
Algorithmica (2017) 78:453–491
DOI 10.1007/s00453-016-0170-7

Succinct Indices for Path Minimum, with Applications

Timothy M. Chan1 · Meng He2 · J. Ian Munro1 ·
Gelin Zhou1

Received: 6 August 2015 / Accepted: 21 May 2016 / Published online: 8 June 2016
© Springer Science+Business Media New York 2016

Abstract In the path minimum problem, we preprocess a tree on n weighted nodes,
such that given an arbitrary path, the node with the smallest weight along this path
can be located. We design novel succinct indices for this problem under the indexing
model, for which weights of nodes are read-only and can be accessed with ranks of
nodes in the preorder traversal sequence of the input tree. We present

• an index within O(m) bits of additional space that supports queries in O(α(m, n))

time and O(α(m, n)) accesses to the weights of nodes, for any integerm ≥ n; and
• an index within 2n+o(n) bits of additional space that supports queries in O(α(n))

time and O(α(n)) accesses to the weights of nodes.

Here α(m, n) is the inverse-Ackermann function, and α(n) = α(n, n). These indices
give us the first succinct data structures for the path minimum problem. Following
the same approach, we also develop succinct data structures for semigroup path sum

The partial preliminary version of this article was published in Proceedings of the 22th Annual European
Symposium on Algorithms (ESA 2014) [12]. This work was supported by NSERC and the Canada
Research Chairs Program. Part of the first author’s work was done during his visit to the Department of
Computer Science and Engineering, Hong Kong University of Science and Technology.

B Gelin Zhou
g5zhou@uwaterloo.ca

Timothy M. Chan
tmchan@uwaterloo.ca

Meng He
mhe@cs.dal.ca

J. Ian Munro
imunro@uwaterloo.ca

1 David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada

2 Faculty of Computer Science, Dalhousie University, Halifax, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-016-0170-7&domain=pdf

454 Algorithmica (2017) 78:453–491

queries, for which a query asks for the sum of weights along a given query path.
One of our data structures requires n lg σ + 2n + o(n lg σ) bits of space and O(α(n))

query time, where σ is the size of the semigroup. In the path reporting problem,
queries ask for the nodes along a query path whose weights are within a two-sided
query range. Using the succinct indices for path minimum queries, we achieve three
different time/space tradeoffs for path reporting by designing

• an O(n)-word data structure with O(lgε n + occ · lgε n) query time;
• an O(n lg lg n)-word data structure with O(lg lg n + occ · lg lg n) query time; and
• an O(n lgε n)-word data structure with O(lg lg n + occ) query time.

Here occ is the number of nodes reported and ε is an arbitrary constant between 0
and 1. These tradeoffs match the state of the art of two-dimensional orthogonal range
reporting queries (Chan et al. 2011), which can be treated as a special case of path
reporting queries. When the number of distinct weights is much smaller than n, we
further improve both the query time and the space cost of these three results.

Keywords Path minimum · Semigroup path sum · Path reporting · Succinct data
structures · Succinct encoding of directed topology trees

1 Introduction

As one of the most fundamental structures in computer science, trees generalize lin-
ear lists and have been widely used in data modeling and data representation. In
many cases, objects are represented by nodes and their properties are characterized
by weights assigned to nodes. Researchers have studied the problems of supporting
path queries, that is, the schemes to preprocess a weighted tree such that various func-
tions over the weights of nodes on a given query path can be computed efficiently
[1,9,14,17,20,21,35,36,39,40,42,46].

In this article, we first consider the path minimum (path maximum) problem and
then the more general semigroup path sum problem.

• Path minimum (maximum) Given nodes u and v, return the minimum (maximum)
node along the path from u to v, i.e., the node along the path whose weight is the
minimum (maximum) one;

• Semigroup path sum Given nodes u and v, return the sum of weights along the
path from u to v, where the weights of nodes are drawn from a semigroup.

We design novel succinct data structures for these two types of path queries.
Then we revisit the problem of supporting path reporting queries.

• Path reporting Given nodes u and v along with a two-sided query range, report
the nodes along the path from u to v whose weights are in the query range.

The indexing structures for path minimum queries will play a central role in our
approach to path reporting queries.

When the input tree is a single path, path minimum, semigroup path sum and path
reporting queries become rangeminimum [17,25], semigroup range sum [52] and two-
dimensional orthogonal range reporting queries [13], respectively. As stated in [35],

123

Algorithmica (2017) 78:453–491 455

the path queries we consider generalize these fundamental range queries to weighted
trees.

In this article, we represent the input tree as an ordinal one, i.e., a rooted tree in
which siblings are ordered.Weuse lg to denote the base-2 logarithmand use ε to denote
a constant in (0, 1). Unless otherwise specified, the underlying model of computation
is the standard word RAM model with word size w = �(lg n).

To present our results, we assume the following definition for the Ackermann func-
tion. For integers � ≥ 0 and i > 1, we have

A�(i) =
{
i + 1 if � = 0,
A(i+1)

�−1 (i + 13) if � > 0,

where A(0)
�−1(i) = i and A(i)

�−1(j) = A�−1(A
(i−1)
�−1 (j)) for i ≥ 1. This is growing faster

than the one defined by Cormen et al. [16]. Let α(m, n) be the smallest L such that
AL(�m/n�) > n, and α(n) be α(n, n). Here α(m, n) and α(n) are both referred to
as the inverse-Ackermann functions, and are of the same order as the ones defined by
Cormen et al. [16].

1.1 Path Minimum

Theminimum spanning tree verification problem asks whether a given spanning tree is
minimum with respect to a graph with weighted edges. This problem can be regarded
as a special offline case of the path minimum problem, for which all the queries
are processed in a single batch. Under the word RAM model [40], this problem can
be solved using O(n + m) comparisons and linear overhead, where n and m are
the numbers of nodes and edges, respectively. See [11,15,19,41] for other results
under different models. The online path minimum problem requires slightly more
comparisons. As shown by Pettie [47], �(q · α(q, n) + n) comparisons are necessary
to serve q queries over a tree of size n.

Data structures for the path minimum problem have been heavily studied. An early
result presented by Alon and Schieber [1] requires O(n) words of space and O(α(n))

query time. Since then, several solutions using O(n) words, i.e., O(n lg n) bits, with
constant query time have been designed under the word RAM model [3,9,14,17,39].
Chazelle [14] andDemaine et al. [17] generalizedCartesian trees [51] toweighted trees
and used them to support path minimum queries. Alstrup and Holm [3] and Brodal et
al. [9] made use of macro-micro decomposition in designing their data structures. The
solution of Kaplan and Shafrir [39] is based on Gabow’s recursive decomposition of
trees [29].

In this article we present lower and upper bounds for path minimum queries. In
Lemma 3.1we show that�(n lg n) bits of space are necessary to encode the answers to
path minimum queries over a tree of size n. This distinguishes path minimum queries
from range minimum queries in terms of space cost, for which 2n bits are sufficient
to encode all answers over an array of size n [25].

We adopt the indexing model (also called the systematic model) [4,7,10] in design-
ing new data structures for path minimum queries. Applying this model to weighted

123

456 Algorithmica (2017) 78:453–491

trees, we assume that weights of nodes are represented in an arbitrary given form; the
only requirement is that the representation supports access to the weight of a node
given its preorder rank, i.e., the rank of the node in the preorder traversal sequence of
the weighted tree. Auxiliary data structures called indices are then constructed, and
query algorithms use indices and the access operator provided for the raw data. This
model is theoretically important and its variants are frequently used to prove lower
bounds [18,31,43]. In addition, the indexing model is also of practical importance as
it addresses cases in which the (large) raw data are stored in slower external memory
or even remotely, while the (smaller) indices could be stored in memory or locally.
The space of an index is called additional space. Note that the lower bound in the
previous paragraph is proved under the encoding model, and thus does not apply to
the indexing model.

The following theorem presents our indices for path minimum.

Theorem 1.1 An ordinal tree on n weighted nodes can be indexed (a) using O(m) bits
of space and O(m) construction time to support path minimum queries in O(α(m, n))

time and O(α(m, n)) accesses to the weights of nodes, for any integer m ≥ n; or (b)
using 2n + o(n) bits of space and O(n) construction time to support path minimum
queries in O(α(n)) time and O(α(n)) accesses to the weights of nodes.

To better understand variant (a) of this result, we discuss the time and space costs
for the following possible values of m. When m = n, then we have an index of O(n)

bits that supports path minimum queries in O(α(n)) time. When m = �(n(lg∗)∗n),
for example, then it is well-known that α(m, n) = O(1), and thus we have an index
of O(n(lg∗)∗n) bits that supports path minimum queries in O(1) time1. Combining
the above index with a trivial encoding of node weights, we obtain data structures
for path minimum queries with O(1) query time and almost linear bits of additional
space. Previous solutions [3,9,14,17,39] to the same problem with constant query
time occupy �(n lg n) bits of space in addition to the space required for the input tree.

Taking the construction time into account, variant (a) withm = max{q, n} gives us
a data structure that answers q path minimum queries in O(q ·α(q, n)+max{q, n}) =
O(q · α(q, n) + n) time, which matches the lower bound of Pettie [47].

Finally, variant (b) gives us the first succinct data structure for path minimum
queries, which occupies an amount of space that is close to the information-theoretic
lower bound of storing a weighted tree. With a little extra work, we can even represent
a weighted tree using n lg σ + 2n + o(n) bits only, i.e., within o(n) additive term of
the information-theoretic lower bound, to support queries in O(α(n)) time.

1.2 Semigroup Path Sum

Generalizing the semigroup range sum queries on linear lists [52], the problem of
supporting semigroup path sum queries has been considered by Alon and Schieber [1]
and Chazelle [14]. Alon and Schieber designed a data structure with O(n) words of

1 The function (lg∗)∗ is the number of times lg∗ must be iteratively applied before the result becomes less
than or equal to 1. See Nivasch’s discussions [45] for more details.

123

Algorithmica (2017) 78:453–491 457

space and construction time that supports semigroup path sum queries in O(α(n))

time. Unlike Alon and Schieber’s and our formulation, Chazelle considered trees on
weighted edges instead of weighted nodes. However, it is not hard to see that these
two formulations are equivalent. Chazelle further showed that, for any m ≥ n, one
could obtain a word-RAM data structure with O(α(m, n)) query time in addition to
O(m) construction time and words of space. The solution of Chazelle is optimal, as
established in the lower bound of Yao [52].

Our data structures for semigroup path sumqueries are summarized in the following
theorem.

Theorem 1.2 Let T be an ordinal tree on n nodes, each having a weight drawn from a
semigroup of size σ . Then T can be stored (a) usingm lg σ +2n+o(n) bits of space and
O(m) construction time to support semigroup path sum queries in O(α(m, n)) time,
for some constant c > 1 and any integer m ≥ cn; or (b) using n lg σ + 2n+ o(n lg σ)

bits of space and O(n) construction time to support semigroup path sum queries in
O(α(n)) time.

Variant (a) matches the data structures of Chazelle [14], and our approach can
be further used to achieve variant (b), which is the first succinct data structure with
near-constant query time for the semigroup path sum problem. Since path minimum
queries are special cases of semigrouppath sumqueries, the data structures described in
Theorem 1.2 can be directly used for path minimum queries at no extra cost. However,
these structures cannot achieve both linear space and constant query time.

1.3 Path Reporting

Path reporting queries were proposed by He et al. [35]. They obtained two solutions:
oneusesO(n)words andO(lg σ+occ·lg σ)query time, and the other usesO(n lg lg σ)

words but O(lg σ + occ · lg lg σ) query time, where σ is the number of distinct
weights and occ is the number of nodes reported. For the same problem, Patil et
al. [46] designed a succinct structure based on heavy path decomposition [33,50].
Their structure requires only n lg σ + 6n + o(n lg σ) bits but O(lg σ lg n + occ · lg σ)

query time. Concurrently, He et al. [36] designed another succinct structure based
on a different idea. This structure, requiring O((lg σ/ lg lg n + 1) · (1 + occ)) query
time and nH(WT) + 2n + o(n lg σ) bits of space, where H(WT) is the entropy of the
multiset of the weights of the nodes in the input tree T , is the best previously known
linear space solution.

In this article, we design three new data structures for path reporting queries:

Theorem 1.3 An ordinal tree on n nodes whose weights are drawn from a set of σ

distinct weights can be represented using O(n lg σ · s(σ)) bits of space, so that path
reporting queries can be supported in O(min{lg lg σ +t(σ), lg σ/ lg lg n+1}+occ ·
min{t(σ), lg σ/ lg lg n + 1}) time, where occ is the size of output, ε is an arbitrary
positive constant, and s(σ) and t(σ) are: (a) s(σ) = O(1) and t(σ) = O(lgε σ);
(b) s(σ) = O(lg lg σ) and t(σ) = O(lg lg σ); or (c) s(σ) = O(lgε σ) and t(σ) =
O(1).

123

458 Algorithmica (2017) 78:453–491

Table 1 Our data structures for path reporting queries, along with previous results on path reporting and
two-dimensional orthogonal range reporting (which are marked by †)

Source Space Query time

He et al. [35] O(n) words O(lg σ · (1 + occ))

He et al. [35] O(n lg lg σ) words O(lg σ + occ lg lg σ)

Patil et al. [46] n lg σ + 6n + o(n lg σ) bits O(lg σ lg n + occ lg σ)

He et al. [36] nH(WT) + 2n + o(n lg σ) bits O((lg σ/ lg lg n + 1) · (1 + occ))

Bose et al. [6]† n lg σ + o(n lg σ) bits O((lg σ/ lg lg n + 1) · (1 + occ))

Chan et al. [13]† O(n) words O(lg lg n + lgε σ + occ lgε σ)

Chan et al. [13]† O(n lg lg σ) words O(lg lg n + occ lg lg σ)

Chan et al. [13]† O(n lgε σ) words O(lg lg n + occ)

New O(n lg σ) bits O(min{lgε σ, lg σ/ lg lg n + 1} · (1 + occ))

New O(n lg σ lg lg σ) bits O(min{lg lg σ, lg σ/ lg lg n + 1} · (1 + occ))

New O(n lg1+ε σ) bits O(min{lg lg σ, lg σ/ lg lg n + 1} + occ)

All of these results assume the standard word RAM model with word size w = �(lg n). Here H(WT) is
the entropy of the multiset of the weights of the nodes in T . Note that H(WT) is at most lg σ , which is
O(w)

These results completely subsume almost all previous results; the only exceptions
are the succinct data structures for this problem designed in previous work, whose
query times are worse than our linear-space solution. Furthermore, our data structures
match the state of the art of 2D range reporting queries [13] when σ = n, and have
better performance when σ is much less than n. We compare our results with previous
work on path reporting in Table 1.

1.4 An Overview of the Article

The rest of this article is organized as follows. Section 2 reviews previous techniques
and terminology that we will use for our data structures.

In Sects. 3 and 4, we design novel succinct data structures for the path minimum
problem and the semigroup path sum problem. Unlike previous succinct tree struc-
tures [22,30,34,36,46], our approach is based on Frederickson’s restricted topological
partitions [28], which transform the input tree into a binary tree and further recursively
decompose it into a hierarchy of clusters with constant external degrees and logarith-
mically many levels. The hierarchy is referred to as a directed topology tree. Our main
strategy of constructing query-answering structures is to recursively divide the set of
levels of hierarchy into multiple subsets of levels; with a carefully-defined variant of
the query problemwhich takes levels in the hierarchy as parameters, the query over the
entire structure can be answered by conquering the subproblems local to the subsets
of levels. Solutions to special cases of the query problem are also designed, so that we
can present the time and space costs of our solution using recursive formulas. Then, by
carefully constructing number series and using them in the division of levels into sub-
sets, we can prove that our structures achieve the tradeoff presented in Theorems 1.1

123

Algorithmica (2017) 78:453–491 459

to 1.2 using the inverse-Ackermann function. This approach is novel and exciting in
the design of succinct data structures, and it does not directly use standard techniques
for word RAM at all.

The above strategy would not achieve the desired space bound without a succinct
data structure that supports navigation in the input tree, the binary tree that it is trans-
formed into and the clusters in the directed topology tree. In Sect. 5, we design such
a structure occupying only 2n + o(n) bits, which is of independent interest.

In Sects. 6 and 7, to design solutions to path reporting, we follow the general
framework of He et al. [36] to extract subtrees based on the partitions of the entire
weight range, and make use of a conceptual structure that borrows ideas from the
classical range tree. One strategy of achieving improved results is to further reduce
path reporting into queries in which the weight ranges are one-sided, which allows
us to apply our succinct index for path minimum queries to achieve the tradeoffs
presented in the second half of the abstract. We further apply a tree covering strategy
to reduce the space cost for the case in which the number of distinct weights is much
smaller than n, and hence prove Theorem 1.3.

Finally, we end this article with some open problems in Sect. 8.

2 Preliminaries

2.1 Restricted Topological Partitions and Directed Topology Trees

Topological partitions and restricted topological partitions have found applications
in computing the k smallest spanning trees of a graph [26,27], and in dynamic
maintenance of minimum spanning trees and connectivity information [26], 2-
edge-connectivity information [27], and a set of rooted trees that support link-cut
operations [28]. In this article, we follow the definitions and notation of restricted
topological partitions and directed topology trees [28].

Let B be a rooted binary tree. A cluster with respect to B is a subset of nodes whose
induced subgraph forms a connected component. The external degree of a cluster is
the number of edges that have exactly one endpoint in the cluster. These endpoints are
referred to as the boundary nodes of the cluster. For two disjoint clusters C1 and C2,
C1 is said to be a child cluster of C2 if C1 contains a node whose parent is contained
in C2.

The binary tree B is then partitioned into a hierarchy of clusters as follows.

Lemma 2.1 ([28]). A binary tree B on n nodes can be partitioned into a hierarchy of
clusters with h + 1 levels for some h = O(lg n), such that,

• the clusters at level 0 each contain a single node, and the only cluster at level h
contains all the nodes of B;

• for each level i > 0, each cluster at level i is the disjoint union of at most 2 clusters
at level i − 1;

• for each level i = 0, 1, 2, . . . , h, there are at most (5/6)i n clusters of sizes at most
2i , which form a partition of the nodes in the binary tree;

• each cluster is of external degree at most 3 and contains at most two boundary
nodes; and

123

460 Algorithmica (2017) 78:453–491

• any cluster that has more than one child cluster contains only a single node.

The hierarchy of clusters is referred to as the directed topology tree of B, which is
denoted by D. A node at level i , where i > 0, of D represents a cluster C at level i
of the hierarchy, and its children represent the clusters at the lower level that partition
C . In particular, the leaf nodes of D, which are at level 0, represent individual nodes
of the binary tree B. We illustrate these concepts in Fig. 3.

2.2 Tree Extraction

To support path queries, He et al. [35,36] presented the technique of tree extraction.
This technique is based on the deletion operation of tree edit distance [5]. To delete a
non-root node u, its children are inserted in place of u into the list of children of its
parent, preserving the original left-to-right order. Let T be an ordinal tree and X be
a subset of nodes in T . The X -extraction of T , FX , is defined to be the ordinal forest
obtained by deleting all the nodes that are not in X from T . There is a natural one-to-
one correspondence between the nodes in X and the nodes in FX , and the ancestor-
descendant and preorder relationships among the remaining nodes are preserved. If X
contains the root of T , then FX consists of a single ordinal tree only, which is denoted
by TX .

He et al. [35,36] further defined notation in terms of weights. Let T be an ordinal
tree on nodeswhoseweights are drawn from [1..σ]. For any range [a..b] ⊆ [1..σ], they
defined Ra,b to be the set of nodes in T whose weights are in [a..b]. They also defined
anca,b(T, x) to be the lowest ancestor of x whose weight is in [a..b]; anca,b(T, x) is
defined to be dummy if no such ancestor exists. In addition, they defined Fa,b to be
the ordinal forest obtained by deleting from T all the nodes that are not in Ra,b, where
the nodes are deleted from bottom to top. Note that there is a one-to-one mapping
between the nodes in Ra,b and the nodes in Fa,b. As proved in [35,36], the nodes in
Ra,b and the nodes in Fa,b that correspond to them have the same relative positions in
the preorder traversal sequences of T and Fa,b.

2.3 Bit Vectors and Sequences

Bit vectors are one of the main building blocks in many space efficient data structures.
Let B[1..n] denote a bit vector of size n. For α ∈ {0, 1}, rankα(B, i) counts α-bits in
B[1..i], while selectα(B, i) finds the i-th α-bit in B. The problem of representing
bit vectors succinctly is addressed in the following lemma.

Lemma 2.2 ([48]). A bit vector with n−m zeros and m ones can be represented using
lg

(n
m

) + O(n lg lg n/ lg n) bits of space to support rankα , selectα , and the access
to each bit in O(1) time.

Bit vectors can be generalized to sequences of labels that are drawn from an alpha-
bet � of size σ . Operations rankα and selectα are also generalized by setting
α ∈ �. For sequences with σ = O(lgε n), Ferragina et al. [24] designed a succinct
representation to support rankα and selectα in O(1) time. Using this succinct

123

Algorithmica (2017) 78:453–491 461

Fig. 1 An example of
generalized wavelet trees in
which S = cabd eab deac and
� = {a, b, c, d, e, }. We set
f = 3 and list S̃v sequences on
internal nodes

cabd eab deac
2112331132312

ababa cddc e e
12121 1221 2121

aaa bb cc dd ee

ab cd e

a b c d e

representation as a building block, the same authors presented generalized wavelet
trees [24] to encode sequences over general alphabets.

A generalized wavelet tree for a sequence S[1..n] over an alphabet� is constructed
by recursively splitting the alphabet into f = �lgε n	 subsets of almost equal sizes.
Each node in that tree is associated with a subset of labels �v , and a subsequence Sv

of S that consists of the positions whose labels are in �v . In particular, each leaf is
associated with a single label.

At each non-leaf node v, a sequence S̃v of labels drawn from [1.. f] is created
according to Sv . Formally, suppose that the children of v are v1, v2, . . . , v f , S̃v[i] = α

if and only if Sv[i] ∈ �vα . S̃v is stored using the succinct representation described
above, such that rankα and selectα operations can be supported in constant time.
See Fig. 1 for an example.

Each position in Sv corresponds to a position in S. Chan et al. [13] studied the
following ball-inheritance problem: given an arbitrary position in some Sv , find the
corresponding position in S and the label at this position. Their solution is summarized
in Lemma 2.3. Note that the original solution was developed for binary wavelet trees.
However, their approach can be directly extended to generalized wavelet trees.

Lemma 2.3 ([13]). Let S[1..n] be a sequence of labels that are drawn from [1..σ].
Given a generalized wavelet tree of S, one can build auxiliary data structures for
the ball-inheritance problem with O(n lg n · s(σ)) bits of space and O(t(σ)) query
time, where (a) s(σ) = O(1) and t(σ) = O(lgε σ); (b) s(σ) = O(lg lg σ) and
t(σ) = O(lg lg σ); or (c) s(σ) = O(lgε σ) and t(σ) = O(1).

2.4 Succinct Ordinal Trees Based on Tree Covering

The technique of tree covering is employed to represent an ordinal tree succinctly [22,
23,30,34]. We summarize the algorithm of Farzan and Munro [22] for computing tree
covering in the following lemma.

Lemma 2.4 ([22, Theorem 1] and [23, Lemma 2]). Let T be an ordinal tree on n
nodes. For a fixed parameter M, one can cover the nodes in T by �(n/M) cover
elements (i.e., subtrees) of size up to 2M, all of which are pairwise disjoint other than
their root nodes. In addition, there is at most one non-root node in each cover element
that has a child in another cover element. Consequently, nodes in one cover element
are distributed into O(1) preorder segments, i.e., maximal substrings of nodes in the
preorder traversal sequence of T that are in the same cover element.

123

462 Algorithmica (2017) 78:453–491

Based on tree covering, researchers [22,30,34] designed succinct representations
for ordinal trees over an alphabet of size σ = o(lg lg n). Unlabeled trees can be
regarded as a special case in which σ = 1. Their results are summarized in Lemma 2.5.

Lemma 2.5 ([22,30,34]). An ordinal tree T on n nodes over an alphabet of size
σ = o(lg lg n) can be encoded in n(lg σ + 2) + O(σn lg lg lg n/ lg lg n) bits of space
to support the following operations in O(1) time. Here x and y, which are nodes in T ,
are identified by preorder ranks. A node is its own 0-th ancestor. In addition, a node
with label α is an α-node, and an α-node is an α-ancestor of its descendants.

• depth(T, x): the depth of x (i.e., the number of ancestors of x);
• depthα(T, x): the number of α-ancestors of x;
• parent(T, x): the parent of x;
• level_anc(T, x, i): the i-th lowest ancestor of x;
• level_ancα(T, x, i): the i-th lowest α-ancestor of x;
• LCA(T, x, y): the lowest common ancestor of x and y.

This data structure can be constructed in O(n) time.

3 Path Minimum Queries

3.1 A Lower Bound Under the Encoding Model

We first give a simple lower bound for path minimum queries under the encoding
model, i.e., the least number of bits required to encode the answers to all possible
queries.

Lemma 3.1 In the worst case, �(n lg n) bits are required to encode the answers to
all possible path minimum queries over a tree on n weighted nodes.

Proof Consider a tree T with nL = �(n) leaves. We assign the smallest nL dis-
tinct weights to these leaves, and assign larger weights to the other nodes. It follows
that the smallest weight on any path from a leaf to another must appear at one
of its endpoints. The order of the weights assigned to leaf nodes, which requires
lg(nL !) = �(n lg n) bits to encode, can be fully recovered using path minimum
queries. Therefore, �(n lg n) bits are necessary to encode the answers to path mini-
mum queries over T .
�

While the lower bound of Pettie [47] focuses on the overall processing time,
Lemma 3.1 provides a separation between path minimum and range minimum in
terms of space: �(n lg n) bits are required to encode path minimum queries over a
tree on n weighted nodes, while range minimum over an array of length n can always
be encoded in 2n bits [25].

3.2 Upper Bounds Under the Indexing Model

Nowwe consider the support for pathminimumqueries. The space cost of maintaining
a weighted tree is dominated by storing the weights of nodes. Thus we represent the

123

Algorithmica (2017) 78:453–491 463

T B

(a) (b)
Fig. 2 An illustration of the binary tree transformation. a An input tree T on 12 nodes. b The transformed
binary tree B, where dummy nodes are represented by dashed circles

input tree as an ordinal one, for which the nodes are identified by their preorder
ranks. This strategy has no significant impact to the space cost. We will assume the
indexing model described in Sect. 1 and develop several novel succinct indices for
path minimum queries. In these data structures, the weights of nodes are assumed to
be stored separately from the index for queries, and can be accessed with the preorder
ranks of nodes. The time cost to answer a given query is measured by the number of
accesses to the index and that to node weights.

Let T be an input tree on n nodes. Here T is represented as an ordinal one, and its
nodes are identified by preorder ranks. As illustrated in Fig. 2, we transform T into a
binary tree, B, of size at most 2n as follows (essentially as in the usual way but with
added dummy nodes): For each node u with d > 2 children, where v1, v2, . . . , vd are
children of u, we add d−2 dummy nodes x1, x2, . . . , xd−2. The left and right children
of u are set to be v1 and x1, respectively. For 1 ≤ k < d −2, the left and right children
of xk are set to be vk+1 and xk+1, respectively. Finally, the left and right children of
xd−2 are set to be vd−1 and vd , respectively. In this way we have replaced u and its
children with a right-leaning binary tree, where the leaf nodes are children of u. This
transformation does not change the preorder relationship among the nodes in T . In
addition, the set of non-dummy nodes along the path between any two non-dummy
nodes remain the same after transformation.

As illustrated in Fig. 3, we decompose B and obtain the directed topology tree D
using Lemma 2.1. As T and B are rooted trees, each cluster contains a node that is
the ancestor of all the other nodes in the same cluster. This node is referred to as the
head of the cluster. Note that the head of a cluster is also a boundary node except for
the cluster that includes the root of B. For a cluster that has two boundary nodes, the
non-head one is referred to as the tail of the cluster. If the head and the tail of a cluster
are not adjacent, then the path between but excluding them is said to be the spine of
the cluster, i.e., the spine is obtained by removing the head and the tail from the path
that connects them.

In the directed topology treeD, sibling clusters are ordered by the preorder ranks of
their heads. Each cluster C is identified by its topological rank, i.e., the preorder rank
of the node inD that represents C . For simplicity, a cluster at level i is called a level-i
cluster, and its boundary nodes are said to be level-i boundary nodes. To facilitate the

123

464 Algorithmica (2017) 78:453–491

a b c d e f g h i j k l m n o

D

B

a

b

c

d

e

f

g

h

i

j

k

l n

m o

Fig. 3 The multilevel restricted topological partitions and the directed topology treeD for the binary tree
B shown in Fig. 2b

use of directed topology trees, we define the following operations relevant to nodes,
clusters, boundary nodes and spines. The support for these operations is summarized
in the following lemma.

Lemma 3.2 Let T be an ordinal tree on n nodes. Then T , the transformed binary tree
B, and their directed topology tree D can be encoded using O(n) construction time
and 2n + o(n) bits of space, such that the following operations can be supported in
O(1) query time. Here x and y are nodes in B, and C is a cluster in D.

• conversions between nodes in T and B;
• level_cluster(D, i, x): return the level-i cluster that contains node x;
• LLC(D, x, y): return the cluster at the lowest level that contains nodes x and y;
• cluster_head(D,C): return the head of cluster C;
• cluster_tail(D,C): return the tail of cluster C or NULL if it does not exist;
• cluster_spine(D,C): return the endpoints of the spine of cluster C or NULL
if the spine does not exist;

• cluster_nn(D,C, x): return the boundary node of C that is the closest to node
x, given that x is outside of C;

• parent(B, x): return the parent node of x in B;
• LCA(B, x, y): return the lowest common ancestor of x and y;
• BN_rank(B, i, x): count the level-i boundary nodes that precede x in preorder
of B;

123

Algorithmica (2017) 78:453–491 465

• BN_select(B, i, j): return the j-th level-i boundary node in preorder of B.
Next we describe our data structures for path minimum queries. To highlight our

key strategy, we defer the proof of Lemma 3.2 to Sect. 5. As the conversion between
nodes in T and B can be performed in O(1) time, we assume that the endpoints of
query paths and theminimum nodes are both specified by nodes inB. We first consider
how to find the minimum node for specific subsets of paths in B. Let h be the highest
level of D. The following subproblems are defined in terms of clusters and boundary
nodes, for 0 ≤ i < j ≤ h.

• PMi, j : find minimum nodes along query paths between two level-i boundary
nodes that are contained in the same level- j cluster;

• PM′
i, j : find minimum nodes along query paths from a level-i boundary node to

a level- j one (which is also a level-i boundary node), where both boundary nodes
are contained in the same level- j cluster.

Thus the original problem is PM0,h . If PMi, j is solved, then PM′
i, j and PMi ′, j

for i ′ > i are also naturally solved.
We will select a set of canonical paths in B, for which the minimum nodes on all

these canonical paths have been precomputed and stored. By the indexing model we
adopt, singleton paths are naturally canonical. In our query algorithm, each query path
will always be partitioned into a set of canonical subpaths, so that each node on the
query path is contained in exactly one of these canonical subpaths, and the endpoints
of the query path are contained in singleton canonical paths. Let u ∼ v denote the
path from u to v. If node t is on u ∼ v, then the partition of u ∼ v could be obtained
by taking the union of the partitions of u ∼ t and v ∼ t , which both contain t in a
singleton canonical path.

Let hτ > 0 be a parameter whose value will be determined later. For each cluster
whose level is higher than or equal to hτ , we explicitly store the minimum node on
its spine, i.e., the spine is made canonical. The following lemma addresses the cost
incurred.

Lemma 3.3 It requires O(hτ (5/6)hτ n) bits of additional space and O(n) construc-
tion time to make these spines canonical.

Proof It requires i bits to store theminimumnode on the spine of a level-i cluster, as the
cluster contains atmost 2i nodes.AsB has atmost 2n nodes, there are atmost (5/6)i ·2n
level-i clusters. Thus the overall space cost is

∑h
i=hτ

(i(5/6)i · 2n) = O(hτ (5/6)hτ n)

bits.
The minimum nodes on the spines of level-hτ clusters can be simply found in

O(n) overall time using brute-force search. For hτ < i ≤ h, the spine of a level-i
cluster C , can be partitioned into singleton paths and spines of level-(i − 1) clusters
that are contained in C . This requires only O(1) time per cluster, as C is the disjoint
union of at most 2 level-(i − 1) clusters. Thus the overall construction time is O(n)+∑h

i=hτ +1((5/6)
i · 2n · O(1)) = O(n).
�

In particular, when hτ = ω(1), the space cost in Lemma 3.3 is o(n) bits.
Wewill solvePM0,hτ using brute-force search, and supportPMhτ ,h using a novel

recursive approach as described below. The base cases of recursion are summarized
in Lemmas 3.4 to 3.6.

123

466 Algorithmica (2017) 78:453–491

Fig. 4 An illustration for the
proof of Lemma 3.5. Here the
large splinegon represents a
level- j cluster and the small
ones represent level-i clusters
contained in the level- j cluster.
Bold lines represent spines of
level-i clusters and dotted lines
represent paths

t

u

v

Lemma 3.4 PM0,hτ can be solved using O(2hτ) query time and no extra space.

Proof By Lemma 2.1, each level-hτ cluster contains at most 2hτ nodes. Thus any path
of PM0,hτ can be traversed within O(2hτ) time using parent and LCA operations.
The minimum node on the path can be found in the meanwhile.
�
Lemma 3.5 For every pair of i and j satisfying hτ ≤ i < j ≤ h and j − i = O(1),
PMi, j can be solved using O(1) query time and no extra space.

Proof Let u and v be the endpoints of some given query path of PMi, j . That is,
u and v are two level-i boundary nodes that are contained in the same level- j clus-
ter. To partition the path u ∼ v, we first compute t = LCA(B, u, v). Node t must
also be a level-i boundary node; otherwise the cluster that contains t would have at
least two child clusters. As shown in Fig. 4, we then partition the path u ∼ t into
a constant number of singleton paths and spines of level-i clusters, which are all
canonical. Initially, we set x = u and let C be the level-i cluster that contains x .
The following procedure is repeated until x becomes the parent of t . We make use of
cluster_spine(D,C) to check whether x is on the spine ofC . If x is on the spine,
then y is set to be the other endpoint of the spine; otherwise y = x . In both cases, we
select the path x ∼ y, which must be canonical, and reset x = parent(B, y) and
C = level_cluster(D, i, x).

By Lemma 2.1, each level- j cluster is a disjoint union of a constant number of level-
i clusters, as 2 j−i = 2O(1) is a constant. Therefore, the path u ∼ t can be partitioned
into O(1) canonical subpaths using the procedure described above. The path v ∼ t
can be partitioned similarly. Taking the union of these two sets of selected canonical
paths except for a singleton path that contains t , we determine O(1) canonical paths
that the path u ∼ v is partitioned into, and thus the minimum node on u ∼ v. Clearly
the algorithm uses only O(1) time.
�
Lemma 3.6 For a fixed pair of i and j satisfying hτ ≤ i < j ≤ h, PM′

i, j can be

solved using O(1) query time, with an auxiliary data structure requiring O((5/6)i n)

bits of extra space and construction time.

123

Algorithmica (2017) 78:453–491 467

Proof In this proof, we will implicitly make each query path of PM′
i, j canonical and

store the minimum nodes on these paths in a highly efficient way.
We construct an auxiliary ordinal tree, Ti, j , using the technique of tree extraction.

The structure of Ti, j is obtained by extracting all level-i boundary nodes from B. By
Lemma 2.1, Ti, j consists of O((5/6)i n) nodes. For convenience, we refer to a node in
Ti, j as u′ iff it corresponds to a level-i boundary node u in B. The conversion between
u and u′ can be performed in O(1) time using BN_rank and BN_select.

Next we assign labels from alphabet {0, 1} to the nodes of Ti, j . We only consider
the case in which the level- j boundary node is the head of its cluster; the other case
can be handled similarly. Let u be any level-i boundary node and let v be the head of
C0 = level_cluster(B, j, u), i.e., the level- j cluster that contains u. As in the
proof of Lemma 3.5, the path from u to v in B can be partitioned into a sequence of
singleton paths and spines of level-i clusters. Let x ′ be the next node on the path from
u′ to v′. We assign 1 to u′ in Ti, j if u = v, or the minimum node on u ∼ v is smaller
than that on x ∼ v; otherwisewe assign 0 to u′. See Fig. 5 for an example.We represent
this labeled tree within O((5/6)i n) bits of space and O((5/6)i n) construction time
using Lemma 2.5.

To find the minimum node between u and v, we need only to find the closest 1-node
to u′ along the path from u′ to v′ in Ti, j . This node can be found in O(1) time by
performing level_ancα and depthα operations on Ti, j . Let x ′ be the node found.
Then the minimum node on u ∼ v must be x or appear on the spine of the level-i
cluster that contains x , and thus can be retrieved in O(1) time.
�

Nowwe turn to consider generalPMi, j , forwhichwewill develop a recursive strat-
egy with multiple iterations. At each iteration, we pick a sequence i = i0 < i1 < i2 <

· · · < ik = j , for which PMi0,i1 ,PMi1,i2 , . . . ,PMik−1,ik are assumed to be solved

· · ·

· · ·

4

6
6

3

5

2
3

3 1
2

6

5
3

1v v

1 1

1

0

0

0

0

1

1

· · ·

· · ·

(a) (b)

T Ti,j

Fig. 5 An illustration for the proof of Lemma 3.6. a The large splinegon represents a level- j cluster and the
small ones represent level-i clusters contained in the level- j cluster. Bold lines represent spines of level-i
clusters. The number alongside a node is its weights, and the one alongside a spine is the minimum weight
on the spine. b The 01-labeled tree Ti, j that corresponds to the cluster head v

123

468 Algorithmica (2017) 78:453–491

at the previous iteration. ByLemma 3.6, we solvePM′
i,i1

,PM′
i,i2

, . . . ,PM′
i,ik

using

O(k(5/6)i n) bits of additional space and construction time.
Let u and v be the endpoints of a query path of PMi, j . That is, u and v are

level-i boundary nodes that are contained in the same level- j cluster. As in the proof
of Lemma 3.5, we still compute t = LCA(B, u, v) and partition the paths u ∼ t
and v ∼ t . For u ∼ t , we compute C0 = LLC(B, u, t), which is the lowest level
cluster that contains both u and t . Let i ′ be the level of C0. The case in which i ′ = i
can be simply handled by calling PMi0,i1 . Otherwise, we determine s such that
is < i ′ ≤ is+1. Here s can be obtained in O(1) time by precomputation for each
possible value of i ′, which requires O(lg n) time and O(lg2 n) bits of space. Let
C1 = level_cluster(D, u, is), which is the level-is cluster that contains u. Let
x = cluster_nn(D,C1, t), which is a boundary node of C1 that is between u and
t . Similarly, let C2 be the level-is cluster that contains t and let z be a boundary node
of C2 that is between u and t . By Lemma 3.2, x and z can be found in constant time.
By Lemma 3.6, the paths u ∼ x and z ∼ t can be partitioned into O(1) canonical
paths by querying PM′

i,is . Finally, the path x ∼ z can be partitioned recursively by
querying PMis ,is+1 . See Fig. 6 for an illustration of partitioning u ∼ t . On the other
hand, the path v ∼ t can be partitioned in a similar fashion. Thus the partition of the
path u ∼ v is obtained.

Summarizing the discussion above, we have the following recurrences. Here
S�(i, j) is the space cost and the construction time, and Q�(i, j) is the query time
spent at the first � iterations for solving PMi, j . It should be drawn to the reader’s
attention that the coefficient of Q�(is, is+1) is 1 in Equation 2, since a top-to-bottom
query path requires at most one recursive call to subproblems of the form PMis ,is+1 .

S�+1(i, j) =
k−1∑
s=0

S�(is, is+1) + O(k(5/6)i n) (1)

Q�+1(i, j) = k−1
max
s=0

Q�(is, is+1) + O(1). (2)

Fig. 6 An illustration of
partitioning u ∼ t . The
outermost splinegon represents
the level-is+1 cluster that
contains both u and t . The paths
u ∼ x and z ∼ t , which are
represented by dashed lines, are
partitioned by querying
PM′

i,is
. The path x ∼ z, which

is represented by a dotted line, is
partitioned by querying
PMis ,is+1

C0

C1

C2

u

x

z

t

PMi,is

PMis,is+1

123

Algorithmica (2017) 78:453–491 469

The desired recursive strategy follows from these recurrences.

Lemma 3.7 Given a fixed value L, there exists a recursive strategy and some constant
c such that, for 0 ≤ � ≤ L, S�(i, A�(i)) ≤ c(6/7)i n and Q�(i, A�(i)) ≤ c�.

Proof At the 0-th iteration, we set A0(i) = i + 1. This can be used as the base case.
By Lemma 3.5, PMi,i+1 can be supported using O(1) query time at no extra space
cost. Thus the statement holds for � = 0.

At the (� + 1)-st iteration, we choose the sequence i, i + 13, A�(i + 13), A(2)
� (i +

13), . . . , A(i)
� (i + 13), A(i+1)

� (i + 13). The last term is A�+1(i). By Equation 1, for
some sufficiently large constant c1:

S�+1(i, A�+1(i)) ≤
∑

0≤ j≤i

S�(A
(j)
� (i + 13), A(j+1)

� (i + 13)) + O(i(5/6)i n)

≤ O(i(5/6)i n) +
∑

0≤ j≤i

c1(6/7)
A(j)

� (i+13) · n

≤ O(i(5/6)i n) +
∑

0≤ j≤i

c1(6/7)
i+13+ j · n

≤ O(i(5/6)i n) + 7c1(6/7)
i+13 · n ≤ c1(6/7)

i · n.

This inequality follows because 7(6/7)13 ≈ 0.9436 < 1. Similarly, Equation 2 implies
that, for some sufficiently large constant c2,

Q�+1(i, A�+1(i)) ≤ O(1) + max
0≤ j≤i

Q�(A
(j)
� (i + 13), A(j+1)

� (i + 13))

≤ O(1) + c2� ≤ c2(� + 1).

The induction thus carries through, and the proof is completed by setting c to be the
larger one of c1 and c2.
�

We finally have Lemmas 3.8 and 3.9, which cover Theorem 1.1.

Lemma 3.8 For m ≥ n, PM0,h can be solved using O(α(m, n)) query time in
addition to O(m) bits of extra space and construction time.

Proof Given a parameter m ≥ n, we set L = α(m, n) and hτ = 0, and
recurse one more iteration. At the final (L + 1)-st iteration, we pick the sequence
0, 1, 2, . . . , �m/n�, AL(�m/n�). The last term AL(�m/n�) > n ≥ h. This gives us

SL+1(0, h) ≤ SL+1(0, AL(�m/n�))
≤ SL(�m/n�, AL(�m/n�)) + O(�m/n�n) (Equation 1 and Lemma 3.5)

≤ O(m) (Lemma 3.7)

123

470 Algorithmica (2017) 78:453–491

and

QL+1(0, h) ≤ QL+1(0, AL(�m/n�))
≤ QL(�m/n�, AL(�m/n�)) + O(1) (Equation 2 and Lemma 3.5)

≤ O(L) (Lemma 3.7)

= O(α(m, n)).

Adding Lemmas 3.2 and 3.3, the overall space cost is O(m) additional bits, the overall
construction time is O(m), and the query time is QL+1(0, h) = O(α(m, n)).
�
Lemma 3.9 For r(n) = (6/7)lgα(n) ·n = o(n),PM0,h can be solved using O(α(n))

query time, 2n + O(r(n)) bits of extra space, and O(n) construction time.

Proof We choose L = α(n) and hτ = �lg L	. Note that hτ = ω(1) and AL(hτ) ≥
h. Therefore we have SL(hτ , AL(hτ)) = O((6/7)hτ n) = O(r(n)) = o(n), and
QL(hτ , AL(hτ)) = O(L) = O(α(n)). By Lemma 3.4, PM0,hτ and PM′

0,hτ
can be

solvedusingO(2hτ) = O(α(n))query time at no extra space cost.AddingLemmas3.2
and 3.3, the overall space cost is 2n+O(r(n)) additional bits, the overall construction
time is O(n), and the query time is O(α(n)).
�

By constructing the preorder label sequence [36,38] of T , we further have

Corollary 3.10 Let T be an ordinal tree on n nodes, each having a weight drawn from
[1..σ]. Then T can be represented (a) using n lg σ +O(m) bits of space to support path
minimum queries in O(α(m, n)) time, for any m ≥ n; or (b) using n(lg σ + 2)+ o(n)

bits of space to support path minimum queries in O(α(n)) time.

By directly applying the result of Sadakane and Grossi [49], we can further achieve
compression and replace the n lg σ additive term in the space cost of both the results of
the above corollary by nHk +o(n) · lg σ while providing the same support for queries,
where k = o(logσ n) and Hk is the k-th order empirical entropy of the preorder label
sequence.

4 Semigroup Path Sum Queries

In this section, we generalize the approach of supporting path minimum queries to
semigroup path sum queries. As in Sect. 3, we transform the given tree into a binary
tree, which is further decomposed using Lemma 2.1. We also define the notions of
spines, heads and tails in the same manner. Again, our strategy is to make some paths
canonical, forwhich the sumofweights along each canonical pathwill be precomputed
and stored. Naturally, all singleton paths are still canonical. Each query path will be
partitioned into disjoint canonical subpaths, and the sum of weights along the whole
query path can be obtained by summing up the precomputed sums over these canonical
subpaths.

Let hτ > 0 be a parameter whose value will be determined later. The spines of
clusters whose levels are higher than or equal to hτ are made canonical. As in Sect. 3,
we define subproblems PS i, j and PS ′

i, j as follows:

123

Algorithmica (2017) 78:453–491 471

• PS i, j : sum up weights of nodes along query paths between two level-i boundary
nodes that are contained in the same level- j cluster;

• PS ′
i, j : sum up weights of nodes along query paths from a level-i boundary node

to a level- j one, where both boundary nodes are contained in the same level- j
cluster.

PS0,hτ will be solved using brute-force search, while PShτ ,h will be solved using the
recursive approach as described in Sect. 3. In the following, Lemmas 4.1 to 4.4 are
modified from Lemmas 3.3 to 3.6. For each lemma, we give its proof only if the proof
for the corresponding lemma in Sect. 3 cannot be applied directly.

Lemma 4.1 It requires O((5/6)hτ n lg σ) bits of additional space and O(n) construc-
tion time to make these spines canonical.

Proof As the semigroup contains σ elements, it requires lg σ bits to store the sum
of weights on the spine of a cluster. Thus the overall space cost is

∑h
i=hτ

((5/6)i ·
2n · lg σ) = O((5/6)hτ n lg σ) bits. In particular, when hτ = ω(1), the space cost is
o(n lg σ) bits. The construction is the same in Lemma 3.3.
�
Lemma 4.2 PS0,hτ can be solved using O(2hτ) query time and no extra space.

Lemma 4.3 For every pair of i and j satisfying that hτ ≤ i < j ≤ h and j − i =
O(1), PS i, j can be solved using O(1) query time and no extra space.

Lemma 4.4 For a fixed pair of i and j satisfying that hτ ≤ i < j ≤ h, PS ′
i, j can be

solved using O(1) query time, O((5/6)i n lg σ) bits of extra space, and O((5/6)i n)

construction time.

Proof Wemake each query path ofPS ′
i, j canonical and store the sumofweights along

each of these paths explicitly. It is easy to see that the space cost is O((5/6)i n lg σ)

extra bits and the construction time is O((5/6)i n lg σ).
�
Following the same recursive strategy in Sect. 3, we have the following recurrences.

Here S�(i, j) is the space cost, P�(i, j) the construction time, and Q�(i, j) is the query
time spent at the first � iterations for solving PS i, j .

S�+1(i, j) =
k−1∑
s=0

S�(is, is+1) + O(k(5/6)i n lg σ) (3)

P�+1(i, j) =
k−1∑
s=0

P�(is, is+1) + O(k(5/6)i n) (4)

Q�+1(i, j) = k−1
max
s=0

Q�(is, is+1) + O(1). (5)

We then have the following key lemma, which is similar to Lemma 3.7.

Lemma 4.5 Given a fixed value L, there exists a recursive strategy and some constant
c such that, for 0 ≤ � ≤ L, S�(i, A�(i)) ≤ c(6/7)i n lg σ , P�(i, A�(i)) ≤ c(6/7)i n,
and Q�(i, A�(i)) ≤ c�.

123

472 Algorithmica (2017) 78:453–491

Finally, we store weights of nodes in the preorder label sequence [36,38] of T . This
requires n lg σ + o(n) bits of space, and the weight of each node can be accessed in
O(1) time. The rest of the proof for Theorem 1.2 follows from the same strategies of
Lemmas 3.8 and 3.9.

5 Encoding Topology Trees: Proof of Lemma 3.2

Let T be an ordinal tree on n nodes. As described in Sect. 3, we transform T into
a binary tree B, and compute the directed topology tree of B as D. Let nD denote
the number of nodes in D. By Lemma 2.1, we have that nD = O(n), as there are
at most (5/6)i · 2n level-i clusters. Let i1 = �12 lg lg n	 and i2 = �lg lg n� − 1.
Again by Lemma 2.1, there are at most n1 = (5/6)i1 · n = O(n/(6/5)12 lg lg n) =
O(n/ lg12 lg(6/5) n) < O(n/ lg3 n) level-i1 clusters, each being of size at most
m1 = 2i1 ≤ 212 lg lg n+1 = 2 lg12 n. Similarly, there are at most n2 = (5/6)i2 · n =
O(n/ lglg(6/5) n) < O(n/(lg1/5 n)) level-i2 clusters, each being size of at most
m2 = 2i2 ≤ 2lg lg n−1 = (lg n)/2. Clusters at levels i1 and i2 are referred to as
mini-clusters and micro-clusters, respectively.

We will precompute several lookup tables that support certain queries for each
possible micro-cluster. Note that two clusters are different if the sets of non-dummy
nodes are different. There are O(n1−δ) distinct micro-clusters for some δ > 0, since
m2 ≤ (1/2) lg n. If each micro-cluster costs o(nδ) bits, then the space cost of the
lookup table is only o(n) additional bits. We first make use of a lookup table to store
the encodings of micro-clusters.

Lemma 5.1 All micro-clusters can be encoded in 2n + o(n) bits of space such that
given the topological rank of a micro-cluster, its encoding can be retrieved in O(1)
time.

Proof Note that B has at most 2n nodes. Given a micro-cluster C , we do not store
its encoding directly because it could require about 4n bits of space for all micro-
clusters. Instead, we define X to be the union of non-dummy nodes and dummy
boundary nodes of C and store only CX , where CX is the X -extraction of C as
defined in Sect. 2.2. We also mark the (at most 2) dummy nodes inCX , which requires
O(lgm2) = O(lg lg n) bits per node. As illustrated in Fig. 7, we encode CX as bal-
anced parentheses [44]. The overall space cost of encodingC is 2nC +O(lg lg n) bits,
where nC is the number of non-dummy nodes in C . We concatenate the above encod-
ings of all micro-clusters ordered by topological rank and store them in a sequence,
P , of n′ = 2n + O(n lg lg n/(lg1/5 n)) bits.

We construct a sparse bit vector, P ′, of the same length, and set P ′[i] to 1 iff
P[i] is the first bit of the encoding of a micro-cluster. P ′ can be represented using
Lemma 2.2 in lg

(n′
n2

) + O(n lg lg n/ lg n) = O(n lg lg n/(lg1/5 n)) bits to support
rankα and selectα in constant time. We construct another bit vector B0[1..nD],
in which B0[j] = 1 iff the cluster with topological rank j is a micro-cluster, which is
also encoded using Lemma 2.2 in O(n lg lg n/(lg1/5 n)) bits.

To retrieve the encoding of a cluster, C , whose topological rank is j , we first use
B0 to check if C is a micro-cluster. If this is true, let r = rank1(B0, j). Then the

123

Algorithmica (2017) 78:453–491 473

((())(()()(())))

(a) (b) (c)

C CX

Fig. 7 An example of encodingmicro-clusters. aAmicro-clusterC in which dummy nodes are represented
by dashed circles.bThe correspondingCX obtained by preserving non-dummynodes and dummyboundary
nodes. c The balanced parentheses for CX

encoding of CX is P[select1(P ′, r)..select1(P ′, r +1)−1]. To recover C from
CX , we need only to reverse the binary tree transformation described at the beginning
of Sect. 3.2. This can be done in O(1) time using a lookup table F0 of o(n) bits.
�

Now we start to consider the support for operations. By Lemma 2.1, each node is
contained in exactly one cluster at each level. We borrow the terminology from Geary
et al.’s work [30] and define the τ -name of a node x to be (τ1(x), τ2(x), τ3(x)), where
τ1(x), τ2(x) and τ3(x) are the topological ranks of the level-i1, level-i2, and level-0
clusters that contain x , respectively. Let i3 = 0. Note that, for k = 1, 2, τk+1(x) is
represented as the relative value with respect to the level-ik cluster that contains x ,
i.e., the difference between the topological ranks of the level-ik+1 and level-ik clusters
that contain x . Thus τ2(x) and τ3(x) can be encoded in O(lg lg n) bits.

As in Lemma 2.1, preorder segments are defined to be maximal substrings of nodes
in the preorder sequence that are in the same cluster [34, Definition 4.22]. By the same
lemma, each cluster contains only one node or has only one child cluster, and thus the
nodes of each cluster belong to at most 2 preorder segments. These preorder segments
and the cluster are said to be associated with each other, and the preorder segments of a
level-i cluster are called level-i preorder segments. For simplicity, level-i1 and level-i2
preorder segments are also called mini-segments and micro-segments, respectively.

In the following proofs, we will precompute several lookup tables that store certain
information for each possible micro-cluster C . When we say the hierarchy of C , we
mean the hierarchy obtained by partitioning C as described in Lemma 2.1.

Lemma 5.2 It requires O(1) time and o(n) bits of additional space for the conversion
between the preorder rank of a node in T or B and its τ -name.

Proof We only consider the conversion for nodes in B; the other case can be handled
similarly. For each level i ∈ [i2..h] and each level-i cluster C , we store the following
information in D(C): its topological rank, its root node, its boundary nodes, and the
starting and ending positions of its associated preorder segments in B. For levels i1
to h, it requires O(lg n) bits of space per cluster to store the information directly (the
nodes stored in D(C) are encoded as their preorder ranks in B). For each cluster C at

123

474 Algorithmica (2017) 78:453–491

levels i2 to i1 − 1, we store the relative ranks with respect to the mini-cluster C ′ that
contains C . More precisely, we encode the difference between the topological ranks
of C and C ′, and each node stored in D(C) is encoded as i if it is the i-th node in C ′ in
preorder. This requires only O(lg lg n) bits per cluster, as each mini-cluster is of size
at most m1 = O(lg12 n). Physically, for all clusters above level i2, we use two arrays
to store the above information and use two bit vectors to locate the corresponding
entry for any given cluster. For levels i1 to h, we construct a bit vector B1[1..nD] in
which B1[j] = 1 iff the cluster with topological rank j is at or above level i1. We
construct an array D1 whose length is equal to the number of clusters at levels i1 to
h; for each cluster C at levels i1 to h − 1, D(C) is stored in the rank1(B1, j)-th
entry of D1 if the topological rank of C is j . Similar auxiliary data structures D2 and
B2 are also constructed for clusters at levels i2 to i1 − 1. In the hierarchy D, there
are O(n1) clusters at levels i1 to h, and O(n2) clusters at levels i2 to i1 − 1. Thus
the overall space cost, including the cost of encoding B1 and B2 using Lemma 2.2, is
O(n1) × O(lg n) + O(n2) × O(lg lg n) = o(n) bits.

For k ∈ {1, 2}, all level-ik preorder segments form a partition of the preorder
traversal sequence of B, and we mark their starting positions in a bit vector Vk . More
precisely, we set Vk[j] = 1 if and only if the j-th node in preorder of B is the
first node in some level-ik preorder segment. By Lemma 2.2, these two bit vectors
can be encoded in o(n) bits of space to support rank and select in O(1) time.
For mini-segment (or micro-segment) s, we store in E(s) the topological rank of its
associated mini-cluster (or micro-cluster). It requires O(n1)×O(lg n) = O(n/ lg2 n)

bits to store E(s) directly for all mini-segments. For each micro-segment s, we store
the relative topological rank of its associated micro-cluster with respect to the mini-
cluster that contains s. This requires only O(lg lg n) bits per micro-segment, and
O(n2) × O(lg lg n) = O(n lg lg n/(lg1/5 n)) bits in total. See Fig. 8 for an example.

Finally, we precompute a lookup table F1 that stores, for each possiblemicro-cluster
C , the mapping between nodes in C and level-0 clusters in the i2-level hierarchy of
C . These nodes and level-0 clusters are encoded as the relative preorder ranks and
topological ranks with respect to C . It is easy to see that F1 occupies o(n) bits of
space, since m2 ≤ (1/2) lg n.

Given a node x in B, we first locate s1, the mini-segment that contains x , using
rank operations on V1. By accessing E(s1), we can determine C1, which is the mini-
cluster that contains x and the associated mini-segment s1. Then we locate s2, the
micro-segment that contains x , using V2. By accessing E(s2) and D(C1), we can
determine C2, the micro-cluster that contains x . Finally, by accessing F1, we can find
the level-0 cluster that represents x . That is, we obtain the τ -name of x .

In the other direction, given the τ -name of some node x , we can immediately
determine C1, C2 and C3, which are the level-i1, level-i2 and level-0 clusters that
contain x , respectively. By accessing D(C1) and D(C2), we can find the associated
preorder segments of C2. By accessing F1, we can compute the relative preorder rank
of x with respect to C2. Then we can determine the preorder rank of x in B.
�

The conversion between nodes in T and B directly follows from Lemma 5.2. Thus,
to answer queries that ask for a node, it suffices to return either its τ -name, or its
preorder rank in B or T . In the remaining part of this section, when we talk about the

123

Algorithmica (2017) 78:453–491 475

a b c d e f g h i j k l m n o

D

B

a

b

c

d

e

f

g

h

i

j

k

l n

m o

B1[1..39]: 111000000000010001100000000010000000000
B2[1..39]: 000100010000001000010000010001000100000

mini-clusters

micro-clusters

fabdcejhgiklnmo

V1[1..12]: 110000100010000
V2[1..12]: 110100110010100

Fig. 8 An illustration for the proofs of Lemmas 5.2 and 5.3. Here mini-clusters and micro-clusters are
enclosed by dashed and dotted splinegons, respectively. The bit vectors B1, B2, V1, and V2 are constructed
for the directed topology tree shown in Fig. 3

preorder rank of a node x , we refer to the preorder rank of x in B, unless otherwise
specified.

Lemma 5.3 Operations cluster_head and cluster_tail can be supported
in O(1) query time and o(n) bits of additional space.

Proof We precompute a lookup table F2 that stores, for each possible micro-cluster
C and each cluster C ′ in the i2-level hierarchy of C , the root and the boundary nodes
of C ′. These nodes are encoded as the relative preorder ranks with respect to C . It is
clear that F2 occupies o(n) bits of space.

Recall the bit vectors B1 and B2 constructed in the proof of Lemma 5.2, as well
as the information stored in D(C) for each cluster C whose level is higher than or
equal to i2 in the same proof. Given a cluster C with topological rank j , we first
determine if the level of C is at or above i1 by checking if B1[j] = 1. If the level
of C is at or above i1, then we can retrieve the answers to cluster_head and
cluster_tail directly from D(C). Otherwise, we find the mini-cluster C1 that
contains C by select1(B1,rank1(B1, j)). Then we determine if the level of C
is in [i2..i1 − 1] by checking if B2[j] = 1. If this is true, then we can obtain the
answers using D(C1) and D(C): To locate the root, cr , of C (the boundary nodes
can be located using the same approach), the relative preorder of cr in C1 can be

123

476 Algorithmica (2017) 78:453–491

Fig. 9 An illustration of the
support for level_cluster.
a A directed topology tree D in
which the topmost three levels
belong to Dabove . b The
corresponding bit vector B3 for
D and Dabove B3: 1110001000001100

(a) (b)

Dabove

D

used to locate the preorder segment in C1 containing cr . The preorder rank of the first
node in this segment, which is stored in D(C1), can be used to further compute the
preorder rank of cr in constant time. If the level of C is not within the above range, we
further find the micro-cluster C2 that contains C by select1(B2,rank1(B2, j)).
By accessing D(C1), D(C) and the entry in F2 that corresponds to the encoding of
C2, we can obtain the answers in O(1) time.
�

Lemma 5.4 Operationslevel_cluster andLLC can be supported in O(1) query
time and o(n) bits of additional space.

Proof LetDabove be the topmost h−i2+1 levels ofD. It is clear thatDabove represents
the hierarchy for the clusters at levels i2 to h. We storeDabove using Lemma 2.5. This
requires O(n2) = O(n/(lg1/5 n)) bits of space, since there are at most O(n2) clusters
at these levels. As illustrated in Fig. 9, we construct a bit vector B3 in which B3[j] is 1
iff the cluster with topological rank j is present inDabove. By Lemma 2.2, B3 occupies
o(n) bits of space and can be used to perform conversions between the topological
rank of any given cluster present inDabove and its preorder rank inDabove in constant
time.

Let n′
C be the number of nodes in a micro-cluster C , including both dummy and

non-dummy ones. We precompute a lookup table F3 that stores, for each possible
micro-cluster C , each level i ∈ [0..i2], and each j ∈ [1..n′

C], the relative topological
rank of the level-i cluster in the hierarchy of C that contains the j-th node of C . We
also precompute another lookup table F4 that stores, for each possible micro-cluster
C , and each j1, j2 ∈ [1..n′

C], the lowest level cluster in the hierarchy ofC that contains
the j1-st and the j2-nd nodes of C .

We have two cases in computing level_cluster(D, i, x). If i ≤ i2, then the
answer can be retrieved from F3 directly. Otherwise, we can determine the micro-
cluster that contains x using the τ -name of x , and find the level-i cluster that contains
x using level_anc operations on Dabove.

The support for LLC(D, x, y) is similar. We first determine if x and y are in the
same micro-cluster using their τ -names. If they are in the same micro-cluster, then
the answer can be retrieved from F4 in O(1) time. Otherwise, we can find the micro-
clusters that contain x and y, respectively. Let these micro-clusters be C1 and C2. We
can compute LLC by finding the lowest common ancestor of C1 and C2 in Dabove.
�

123

Algorithmica (2017) 78:453–491 477

Fig. 10 An illustration for the
proof of Lemma 5.5. a A binary
tree B in which micro-clusters
are represented by splinegons,
and their roots are represented
by solid circles. b The tree T̃
obtained by extracting roots of
micro-clusters in B

B T

(a) (b)

Lemma 5.5 Operation LCA can be supported in O(1) query time and o(n) bits of
additional space.

Proof As described in Sect. 2.2, we extract the roots of all micro-clusters from B. As
illustrated in Fig. 10, the extracted tree, T̃ , is maintained using Lemma 2.5. For the
conversion between nodes in T̃ and roots of micro-clusters in B, we maintain a bit
vector V3 using Lemma 2.2, for which the j-th bit is 1 iff the j-th node of B is the root
of some micro-cluster. In addition, we precompute a lookup table F5 that stores, for
each possible micro-clusterC , and each j1, j2 ∈ [1..n′

C], the lowest common ancestor
of the j1-st and the j2-nd nodes of C .

To compute LCA(B, x, y), we first verify if nodes x and y are in the same micro-
cluster. If they are both in the same cluster, then their lowest common ancestor can
be found by accessing F5. Otherwise, we determine the micro-clusters that contain x
and y. Let u and v be the roots of these micro-clusters, respectively. We perform an
LCA operation on T̃ and find the lowest micro-cluster root that is a common ancestor
of u and v. This root must be the lowest common ancestor of x and y.
�
Lemma 5.6 Operation cluster_nn can be supported in O(1) query time and no
extra space.

Proof Let C be a cluster and let x be some node that is outside of C . To compute
cluster_nn(D,C, x), we first determine if x is in the subtree rooted at the root of
C . Let y = cluster_head(D,C). If LCA(B, x, y) �= y, then x is also outside of
the subtree rooted at y, and the closest boundary node to x must be y. Otherwise, the
closest boundary node is z = cluster_tail(D,C), the tail of the cluster C .
�
Lemma 5.7 Operation parent can be supported in O(1) query time and o(n) bits
of additional space.

Proof We precompute a lookup table F6 that stores, for each possible micro-cluster
C and each j ∈ [1..n′

C], the parent of the j-th node of C . Given a node x , we first
find the micro-cluster C that contains x . If x is not the root of C , then we can retrieve
the parent node of x from F6 directly. Otherwise, we find the lowest micro-cluster C ′
above C by finding the parent of the node in T̃ that represents C . Then the parent of x
must be the closest boundary node of x in C ′, which can be found by cluster_nn.

�

123

478 Algorithmica (2017) 78:453–491

Lemma 5.8 Operations BN_rank and BN_select can be supported in O(1) query
time and o(n) bits of additional space.

Proof Wefirst construct data structures to supportBN_rank(B, i, x) andBN_select
(B, i, j) when i ∈ [i2..h]. For each i ∈ [i2..h], we construct a bit vector Ii , in which
Ii [j] = 1 iff the j-th node in preorder is a level-i boundary node. Each of these
O(h) = O(lg n) bit vectors is encoded using Lemma 2.2. It is clear that to support
these two operations in this special case, it is sufficient to perform a single rank or
select operation on Ii , and thus can be performed in constant time. We calculate
the space cost in two steps. We first sum up the space cost of all Ii ’s for i ∈ [i1, h].
The number of 1-bits in each of these bit vectors is O(n/ lg3 n), and thus the total cost
of these O(lg n) bit vectors is O(lg n)× O(n lg lg n/ lg3 n) = O(n lg lg n/ lg2 n). We
then sum up the space occupancy of all Ii ’s for i ∈ [i2..i1 − 1]. As the number of 1
bits in each of these bit vectors is O(n/ lg1/5 n), the total cost of these O(lg lg n) bit
vectors is O(n(lg lg n)2/ lg1/5 n) bits, which subsumes the space cost computed in the
previous step.

Next we construct data structures to support BN_rank(B, i, x) for i ∈ [0..i2 − 1].
Let ns and n′

s denote the number of mini-segments and micro-segments, respectively.
We construct the following two sets of arrays and one lookup table:

• An array Gi [1..ns] for each i ∈ [0..i2 − 1], in which Gi [j] stores the number of
level-i boundary nodes that precede the j-th mini-segment in preorder;

• An array G ′
i [1..n′

s] for each i ∈ [0..i2 − 1], in which G ′
i [j] stores the number of

level-i boundary nodes that precede the j-th micro-segment in preorder and also
reside in the same mini-segment containing this micro-segment;

• A universal lookup table F7 that stores, for any possible micro-cluster C (here
micro-clusters with the same tree structure but different micro-segments are
considered different; recall that there are at most 2 micro-segments in each micro-
cluster), any node, x , inC identified by its τ3-name, and any number i ∈ [0..i2−1],
the number of level-i boundary nodes preceding x in preorder.

We illustrate the definition of Gi ’s in Fig. 11. To analyze storage cost, observe
that the space costs of all the G ′

i ’s dominate the overall cost, which is O(lg lg n) ×
O(n lg lg n/ lg1/5 n) = O(n(lg lg n)2/ lg1/5 n) bits.

With these auxiliary structures and the bit vectors V1 and V2 constructed in the
proof of Lemma 5.2, we can support BN_rank(B, i, x) for i ∈ [0..i2 − 1] as follows.
We first retrieve Gi [rank(V1, i)] which is the number of level-i boundary nodes pre-
ceding the mini-segment, s, containing x , and G ′

i [rank(V2, i)] which is the number
of level-i boundary nodes inside s that precede the micro-segment, s′, containing x .
It now suffices to compute the number of level-i boundary nodes preceding x inside
s′. This can be computed by first retrieving the encoding of the micro-cluster con-
taining x (its topological rank is τ1(x) + τ2(x)) and then perform a table lookup in
F7.

Finally, to support BN_select(B, i, j) for i ∈ [0..i2 − 1], we construct the fol-
lowing data structures (ei denotes the number of level-i boundary nodes):

• Abit vector Ri [1..ei] for each i ∈ [0..i2−1], in which Ri [j] = 1 iff the j-th level-i
boundary node in preorder has the smallest preorder rank among all the level-i

123

Algorithmica (2017) 78:453–491 479

C

the j1-st
mini-segment

the j2-nd
mini-segment

· · ·

· · ·
Fig. 11 An illustration of the support for BN_rank. Here a mini-cluster C with two mini-segments is
enclosed by a solid splinegon, and the nodes of these twomini-segments are enclosed by dashed splinegons.
We draw only level-i boundary nodes inside C and the edges and paths that connect them, which are
represented by solid and dotted lines, respectively. Then we have Gi [j1] = k1, Gi [j1 + 1] = k1 + 5,
Gi [j2] = k1 + k2 + 5, and Gi [j2 + 1] = k1 + k2 + 10, where k1 is the number of level-i boundary nodes
that precede the head of C in preorder, and k2 is the number of level-i boundary nodes that are descendants
of the tail of C

boundary nodes contained in the same mini-segment (let ti denote the number of
1-bits in Ri);

• An array Si [1..ti], in which Si [j] stores the topological rank of the mini-cluster
containing the level-i boundary node corresponding to the j-th 1-bit in Ri ;

• A bit vector R′
i [1..ei] for each i ∈ [0..i2 − 1], in which R′

i [j] = 1 iff the j-th
level-i boundary node in preorder has the smallest preorder rank among all the
level-i boundary nodes contained in the same micro-segment (let t ′i denote the
number of 1-bits in R′

i);• An array S′
i [1..t ′i], in which S′

i [j] stores a pair: the first item is the relative topo-
logical rank of the micro-cluster (relative to the mini-cluster that it resides in)
containing the level-i boundary node y corresponding to the j-th 1-bit in R′

i , and
an integer in {1, 2} indicating which of the up to 2 micro-segments inside this
micro-cluster contains y;

• A universal lookup table F8 that stores, for any possible micro-cluster C , any
number i ∈ [0..i2 − 1], any number j ∈ [1..nC] and any number k ∈ {1, 2}, the
τ3-name of the j-th level-i boundary node in the k-th micro-segment of C , or −1
if such a node does not exist.

As ti = O(n/ lg3 n) and t ′i = O(n/ lg1/5 n) for i ∈ [0..i2−1], it is easy to show that
these structures occupy O(n(lg lg n)2/ lg1/5 n) bits. To support BN_select(B, i, j)
for i ∈ [0..i2 − 1], let z denote the answer to be computed. We first use Ri and Si to
locate the mini-cluster containing z, and then use R′

i and S′
i to locate z’s micro-cluster

C . In this process, we also find out which micro-segment of C contains z, and how
many level-i boundary nodes precede z in preorder are in the same micro-segment. A
table lookup using F8 will complete this process.
�

123

480 Algorithmica (2017) 78:453–491

6 Path Reporting Queries

In this section, we consider the problem of supporting path reporting queries. Let T
denote the input tree. We represent T as an ordinal one, and assume that the weights
of nodes are drawn from [1..σ]. We follow the general strategy of He et al. [36]
that makes use of range trees and tree extraction. To achieve new results, we also
make novel use of several other data structural techniques, including tree extraction
described in Sect. 2.2, the ball-inheritance problem described in Sect. 2.3, and finally
the succinct indices developed in Sect. 3.

For completeness, we review the data structures of He et al. [36]. We build a
conceptual range tree on [1..σ] with the branching factor f = �lgε n	. Starting from
the top level, which contains [1..σ] initially, we keep splitting each range at the current
lowest level into f child ranges of almost equal sizes, until we obtain σ leaf ranges
that contains a single weight each. This conceptual range tree has h = �log f σ	 + 1
levels, which are numbered from top to bottom. The top level is the first level, and the
bottom level is the h-th level.

For � = 1, 2, . . . , h − 1, we create an auxiliary tree T� for the �-th level, which
initially contains a dummy root r� only.We list the ranges at the �-th level in increasing
order of left endpoints. Let [a1..b1], [a2..b2], . . . , [am ..bm] be these ranges. For i =
1, 2, . . . ,m, we construct Fai ,bi as described in Sect. 2.2, and add the roots of ordinal
trees in Fai ,bi as children of r�, preserving the original left-to-right order. Remember
that the ranges at each level form a disjoint union of [1..σ]. Thus there is a one-to-one
correspondence between the non-dummy nodes in T� and the nodes in T .

For each T�, we assign labels to its nodes. The dummy root is always assigned
1. For each node x in T , we use x� to denote the node in T� that corresponds to x .
We say that a range [a..b] at the �-th level contains x� if the weight of x is between
a and b. We assign a label α to x� if the range at the (� + 1)-st level that contains
x�+1 is the α-th child of the range at the �-th level that contains x�. See Fig. 12 for
an example. T� is maintained using a succinct representation for labeled ordinal trees
over a sublogarithmic alphabet, which is summarized in Lemma 6.1.

Lemma 6.1 ([36, Lemma 6]). An ordinal tree T on n nodes whose labels are drawn
from [1.. f], where f = O(lgε n), can be represented using n(lg f + 2)+ o(n) bits of
space to support the operations listed in Lemma 2.5 and the following operations in
constant time. Here x and z are nodes in T , α and β are in [1.. f], and a node whose
label is α is said to be an α-node.

• pre_rankα(T, x) Return the number of α-nodes that precede x in preorder;
• pre_selectα(T, i) Return the i-th α-nodes in preorder of T ;
• pre_countβ(T, i)Return the number of nodes whose preorder ranks are at most
i and labels are at most β;

• lowest_ancα(T, x) Return the lowest α-ancestor of x if such an α-ancestor
exists, otherwise return NULL;

• node_summarize(T, x, z)Given that node z is an ancestor of x, this operation
returns f bits, where the α-th bit is 1 if and only if there exists an α-node on the
path from x to z (excluding z), for 1 ≤ α ≤ f .

123

Algorithmica (2017) 78:453–491 481

Fig. 12 a An input tree T with
n = 11 and σ = 6, for which the
conceptual range tree has
branching factor f = 3. b The
corresponding tree T1, where the
dummy root r1 is represented by
a dashed circle. c The
corresponding tree T2, where the
dummy root r2 is represented by
a dashed circle, and F1,2, F3,4,
and F5,6 are marked by dotted
splinegons

1

2 3 5

1 4 2 5 6 1 2

1

2

1 2 1 2

1

2

1

1 2

r2

T

T2

1

1

1 2 3

1 2 1 3 3 1 1

T11r1

F1,2

F3,4 F5,6

(a) (b)

(c)

When representing each T� using Lemma 6.1, the preorder label sequence of T�

is stored explicitly. Thus the preorder label sequences of all T�’s essentially form
the generalized wavelet tree of the preorder label sequence of T . The pre_rankα ,
pre_selectα ,pre_countβ andlowest_ancα operations allowus to traverse up
and down this generalized wavelet tree using standard wavelet tree algorithms. More
details are given by He et al. [36], and their result is summarized in the following
lemma:

Lemma 6.2 ([36]). Given a node x in T�, where 1 < � ≤ h − 1, its corresponding
node in T�−1 can be found in O(1) time. Similarly, given a node x in T�, where
1 ≤ � < h − 1, its corresponding node in T�+1 can be found in O(1) time.

We also store one variant of the auxiliary data structures described in Lemma 2.3,
which support the ball-inheritance problem using O(n lg n · s(σ)) bits of space and
O(t(σ)) query time. This implies the following lemma:

Lemma 6.3 Given a node x in T�, where 1 ≤ � ≤ h − 1, its corresponding node in
T can be found using O(n lg n · s(σ)) bits of additional space and O(t(σ)) time.

Now we describe the details of achieving improved query time. Let u and v denote
the endpoints of the query path, and let [p..q] denote the query range. We compute
t = LCA(u, v). Let Au,t denote the set of nodes on the path from u to and excluding
t . Thus the query path can be decomposed into Au,t , Av,t , and {t}. We only consider
how to report nodes in Au,t ∩ Rp,q , where Rp,q , as defined in Sect. 2.2, is the set of
nodes in T whose weights are in [p..q].

We find the lowest range in the conceptual range tree that covers the query range
[p..q]. This range, which is denoted by [a..b], can be computed from the lowest
common ancestor of the leaf ranges containing p and q. Let k denote the level that

123

482 Algorithmica (2017) 78:453–491

contains [a..b]. We then locate the nodes x and z in Tk that correspond to anca,b(T, u)

and anca,b(T, t), respectively.

Lemma 6.4 The nodes x and z can be found using O(n lg σ) bits of additional space
and O(min{lg lg n + t(σ), lg σ/ lg lg n + 1}) time.
Proof These two nodes can be found using either of the following two approaches.
The first approach applies Lemma 6.2 repeatedly, which requires O(k) = O(h) =
O(lg σ/ lg lg n + 1) time.

The second approach is described as follows. For the non-dummy nodes in each
Fa,b, we list the preorder ranks of their corresponding nodes in T as a conceptual
array Sa,b. We maintain Sa,b using succinct indices for predecessor search [32],
which require O(lg lg n) bits per entry and support predecessor and successor queries
in O(lg lg n) time plus accesses to O(1) entries. These auxiliary indices occupy
O(nh lg lg n) = O(n lg σ) bits of space over all levels.

As described in He et al.’s work [38, Algorithm 2], x and z can be found using a
constant number of predecessor and successor queries. Here we only describe how to
compute x ; the computation of z is similar. First we determine, in tree T , the lowest
common ancestor, u′, of u and the predecessor of u in Sa,b. If the weight of u′ is in
[a..b], then, as illustrated in Fig. 13a, x corresponds to u′ and can be determined by
the index of u′ in Sa,b. Otherwise, as illustrated in Fig. 13b, we find the successor of
u′ in Sa,b and let the node be v′. The parent of the node in Tk that corresponds to v′
will be x .

Summarizing the discussion, the second approach uses O(lg lg n) time plus O(1)
calls to the ball-inheritance problem. By Lemma 6.3, this requires O(lg lg n + t(σ))

time. Combining these two approaches, the final time cost is O(min{lg lg n +
t(σ), lg σ/ lg lg n + 1}).
�

After determining x and z, we start to report nodes. The query range [p..q] must
spanmore than one child range of [a..b]; otherwise [a..b]would not be the lowest range
that covers [p..q]. Let the child ranges of [a..b] be [a1..b1], [a2..b2], . . . , [a f ..b f],

u

u
the predecessor of u

u

u

v

x

x

(a) (b)

the predecessor of u

Fig. 13 An illustration for the proof of Lemma 6.4. Normal and dotted circles represent nodes whose
weights are in and not in [a..b], respectively. Node u, which could have a weight in [a..b] or not, is
represented by a dash dotted circle. a The case in which the weight of u′ is in [a..b]. b The case in which
the weight of u′ is not in [a..b]

123

Algorithmica (2017) 78:453–491 483

which are listed in increasing order of left endpoints. Since all but possibly the last of
these child ranges are of equal sizes, we can determine in constant time the values of
α and β, such that 1 ≤ α ≤ β ≤ f , [aα..bβ] covers [p..q], and β − α is minimized.
The query range can thus be decomposed into three subranges [p..bα], [aα+1..bβ−1]
and [aβ..q].

The support for the second subrange has been described in [36, Theorem 2]: We
first call node_summarize(T, x, z) and let the result be π [1.. f]. If π [γ] = 1 for
γ ∈ [α + 1..β − 1], then we find all nodes whose labels are γ on the path from x
to but excluding z by calling lowest_ancγ repeatedly. Note that each node in the
output can be reported by either applying Lemma 6.3 repeatedly or Lemma 6.2 once,
and each 1-bit in π [α + 1..β − 1] can be located in constant time using table lookup.
Thus it requires O(min{t(σ), lg σ/ lg lg n + 1}) time to report a node.

The remaining part is to support the third subrange in the following lemma; the
support for the first subrange is similar.

Lemma 6.5 The nodes in Au,t ∩ Raβ ,q can be reported using O(n lg σ) bits of addi-
tional space and O((|Au,t ∩ Raβ ,q | + 1) · min{t(σ), lg σ/ lg lg n + 1}) time.
Proof We index all T�’s using the first variant of Theorem 1.1 with m = O(n lg lg n),
for which the weight of a node in T� is defined to be the weight of its corresponding
node in T . Each T� can be indexed using O(n lg lg n) bits of additional space. Hence,
these auxiliary data structures occupy (h − 1) × O(n lg lg n) = O(lg σ/ lg lg n) ×
O(n lg lg n) = O(n lg σ) bits of additional space in total. Path minimum queries over
any T� can be answered with accesses to the weights of O(1) nodes. This requires
O(t(σ)) time if we use Lemma 6.3, or O(lg σ/ lg lg n + 1) time if we traverse the
conceptual range tree level by level using Lemma 6.2.

Range [aβ..bβ] is at the (k + 1)-st level. Let x ′ and z′ be the nodes in Tk+1
that correspond to ancaβ ,bβ (T, u) and ancaβ ,bβ (T, t), respectively, as illustrated in
Fig. 14. The nodes x ′ and z′ can be computed from x and z in constant time using
lowest_ancβ operations and Lemma 6.2. The nodes in Tk+1 that correspond to the
nodes in Au,t ∩ Raβ ,q must locate on the path from x ′ to and excluding z′. We make
use of path minimum queries to find the node, y′, with the minimum weight on this

Fig. 14 The root-to-leaf in Tk
that goes through both x and z,
where nodes with label β are
represented as double circles.
The nodes in Tk that correspond
to x ′ and z′ can be determined
using lowest_ancβ

operations

x

z

Tk

· · ·

x

z

· · ·

· · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·

· · ·

123

484 Algorithmica (2017) 78:453–491

path. This procedure is terminated if the weight of y′ is larger than q; otherwise, the
node in T that corresponds to y′ is reported, and we recurse on two subpaths obtained
by splitting the original path at y′. As we perform a path minimum query for each
node reported, the query time is O((|Au,t ∩ Raβ ,q |+1) ·min{t(σ), lg σ/ lg lg n+1}).

�
Now we summarize this section in the following theorem.

Theorem 6.6 An ordinal tree on n nodes whose weights are drawn from a set of σ

distinct weights can be represented using O(n lg n ·s(σ)) bits of space, such that path
reporting queries can be supported in O(min{lg lg n+t(σ), lg σ/ lg lg n+ 1}+ occ ·
min{t(σ), lg σ/ lg lg n + 1}) time, where occ is the size of output, ε is an arbitrary
positive constant, and s(σ) and t(σ) are: (a) s(σ) = O(1) and t(σ) = O(lgε σ);
(b) s(σ) = O(lg lg σ) and t(σ) = O(lg lg σ); or (c) s(σ) = O(lgε σ) and t(σ) =
O(1).

Proof By Lemmas 6.4 and 6.5, it requires O(min{lg lg n + t(σ), lg σ/ lg lg n + 1} +
(|Au,t∩Rp,q |+1)·min{t(σ), lg σ/ lg lg n+1}) time to report the nodes in Au,t∩Rp,q .
The time cost for Av,t ∩ Rp,q is similar. {t} ∩ Rp,q can be computed in constant time.
Summing up these terms, the query time is O(min{lg lg n+t(σ), lg σ/ lg lg n+ 1}+
occ ·min{t(σ), lg σ/ lg lg n+1}), where occ is the size of output. Due to Lemma 6.3,
the overall space cost is O(n lg n · s(σ)) bits.
�

The data structures developed in Theorem 6.6 match the state of the art of two-
dimensional orthogonal range reporting queries [13] when σ = n. In Sect. 7, we
further refine these data structures for the case in which σ < n.

7 Further Refinements for Range and Path Reporting

Nowwe further improve the data structures described in Theorem 6.6. The refined data
structures incur lower cost in terms of both space and time. The space cost is O(n lg σ ·
s(σ)) bits instead of O(n lg n · s(σ)) bits, while the query time is O(min{lg lg σ +
t(σ), lg σ/ lg lg n+1}+occ ·min{t(σ), lg σ/ lg lg n+1}) instead of O(min{lg lg n+
t(σ), lg σ/ lg lg n + 1} + occ · min{t(σ), lg σ/ lg lg n + 1}), where s(σ) and t(σ)

are defined as in Theorem 6.6.
To illustrate our idea, we first develop refined data structures for the two-

dimensional orthogonal range reporting problem [13]. In this problem, a set of n
points on an n × n grid is given, and a query asks for the points in an axis-aligned
rectangle. Here we consider a more general version of this problem, for which points
are drawn from an n × σ grid, where σ ≤ n.

Theorem 7.1 A set of n points on an n×σ grid, whereσ ≤ n, can be represented using
O(n lg σ · s(σ)) bits of space, such that range reporting queries can be supported in
O(min{lg lg σ+t(σ), lg σ/ lg lg n+1}+occ·min{t(σ), lg σ/ lg lg n+1}) time, where
occ is the size of output, ε is an arbitrary positive constant, and s(σ) and t(σ) are: (a)
s(σ) = O(1) and t(σ) = O(lgε σ); (b) s(σ) = O(lg lg σ) and t(σ) = O(lg lg σ);
or (c) s(σ) = O(lgε σ) and t(σ) = O(1).

123

Algorithmica (2017) 78:453–491 485

Z =

1 0 0 1
0 0 0 0
0 1 0 0
0 1 0 0

(a) (b) (c)
Fig. 15 An illustration for Theorem 7.1. a An input point set on a 16× 4 grid, which is represented by the
dashed rectangle. The dotted rectangles each represent a subgrid and the bold rectangle represents a range
query Q. b The compressed grid that corresponds to the input point set, where the bold rectangle represents
the subquery Q3. c The 01-matrix Z that corresponds to the compressed grid

Proof As described in the proof of [6, Lemma 7], we can assume that all the given
points have distinct x-coordinates. As illustrated in Fig. 15a, we partition the n×σ grid
into �n/σ	 subgrids, for which the i-th subgrid spans over [(i − 1)σ + 1..iσ]× [1..σ]
for 1 ≤ i < �n/σ	, and the last one spans over [(�n/σ − 1	σ + 1)..n] × [1..σ]. Thus
each subgrid except the last contains σ input points, and the last one contains at most
σ points.

Let Q = [x1..x2] × [y1..y2] be the given query. Thus Q spans over the α-th to
the β-th subgrids, where α = �x1/σ	 and β = �x2/σ	. We only consider the cases
in which α < β; the other cases can be handled similarly. Q can be split into three
subqueries: Q1, the intersection with the α-th subgrid; Q2, the intersection with the
β-th subgrid; and finally Q3, the intersection with (α+1)-st to the (β −1)-st subgrids.
These subqueries are supported as follows.

For each subgrid, we build the data structures of Bose et al. [6] and one variant
of Chan et al.’s [13] structures, which have been summarized in Table 1. These data
structures use O(σ lg σ + σ lg σ · s(σ)) = O(σ lg σ · s(σ)) bits of space for each
subgrid, so the overall space cost is �n/σ	×O(σ lg σ ·s(σ)) = O(n lg σ ·s(σ)) bits.
In addition, range reporting queries within a subgrid, e.g., Q1 or Q2, can be supported
using O(min{lg lg σ + t(σ), lg σ/ lg lg n + 1} + occ′ · min{t(σ), lg σ/ lg lg n + 1})
time, where occ′ is the size of answer.

To support Q3, we transform the input point set from the original grid into a com-
pressed grid of size �n/σ	×σ , where a hyperpoint corresponds to one or more points
in the original point set. More precisely, an input point (x, y), which is contained in
the �x/σ	-th subgrid, is transformed into a hyperpoint (�x/σ	, y). See Fig. 15b for an
illustration. For each hyperpoint in the compressed grid, we explicitly store the input
points that correspond to this hyperpoint as a linked list. Since a subgrid consists of
at most σ points, the overall space cost of these linked lists is O(n lg σ) bits.

To answer Q3, we need to find all the hyperpoints contained in Q′
3 = [α + 1..β −

1]×[y1..y2]. As illustrated in Fig. 15c, we construct a 01-matrix Z [1..�n/σ	, 1..σ] in
which Z [i, j] = 0 iff there exists a hyperpoint (i, j). We then encode Z using Brodal
et al.’s [8] data structure for two-dimensional range minimum queries, which requires
only O(�n/σ	 × σ) = O(n) bits of space and O(1) query time. To determine all
the hyperpoints contained in Q′

3, we find all 0-entries in Z [α + 1..β − 1, y1..y2] by
repeatedly performing range minimum queries. Initially, we query on Z [α + 1..β −
1, y1..y2] for any 0-entry. If there exists some entry Z [i, j] = 0, then we know that
hyperpoint (i, j) is contained in Q′

3. Furthermore, we divide the remaining entries of

123

486 Algorithmica (2017) 78:453–491

Z [α+1..β−1, y1..y2] into up to 4 disjoint submatrices and query on them recursively.
If no such Z [i, j] exists, then the algorithm terminates and we conclude that there is no
more hyperpoint in Q′

3. Thus, the hyperpoints contained in Q
′
3 can be found usingO(1)

time per hyperpoint. By traversing the linked lists associated to these hyperpoints, the
points contained in Q3 can be returned in O(1) time per point.

Summarizing the discussion, the overall space cost is O(n lg σ · s(σ)) bits,
and queries can be answered in O(min{lg lg σ + t(σ), lg σ/ lg lg n + 1} + occ ·
min{t(σ), lg σ/ lg lg n + 1}) time, where occ is the size of output.
�

Wefinally generalize the approach of Theorem7.1 intoweighted trees and complete
the proof for Theorem 1.3. The cases in which n = O(σ 2) have already been handled
by Theorem 6.6 (lg lg n = O(lg lg σ) in this case). Here we only consider the cases
in which n = ω(σ 2).

Like Sect. 3, we make use of Lemma 2.4 on T with M = �σ 2	. Thus we obtain
O(n/M) cover elements, each being a subtree of size at most 2M . The root node of a
cover element is called a cover root. It should be noted again that a cover root could be
the root of multiple cover elements. For simplicity, we denote by si the i-th cover root
in preorder of T . We define the following auxiliary operations with respect to cover
roots. Here x is assumed to be a cover root.

• cover_rank(T, x) the number of cover roots preceding x in preorder of T ;
• cover_select(T, i) si , i.e., the i-th cover root in preorder of T ;
• cover_depth(T, x) the number of cover roots between x and root of T ;
• cover_anc(T, x, i) the i-th lowest cover root along the path from x to the root
of T .

Lemma 7.2 Auxiliary operationscover_rank,cover_select,cover_depth
and cover_anc can be supported using O(1) time and O(n(lgM)/M) bits of addi-
tional space.

Proof We store a bit vector B[1..n] to mark cover roots, for which B[j] = 1 if
the j-th node in preorder of T is a cover root. By Lemma 2.2, B can be stored in
O(n(lgM)/M) bits of additional space. We can make use of rankα and selectα

operations to compute the rank of a cover root and select the i-th cover root in preorder,
respectively.

In addition, we extract all cover roots from T using tree extraction. This gives
us a single ordinal tree T ′, since the root of T must be a cover root. T ′ is repre-
sented using Lemma 2.5, for which we do not store any weight in T ′. The overall
space cost of storing T ′ is O(n/M) additional bits, since T ′ consists of O(n/M)

nodes. Since tree extraction preserves ancestor-descendant relationship [35,36,38],
cover_depth and cover_anc can be reduced to depth and level_anc oper-
ations in T ′, respectively. Therefore, they can be supported in constant time.
�

To support path reporting queries, we build the data structures of Theorem 6.6 for
each cover element, such that queries inside a cover element can be supported using
O(M lg σ · s(σ)) bits of space and O(min{lg lg σ + t(σ), lg σ/ lg lg n + 1} + occ′ ·
min{t(σ), lg σ/ lg lg n + 1}) time, where occ′ is the size of output. The space cost
over all cover elements is O(n/M) × O(M(lg σ) · s(σ)) = O(n(lg σ) · s(σ)) bits.

123

Algorithmica (2017) 78:453–491 487

s3

s4

{1, 2, 4}

{1, 4}{1}

{2, 3, 4}
Path4

0

1

0 0

1

T 2,3T

(a) (b)

s1

s2

s5

Fig. 16 a An input tree T with σ = 4 and 6 cover elements. The dashed lines represent Pathi ’s, and the
numbers alongside each Pathi represent the set of weights on this path. b The 01-labeled tree T 2,3

For each cover root si , we denote by Pathi the path from si to but excluding the
root of the lowest cover element that is an ancestor of si , i.e., Pathi contains exactly
the nodes in Asi ,s j for s j = cover_anc(T, si , 1). In particular, Path1 is empty
since s1 is the root node of T . Note that the length of Pathi is bounded above by
O(σ 2). We store this path in O(M lg σ) bits of space using the data structures of
Alstrup et al. [2], such that given a query range of weights, the nodes along this path
whose weights are within this range can be reported in O(occ′ + 1) time, where occ′
is the number of nodes in the query range. The space cost over all cover elements is
O(n/M) × O(M lg σ) = O(n lg σ) bits.

The last auxiliary data structures are σ(σ − 1)/2 ordinal trees, T p,q for 1 ≤ p ≤
q ≤ σ , all of which are of the same structure as T ′ (defined in the proof of Lemma 7.2)
but on 01-labeled nodes. For each T p,q , we assign 1 to a node if the node corresponds
to some cover root si and Pathi has a node whose weight is in [p..q]; otherwise we
assign 0 to this node. See Fig. 16 for an example. We maintain these 01-labeled trees
using the data structures described in Lemma 6.1, such that the lowest ancestor whose
label is 1 of a given node (i.e., lowest_anc1) can be found in constant time. Each
T p,q requires O(n/M) bits of space, and thus the overall space cost for storing all
these labeled trees is O(σ 2) × O(n/M) = O(n) bits.

Finally we consider how to answer a given query. Let u and v denote the endpoints
of the query path, and let [p..q] denote the query range. As in Theorem 6.6, we only
consider the support for Au,t ∩ Rp,q , where t is the lowest common ancestor of u and
v, and Au,t is the set of nodes on the path from u to and excluding t .

Let sa and sb be the lowest and the highest cover root on the path from u to and
excluding t , respectively. The following lemma shows how to compute them.

Lemma 7.3 The nodes sa and sb can be computed in O(1) time.

Proof The node sa , which is the lowest cover root on the path from u to t , must be
the root of the cover element that contains u if it exists. Using cover_rank and

123

488 Algorithmica (2017) 78:453–491

cover_select, we can locate sa in constant time. To compute the highest cover
root sb on the path, we first locate sc, the root of the cover element that contains
t . The highest cover root can be expressed as sb = cover_anc(T, sa, i) for i =
cover_depth(T, sa) − cover_depth(T, sc) − 1.
�

To answer the query, we only consider the case in which sa �= sb; the other
cases can be handled similarly. Thus Au,t can be decomposed into Au,sa , Asa ,sb ,
and Asb,t . Here Au,sa is contained in the cover element rooted at sa , and Asb,t

except node sb is contained the cover element rooted at sb. The nodes along these
two subpaths whose weights are in [p..q] can be reported using the data structures
described in Theorem 6.6, which have already been stored for each cover element.
The query time is O(min{lg lg σ + t(σ), lg σ/ lg lg n + 1} + (Au,sa ∪ Asb,t) ∩ Rp,q ·
min{t(σ), lg σ/ lg lg n + 1}).

The subpath from sa to but excluding sb can be handled by T p,q . Using
lowest_anc1 operations, we can find all cover roots si between sa and sb such
that Pathi has a node whose weight is between p and q, using constant time per
si . Then, for each of these cover roots si , we report all the nodes whose weights are
between p and q on Pathi , using constant time per node. This is supported by the
data structures of Alstrup et al. [2], which have been stored for each Pathi .

In sum, the overall space cost is O(n lg σ · s(σ)) bits, and the query time is
O(min{lg lg σ + t(σ), lg σ/ lg lg n + 1} + occ ·min{t(σ), lg σ/ lg lg n + 1}), where
occ is the size of output.

8 Open Problems

We end this article with two open problems.

8.1 Dynamic Data Structures for Path Reporting

One can consider path queries on dynamic trees, for which weights on nodes can be
modified and nodes can be inserted or deleted. Several dynamic data structures for
path minimum queries have been presented [3,9,39], but much less has been done for
dynamic path reporting. In a recentwork,He et al. [37] has proposed a linear-space data
structure that supports path reporting queries in O((lg n/ lg lg n)2 +occ · lg n/ lg lg n)

time,whereocc is the output size, and the insertion anddeletionof a nodeof an arbitrary
degree in O(lg2+ε n) amortized time, for any constant ε ∈ (0, 1). This structure is the
first and by far the only non-trivial solution to dynamic path reporting. Here we ask
whether this data structure can be further improved. As an example, is it possible to
reduce the update time to O((lg n/ lg lg n)2)while preserving the same query time and
space cost? Whether the (lg n/ lg lg n)2 term in query time can be decreased without
sacrificing update time or space cost is another interesting problem.

123

Algorithmica (2017) 78:453–491 489

8.2 Adaptive Encoding Complexity of Path Minimum Queries

As shown in Lemma 3.1, �(n lg n) bits are necessary to encode the answers to all
possible path minimum queries in the worst cases. However, the family of trees we
constructed for this lower bound have �(n) leaves. As another extreme case, this
problem becomes the well-known RMQ problem when the input tree is a single path
(or has only two leaves), and thus can be encoded in 2n bits. It would be interesting
to examine the cases in which the number of leaves, nL , satisfies that nL = o(n) and
nL > 2.

References

1. Alon, N., Schieber, B.: Optimal preprocessing for answering on-line product queries. Technical report,
Tel Aviv University, (1987)

2. Alstrup, S., Brodal, G.S., Rauhe, T.: Optimal static range reporting in one dimension. In: Proceedings
of the 33rd Annual ACMSymposium on Theory of Computing, STOC 2001, Heraklion, Crete, Greece,
6–8 July 2001, pp. 476–482, (2001)

3. Alstrup, S., Holm, J.: Improved algorithms for finding level ancestors in dynamic trees. In: Automata,
Languages andProgramming, 27th InternationalColloquium, ICALP2000,Geneva, Switzerland, 9–15
July 2000, Proceedings, pp. 73–84, (2000)

4. Barbay, J.,He,M.,Munro, J.I., Satti, S.R.: Succinct indexes for strings, binary relations andmultilabeled
trees. ACM Trans. Algorithms 7(4), 52 (2011)

5. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci. 337(1–3), 217–239
(2005)

6. Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct orthogonal range search structures on a grid
with applications to text indexing. In: Algorithms and Data Structures, 11th International Symposium,
WADS 2009, Banff, Canada, 21–23 August 2009. Proceedings, pp. 98–109, (2009)

7. Bringmann, K., Larsen, K.G.: Succinct sampling from discrete distributions. In: Proceedings of the
45th Annual ACM Symposium on Theory of Computing, STOC 2013, Palo Alto, California, USA,
1–4 June 2013, pp. 775–782, (2013)

8. Brodal, G.S., Davoodi, P., Lewenstein, M., Raman, R., Rao, S.S.: Two dimensional range minimum
queries and fibonacci lattices. In: Algorithms—ESA2012—20thAnnual European Symposium, Ljubl-
jana, Slovenia, 10–12 September 2012. Proceedings, pp. 217–228, (2012)

9. Brodal,G.S.,Davoodi, P., Rao, S.S.: Pathminimaqueries in dynamicweighted trees. In:Algorithms and
Data Structures—12th International Symposium, WADS 2011, New York, NY, USA, 15–17 August
2011. Proceedings, pp. 290–301, (2011)

10. Brodal,G.S.,Davoodi, P., Rao, S.S.:On space efficient twodimensional rangeminimumdata structures.
Algorithmica 63(4), 815–830 (2012)

11. Buchsbaum, A.L., Georgiadis, L., Kaplan, H., Rogers, A., Tarjan, R.E., Westbrook, J.: Linear-time
algorithms for dominators and other path-evaluation problems. SIAM J. Comput. 38(4), 1533–1573
(2008)

12. Chan, T.M., He, M., Munro, J.I., Zhou, G.: Succinct indices for path minimum, with applications to
path reporting. In: Algorithms—ESA 2014—22th Annual European Symposium, Wroclaw, Poland,
8–10 September 2014. Proceedings, pp. 247–259, (2014)

13. Chan, T.M., Larsen, K.G., Pǎtraşcu, M.: Orthogonal range searching on the RAM, revisited. In: Pro-
ceedings of the 27th ACMSymposium on Computational Geometry, SoCG 2011, Paris, France, 13–15
June 2011, pp. 1–10, (2011)

14. Chazelle, B.: Computing on a free tree via complexity-preserving mappings. Algorithmica 2(1), 337–
361 (1987)

15. Chazelle, B., Rosenberg, B.: The complexity of computing partial sums off-line. Int. J. Comput. Geom.
Appl. 1(1), 33–45 (1991)

16. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press,
Cambridge (2009)

123

490 Algorithmica (2017) 78:453–491

17. Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range minimum queries. Algo-
rithmica 68(3), 610–625 (2014)

18. Demaine, E.D., López-Ortiz, A.: A linear lower bound on index size for text retrieval. J. Algorithms
48(1), 2–15 (2003)

19. Dixon, B., Rauch, M., Tarjan, R.E.: Verification and sensitivity analysis of minimum spanning trees
in linear time. SIAM J. Comput. 21(6), 1184–1192 (1992)

20. Durocher, S., Shah, R., Skala, M., Thankachan, S.V.: Linear-space data structures for range frequency
queries on arrays and trees. In: Mathematical Foundations of Computer Science 2013—38th Inter-
national Symposium, MFCS 2013, Klosterneuburg, Austria, 26–30 August 2013. Proceedings, pp.
325–336, (2013)

21. Durocher, S., Shah, R., Skala, M., Thankachan, S.V.: Top-k color queries on tree paths. In: String
Processing and Information Retrieval—20th International Symposium, SPIRE 2013, Jerusalem, Israel,
7–9 October 2013, Proceedings, pp. 109–115, (2013)

22. Farzan, A., Munro, J.I.: A uniform paradigm to succinctly encode various families of trees. Algorith-
mica 68(1), 16–40 (2014)

23. Farzan, A., Raman, R., Rao, S.S.: Universal succinct representations of trees? In: Automata, Languages
and Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, 5–12 July 2009,
Proceedings, Part I, pp. 451–462, (2009)

24. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations of sequences and
full-text indexes. ACM Trans. Algorithms 3(2), 20 (2007)

25. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on static
arrays. SIAM J. Comput. 40(2), 465–492 (2011)

26. Frederickson, G.N.: Data structures for on-line updating ofminimum spanning trees, with applications.
SIAM J. Comput. 14(4), 781–798 (1985)

27. Frederickson, G.N.: Ambivalent data structures for dynamic 2-edge-connectivity and k smallest span-
ning trees. SIAM J. Comput. 26(2), 484–538 (1997)

28. Frederickson, G.N.: A data structure for dynamically maintaining rooted trees. J. Algorithms 24(1),
37–65 (1997)

29. Gabow, H.N.: Data structures for weighted matching and nearest common ancestors with linking. In:
Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1990, San
Francisco, California, USA, 22–24 January 1990, pp. 434–443, (1990)

30. Geary, R.F., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor queries. ACM Trans.
Algorithms 2(4), 510–534 (2006)

31. Golynski, A.: Optimal lower bounds for rank and select indexes. Theor. Comput. Sci. 387(3), 348–359
(2007)

32. Grossi, R., Orlandi, A., Raman, R., Rao, S.S.: More haste, less waste: Lowering the redundancy in fully
indexable dictionaries. In: Proceedings of the 29th International Symposium on Theoretical Aspects
of Computer Science, volume 25 of Leibniz International Proceedings in Informatics (LIPIcs), pp.
517–528, Dagstuhl, Germany, (2009). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik

33. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2),
338–355 (1984)

34. He, M., Munro, J.I., Satti, S.R.: Succinct ordinal trees based on tree covering. ACM Trans. Algorithms
8(4), 42 (2012)

35. He, M., Munro, J.I., Zhou, G.: Path queries in weighted trees. In: Algorithms and Computation—22nd
International Symposium, ISAAC 2011, Yokohama, Japan, 5–8 December 2011. Proceedings, pp.
140–149, (2011)

36. He, M., Munro, J.I., Zhou, G.: Succinct data structures for path queries. In Algorithms—ESA 2012—
20th Annual European Symposium, Ljubljana, Slovenia, 10–12 September 2012. Proceedings, pp.
575–586, (2012)

37. He,M.,Munro, J.I., Zhou, G.: Dynamic path counting and reporting in linear space. In: Algorithms and
Computation—25th International Symposium, ISAAC 2014, Jeonju, Korea, 15–17 December 2014,
Proceedings, pp. 565–577, (2014)

38. Meng, H., Munro, J.I., Zhou, G.: A framework for succinct labeled ordinal trees over large alphabets.
Algorithmica 70(4), 696–717 (2014)

39. Kaplan, H., S., Nira: Path minima in incremental unrooted trees. In: Algorithms—ESA 2008, 16th
Annual European Symposium, Karlsruhe, Germany, 15–17 September 2008. Proceedings, pp. 565–
576, (2008)

123

Algorithmica (2017) 78:453–491 491

40. King, V.: A simpler minimum spanning tree verification algorithm. Algorithmica 18(2), 263–270
(1997)

41. Komlós, J.: Linear verification for spanning trees. Combinatorica 5(1), 57–65 (1985)
42. Krizanc, D., Morin, P., Smid, M.H.M.: Range mode and range median queries on lists and trees. Nord.

J. Comput. 12(1), 1–17 (2005)
43. Miltersen, P.B.: Lower bounds on the size of selection and rank indexes. In: Proceedings of the Sixteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, British Columbia,
Canada, 23–25 January 2005, pp. 11–12, (2005)

44. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static trees. SIAM J.
Comput. 31(3), 762–776 (2001)

45. Nivasch, G.: Inverse ackermann without pain. http://www.gabrielnivasch.org/fun/inverse-ackermann
46. Patil, M., Shah, R., Thankachan, S.V.: Succinct representations of weighted trees supporting path

queries. J. Discrete Algorithms 17, 103–108 (2012)
47. Pettie, S.: An inverse-ackermann type lower bound for online minimum spanning tree verification.

Combinatorica 26(2), 207–230 (2006)
48. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applications to encoding k-ary

trees, prefix sums and multisets. ACM Trans. Algorithms 3(4), 43 (2007)
49. Sadakane, K., Grossi, R.: Squeezing succinct data structures into entropy bounds. In: Proceedings

of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami,
Florida, USA, 22–26 January 2006, pp. 1230–1239, (2006)

50. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3), 362–391
(1983)

51. Vuillemin, J.: A unifying look at data structures. Commun. ACM 23(4), 229–239 (1980)
52. Yao, A.C.-C.: Space-time tradeoff for answering range queries (extended abstract). In: Proceedings of

the 14th Annual ACM Symposium on Theory of Computing, STOC 1982, San Francisco, California,
USA, 5–7 May 1982, pp. 128–136, (1982)

123

http://www.gabrielnivasch.org/fun/inverse-ackermann

	Succinct Indices for Path Minimum, with Applications
	Abstract
	1 Introduction
	1.1 Path Minimum
	1.2 Semigroup Path Sum
	1.3 Path Reporting
	1.4 An Overview of the Article

	2 Preliminaries
	2.1 Restricted Topological Partitions and Directed Topology Trees
	2.2 Tree Extraction
	2.3 Bit Vectors and Sequences
	2.4 Succinct Ordinal Trees Based on Tree Covering

	3 Path Minimum Queries
	3.1 A Lower Bound Under the Encoding Model
	3.2 Upper Bounds Under the Indexing Model

	4 Semigroup Path Sum Queries
	5 Encoding Topology Trees: Proof of Lemma 3.2
	6 Path Reporting Queries
	7 Further Refinements for Range and Path Reporting
	8 Open Problems
	8.1 Dynamic Data Structures for Path Reporting
	8.2 Adaptive Encoding Complexity of Path Minimum Queries

	References

