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Abstract Motivated by applications to word-of-mouth advertising, we consider a
game-theoretic scenario in which competing advertisers want to target initial adopters
in a social network. Each advertiser wishes to maximize the resulting cascade of
influence, modeled by a general network diffusion process. However, competition
between products may adversely impact the rate of adoption for any given firm. The
resulting framework gives rise to complex preferences that depend on the specifics of
the stochastic diffusionmodel and the network topology.We study this model from the
perspective of a centralmechanism, such as a social networking platform, that can opti-
mize seed placement as a service for the advertisers.We ask: given the reported budgets
of the competing firms, how should a mechanism choose seeds to maximize overall
efficiency? Beyond the algorithmic problem, competition raises issues of strategic
behaviour: rational agents should be incentivized to truthfully report their advertis-
ing budget. For a general class of influence spread models, we show that when there
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are two players, the social welfare can be e
e−1 -approximated by a polynomial-time

strategyproof mechanism. Our mechanism uses a dynamic programming procedure
to randomize the order in which advertisers are allocated seeds according to a greedy
method. For three ormore players, we demonstrate that under an additional assumption
(satisfied by many existing models of influence spread) there exists a simpler strat-
egyproof e

e−1 -approximation mechanism; notably, this natural greedy mechanism is
not necessarily strategyproof when there are only two players.

Keywords Game theory · Social networks · Mechanism design · Influence diffusion

1 Introduction

The concept of word-of-mouth advertising is built upon the idea that referrals between
individuals can lead to a contagion of opinion in a population. In this way, a small
number of initial adopters can generate a cascade of influence, significantly impacting
the adoption of a new product. While this concept has been very well studied in the
marketing and sociology literature [1–5], recent popularity of online social networking
hasmade it possible to obtain rich data and directly target individuals based on network
topology. Indeed, a potential advantage of advertising served via online social networks
is that the platform could preferentially target central individuals, impacting the overall
effectiveness of its advertisers’ campaigns.

Various models of network influence spread have arisen recently in the literature,
with a focus on the algorithmic problem of deciding which individuals to target as ini-
tial adopters (or “seeds”) [6–8]. One commonality among many of these (stochastic)
models is that the expected number of eventual adopters is a non-decreasing sub-
modular function of the seed set. This implies that natural greedy methods [9] can
be used to choose initial adopters so as to approximately maximize an advertiser’s
expected influence. Of course, actually applying such algorithms requires intimate
knowledge of the social network, which may not be readily available to all adver-
tisers. However, the owners of the network data (e.g. Facebook or Google) could
more easily find potentially influential individuals to target. Our goal is to study the
problem faced by a network platform that wishes to provide this service to its adver-
tisers.

Consider the following framework. An online social network platform sells adver-
tising space by contract, offering a price per impression to advertising firms. Each firm
has an advertising budget, which determines a number of ad impressions they wish
to display. As an additional service to the firms, the platform attempts to optimize the
placement of advertisements so to maximize influence diffusion. This optimization
is to be provided as a service to the advertisers, with the primary goal of making
the social network more attractive as a marketing platform. The network provider
thus faces an algorithmic problem: maximize the total influence of the advertisers
given their budgets (i.e. number of impressions). This problem may be complicated
by competition between advertisers, which results in negative externalities upon each
others’ product adoptions. Moreover, since advertising budgets are private, there is
also a game-theoretic component to the problem: the placement algorithm should not

123



Algorithmica (2017) 78:425–452 427

incentivize firms to reduce their budgets. This may happen if, due to properties of
the algorithm, lower-budget advertisers might obtain higher expected influence than
advertisers with higher budgets.

Crucial to this problem formulation is the way in which influence is modeled by
the advertising platform. We present a general submodular assignment problem with
negative externalities, which captures most previous influence models that have been
proposed in the literature [10–13].Within this framework,weconsider the optimization
problem faced by a central mechanism that must determine the seed nodes for each
advertiser, given the advertisers’ budget constraints. The goal of the mechanism is to
maximize the overall efficiency of the marketing campaigns, but the advertisers are
strategic and may under-report their budgets to increase their own product adoption
rates.

Two points of clarification are in order. First, our formulation differs from a line
of prior work that studies equilibria of the game in which each advertiser selects
their seed set directly [11,13]. Such a game supposes that each advertiser has detailed
knowledge of the social network topology, the ability to compute or converge to
equilibrium strategies, and the power to target arbitrary individuals in the network.
Our work differs in that we assume that the targeted advertising goes through an
intermediary (the social network), which selects seed sets on the players’ behalf.

Second, we suppose that advertiser budgets and the price per impression are set
exogenously (or, alternatively, that the seeds correspond to special offers or other
interventions of limited quantity). As such, we do not explicitly model the problem of
maximizing revenue; rather, the role of our mechanism is to decide where to place the
purchased impressions so as to maximize the social welfare (i.e. the total influence
spread). In this sense our framework is closer in spirit to matching algorithms for
display advertising [14,15] than to revenue-optimal mechanism design. There are
many ways in which this model could be enriched, such as by endogenizing budgets
or allowing complex pricing schemes that depend upon expected influence. We leave
these as avenues for future work, though we note that such extensions presuppose
that agents have sufficient knowledge of the spread process and graph topology to
accurately value initial adoption sets.

Our general model of competitive influence captures prior models from the lit-
erature such as those discussed in the related works Sect. 1.2 to follow. (Further
discussion of the relation to other models appears in Appendix “Relation with Other
Diffusion Models”.) The model treats influence spread as a submodular process, with
some extra conditions that relate the influence of different firms; namely, an adverse
competition assumption that reflects the competitive nature of the process, as well
as mechanism indifference and agent indifference assumptions1 that will be intro-
duced in Sect. 1.1. Our model of competitive influence spread is described formally
in Sect. 2.

1 In the conference version of this work [16], we stated a strategyproof 2-approximation mechanism for
the 2-player case that allowed for more general spread processes. That argument had a flaw and we are now
restricting our results to spread processes that satisfy the mechanism indifference property. Our mechanism
for three or more players uses both the mechanism and agent indifference properties, as in the conference
version.
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We wish to design mechanisms that are strategyproof, in that rational agents are
incentivized to truthfully reveal their budgets. In particular, an agent should not be
able to increase its expected influence by reducing its requested number of seeds
(i.e. budget). The difficulty in avoiding such non-monotonicities is that the expected
outcome of an advertiser can be negatively impacted by externalities imposed by the
allocation to its opponents,which can dependon the budget declarations in a non-trivial
manner.

1.1 Our Results

We design two different e
e−1 -approximate strategyproof mechanisms for the competi-

tive influence maximization problem. Our main result is the strategyproof mechanism
for use when there are two competing advertisers. This result assumes that the social
welfare (i.e. the expected number or weight of nodes that are eventually influenced)
is independent of the manner in which elements are partitioned among the players
(mechanism indifference). This mechanism uses a novel technique for monotonizing
the expected utilities of the agents using geometric properties of the problem in the
two-player case.

Our second and more natural mechanism is for three or more players, under an
additional (and also common) natural restriction on the influence spread process.
Specifically, we require that the payoff of a player does not depend on the manner
in which the elements allocated to her competitors are partitioned among the com-
petitors (agent indifference). We note that both the mechanism and agent indifference
assumptions are implicit in many prior models of influence spread [10], [11]. Inter-
estingly, our analysis here makes crucial use of the presence of three or more players,
and indeed we show in Sect. 3.1 that this mechanism fails to be strategyproof when
only two players are present, even with these two additional assumptions.2

Our mechanisms run in time polynomial in the budgets submitted by the agents
and in the size of the underlying ground set. This dependence on the budget val-
ues is necessary, as the mechanism constructs a solution consisting of sets of this
size. Our dependence on the size of the underlying ground set is captured by oracle
queries for an element that maximizes a marginal increase in social welfare. Given
oracle access to queries of this nature, our algorithm would run in time polynomial
in the declared budgets. Generally speaking, the spread process itself is randomized
and as in [6,7], the oracle can be viewed as providing an element that approximately
maximizes the marginal gain by sampling enough trials of this process [6,7]. Our
analysis also holds when such approximate marginal maximizers are used to imple-
ment our underlying greedy algorithm; following the exposition in [17], such an
approximate maximizer provides an approximation that approaches e

e−1 as the oracle
approximation approaches 1. We will simplify our discussion throughout by assum-
ing it is possible to find elements that exactly maximize marginal gains in social
welfare.

2 Notice that the agent indifference property holds vacuously in the two-player case, as there is only one
other player
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1.2 Related Work

Models of influence spread in networks, covering both cascade and threshold phe-
nomena, are well-studied in the sociology and marketing literature [1,2]. The
(non-competitive) problem of maximizing influence in social networks was theoret-
ically modelled by Kempe et al. [6,7]. Subsequent papers extended these models to
a competitive setting in which there are multiple advertisers. Carnes et al. [10] sug-
gested the Wave Propagation model and the Distance Based model, which were based
on the Independent Cascade model. Additionally, Dubey et al. [18], Bharathi et al.
[11], Kosta et al. [19], and Apt et al. [20] also studied various competitive models.
The main issue that these models addressed was how to arbitrate ties in each step
of the process, determining which technology a node will assume when reached by
several technologies at once. The main algorithmic task addressed by these models is
choosing the optimal set of nodes for a player entering an existing market, in which
the competitor’s choice of initial nodes is already known. Borodin et al. [12] presented
the OR model which proposes a different approach, in which the previously studied,
non-competitive diffusionmodels proceed independently for each technology as a first
phase of the process, after which the nodes decide between each technology according
to some decision function.

Independent of our initial work [21], Goyal and Kearns [13] provided bounds on
the efficiency of equilibria (i.e. the price of anarchy) in a competitive influence game
played by two players. Their influence spread model is characterized by switching
functions (specifying the process by which a node decides to adopt a product) and
selection functions (specifying the manner in which nodes decide which product to
adopt). They demonstrate that an equilibrium of the resulting game yields half of the
optimal social welfare, given that the switching functions are concave. Their model
is closely related to our own. Specifically, the social welfare function is monotone
and satisfies the mechanism indifference assumption, and concavity of the switching
function implies that the social welfare is submodular (by [8]), so our mechanism for
two players applies to theirmodel aswell3. Goyal andKearns also note that their results
extend to k > 2 players, resulting in an approximation factor of 2k, when the selection
function is linear; this linearity implies our agent indifference assumption, and hence
ourmechanism for three or more players also applies. However, we note that the Goyal
and Kearns results on efficiency at equilibrium are satisfied without an intervening
mechanism and hence are incomparable with the mechanism results of this paper.

Finally, to the best of our knowledge, there is only one other paper that considers
a mechanism design problem in the context of competitive influence spread. Namely,
Singer [22] considers a social network where the nodes are viewed as agents who have
private costs for hosting a product and the mechanism has a budget for inducing some
set of initial nodes to become hosts. The mechanism wishes to maximize the number
of nodes that will eventually be influenced and each agent wishes to maximize their
profit equal to the inducement received minus its private cost.

3 An “adverse competition” assumption in [13] is stated for k = 2 agents and holds at every node. Their
assumption is somewhat stronger than ours, which we only apply to the social welfare function. See Sect. 2.
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2 Preliminaries

We consider a setting in which there is a ground set U = {e1, . . . , en} of n elements
(e.g. nodes in a social network), and k players. An allocation is some (S1, . . . , Sk) ∈
2U × · · · × 2U ; that is, an assignment of set4 Si to each player i .

We are given functions fi : 2U × · · · 2U → R≥0, denoting the expected values
of players i = 1, . . . , k, for allocation (S1, . . . , Sk). We define f = ∑k

i=1 fi , so
that f (S) = f (Si ,S−i) denotes the total expected welfare of the allocation (S) =
(S1, . . . , Sk) = (Si ,S−i).

Wewill require that functions f , and f1, . . . , fk satisfy certain properties,motivated
by known properties of influence spread models studied in the literature. First, we will
assume that f is a submodular non-decreasing function, in the following sense. For
any Si ⊆ S′

i , S−i, and e ∈ U , we have f (Si ,S−i) ≤ f (S′
i ,S−i) and

f (Si ∪ {e},S−i) − f (Si ,S−i) ≥ f (S′
i ∪ {e},S−i) − f (S′

i ,S−i).

We will also require that for all i = 1, . . . , k, the function fi be non-decreasing in
the allocation to player i , so that fi (Si ,S−i) ≤ fi (S′

i ,S−i) for any Si ⊆ S′
i . These

assumptions are all rather standard in spread models.
A more substantive property of the social welfare function f that we assume is

mechanism indifference (MeI) which we define as follows: f (S) = f (S′) whenever
the sets

⋃
i Si and

⋃
i S

′
i are equal. In words, this assumption means the social welfare

function is invariant, regardless of the manner in which we divide the total set of
allocated items.Going back to ourmotivating setting of competitive influence diffusion
processes, this assumption pertains to scenarios in which the final decision of whether
to adopt some technology is independent of the divisionof the totalmarketing resources
(i.e., the initial allocated nodes). We note that to the best of our knowledge, most of
the competitive diffusion models that are studied in the literature have this property
(see Appendix “Relation with Other Diffusion Models”).

For our result concerning three of more players we will need the agent indifference
(AgI) property defined as follows: fi (Si ,S−i ) = fi (Si ,S′−i ) whenever sets

⋃
j 	=i S j

and
⋃

j 	=i S
′
j are equal. That is, each agent’s utility depends on the set of items allocated

to the other players, but not on how the items are partitioned among those players. We
will call this the Agent Indifference (AgI) assumption. Notice that in the two-players
case, this assumption is vacuous. We again note that many of the existing competitive
influence models satisfy this property.

We impose one final model assumption with regard to the competitive aspect of
the model, which we call adverse competition; namely, each fi is non-increasing in
the allocation to other players. That is, for all j 	= i , fi (S j ,S−j) ≥ fi (S′

j ,S−j) for
any S j ⊆ S′

j . This assumption captures our intuition that, in a competitive influence
model, the presence of additional adopters for one player can only impede the spread

4 For notational convenience we will assume that S1, . . . , Sk are sets, but our results extend to permit
multisets (i.e., where the same element can be awardedmultiple times to one agent). SeeAppendix “Relation
with Other Diffusion Models” for further discussion.
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of influence for another player. We discuss the motivation for and necessity of this
assumption in Appendix “Relation with Other Diffusion Models”.

2.1 The Algorithmic Problem and Overall Approach

We study the following task. We assume an influence spread maximization problem
with unit cost to influence an initial node. Given the agents’ budgets b1, . . . , bk ≥ 0,
which then denotes the number of initial nodes that each agent wants to initially
influence (their reported budgets), wewish to find sets S1, . . . , Sk ⊆ V , with |Si | = bi ,
for all i = 1, . . . , k, such that f (S1, . . . , Sk) is maximized. In order to decouple the
task of estimating the stochastic influence function from the combinatorial problem
at hand, we assume we are given oracle access to the functions f and f1, . . . , fk . 5

Suppose that A is a deterministic algorithm for the above problem, so that
A(b1, . . . , bk) denotes an allocation for any b1, . . . , bk ≥ 0. We say that A is
monotone if, for all budget vectors b = (b1, . . . , bk) ∈ Z

k≥0, fi (A(bi ,b−i)) ≤
fi (A(bi +1,b−i)), for each player i = 1, . . . , k. We extend this definition to random-
ized algorithms in the natural way, by taking expectations over the outcomes returned
by A.

We will assume that each agent i has a type b̃i , representing the maximum number
of elements they can be allocated. This corresponds to the agent’s true budget. The
utility of player i for allocation S = (S1, . . . , Sk) is

ui (S) =
⎧
⎨

⎩

fi (Si ,S−i) if |Si | ≤ b̃i

−∞ otherwise.

Note that the second part of the definition of the utility function essentially means
that the agent should not be allocated additional nodes beyond what is permitted
by his budget (i.e., the agents have hard budgets). We then say that algorithm A is
strategyproof if, for all b ∈ Z

k≥0 and b′
i ≤ bi , ui (A(b′

i ,b−i)) ≤ ui (A(bi ,b−i)). In
other words, an algorithm is strategyproof if it incentivizes each agent to report its
type truthfully.

Due to the above assumptions, we observe that the optimization problem of maxi-
mizing the social welfare function f (·) subject to the reported budgets can be stated in
the framework of maximizing a submodular set-function subject to a cardinality con-
straint that has been studied by Nemhauser et al. [23]. Namely, given a non-decreasing
and submodular set function g : 2X → R≥0 over a universe X , and a cardinality con-
straint T , the goal is to find a set S ⊆ X that maximizes g(S).

Put in terms of our setting, we can set the cardinality constraint to be B = ∑k
i=1 bi ,

the social welfare function can be re-expressed as the following single-parameter,
non-decreasing, and submodular objective function g(·):

5 This assumption is compliant with most of the models studied in the literature, in which these values (the
spread functions of each technology), can be estimated with arbitrary precision via sampling.
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g(T ) = f (S), where T =
k⋃

i=1

Si . (1)

This alternative objective function g(T ) conforms to the single-parameter convention
of submodular set-functions. However, we will mostly refer to the former objective
f (S) for clarity and succinctness
As a result of this correspondence with the framework of submodular function

maximization,wewillmakeuse of thewell-knowngreedy algorithmdue toNemhauser
et al. [17,23] for selecting the total set of nodes to be allocated to the agents, which
will give us an e/(e − 1) approximation ratio of the optimal social welfare. The
algorithm operates as follows: starting from an empty set S = ∅, while |S| < B, the
algorithm adds to S the element x ∈ U \ S that maximizes the marginal contribution
to the function g(·). As Nemhauser et al. show, this “hill-climbing” algorithm admits
a e/(e − 1) approximation to the optimal social welfare.

The hill-climbing algorithm admits the total set of elements that will be allocated to
all the agents. Thus, the algorithmic problem that we will address is how to partition
this total set of nodes among the agents in a manner that incentivizes the agents to
truthfully report their budgets. More specifically, if we denote the collective budget
of the agents by B = ∑k

i=1 bi , we will employ the greedy hill-climbing algorithm
to generate the sequence (e∗

1, . . . , e
∗
B) of nodes that are to be allocated to the agents,

where the ordering is taken with respect to the iterative addition process. Then, our
algorithms will decide, for each j = 1, . . . , B, to which agent v∗

j will be assigned.
Importantly, notice that due to our MeI assumption, our mechanisms will always

allocate the agents disjoint sets of vertices, as allocating different agents the same
vertex will have no effect on the social welfare. Henceforth, we will assume that
our general influence spread model satisfies both the MeI and adverse competition
assumptions. We will only need to utilize the AgI assumption in Sect. 4 when we
consider the mechanism for k > 2 players.

3 A Strategyproof Mechanism for Two Players

In this section we describe our mechanism for allocating nodes when there are two
agents. The case of k > 2 agents is handled in Sect. 4, under the additional AgI
assumption that is vacuously true for the case k = 2. Our mechanism is based on the
greedy algorithm described in Sect. 2.

3.1 Counter Examples When There are Two Agents

In Sect. 3.2 we carefully construct a distribution for determining which player will
receive each of the initial nodes that have been chosen by the natural greedy algorithm.
This distribution will induce strategyproofness for two players. To motivate these
algorithmic gymnastics, we now demonstrate that more natural orderings fail to result
in strategyproofness.
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Figure 1 The counter-example for the dictatorship ordering

We begin by considering the “dictatorship” ordering, in which one player is first
allocated nodes up to his budget, and only then is the other player allocated nodes.
We will refer to the agents as A and B, and their utilities as f A and fB respectively;
suppose that A is the dictator. For the purposes of our example we will describe f A
and fB in terms of the following concrete (but simple) competitive influence spread
process6 on an undirected network G = (V, E).

Suppose that each agent is given an initial seed set, say SA and SB . For agent A, each
node in SA is given a single chance to activate each of its neighbors independently,
which it does with probability p = 0.9. (Note that this activation process is not
recursive; it affects only the neighbors of SA). We then, independently, allow each
node in seed set SB to attempt to activate each of its neighbors, resulting in a set of
nodes activated by B. To determine the final influence sets, any node activated only
by A is influenced by A, any activated only by B is influenced by B, and any node
activated by both will choose between the two agents uniformly at random. The value
of f A(SA, SB) is the expected number of nodes influenced by A at the end of this
process, and similarly for fB . One can easily show that an agent’s influence is non-
decreasing in its seed set, that the sum of influences is submodular non-decreasing,
and that the functions satisfy adverse competition.

Our network is as follows (see Fig. 1). The graph consists of two components; one
is the complete bipartite graph K2,10, and the other is the star K1,4. Let w1 and w2 be
the two nodes of degree 10, and let v be the center of the star. We claim that the greedy
algorithm paired with the dictatorship ordering is not strategyproof for this network.
Suppose each agent declares a budget of 1; in this case, the algorithm will allocate w1
to agent A, then it will allocate v to agent B (since 4p > 10(1 − (1 − p)2) − 10p,
which means that v maximizes the marginal gain in social welfare). This results in an

6 This process is a simplification of the OR model [12].
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expected influence of 10p = 9 for agent A. In the case where A has a budget of 2
(and B’s budget is still 1), the greedy algorithm will allocate w1 and v to agent A (for
the same reason as before), and will give w2 to agent B. In this case, the influence of

agent A becomes 4p+10(p · (1− p)+ p2

2 ) = 8.55 < 9, so in particular his influence
is not non-decreasing in his declaration.

The above construction can be modified to show that various other agent order-
ings for the greedy algorithm fail to result in strategyproof mechanisms. Appendix
“Counterexamples When There are Two Agents (Extended Discussion)” provides the
following examples:

1. The Round Robin ordering: the mechanism alternates between the players when
allocating a node.

2. Always choosing the player having the smallest current unsatisfied budget breaking
ties in favor of player A.

3. Taking a uniformly random choice over all orderings with the required number of
allocations to A and B.

The last example is particularly relevant, since in Sect. 4 we show that for the
case of k > 2 agents, taking a uniformly random permutation over the allocation
in combination with the greedy hill-climbing algorithm results in a strategyproof
algorithm that admits an e

e−1 approximation to the optimal social welfare. In contrast,
for the case of k = 2, and even under the extra AgI assumption placed in Sect. 4, the
uniformly random mechanism is not strategyproof. 7

3.2 A Strategyproof Mechanism for Two Agents

Theorem 1 In the case of two strategic agents, there exists a strategyproof mechanism
that admits a e/(e − 1)-approximation of the maximal social welfare. Furthermore,
the algorithm runs in polynomial time.

As previously mentioned, our mechanism is divided into two stages: first, we select
the sets of nodes to be allocated to the agents (using the greedy hill-climbing algorithm
described in the preliminaries). Then, we randomly construct a permutation that maps
the nodes selected in the first stages to the agents in a manner that respects their
budgets, and that incentivizes truthful reporting of budgets.

The idea behind our construction, at a high level, is as follows. We will construct
the distribution for use with budgets (a, b) recursively. Writing t = a + b, we first
generate the two distributions for the case t = 1 (which are trivial), followed by
t = 2, etc. To construct the distribution for budgets (a, b), we consider the following
thought experiment. We will choose an ordering in one of two ways. Either we choose
a permutation according to the distribution for budget pair (a − 1, b) and then append
a final allocation to A, or else choose a permutation according to the distribution for
budget pair (a, b − 1) and append an allocation to agent B. If we choose the former

7 One can verify that the influence model described above, used for our counterexample, does satisfy both
MeI and AgI, although the AgI condition is vacuous.
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option with some probability α, and the latter with probability 1 − α, this defines a
probability distribution for budget pair (a, b).

What we will show is that, assuming our distributions are constructed to adhere
to certain invariants, we can choose this α such that the resulting randomized algo-
rithm (i.e., the greedy algorithm applied to permutations drawn from the constructed
distributions) will be monotone. That is, the expected influence of agent A under the
distribution for (a, b) is at least that of the distribution for (a − 1, b), and similarly
for agent B. The existence of such an α is not guaranteed in general; we will need
to prove that our constructed distributions satisfy an additional “cross-monotonicity”
property in order to guarantee that such an α exists.

One problem with the above technique is that it does not bound the size of the
support of the distributions. In general there will be exponentially many possible
permutations to randomize over, leading to exponential computational complexity to
compute the value of α for each pair of a and b. One might attempt to overcome
such issues by sampling to estimate the required probabilities, but this introduces
the possibility of non-monotonicities due to sampling error, which we would like to
avoid. We demonstrate that each distribution we construct can be “pruned” so that
its support contains at most three permutations, while still retaining its monotonic-
ity properties. In this way, we guarantee that our recursive process requires only
polynomially many queries (to the influence functions) in order to choose a permuta-
tion.

3.2.1 The Allocation Algorithm

Our algorithm will proceed by first selecting the set of a + b nodes, using the greedy
hill-climbing algorithm, while remembering the order of their selections. The second
stage of our algorithm consists of choosing a distribution over orders in which nodes
are allocated to the two agents. This will be stored in a matrix M , where M[a, b]
contains a distribution over sequences (y1, . . . , yt ) ∈ {A, B}a+b, containing a ‘A’s
and b ‘B’s. We then choose a sequence from distribution M[a, b] and greedily con-
struct a final allocation with respect to that ordering. We begin by describing the
manner in which the allocation is made, given the distribution over orderings. The
algorithm is given as Algorithm 1. An important property of the allocation algorithm
that we will require for our analysis is that, given a sequence drawn from distribu-
tion M[a, b], the allocation is chosen myopically (due to the nature of the greedy
algorithm). That is, items are chosen for the agents in the order dictated by the given
sequence, independent of subsequent allocations. We will use this property to con-
struct the distributionM[a, b], which will be tailored to the greedy algorithm to ensure
strategyproofness.

Recall that the approximation ratio for the greedy algorithm guarantees that Algo-
rithm 1will be a e/(e−1)-approximation to the optimal total influence, and because of
the mechanism indifference property, this approximation guarantee will hold regard-
less of how we partition the total set among the agents. It remains only to demonstrate
that we can construct our distributions in such a way that the expected payoff to each
agent is monotone non-decreasing in his budget.

123



436 Algorithmica (2017) 78:425–452

Algorithm 1: The Allocation Mechanism for Two Agents
Input: A ground set U = {e1, . . . , en}, budgets a, b for agents A and B, respectively
Output: An allocation IA, IB ⊆ U for the two agents

S ← ∅1
for i = 1 . . . a + b do2

Let e∗i = argmaxe∈U ( f (S + e) − f (S))3

S ← S ∪ {e∗i }4

end5
/*Build permutation table. */
Let (e∗1 , . . . , e∗a+b) be the ordering of the elements in S, based on the order of their additions.6

SA ← ∅; SB ← ∅7
M ← Construct Distributions(a, b) ;8

/*M[a, b] will be a distribution over sequences (y1, . . . , ya+b) ∈ {A, B}a+b */
Choose (y1, . . . , ya+b) from distribution M[a, b];9
for i = 1 . . . a + b do10

if yi =‘A’ then11
SA ← SA ∪ {e∗i } ;12

else13
SB ← SB ∪ {e∗i } ;14

end15

end16

3.3 Constructing Matrix M

Wedescribe the procedureConstruct Distributions, used inAlgorithm1, to generate
distributions over orderings of assignments to agents A and B. We will build table
M[·, ·] recursively, where M[a, b] describes the distribution corresponding to budgets
a and b. Our procedure will terminate when the required entry has been constructed.

We think of M[a, b] as a distribution over sequences of the form (y1, . . . , ya+b),
where yi ∈ {A, B}. For anygiven sequence, the corresponding allocation is determined
since the greedy algorithm applied in Algorithm 1 is deterministic. We can therefore
also think of M[a, b] as a distribution over allocations, and in what follows we will
refer to “allocations drawn from M[a, b]” without further comment.

Note thatM[0, b]must assign probability 1 to the sequence (B, B, . . . , B), and sim-
ilarly M[a, 0] assigns probability 1 to (A, A, . . . , A). We will construct the remaining
entries of the table M[a, b] in increasing order of a + b.

Before describing the recursive procedure for filling the table, we provide some
notation. Given M , we will write wA(a, b) for the expected value of agent A under
the distribution of allocations returned by M[a, b]. Similarly, wB(a, b) will be the
expected value of agent B, and w(a, b) = wA(a, b) + wB(a, b) is the expected total
welfare. For notational convenience, set wA(a, b) = wB(a, b) = 0 if a < 0 or b < 0.

We will construct M so that the following invariants hold for all a > 0 and b > 0:

1. wA(a, b) ≥ wA(a − 1, b + 1).
2. wA(a, b) ≥ wA(a − 1, b).
3. wB(a, b) ≥ wB(a, b − 1).
4. The support of M[a, b] contains at most 3 sequences.
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The first invariant is a type of cross-monotonicity property, which will help us to
construct the entries of matrix M . The second two desiderata capture the monotonicity
properties we require of our algorithm. Note that if M satisfies these properties, then
Algorithm 1 will be monotone and hence strategyproof. The final property limits the
complexity of constructing and sampling from M[a, b], implying that Algorithm 1
runs in polynomial time.

We now describe the way in which we construct distribution M[a, b], given distrib-
utions M[a′, b′] for all a′ +b′ < a+b. We consider two distributions: the first selects
a sequence according to M[a − 1, b] and appends an “A”, and the second selects a
sequence according to M[a, b − 1] and appends a “B ′′. Call these two distributions
D1 and D2, respectively. What we would like to do is find some α, 0 ≤ α ≤ 1, such
that if we choose from distribution D1 with probability α and distribution D2 with
probability 1 − α, then the resulting combined distribution (for M[a, b]) will satisfy
wA(a, b) ≥ wA(a − 1, b) and wB(a, b) ≥ wB(a, b − 1). Of course, this combined
distribution may have support of size up to 6 (3 from D1 and 3 from D2) but we will
show that it can be pruned to a distribution with the same expected influence for agents
A and B, with at most 3 permutations in its support.

Our main technical lemma, Lemma 1, demonstrates that an appropriate value of
α, as described in the process sketched above, is guaranteed to exist and can be
found efficiently. Before stating the lemma we introduce some helpful notation. Write
Δ⊕B(a, b) = w(a, b) − w(a, b − 1) ≥ 0. That is, Δ⊕B(a, b) is the marginal gain
in total welfare when agent B increases his budget from b − 1 to b. Note that due
to the manner in which the algorithm operates, Δ⊕B(a, b) ≥ 0, as this is just the
marginal increase obtained when adding an item in iteration a + b of the greedy part
of the algorithm (lines 3–4). Also note that due to MeI and the manner by which the
algorithm selects the initial nodes, this value is solely determined by the sum a + b.

Lemma 1 It is possible to construct table M in suchaway that the followingproperties
hold for all a + b ≥ 1:

1. wA(a, b) ≥ wA(a − 1, b + 1)
2. wA(a, b) ≥ wA(a − 1, b)
3. wA(a, b) ≤ wA(a, b − 1) + Δ⊕B(a, b)

Furthermore, the entries of M can be computed in polynomial time.

Notice that condition 3 in Lemma 1 implies that agent B’s valuation is monotone
increasing with his budget:

wA(a, b − 1) ≥ wA(a, b) − Δ⊕B(a, b)

= wA(a, b) − [w(a, b) − w(a, b − 1)]
= wA(a, b) −

[(
wA(a, b) + wB(a, b)

)

−
(
wA(a, b − 1) + wB(a, b − 1)

)]

= wA(a, b − 1) + wB(a, b − 1) − wB(a, b)

⇒ wB(a, b) ≥ wB(a, b − 1) (2)
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Proof We will proceed by induction on t = a + b. The result is trivial for t = 1.
Given t = a + b > 1, we generate distribution M[a, b] by constructing a value α,

then with probability α we choose from the distribution of sequences (i.e. specifying
an order of allocations) M[a − 1, b] and append A, or else with probability 1− α we
choose from the distribution M[a, b − 1] and append B. We must show the existance
of some α value such that the three conditions required by Lemma 1 will hold. ��

Conditions 2 and 3 of the lemma describe an interval in which the value wA(a, b)
must fall, call it I a,b

m . That is,

I a,b
m = [wA(a − 1, b), wA(a, b − 1) + Δ⊕B(a, b)].

Claim 1 shows that this interval is non-empty.

Claim 1 wA(a − 1, b) ≤ wA(a, b − 1) + Δ⊕B(a, b).

Proof This follows by induction using condition 1 of the Lemma, which implies
wA(a − 1, b) ≤ wA(a, b − 1) ≤ wA(a, b − 1) + Δ⊕B(a, b). ��

Let W A
1 (a, b) (respectively, WB

1 (a, b)) denote the expected payoff of agent A
(respectively, agent B) if we let α = 1. That is, W A

1 (a, b) is the expected influ-
ence of agent A if we select a permutation from M[a − 1, b] and append A, then
use this permutation when applying our greedy algorithm. We define W A

0 (a, b) and
WB

0 (a, b) similarly for α = 0. The following claim follows from the adverse compe-
tition assumption.

Claim 2 W A
1 (a, b) ≥ wA(a − 1, b) and W A

0 (a, b) ≤ wA(a, b − 1).

Proof The first part of the claim follows because, for each fixed ordering in the support
of M[a−1, b], appending an A to that ordering can only increase the welfare of agent
A. Likewise, the second part of the claim follows because, for each ordering in the
support of M[a, b− 1], appending a B can only decrease the welfare of agent A (due
to adverse competition). ��

We think of W A
1 (a, b) and W A

0 (a, b) as the influence for agent A for distributions

that we can construct. Let I a,b
c denote the interval between W A

1 (a, b) and W A
0 (a, b).

Note that we do not know which ofW A
1 (a, b) orW A

0 (a, b) is greater. Claim 2 implies
that:

Claim 3 I a,b
m ∩ I a,b

c 	= ∅.
Proof It cannot be that I a,b

c lies entirely above I a,b
m , sinceW A

0 (a, b) ≤ wA(a, b−1) ≤
wA(a, b− 1) + Δ⊕B(a, b). Also, it cannot be that I a,b

c lies entirely below I a,b
m , since

W A
1 (a, b) ≥ wA(a − 1, b). Thus I a,b

m ∩ I a,b
c 	= ∅. ��

We can therefore write I a,b = I a,b
m ∩ I a,b

c . Note that any point in I a,b corresponds
to a lottery (choosing any of the interval’s endpoint with some probability) we can
construct for M[a, b], which will satisfy conditions 2 and 3 of our Lemma. It remains
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to show that we can choose this point so that condition 1 of Lemma 1 will also be
satisfied. Our claim is that if we always choose α so that wA(a, b) is the minimum
endpoint of I a,b, then condition 1 will be satisfied.

With the above in mind, we will set

α = arg min
α∈[0,1]

{
αW A

1 (a, b) + (1 − α)W A
0 (a, b) ∈ I a,b

}
(3)

Note that if we use this value of α to randomize between appending A to a permutation
drawn from M[a − 1, b] and appending B to a permutation from M[a, b − 1], then
the resulting value of wA(a, b) will indeed be min I a,b.

For all a′ + b′ = t , define M[a′, b′] as described above. We now argue that this
choice satisfies condition 1 of Lemma 1.

Claim 4 If a ≥ 1 then wA(a, b) ≥ wA(a − 1, b + 1).

Proof Note first that wA(a, b) ≥ wA(a− 1, b), since wA(a, b) ∈ I a,b
m . Consider now

the value of wA(a−1, b+1), which is the minimum of I a−1,b+1
c ∩ I a−1,b+1

m . We will
now bound the value of wA(a − 1, b + 1), by providing an upper bound on both the
minimal endpoint of I a−1,b+1

c and the minimal endpoint of I a−1,b+1
m .

For budgets (a− 1, b+ 1), the lower endpoint of I a−1,b+1
m is wA(a− 2, b+ 1). On

the other hand, I a−1,b+1
c contains point W A

0 (a − 1, b + 1), which is the influence to
agent A when we choose a permutation according to M[a − 1, b] and append a ‘B’.
However, since allocating an additional item to agent B in any fixed allocation can
only degrade agent A’s payoff, it must be that W A

0 (a − 1, b + 1) ≤ wA(a − 1, b).

Thus the lower endpoint of I a−1,b+1
m ∩ I a−1,b+1

c is at most max{wA(a − 2, b +
1), wA(a−1, b)}. ButwA(a−2, b+1) ≤ wA(a−1, b) by induction (using condition
1 of Lemma 1).

We therefore concludewA(a−1, b+1) ≤ max{wA(a−2, b+1), wA(a−1, b)} ≤
wA(a − 1, b) ≤ wA(a, b), as required. ��

We have shown that table M can be filled with distributions that satisfy the condi-
tions of Lemma 1. It remains to discuss the complexity of computing the entries of
M . To this point we have not bounded the size of our distributions’ supports. We will
modify the argument to show that the number of permutations required for each table
entry M[a, b] can be limited to only three, by induction on t .

Consider the distribution constructed for M[a, b]. By the inductive hypothesis,
since M[a−1, b] and M[a, b−1] each have support of size 3, the support of this dis-
tribution has size at most 6: the three permutations in the support ofM[a−1, b]with A
appended, plus the three permutations in the support of M[a, b−1]with B appended.
Each of these six permutations determines an allocation, say (S1, T1), . . . , (S6, T6).
For each allocation, we consider the two-dimensional point ( f A(Si , Ti ), fB(Si , Ti ))
representing the welfare to A and B for the given allocation. We can interpret
our construction of M[a, b] as implementing a point (wA(a, b), wB(a, b)) with
certain properties, such that this point lies in the convex hull of the six points
( f A(S1, T1), fB(S1, T1)), . . . , ( f A(S6, T6), fB(S6, T6)).
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We now use the following well-known theorem [24]:

Lemma 2 (Carathéodory’s theorem) Given a set V ⊂ R
n and a point p ∈ ConvV

in the convex hull of V , there exists a subset A ⊂ V such that |A| ≤ n + 1 and
p ∈ ConvA.

It must therefore be that our point (wA(a, b), wB(a, b)) lies in the convex hull of at
most three of the points ( f A(S1, T1),
fB(S1, T1)), . . . , ( f A(S6, T6), fB(S6, T6)). It follows that there exists a distribution
with a support that consists of three of the six permutations corresponding to (a, b).
Finding this distribution can be done in constant time by considering

(6
3

)
sets of three

allocations.8 We can therefore construct M[a, b] as a distribution over at most 3
permutations, concluding the proof of Lemma 1.

The proof of Lemma 1 is constructive: it implies a recursive method for construct-
ing the table M of distributions. That is, the procedure ConstructDistributions from
Algorithm 1 (with input (a, b)) will proceed by filling table M in increasing order
of t , up to a + b, by choosing the value of α for each table entry as in the proof
of Lemma 1, then storing the implied distribution over three permutations. Note that
we can explicitly store the allocations corresponding to the permutations in the table,
making it simple to compute the submodular function values needed to determine α

(which is stored as well). We conclude, given this implementation of ConstructDistri-
butions, that Algorithm 1 is a polytime strategyproof 2-approximation to the 2-agent
influence maximization problem.

4 A Strategyproof Mechanism for Three or More Players

To construct a strategyproofmechanism for k > 2 players, beyond theMeI and adverse
competition assumptions, we will impose the additional agent indiffernce (AgI) prop-
erty of the influence functions f1, . . . , fk . We show that, under these assumptions,
there is a natural mechanism that is strategyproof when there are at least three play-
ers. In fact, it turns out that having three or more players in such a setting allows
for a much simpler ordering than in the mechanism for the case of only two play-
ers9.

We note that the models for competitive influence spread proposed by Carnes et al.
[10] and Bharathi et al. [11] are based on a cascade model of influence spread, and
satisfy both the MeI and AgI assumptions.

8 Note that all quantities in this geometric problem are rational numbers, which are constructed via the
sequence of operations described in the proof above and therefore have polynomial bit complexity. We can
therefore solve the convex hull tasks described in this operation in polynomial time.
9 At this point, the reader may wonder if the two player case can be reduced to the case k > 2 by adding
dummy agents with budget 0. This does not work because strategyproofness is defined over the space of
all possible agent bids, so we cannot restrict our attention only to profiles in which some players bid 0. Our
examples in Appendix “Counterexamples When There are Two Agents (Extended Discussion)” show that
this is not just a nuance of the proof but rather an intrinsic obstacle to using the uniform distribution.
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4.1 The Uniform Random Greedy Mechanism

Consider Algorithm 2, which we refer to as the uniform random greedy mechanism.
This mechanism proceeds by first greedily selecting which subset of the ground set
elements to allocate. It then chooses an ordering of the players’ bids uniformly at
random from the set of all possible orderings, then assigns the selected elements to
the players in this randomly chosen order. Note that this always results in a disjoint
allocation.

Algorithm 2: Uniform Random Greedy Mechanism
Input: Ground set U = {e1, . . . , em }, budget profile b
Output: An allocation profile S

Initialize: Si ← ∅, i ← 0, j ← 0, I ← ∅, t ← ∑
i bi ;1

/*Choose elements to assign. */
while i < t do2

ui ← argmaxc∈U { f (I ∪ {c}) − f (I )} ;3
I ← I ∪ {ui } ; i ← i + 1 ;4

end5
/*Partition elements of I . */
Γ ← {β : [t] → [k] s.t. |β−1(i)| = bi for all i} ;6
Choose β ∈ Γ uniformly at random ;7
while j < t do8

Sβ( j) ← Sβ( j) ∪ {u j } ;9

j ← j + 1 ;10

end11

TheMeI assumption implies that the random greedy mechanism obtains a constant
factor approximation to the optimal social welfare. We now claim that, under the MeI
and AgI assumptions, this mechanism is strategyproof as long as there are at least 3
players.

Theorem 2 If there are k ≥ 3 players and the AgI and MeI assumptions hold, then
Algorithm 2 is a strategyproof mechanism. Furthermore, Algorithm 2 approximates
the social welfare to within a factor of e

e−1 from the optimum.

Proof As before, notice that lines 2–5 are an implementation of the standard greedy
algorithm for maximizing a non-decreasing, submodular set-function subject to a
uniform matroid constraint, as described in [17,23], and hence gives the specified
approximation ratio.

Next, we show that Algorithm 2 is strategyproof. Fix bid profile b and let t = ∑
i bi .

Let I be the union of all allocations made by Algorithm 2 on bid profile b; note that I
depends only on t , due toMeI. Furthermore, each agent i will be allocated a uniformly
random subset of I of size bi . Thus, the expected utility of agent i can be expressed
as a function of bi and t , due to AgI. We can therefore write wi (b, t) for the expected
utility of agent i when bi = b and

∑
j b j = t (recall that we let w(t) denote the total

social welfare when
∑

i bi = t).
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We now claim that wi (b, t) = b
t w(t) for all i and all 0 ≤ b ≤ t . Note that this

implies the desired result, since if our claim is true then for all i and all 0 ≤ b ≤ t we
will have

wi (b, t) = b

t
w(t) ≤ b + 1

t + 1
w(t + 1) = wi (b + 1, t + 1)

which implies the required monotonicity condition.
It now remains to prove the claim. The adverse competition assumption implies

that wi (0, t) ≤ wi (0, 0) = 0 for all i and t . We next show that wi (1, t) = w j (1, t)
for all i , j , and t ≥ 1. If t = 1 then this follows from the MeI assumption. So take
t ≥ 2 and pick any three agents i , j , and �. Then, by the AgI assumption, we have

wi (1, t) = w(t) − w�(t − 1, t) = w j (1, t).

We next show that wi (b, t) = wi (1, t) + wi (b − 1, t) for all i , all b ≥ 2, and all
t ≥ b. Pick any three agents i , j , and �, any b ≥ 2, and any t ≥ b. Then, by the AgI
assumption,

wi (b, t) = w(t) − w�(t − b, t)

= w(t) − [w(t) − wi (b − 1, t) − w j (1, t)]
= wi (b − 1, t) + w j (1, t)

= wi (b − 1, t) + wi (1, t).

It then follows by simple induction that wi (b, t) = bwi (1, t) for all 1 ≤ b ≤ t . But
now note thatw(t) = wi (1, t)+w j (t−1, t) = twi (1, t), and hencewi (1, t) = 1

t w(t)

and therefore wi (b, t) = b
t w(t) for all 0 ≤ b ≤ t , as required. ��

Note that the proof of Theorem 2 makes crucial use of the fact that there are
at least three players. Indeed, in Appendix “Counterexamples When There are Two
Agents (Extended Discussion)” we give an example satisfing the MeI and (vacuously)
AgI assumptions for which the random greedy algorithm is not strategyproof for two
players.

5 Conclusions

We have presented a general framework for mechanisms that allocate items given
an underlying submodular process. Although we have explicitly referred to spread
processes over social networks, we only require oracle access to the outcome values,
and thus ourmethods apply to any similar settingswhich uphold the propertieswe have
required from the processes. We build on natural greedy algorithms to construct effi-
cient strategyproof mechanisms that guarantee constant approximations to the social
welfare.

The obvious open questions concern the removal of the MeI and AgI assumptions.
For the case of k = 2 agents, is the MeI assumption necessary? For k > 2 agents, can
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we eliminate either or both of theMeI andAgI assumptions?As discussed inAppendix
“Tightness of Approach: More than Two Players”, it seems that a fundamentally new
approach would be required to obtain an O(1)-approximate strategyproof mechanism
for k > 2 players.

Another natural and challenging extensionwould be to assume that nodes have costs
for being initially allocated and then replace the cardinality constraint on each agent by
a knapsack constraint. To do so, the most direct approach would be to try to utilize the
known approximation for maximizing a non decreasing submodular function subject
to one [25] ormultiple [26] knapsack constraints. Thesemethods do not seem to readily
lend themselves to the approach we have been able to exploit in the case of cardinality
constraints. We have also assumed a “demand satisfaction” condition dictating that
each agent must receive their reported budget for initial adopters. Demand satisfaction
is appropriate in settings where the mechanism can be seen to be fulfilling contracts.
Canwe relax this condition in somemeaningful way?Without the demand satisfaction
condition, it is trivial to achieve a strategyproof k approximation by allocating all initial
elements to the agent who can achieve the most utlility. Can we improve upon this
trivial approximation factor without imposing the MeI and AgI assumptions?

Acknowledgements We would like to thank Yuval Filmus and anonymous referees for many helpful
comments and discussions. In particular, we are indebted to Eyal Shani and one of the referees for pointing
out a flaw in a previous version of this paper as regards the necessity of the MeI assumption in Theorem 1.

Appendix 1: Relation with Other Diffusion Models

In our results, we have made a number of modelling assumptions about agent utilities
and social welfare. To some extent, we can argue that these assumptions may be
necessary to be able to obtain truthfulness and constant approximation on the social
welfare. Furthermore, we now provide some background on the relevance of our
assumptions to the existing work on influence diffusion in social networks, which
served as the running example throughout the paper.

Non-decreasing and Submodular Utilities and Social Welfare

To the best of our knowledge, in order to establish a constant approximation on the
social welfare, all of the known models in competitive and non-competitive diffusion
assume that the overall expected spread is a non-decreasing and submodular function
with respect to the set of initial adopters. Amain part of the seminal work by Kempe et
al. [6] is the proof that the expected spread of twomodels of non-competitive diffusion
process is indeed non-decreasing and submodular. This was later extended to more
general processes in [7]. In the case of the competitive influence spreadmodels in [10–
12], it is shown that a player’s expected spread is a non-decreasing and submodular
function of his initial set of nodes, while fixing the competitors’ allocations of nodes.
This also implies that the total influence spread is a non-decreasing and submodular.
Without any assumption on the nature of the social welfare function, it is NP-hard to
obtain any non trivial approximation on the social welfare even for a single player.
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Adverse Competition

In the initial adoption of (say) a technology, a competitor can indirectly benefit from
competition so as to insure widespread adoption of the technology. However, once a
technology is established (e.g., cell phone usage), the issue of influence spread amongst
competitors should satisfy adverse competition. The same can be said for selecting
a candidate in a political election. We also note that the previous competitive spread
models [10–12] mentioned above also satisfy adverse competition. In its generality,
the Goyal and Kearns model need not satisfy this assumption, but in order to obtain
their positive result on the price of anarchy, they adopt a similar restriction (namely,
that the adoption function at every node satisfies the condition that a player’s proba-
bility of influencing an adjacent node cannot decrease in the absense of other players
competing).

Furthermore, a simple example shows that the assumption of adverse competition
is necessary for truthfulness. Consider the following two-player setting. The ground
set is composed of two items: u1, which contributes a value of 1 to the receiving player
and a value of N to her competitor (who did not receive u1), and item u2 which gives
both players a value of 1. Now, consider the outcome of any mechanism when the bid
profile is (1, 1). Without loss of generality, one player, say player A, will receive u1,
while the other player will get u2. The valuations would therefore be 2 and N + 1 for
players A and B, respectively. In that case, player A would prefer to lower her bid
to 0, which would guarantee her a valuation of N (player B would have to get u1, as
otherwise the approximation ratio of the social welfare is unbounded as N grows). We
conclude that unless the competition assumption holds, no strategyproof mechanism
can, in general, obtain a bounded approximation ratio to the optimal social welfare.
Although the example refers to deterministic allocations, the same argument can be
made for randomized allocations.

Mechanism and Agent Indifference

In both the Wave Propagation model and the Distance-Based model presented in
[10], the propagation of influence upholds both the mechanism and agent indifference
properties. Goyal and Kearns [13] assume that the switching function that determines
the probability that a node will adopt some technology is a function of the fraction of
influenced neighbours (regardless of their assumed technologies). This immediately
implies MeI, as these switching functions do not depend on the technologies involved.
However, we note that whether or not the model satisfies the AgI assumption depends
on the manner by which the nodes select specific technologies. The functions that
determine this are termed selection functions in [13]. For example, suppose α j is the
fraction of nodes infected by technology j . If the switching function determining the
probability of adopting technology i is s(i) = αi∑

j α j
, then the model satisfies AgI. On

the other hand, if s(i) = α2
i∑
j α2

j
, then the model would not satisfy AgI when there are

more than 2 technologies.
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Multiset Allocations and Disjointness

Our model assumes that each agent can be allocated a node at most once, and indeed
most influence models assume that a node is allocated at most once in any initial
allocation. However, we can extend our model to allow a node to be allocated multiple
times to the same agent, as in (for example) the model of Goyal and Kearns [13]. To
implement such an extension, we can simply consider a modified problem instance
with many identical copies of a given node, treating each copy as a distinct element,
and then proceed as though each element can be allocated at most once. The output of
Algorithm 1 for two players and Algorithm 2 for more than two players would then
be a profile of multisets with regard to the original network model. We note, however,
that for the case of Algorithm 2, the MeI and AgI definitions effectively imply that if
multisets are permitted, then non-disjoint allocations must be permitted as well, as the
conditions cannot distinguish between an element being allocated to one agent twice
or to two different agents.

Generality of the Model

A fewwords are in order about the generality of themodel of diffusion under whichwe
prove that Algorithm 1 is strategyproof and provides a e

e−1 -approximation. As noted,
with the exception of the OR model, the analysis in previous competitive influence
models assumes anonymous agents. Our general model does not require anonymity
and hence we can accommodate agent specific edge weights (e.g. in determining the
probability that influence is spread across an edge, or for determining whether the
weighted sum of influenced neighbors crosses a given threshold of adoption). Our
model also notably allows agent-independent node weights, for determining the value
of an influenced node. Moreover, our abstract model does not specify any particular
influence spread process, so long as the social welfare function is monotone submod-
ular and each player’s payoff is monotonically non-decreasing in his own set and
non-increasing in the allocations to other players. In particular, our framework can be
used to model probabilistic cascades as well as submodular threshold models.

Appendix 2: Counterexamples When There are Two Agents (Extended
Discussion)

The locally greedy algorithm is defined over an arbitrary permutation of the allocation
turns.At the core of ourwork,we seek to carefully construct such orderings in amanner
that induces strategyproofness. We demonstrate that this algorithm due to Nemhauser
et al [9] (see also Goundan and Schultz [17]) is not, in general, strategyproof for some
natural methods for choosing the ordering of the allocation between two agents.

To clarify the context when there are only two agents, we refer to them as agent
A and agent B and their utilites as f A and fB respectively. We give examples of a
set U and functions f A and fB (satisfying the conditions of our model) such that
natural greedy algorithms for choosing sets S and T result in non-monotonicities. Our
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examples will all easily extend to the case of k > 2 agents (but not satisfying agent
indifference).

The OR Model

We will consider examples of a special case of the OR model for influence spread,
as studied in [12]. Let G = (V, E) be a graph with fractional edge-weights p :
E → [0, 1], vertex weights wv for each v ∈ V , and sets IA, IB ⊆ V of “initial
adopters” allocated to each player. We use vertex weights for clarity in our examples;
in Appendix “Counterexamples with Unweighted Nodes” we show how to modify
the examples given in this section to be unweighted. We emphasize that all “infected”
nodes (including any initially selected) contribute their weight to the expected social
welfare and individual values of the players. The process unfolds in discrete steps. For
each uA ∈ IA and vA such that (uA, vA) ∈ E , uA, once infected, will have a single
chance to “infect” vA with probability p(uA, vA). Define the same, single-step process
for the nodes in IB , and let OA and OB be the nodes infected by nodes in IA and IB ,
respectively. Note that the infection process defined for each individual player is an
instance of the Independent Cascade model as studied by Kempe et al. [6]. Finally,
nodes that are contained in OA\OB will be assigned to player A, nodes in OB\OA

will be assigned to B, and any nodes in OA ∩ OB will be assigned to one player or
the other by flipping a fair coin.

In our examples, we consider two identical players each having utility equal to
the weight of the final set of nodes assigned by the spread process. It can be easily
verified that both the expected social welfare (total weight of influenced nodes) and
the expected individual values (fixing the other player’s allocation) are submodular
set-functions.

Deterministic Greedy Algorithms that are Not Strategyproof

Wedemonstrate that themore obvious deterministic orderings for the greedy algorithm
fail. First, consider the “dictatorship” ordering, in which (without loss of generality
by symmetry) player A is first allocated nodes according to his budget, and only then
player B is allocated nodes. Our example showing non-truthfulness also applies to
an ordering that would always select the player having the largest current unsatisfied
budget breaking ties (again without loss of generality by symmetry) in favor of player
A. Consider the graph depicted in Fig. 2a. When player A bids 1 and player B bids
1 as well, the algorithm will allocate c1 to player A, as it contributes the maximal
marginal gain to the social welfare, and will allocate c3 to player B. The value of the
allocation for player A is 2.

However, notice that if player A increases its bid to 2, the mechanism will allocate
nodes c1 and c3 to player A, and allocate c2 to B. In this case player A receives an
extra value of 1

2 from node c3, but the allocation of c2 to B will “pollute” player A’s
value from c1: he will receive nodes u1 and u2 each with probability 1

10 + 1
2 · 9

10 = 11
20 .
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1
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3·

(a) (b)

Figure 2 Counter-examples for the mechanism under the deterministic dictatorship and Round Robin
orderings. In both cases, we set the weights wci = 0 and wui = 1, for all 1 ≤ i ≤ 4. Additionally, we

let 0 < ε < 1
8 . a The counter-example for the deterministic mechanism with a dictatorship ordering. The

initial budget for both players is 1. b The counter-example for the deterministic algorithm under a Round
Robin ordering. The initial budgets for players A and B are 1 and 2, respectively

Thus the total expected value for player A is only 16
10 , and hence the algorithm is

non-monotone in the bid of player A.
Next, consider the Round Robin ordering, in which the mechanism alternates

between allocating a node to player A and to player B. Our example here also applies
to the case when the mechanism always chooses the player having the smallest current
unsatisfied budget breaking ties in favor of player A. Consider the instance given in
Fig. 2b. When the bids of players A and B are 1 and 2, respectively, the algorithm will
first allocate c1 to player A, and then it will subsequently allocate nodes c3 and c4 to
player B, which results in a payoff of 1 for player A. If player A were to increases his
bid to 2, then the mechanism would allocate nodes c1 and c4 to player A, and nodes
c2 and c3 to player B, for a payoff of 3 · ε + 2 · ε + (1 − 2 · ε) · 1

2 = 1
2 + 4 · ε < 1

(since 0 < ε < 1
8 ). Therefore, the monotonicity is violated for the payoff to player A.

The Uniform Random Greedy Algorithm is Not Strategyproof

As we shall see in Sect. 4, for the case of k > 2 agents in the restricted setting
that assumes mechanism and agent indifference, a very simple mechanism admits
a strategyproof mechanism that provides an e

e−1 approximation to the optimal social
welfare.More specifically, we show that under these assumptions on the social welfare
agent utilities, taking a uniformly random permutation over the allocation turns is
a strategyproof algorithm. In contrast, for the case of k = 2, and even with these
additional restrictions (although the agent indifference assumption turns out to be
vacuous in this case), the uniformly random mechanism is not strategyproof.

Consider the example given in Fig. 3. We note that for this example, Algorithm 2
in Sect. 4 is equivalent to first choosing a random order of allocation (e.g. choosing
all possible permutations satisfying agent budgets with equal probability) and then
allocating greedily. The greedy algorithm will allocate one of c2, c3, c4 and c5 to one
of the players, then allocate c1, and then any remaining nodes.

Let player A’s budget be 3 and player B’s budget be 1. In this case, with probability
1
4 , player B will be allocated c1 (i.e. when B’s allocation occurs second), in which
case player A’s expected value would be 1. Also, with probability 3

4 , player B will be
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Figure 3 The counterexample
for the mechanism that allocated
according to a random ordering
of the turns (0 < ε � 1).
wci = ε, i = 1, . . . , 5,
wui = 1, i = 1, 2

u1 u2

c1 c2

1

c3

1

c4

1

c5

1

allocated one of {c2, c3, c4, c5}, in which case player A’s expected outcome would be
1
2 + ε. In total, player A’s expected payoff will be 5

8 + 3
4ε.

If player A were to increase his budget to 4, then with probability 1
5 player B will

be allocated c1, in which case player A’s outcome will be 1. On the other hand, player
A’s expected payoff will be 1

2 +ε if B is allocated one of {c2, c3, c4, c5}, which occurs
with probability 4

5 . In total, player A’s expected outcome will be 3
5 + 4

5ε < 5
8 + 3

4ε,
implying that this algorithm is non-monotone.

Appendix 3: Counterexamples with Unweighted Nodes

In Sect. “Counterexamples When There are Two Agents (Extended Discussion)” we
constructed specific examples of influence spread instances for the OR model, to
illustrate that simple greedy methods are not necessarily strategyproof for the case of
two players. These examples used weighted nodes which our model allows. For the
sake of completeness, we now show that these examples can be extended to the case
of unweighted nodes.

We focus on the example from Sect.“The Uniform Random Greedy Algorithm is
Not Strategyproof” to illustrate the idea; the other examples can be extended in a
similar fashion. In that example there were nodes u1 and u2 of weight 1, and nodes
c1, . . . , c5 of weight 0. We modify the example as follows. We choose a sufficiently
large integer N > 1 and a sufficiently small ε > 0. We will replace node u1 with a
set S of N independent nodes. We replace the ε-weighted edge from c1 to u1 with an
ε-weighted edge from c1 to each node in T .

Similarly, we replace u2 by a set T of N independent nodes. For each ci , we replace
the unit-weight edge from ci to u2 with a unit weight edge from ci to each node in T .

In this example, if the sum of agent budgets is at most 5, the greedy algorithm will
never allocate any nodes in S or T . The allocation and analysis then proceeds just as in
Sect.“The Uniform Random Greedy Algorithm is Not Strategyproof”, to demonstrate
that if agent B declares 1 then agent A would rather declare 3 than 4.

Appendix 4: Tightness of Approach: More than Two Players

The mechanism we construct in Sect. 3.2 is applicable to settings in which there are
precisely two competing players, and our mechanism in Sect. 4 for more than three
players requires the MeI and AgI assumptions. A natural open question is whether
these results can be extended to the general case of three or more agents without the
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MeI and AgI restrictions. In this section we briefly describe the difficulty in applying
our approach to settings with three players.

For the case of two players in Sect. 3.2, our mechanism was built from an initial
greedy algorithm by randomizing over orderings under which to assign elements to
players. Our construction is recursive: we demonstrated that if we can define the
behaviour of a strategyproof mechanism for all possible budget declarations up to
a total of at most t , then we can extend this to a strategyproof mechanism for all
possible budget declarations that total at most t +1. A key observation that makes this
extension possible is the direct relation between the utilities of the two players. This
manifests itself in the cross monotonicities that we utilize in the inductive argument. In
addition, the strategyproofness condition (i.e. agent monotonicity) can be equivalently
re-expressed as a certain “budget competition” property: if one player increases his
budget, then the expected utility for the other player cannot increase by more than
the marginal gain the total welfare. In other words, for all a + b ≥ 1, a strategyproof
mechanism must satisfy wA(a, b) − wA(a, b− 1) ≤ Δ⊕B(a, b) where Δ⊕B(a, b) =
w(a, b) − w(a, b − 1) and a similar consequence with regard to Δ⊕A(a, b).

Claim 5 (Equivalence of monotonicity and budget competition for two players)

1: wA(a, b) − wA(a, b − 1) ≤ w(a, b) − w(a, b − 1) iff wB(a, b − 1) ≤ wB(a, b)

2: wB(a, b) − wB(a − 1, b) ≤ w(a, b) − w(a − 1, b) iff wA(a − 1, b) ≤ wA(a, b)

Proof We provide the proof for Δ⊕B(a, b).

wB(a, b − 1) ≤ wB(a, b) iff

wA(a, b) + wB(a, b − 1) ≤ wA(a, b) + wB(a, b) iff

wA(a, b)+wB(a, b−1)+wA(a, b−1) ≤ wA(a, b)+wB(a, b)+wA(a, b−1) iff

wA(a, b) + w(a, b − 1) ≤ w(a, b) + wA(a, b − 1) iff
wA(a, b) − wA(a, b − 1) ≤ w(a, b) − w(a, b − 1)

��
A direct extension of our approach to three players would involve proving induc-

tively that an allocation rule that satisfies these conditions for all budgets that total at
most t can always be extended to handle budgets that total up to t + 1. We now give
an example to show that this is not the case, even when our underlying submodular
function takes a very simple linear form.

Suppose we have three players A, B, andC , and suppose our ground setU contains
a single element g of value; all other elements are worth nothing. The utility for each
agent is 1 if their allocation contains g, otherwise their utility is 0. In this case, the
locally greedy algorithm simply gives element g to the first player that is chosen for
allocation; the remaining allocations have no effect on the utility of any player. Note
then that the marginal gain in social welfare is 1 for the first allocation, and 0 for all
subsequent allocations made by the greedy algorithm.
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We now define the behaviour of a mechanism for all budget declarations totalling at
most 2. Note that the relevant feature of this mechanism is the (possibly randomized)
choice of which agent is first in the order presented to the greedy algorithm.We present
this behaviour in the following table.

Budgets (a, b, c) Player selected Utilities (wA, wB , wC )

(0, 0, 0) N/A (0, 0, 0)
(1, 0, 0) A (1, 0, 0)
(0, 1, 0) B (0, 1, 0)
(0, 0, 1) C (0, 0, 1)
(1, 1, 0) A (1, 0, 0)
(0, 1, 1) B (0, 1, 0)
(1, 0, 1) C (0, 0, 1)

We note that this mechanism (restricted to these type profiles) is strategyproof,
satisfies the budget competition property, and also satisfies the cross-monotonicity
properties (i.e. in the invariants of Theorem 1). However, we claim that no alloca-
tion on input (1, 1, 1) that obtains positive social welfare can maintain the budget
competition property. To see this, note that the budget competition property would
imply that wA(1, 1, 1) ≤ wA(1, 0, 1) + Δ⊕B(1, 1, 1) = wA(1, 0, 1) = 0. Similarly,
we must have wB(1, 1, 1) = wC (1, 1, 1) = 0. Thus, in order to maintain the budget
competition property, our mechanismwould have to generate social welfare 0 on input
(1, 1, 1), resulting in an unbounded approximation factor. We conclude that there is
no way to extend this specific mechanism for budgets totalling at most 2 to a (strat-
egyproof) mechanism for budgets totalling at most 3 while maintaining the constant
approximation factor of the locally greedy algorithm.

Roughly speaking, the problem illustrated by this example is that the presence of
more than two bidders means that a substantial increase in the utility gained by one
player does not necessarily imply any limits in the utility of another specific player.
This is in contrast to the case of two players, in which the utilities of the two players are
more directly related. This fundamental difference seems to indicate that substantially
different techniques will be required in order to construct strategyproof mechanisms
with three or more players.

A different (and natural) approach would be to employ the solution for two players
by grouping all but one player at a time, and running the mechanism for two players
recursively. However, this method seems ineffective in our setting, as interdependen-
cies between the players’ outcomes can introduce non-monotonicities. This brings
into question whether or not the locally greedy method can be made strategyproof by
some method of randomizing over the order in which allocations are made.

This “2 vs 3 barrier” is, of course, not unique to our problem. Many optimization
problems (such as graph coloring) are easily solvable when the size parameter is k = 2
but become NP-hard when k ≥ 3. Closer to our setting, the 2 vs 3 barrier has been
discussed in recent papers concerning mechanism design without payments, such as
in the Lu et al. [27] results for k-facility location. Additionally Ashlagi et al. discussed
similar issues [28] in the context of mechanisms for kidney exchange. They show
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that for n points on the line, there is a deterministic (respectively, randomized) strate-
gyproofmechanism for placing k = 2 facilities (so as tominimize the sum of distances
to the nearest facility) with approximation ratio n − 2 (respectively, 4) whereas for
k = 3 facilities, they do not know if there is any bounded ratio for deterministic strate-
gyproof mechanisms and the best known approximation for randomized strategyproof
mechanisms is O(n).
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