fact, a
path-decomposition) with special properties.

Proposition 26 Let G be an interval graph with clique number ω and an interval
model inducing orders <L and <R. Then, G has a nice tree-decomposition (P,X)

of width ω − 1 that can be computed in linear time, where moreover:

123

934 Algorithmica (2017) 78:914–944

(a) P is a path (hence there are no join nodes);
(b) every bag is a clique;
(c) going through P from the leaf to the root, the order in which vertices are intro-

duced in an introduce node corresponds to <L ;
(d) going throughP from the leaf to the root, the order in which vertices are forgotten

in a forget node corresponds to <R;
(e) the root’s bag is empty, and the leaf’s bag contains only one vertex.

Proof Given a graph G, one can decide if it is an interval graph and, if so, compute a
representation of it in linear time [11]. This also gives us the ordered set of endpoints
of intervals of G.

To obtain (P,X), we first create the leaf node t , whose bag Xt contains the interval
with smallest left endpoint. We then go through the set of all endpoints of intervals of
G, from the second smallest to the largest. Let t be the last created node. If the new
endpoint is a left endpoint �(I), we create an introduce node t ′ with Xt ′ = Xt ∪{I }. If
the new endpoint is a right endpoint r(I), we create a forget node t ′ with Xt ′ = Xt \{I }.
In the end we create the root node as a forget node t with Xt = ∅ that forgets the last
interval of G.

Observe that one can associate to every node t (except the root) a point p of the
real line, such that the bag Xt contains precisely the set of intervals containing p: if
t is an introduce node, p is the point �(I) associated to the creation of t , and if t is
a forget node, it is the point r(I) + ε, where ε is sufficiently small and r(I) is the
endpoint associated to the creation of t . This set forms a clique, proving Property (b).
Furthermore this implies that the maximum size of a bag is ω, hence the width is at
most ω − 1 (and at least ω − 1 since every clique must be included in some bag).

Moreover it is clear that the procedure is linear-time, and by construction, Proper-
ties (a), (c), (d), (e) are fulfilled.

Let us now show that (P,X) is a tree-decomposition. It is clear that every vertex
belongs to some bag, proving Property (i) of Definition 25. Moreover let u, v be two
adjacent vertices of G, and assume u <L v. Then, consider the introduce node of P
where v is introduced. Since u has started before v but has not stopped before the start
of v, both u, v belong to Xt , proving Property (ii). Finally, note that a vertex v appears
exactly in all bags starting from the bag where v is introduced, until the bag where v

is forgotten. Hence Property (iii) is fulfilled, and the proof is complete.
�
The following lemma immediately follows from Theorem 24.

Lemma 27 Let G be an interval graph with an interval model inducing orders <L and
<R, let d ≥ 1 be an integer and let (P,X) be a tree-decomposition of Gd obtained
by Proposition 26 (recall that by Theorem 24, Gd is an interval graph, and it has an
intersection model inducing the same orders <L and <R). Then the following holds.

(a) Let t be an introduce node of (P,X) with child t ′, with Xt = Xt ′ ∪ {v}. Then,
Xt contains every vertex w in G such that dG(v,w) ≤ d and w <L v.

(b) Let t ′ be the child of a forget node t of (P,X), with Xt = Xt ′ \ {v}. Then, Xt ′
contains every vertex w in G such that dG(v,w) ≤ d and v <R w.

123

Algorithmica (2017) 78:914–944 935

Proof We prove (a), the proof of (b) is the same. By Theorem 24, we may assume
that <L is the same in G and Gd . By construction of (P,X) the introduce node of v

contains all intervals w of Gd intersecting v with w <L v in Gd . Hence w <L v in G
as well, and dG(v,w) ≤ d.
�

3.1.3 Lemmas for the Algorithm

We now prove a few preliminary results necessary for the argumentation. We first start
with a definition and a series of lemmas based on the linear structure of an interval
graph, that will enable us to defer the decision-taking (about which vertex should
belong to the solution in order distinguish a specific vertex pair) to later steps of the
dynamic programming.

Definition 28 Given a vertex u of an interval graph G, the rightmost path PR(u) of
u is the path u R

0 , . . . , u R
p where u = u R

0 , for every u R
i (i ∈ {0, . . . , p − 1}) u R

i+1 is the

neighbour of u R
i with the largest right endpoint, and thus u R

p is the interval in G with

largest right endpoint. Similarly, we define the leftmost path PL(u) = uL
0 , . . . , uL

q

where for every uL
i (i ∈ {0, . . . , q − 1}) uL

i+1 is the neighbour of uL
i with the smallest

left endpoint.

Note that PR(u) and PL(u) are two shortest paths from u R
0 to u R

p and uL
q , respec-

tively.

Lemma 29 Let u be an interval in an interval graph G and PR(u) = u R
0 , . . . , u R

p

be the rightmost path of u, and let v be an interval starting after the end of u R
i−1

(i ∈ {1, . . . , p}), where u R
i−1 ∈ PR(u). Then d(u, v) = d(u R

i , v) + i . Similarly, if v

ends before the start of an interval uL
i−1 in PL(u) = uL

0 , . . . , uL
q (i ∈ {1, . . . , q}), then

d(u, v) = d(uL
i , v) + i .

Proof Weprove the claim only for the first case, the second one is symmetric. Consider
the shortest path from u to v by choosing the interval intersecting u that has the
largest right endpoint, and iterating. This path coincides with PR(u) until it contains
some interval u R

j such that u R
j intersects v. Since v starts after the end of u R

i−1, we

have i ≤ j . Thus, the interval u R
i lies on a shortest path from u to v, and hence

d(u, v) = d(u R
i , v) + d(u, u R

i) = d(u R
i , v) + i .
�

Lemma 30 Let u, v be a pair of intervals of an interval graph G and PR(u) =
u R
0 , . . . , u R

p , PR(v) = vR
0 , . . . , vR

p′ their corresponding rightmost paths (recall that

u R
p = vR

p′). Assuming that p ≤ p′, for every u R
i ∈ PR(u) and vR

i ∈ PR(v) such that

i ∈ {0, . . . , p}, we have d(u R
i , vR

i) ≤ d(u, v).

Proof First note that, by letting w = u R
i , we have wR

1 = u R
i+1. Therefore, we only

need to prove the claim for i = 1.
If u and v are adjacent, then either v = u R

1 (then we are done) or u R
1 must end after

v. Then, either u R
1 intersects vR

1 , or u R
1 = vR

1 . In both cases, d(u R
1 , vR

1) ≤ 1.

123

936 Algorithmica (2017) 78:914–944

If u and v are not adjacent, we can assume that u ends before v starts. Then,
by Lemma 29, d(u R

1 , v) = d(u, v) − 1 and d(u R
1 , vR

1) ≤ d(u R
1 , v) + d(v, vR

1) =
d(u, v) − 1 + 1 = d(u, v).
�

We say that a pair u, v of intervals in an interval graph G is separated by interval
x strictly from the right (strictly from the left, respectively) if x starts after both right
endpoints of u, v (ends before both left endpoints of u, v respectively). In other words,
x is not a neighbour of any of u and v.

The next lemma is crucial for our algorithm.

Lemma 31 Let u, v, x be three intervals in an interval graph G and let i be an integer
such that x starts after both right endpoints of u R

i ∈ PR(u) and vR
i ∈ PR(v). Then

the three following facts are equivalent:

(1) x separates u R
i , vR

i ;
(2) for every j with 0 ≤ j ≤ i , x separates u R

j , vR
j ;

(3) for some j with 0 ≤ j ≤ i , x separates u R
j , vR

j .

Similarly, assume that x ends before both left endpoints of uL
i ∈ PL(u) and vL

i ∈
PL(v). Then the three following facts are equivalent:

(i) x separates uL
i , vL

i ;
(ii) for every j with 0 ≤ j ≤ i , x separates uL

j , vL
j ;

(iii) for some j with 0 ≤ j ≤ i , x separates uL
j , vL

j .

Proof We prove only (1)–(3), the proof of (i)–(iii) is symmetric. Let 0 ≤ j ≤ i
and u′ = u R

j and v′ = vR
j . Then (u′)R

i− j = u R
i and (v′)R

i− j = vR
i . By Lemma 29,

d(u R
j , x) = d(u R

i , x)+ (j − i) and similarly d(vR
j , x) = d(vR

i , x)+ (j − i). Hence x

separates u R
i and vR

i if and only if it separates u R
j and vR

j which implies the lemma.
�
Wenow introduce a local version of resolving sets that will be used in our algorithm.

Definition 32 A distance-2 resolving set is a set S of vertices where for each pair u, v

of vertices at distance at most 2, there is a vertex x ∈ S such that d(u, s) �= d(v, s).

Using the following lemma, we can manage to “localize” the dynamic program-
ming, as we will only need to distinguish pairs of vertices that will be present together
in one bag.

Lemma 33 Any distance-2 resolving set of an interval graph G is a resolving set of
G.

Proof Assume to the contrary that S is a distance-2 resolving set of an interval graph
G but not a resolving set. It means that there is a pair of vertices u, v at distance at
least 3 that are not separated by any vertex of S. Among all such pairs, we choose one,
say {u, v}, such that d(u, v) is minimized. Without loss of generality, we assume that
u ends before v starts.

Consider u R
1 (vL

1 , respectively), the interval intersecting u (v, respectively) that has
the largest right endpoint (smallest left endpoint, respectively). We have u R

1 �= vL
1

123

Algorithmica (2017) 78:914–944 937

(since d(u, v) ≥ 3) and d(u R
1 , vL

1) = d(u, v) − 2 < d(u, v). By minimality, u R
1

and vL
1 are separated by some vertex s ∈ S. But s does not separate u and v, thus

s /∈ {u R
1 , vL

1 }.
Without loss of generality, we can assume that d(u R

1 , s) < d(vL
1 , s). In particu-

lar, d(vL
1 , s) ≥ 2 and s is ending before vL

1 starts. Thus, by Lemma 29, d(v, s) =
d(vL

1 , s) + 1. However, we also have d(u, s) ≤ d(u R
1 , s) + 1 ≤ d(vL

1 , s) < d(v, s).
Hence s is separating u and v, a contradiction.
�

The next lemma, which is a slightly modified version of a result in our paper [29],
enables us to upper-bound the size of the bags in our tree-decompositions, which will
induce diameter 4-subgraphs of G.

Lemma 34 Let G be an interval graph with a resolving set of size k, and let B ⊆
V (G) be a subset of vertices such that for each pair u, v ∈ B, dG(u, v) ≤ d. Then
|B| ≤ 4dk2 + (2d + 3)k + 1.

Proof Let s1, . . . , sk be the elements of a resolving set S of size k in G. Consider
an interval representation of G, and let B be the minimal segment of the real line
containing all intervals corresponding to vertices of B.

For each i in {1, . . . , k}, consider the leftmost and rightmost paths PL(si) and
PR(si), as defined in Definition 28. Let Li be the ordered set of left endpoints of
intervals of PL(si), and let Ri be the ordered set of right endpoints of intervals of
PR(si). Note that intervals at distance j of si in G are exactly the intervals finishing
between �(uL

j+1) and �(uL
j), or starting between r(u R

j) and r(u R
j+1). Hence, for any

interval of G, its distance to si is uniquely determined by the position of its right
endpoint in the ordered set Li and the position of its left endpoint in the ordered set
Ri . Moreover, note that, since any two vertices in B are at distance at most d, B may
contain at most d points of Li and at most d points of Ri .

Therefore,Bmay contain at most 2kd points of
⋃

1≤i≤k(Li ∪ Ri). This set of points
defines a natural partition P of B into at most 2kd + 1 sub-segments, and any interval
of B is uniquely determined by the positions of its two endpoints inP (if two intervals
start and end in the same part of P , they are not separated by S, a contradiction).

Let I ∈ B \ S. For a fixed i ∈ {1, . . . , k}, by definition of the sets Li , the interval
I cannot contain two points of Li and similarly, it cannot contain two points of Ri .
Thus, I contains at most 2k points of the union of all the sets Li and Ri . Therefore,
if P denotes a part of P , there are at most 2k + 1 intervals with left endpoints in
P . In total, there are at most (2kd + 1) · (2k + 1) intervals in B \ S and hence
|B| ≤ (2kd + 1) · (2k + 1) + k = 4dk2 + (2d + 3)k + 1.
�

3.2 The Algorithm

We are now ready to describe our algorithm.

Theorem 35 Metric Dimension can be solved in time 2O(k4)n on interval graphs,
i.e. it is FPT on this class when parameterized by the solution size k.

123

938 Algorithmica (2017) 78:914–944

Proof Let (P,X) be a path-decomposition of G4 (which by Theorem 24 is an interval
graph) obtained using Proposition 26.

The algorithm is a bottom-up dynamic programming on (P,X). By Proposi-
tion 26(b), every bag of (P,X) is a clique of G4 (i.e. an induced subgraph of diameter
at most 4 in G) and hence by Lemma 34, it has O(k2) vertices. Thanks to Lemma 31,
we can “localize” the problem by considering for separation, only pairs of vertices
present together in the current bag. Let us now be more precise.

For a node t in P , we denote by P(Xt) the pairs of intervals in Xt that are at
distance at most 2 (in G).

For each node t , we compute a set of configurations using the configurations of the
child of t inP . A configuration contains full information about the local solution on
Xt , but also stores necessary information about the vertex pairs that still need to be
separated. More precisely, a configuration C = (S, sep, toSepR, cnt) of t is a tuple
where:

– S ⊆ Xt contains the vertices of the sought solution belonging to Xt ;
– sep : P(Xt) → {0, 1, 2} assigns, to every pair in P(Xt), value 0 if the pair has
not yet been separated, value 2 if it has been separated strictly from the left, and
value 1 otherwise;

– toSepR : P(Xt) → {0, 1} assigns, to every pair in P(Xt), value 1 if the pair
needs to be separated strictly from the right (and it is not yet separated), and
value 0 otherwise;

– cnt is an integer counting the total number of vertices in the partial solution that
has led to C .

Startingwith the leaf ofP , for eachnodeour algorithmgoes through all possibilities
of choosing S; however, sep, toSepR and cnt are computed along the way. At each
new visited node t ofP , a set of configurations is constructed from the configuration
sets of the child of t . The algorithm makes sure that all the information is consistent,
and that configurations that will not lead to a valid resolving set (or with cnt > k) are
discarded.

Leaf node For the leaf node t , since by Proposition 26(e) Xt = {v}, we create two
configurations C1 = (∅, sep, toSepR, 0) and C2 = ({v}, sep, toSepR, 1) (where
sep and toSepR are empty in both configurations).

Introduce node Let t be an introduce node with t ′ its child, where Xt = Xt ′ ∪ {v}.
For every configuration (S′, sep′, toSepR′, cnt′) of t ′, we create two configurations
C1 = (S′ ∪ {v}, sep1, toSepR1, cnt

′ + 1) (corresponding to the case where v is in
the partial solution) and C2 = (S′, sep2, toSepR2, cnt

′) (where v is not added to the
partial solution).

The elements of sep1 and toSepR1 in C1 are first copied from sep′ and toSepR′,
and updated by checking, for every pair x, y of P(Xt) whether v separates x, y (note
that v cannot separate any such pair strictly from the left). Also note that v is sepa-
rated from all other vertices since it belongs to the solution, but for x = v we still
need to check whether v, y are strictly separated from the left (in which case we set
sep1(v, y) = 2, otherwise sep1(v, y) = 1). To do this, we compute vL

1 and yL
1 (by

Lemma 27(a) they both belong to Xt), and we first check if they are strictly separated
from the left, which is true if and only if sep′(vL

1 , yL
1) = 2. If vL

1 and yL
1 are sepa-

123

Algorithmica (2017) 78:914–944 939

rated strictly from the left, then so are v and y. Otherwise, if v and y are still strictly
separated from the left, there must be an interval z ending before the left endpoint of y
and separating v, y. Since z does not separate vL

1 and yL
1 strictly from the left, z must

be adjacent to yL
1 and thus dG(v, z) ≤ 4 (since dG(v, y) ≤ 2). Then, by Lemma 27, z

belongs to Xt , thus it is enough to test whether any vertex of S′ separates v, y strictly
from the left. Moreover, we let toSepR1(v, y) = 0.

For C2, we must compute sep2(v,w) and toSepR2(v,w) for every w such that
(v,w) ∈ P(Xt). To do so, we consider the first intervals of PL(v) and PL(w). We
let sep2(v,w) = 2 if for the pair vL

1 , wL
1 with vL

1 ∈ PL(v) and wL
1 ∈ PL(w),

sep′(vL
1 , wL

1) = 2, or if some vertex of S′ separates v,w strictly from the left.
Otherwise, if v,w are separated by a neighbour of w, we set sep2(v,w) = 1. We
also compute toSepR2 from toSepR′ by letting toSepR2(v,w) = 0 and copying all
other values.

If cnt+ 1 > k, C1 is discarded. The remaining valid configurations among C1, C2
are added to the set of configurations of t . If in this set, there are two configurations
that differ only on their value of cnt, we only keep the one with the smallest value of
cnt.

Forget node Let t be a forget node and t ′ be its child, with Xt = Xt ′ \ {v}.
For every configuration (S′, sep′, toSepR′, cnt′) of t ′, we create the configuration
(S′ \ {v}, sep, toSepR, cnt′). We create sep and toSepR by copying all entries
sep′(x, y) and toSepR′(x, y) such that x, y ∈ P(Xt).

For every vertex w in Xt such that dG(v,w) ≤ 2, if sep′(v,w) = 0 or
toSepR′(v,w) = 1 (i.e. v,w still need to be separated strictly from the right),
we determine vR

1 and wR
1 and let toSepR(vR

1 , wR
1) = 1 (note that dG(v, vR

1) = 1,
dG(v,wR

1) ≤ 3, v <R vR
1 and v <R wR

1 , hence by Lemma 27(b) vR
1 , wR

1 ∈ Xt ′ and
hence vR

1 , wR
1 ∈ Xt). However, if vR

1 = wR
1 , we discard the current configuration.

Indeed, by Lemma 31, v,w cannot be separated strictly from the right: any shortest
path to any of v,w from some vertex x whose interval starts after both right endpoints
of v,w must go through vR

1 = wR
1 and hence d(x, vR

1) = d(x, wR
1). We also discard

the configuration if vR
1 orwR

1 does not exist (i.e. v orw is the rightmost interval of G).
Finally, if there are two configurations that differ only on their value of cnt, again

we only keep the one with the smallest value of cnt.
Root node At root node t , since by Proposition 26(e) Xt = ∅, t has at most

one configuration. We output “yes” only if this configuration exists, and if cnt ≤ k.
Otherwise, we output “no”.

We now analyze the algorithm.

Correctness We claim that G has a resolving set of size at most k if and only if
the root node ofP contains a valid configuration. By Lemma 33, this is equivalent to
proving that G has an optimal distance-2 resolving set of size at most k if and only if
the root node ofP contains a valid configuration. First, assume that the dynamic pro-
gramming has succeeded, i.e. the root bag contains a valid configuration C . Assume
that C has smallest value cnt. We want to prove that the union of all partial solu-
tions S of all configurations that have led to the computation of C is a valid optimal
solution S.

123

940 Algorithmica (2017) 78:914–944

We first prove that for every pair u, v of vertices with dG(u, v) ≤ 2 and u <R

v, S separates u, v. By Lemma 27(b), u, v are present together in the child t ′ of
forget node t of P where u is forgotten. Let Ct ′ = (S′, sep′, toSepR′, cnt′) and
Ct = (S, sep, toSepR, cnt) be the configurations of t ′, t that have led to the end
configuration C . In the computation of Ct , since Ct was not discarded, we either had
sep′(u, v) > 0 in Ct ′ or the algorithm has set toSepR(u1

r , v
1
r) = 1, in which case

u R
1 �= vR

1 . Assume we had sep′(u, v) = 1. Then, in some configuration Ct ′′ that has
led to computing Ct ′ (possibly t ′ = t ′′), u and v were separated by some vertex in
S belonging to Ct ′′ , and we are done. If sep′(u, v) = 2, similarly either u, v have
been separated by some vertex of S belonging to a (possibly earlier) configuration, or
we had sep(uL

i , vL
i) = 2, in which case by Lemma 31 we are also done. If however,

the algorithm has set toSepR(u R
1 , vR

1) = 1, recall that unless in some bag u R
1 , vR

1 is
separated strictly from the right, when we forget u R

1 we set toSepR(u R
2 , vR

2) = 1.
Hence, since C was a valid configuration (and has not been discarded), at some step
we have separated u R

i , vR
i strictly from the right, which by Lemma 31 implies that

u, v are separated by S, and we are done.
Moreover S is optimal because we have chosen C so as to minimize the size

cnt of the overall solution. At each step, the algorithm discards, among equivalent
configurations, the ones with larger values of cnt, ensuring that the size of the solution
is minimized. This proves our claim.

For the converse, assume that G has an optimal distance-2 resolving set S of size
at most k. We will need the following claim.

Claim 36 Let u, v be a pair of vertices with dG(u, v) ≤ 2. Then, any vertex x that
could separate u, v neither strictly from the right nor strictly from the left is present
in some bag together with both u, v.

Proof of claim Necessarily, x is a neighbour of one of u, v in G. Hence dG(x, u) ≤ 3
and dG(x, v) ≤ 3. If x <L v, by Lemma 27(a) x, u, v are present in the bag where v

is introduced. If v <L x , similarly x, u, v are present in the bag where x is introduced.

�

We will prove that some configuration C was computed using a series of con-
figurations where for each node t of P , the right subset S ∩ Xt was guessed.
By contradiction, if this was not the case, then at some step of the algorithm we
would have discarded a configuration C ′ although it arised from guessing the cor-
rect partial solution of S. Since S is optimal, C ′ was not discarded because there
was a copy of C ′ with different value of counter cnt (otherwise this copy would
lead to a solution strictly smaller than S). Hence the discarding of C ′ has happened
at a node t that is a forget node. Assume that t is a forget node where vertex v

was forgotten (assume t ′ is the child of t in P). This happens only if for some
w ∈ Xt with dG(v,w) ≤ 2, we had either (i) sep′(v,w) = 0 and vR

1 = wR
1 , or

(ii) toSepR(v,w) = 1 and vR
1 = wR

1 . If (i) holds, then v,w are considered not
to be separated, although they are actually separated (by our assumption on C ′).
Since vR

1 = wR
1 , vR

1 and wR
1 cannot be separated strictly from the right, hence

by Lemma 31 v,w are not separated strictly from the right. If they are not sep-
arated strictly from the left, Claim 36 implies a contradiction because the vertex

123

Algorithmica (2017) 78:914–944 941

separating v,w was present together in a bag with v,w and hence we must have
sep′(v,w) = 1. Hence, v,w are separated strictly from the left. But again by
Lemma 31, this means that some vertices vL

i , wL
i in PR(v) × PR(w) have been sep-

arated strictly from the left (assume that i is maximal with this property). Since by
Lemma 30, dG(vL

i , wL
i) ≤ 2, by Lemma 27 these two vertices were present in some

bag simultaneously, together with the vertex that is strictly separating them from the
left (and has distance at most 4 from wL

i). Then in the configuration corresponding
to this bag, sep(vL

i , wL
i) = 2, and we had sep′(v,w) = 2 in C ′, a contradiction.

If (ii) holds, there exists a pair x, y such that in some earlier configuration, we had
sep(x, y) = 0, v = x R

i ∈ PR(x) and w = y R
i ∈ PR(y). By the same reasoning as for

(i) we obtain a contradiction. This proves this side of the implication, and completes
the proof of correctness.

Running time At each step of the dynamic programming, we compute the con-
figurations of a bag from the set of configurations of the child bag. The computation
of each configuration is polynomial in the size of the current bag of (P,X). Since a
configuration is precisely determined by a tuple (S, sep, toSepR) (if there are two
configurations where only cnt differs, we only keep the one with smallest value), there
are at most 2|Xt |3|Xt |22|Xt |2 ≤ 32|Xt |2 configurations for a bag Xt . Hence, in total the
running time is upper-bounded by 2O(b2)n, where b is the maximum size of a bag in
(P,X). Since any bag induces a subgraph of G of diameter at most 4, by Lemma 34,
b = O(k2). Therefore 2O(b2)n = 2O(k4)n, as claimed.
�

4 Conclusion

We proved that Locating- Dominating- Set,Open Locating- Dominating Set,
Identifying Code and Metric Dimension are NP-complete even for interval
graphs that have diameter 2 and for permutation graphs that have diameter 2. This is in
contrast to related problems such as Dominating Set, which is linear-time solvable
both on interval graphs and on permutation graphs. However, we do not know their
complexity for unit interval graphs or bipartite permutation graphs. Note that both
Locating- Dominating- Set and Metric Dimension are polynomial-time solv-
able on chain graphs, a subclass of bipartite permutation graphs [25]. Probably the
same approach as in [25] would also work for Open Locating- Dominating Set

and Identifying Code.
Contrary to what we claimed in the conference version of this paper [28], our

reduction gadgets are not interval graphs and permutation graphs at the same time.
Hence, we leave it as an open question to determine the complexity of the studied
problems when restricted to graphs which are both interval and permutation graphs.
Similarly, it could be interesting to determine their complexity for graphs that are both
split graphs and interval graphs, or split graphs and permutation graphs.

We remark that our generic reductionwould also apply to related problems that have
been considered in the literature, such as Locating- Total Dominating Set [37]
or Differentiating- Total Dominating Set [17].

123

942 Algorithmica (2017) 78:914–944

Regarding our positive result that Metric Dimension parameterized by the solu-
tion size is FPT on interval graphs, an interesting question is whether it can be extended
to other graph classes, such as permutation graphs. Another interesting class is the one
of chordal graph, since it is a proper superclass of both interval graphs and split graphs,
both of which admit an FPT algorithm for Metric Dimension. During the revision
of this paper, it was brought to our knowledge that in a recent paper, Belmonte et al. [6]
have answered these questions by showing that for any class of graphs of bounded
tree-length, Metric Dimension is FPT when parameterized by the solution size.
Examples of such classes are the ones of chordal graphs, asteroidal triple-free graphs
and permutation graphs.

Acknowledgements We thank Adrian Kosowski for helpful preliminary discussions on the topic of this
paper. We are also grateful to the reviewers for their useful comments which subsequently made the paper
clearer.

References

1. Agnarsson, G., Damaschke, P., Halldórsson, M.M.: Powers of geometric intersection graphs and dis-
persion algorithms. Discrete Appl. Math. 132(1–3), 3–16 (2003)

2. Auger, D.: Minimal identifying codes in trees and planar graphs with large girth. Eur. J. Comb. 31(5),
1372–1384 (2010)

3. Babai, L.: On the complexity of canonical labeling of strongly regular graphs. SIAM J. Comput. 9(1),
212–216 (1980)

4. Bampas, E., Bilò, D., Drovandi, G., Gualà, L., Klasing, R., Proietti, G.: Network verification via
routing table queries. In: Proceedings of the 18th International Colloquium on Structural Information
and Communication Complexity, SIROCCO 2011, LNCS 6796: 270–281 (2011)

5. Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihalák, M., Ram, L.S.: Network
discovery and verification. IEEE J. Sel. Areas Commun. 24(12), 2168–2181 (2006)

6. Belmonte, R., Fomin, F.V., Golovach, P.A., Ramanujan, M.S.: Metric dimension of bounded width
graphs. In: Proceedings of 40th International Symposium of Mathematical Foundations of Computer
Science, MFCS 2015, LNCS 9235: 115–126, (2015)

7. Berger-Wolf, T.Y., Laifenfeld, M., Trachtenberg, A.: Identifying codes and the set cover problem. In:
Proceedings of the 44th Annual Allerton Conference on Communication, Control and Computing,
Monticello, USA (2006)

8. Bertrand, N., Charon, I., Hudry, O., Lobstein, A.: 1-identifying codes on trees. Australas. J. Comb. 31,
21–35 (2005)

9. Bollobás, B., Scott, A.D.: On separating systems. Eur. J. Comb. 28, 1068–1071 (2007)
10. Bondy, J.A.: Induced subsets. J. Comb. Theory Ser. B 12(2), 201–202 (1972)
11. Booth,K.S., Lueker,G.S.: Testing for the consecutive ones property, interval graphs, andgraphplanarity

using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)
12. Bousquet, N., Lagoutte, A., Li, Z., Parreau, A., Thomassé, S.: Identifying codes in hereditary classes

of graphs and VC-dimension. SIAM J. Discrete Math. 29(4), 2047–2064 (2015)
13. Brandstädt, A., Le, V.B., Spinrad, J.: Graph classes: a survey. SIAM Monogr. Discrete Math. Appl.

(1999)
14. Charon, I., Hudry, O., Lobstein, A.: Minimizing the size of an identifying or locating-dominating code

in a graph is NP-hard. Theoret. Comput. Sci. 290(3), 2109–2120 (2003)
15. Charbit, E., Charon, I., Cohen, G., Hudry, O., Lobstein, A.: Discriminating codes in bipartite graphs:

bounds, extremal cardinalities, complexity. Adv. Math. Commun. 2(4), 403–420 (2008)
16. Chartrand, G., Eroh, L., Johnson,M., Oellermann, O.: Resolvability in graphs and themetric dimension

of a graph. Discrete Appl. Math. 105(1–3), 99–113 (2000)
17. Chellali, M.: On locating and differetiating-total domination in trees. Discuss. Math. Graph Theory

28(3), 383–392 (2008)

123

Algorithmica (2017) 78:914–944 943

18. Cohen, G., Honkala, I., Lobstein, A., Zémor, G.: On identifyingcodes. In: Proceedings of the DIMACS
Workshop on Codes andAssociation Schemes, Series in Discrete Mathematics and Theoretical Com-
puter Science 5697–109, (2001)

19. Colbourn, C., Slater, P.J., Stewart, L.K.: Locating-dominating sets in series-parallel networks. Congr.
Numer. 56, 135–162 (1987)

20. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf.
Comput. 85(1), 12–75 (1990)

21. Diaz, J., Pottonen, O., Serna, M., van Leeuwen, E.J.: On the complexity of metric dimension. In:
Proceedings of the 20th European Symposium on Algorithms, ESA 2012, LNCS 7501: 419–430
(2012)

22. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, Berlin (2013)
23. Eppstein, D.: Metric dimension parameterized by max leaf number. J. Graph Algorithms Appl. 19(1),

313–323 (2015)
24. Epstein, L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs: hard and easy

cases. Algorithmica 72(4), 1130–1171 (2015)
25. Fernau, H., Heggernes, P., van’t Hof, P., Meister, D., Saei, R.: Computing the metric dimension for

chain graphs. Inf. Process. Lett. 115, 671–676 (2015)
26. Foucaud, F.: Decision and approximation complexity for identifying codes and locating-dominating

sets in restricted graph classes. J. Discrete Algorithms 31, 48–68 (2015)
27. Foucaud, F., Gravier, S., Naserasr, R., Parreau, A., Valicov, P.: Identifying codes in line graphs. J.

Graph Theory 73(4), 425–448 (2013)
28. Foucaud, F., Mertzios, G., Naserasr, R., Parreau, A., Valicov, P.: Algorithms and complexity for metric

dimension and location-domination on interval and permutation graphs. In: Proceedings of the 41st
International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2015, LNCS, to
appear

29. Foucaud, F., Mertzios, G., Naserasr, R., Parreau, A., Valicov, P.: Identification, location-domination
and metric dimension on interval and permutation graphs. I. Bounds (2015). http://arxiv.org/abs/1507.
08164

30. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness.
W. H. Freeman, New York (1979)

31. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Elsevier, New York (2004)
32. Gravier, S., Klasing, R., Moncel, J.: Hardness results and approximation algorithms for identifying

codes and locating-dominating codes in graphs. Algorithm. Oper. Res. 3(1), 43–50 (2008)
33. Habib, M., Paul, C.: A simple linear time algorithm for cograph recognition. Discrete Appl. Math.

145(2), 183–197 (2005)
34. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Comb. 2, 191–195 (1976)
35. Hartung, S.: Exploring parameter spaces in coping with computational intractability. PhD Thesis, TU

Berlin, Germany (2014)
36. Hartung, S., Nichterlein, A.: On the parameterized and approximation hardness of metric dimension.

Proc. IEEE Conf. Comput. Complex. CCC 2013, 266–276 (2013)
37. Henning, M.A., Rad, N.J.: Locating-total domination in graphs. Discrete Appl. Math. 160, 1986–1993

(2012)
38. Henning, M.A.H., Yeo, A.: Distinguishing-transversal in hypergraphs and identifying open codes in

cubic graphs. Graphs Comb. 30(4), 909–932 (2014)
39. Hoffmann, S., Wanke, E.: Metric dimension for Gabriel unit diskgraphs is NP-Complete. In: Proceed-

ings of ALGOSENSORS 2012: 90–92 (2012)
40. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Com-

plexity of Computer Computations, pp. 85–103. Plenum, New York (1972)
41. Karpovsky, M.G., Chakrabarty, K., Levitin, L.B.: On a new class of codes for identifying vertices in

graphs. IEEE Trans. Inf. Theory 44, 599–611 (1998)
42. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math. 70(3), 217–

229 (1996)
43. Kim, J.H., Pikhurko, O., Spencer, J., Verbitsky, O.: How complex are random graphs in First Order

logic? Random Struct. Algorithms 26(1–2), 119–145 (2005)
44. Kloks, T.: Treewidth, Computations and Approximations. Springer, New York (1994)
45. Manuel, P., Rajan, B., Rajasingh, I., Chris Monica, M.: On minimum metric dimension of honeycomb

networks. J. Discrete Algorithms 6(1), 20–27 (2008)

123

http://arxiv.org/abs/1507.08164
http://arxiv.org/abs/1507.08164

944 Algorithmica (2017) 78:914–944

46. Moret, B.M.E., Shapiro, H.D.: Onminimizing a set of tests. SIAM J. Sci. Stat. Comput. 6(4), 983–1003
(1985)

47. Müller, T., Sereni, J.-S.: Identifying and locating-dominating codes in (random) geometric networks.
Comb. Probab. Comput. 18(6), 925–952 (2009)

48. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)
49. Rényi, A.: On random generating elements of a finite Boolean algebra. Acta Sci. Math. Szeged 22,

75–81 (1961)
50. Seo, S.J., Slater, P.J.: Open neighborhood locating-dominating sets. Australas. J. Comb. 46, 109–120

(2010)
51. Slater, P.J.: Leaves of trees. Congr. Numer. 14, 549–559 (1975)
52. Slater, P.J.: Domination and location in acyclic graphs. Networks 17(1), 55–64 (1987)
53. Slater, P.J.: Dominating and reference sets in a graph. J. Math. Phys. Sci. 22(4), 445–455 (1988)
54. Spinrad, J.: Bipartite permutation graphs. Discrete Appl. Math. 18(3), 279–292 (1987)
55. Suomela, J.: Approximability of identifying codes and locating-dominating codes. Inf. Process. Lett.

103(1), 28–33 (2007)
56. Ungrangsi, R., Trachtenberg, A., Starobinski, D.: An implementation of indoor location detection

systems based on identifying codes. In: Proceedings of Intelligence in Communication Systems,
INTELLCOMM 2004, LNCS 3283:175–189 (2004)

123

	Identification, Location-Domination and Metric Dimension on Interval and Permutation Graphs. II. Algorithms and Complexity
	Abstract
	1 Introduction
	1.1 Important Concepts and Definitions
	1.2 Previous Work
	1.3 Our Results

	2 Hardness Results
	2.1 Preliminaries and Gadgets
	2.2 The Main Reduction
	2.3 Applications to the Specific Problems
	2.4 Reductions for Diameter 2 and Consequence for Metric Dimension

	3 Metric Dimension Parameterized by Solution Size is FPT on Interval Graphs
	3.1 Preliminaries
	3.1.1 Interval Graphs
	3.1.2 Tree-Decompositions
	3.1.3 Lemmas for the Algorithm

	3.2 The Algorithm

	4 Conclusion
	Acknowledgements
	References

