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Abstract Black-box complexity studies lower bounds for the efficiency of general-
purpose black-box optimization algorithms such as evolutionary algorithms and other
search heuristics. Different models exist, each one being designed to analyze a differ-
ent aspect of typical heuristics such as the memory size or the variation operators in
use. While most of the previous works focus on one particular such aspect, we con-
sider in this work how the combination of several algorithmic restrictions influence
the black-box complexity of a problem. Our testbed are so-called OneMax func-
tions which require to minimize the Hamming distance to an unknown target string
z ∈ {0, 1}n . We analyze in particular the combined memory-restricted ranking-based
black-box complexity of OneMax for differentmemory sizes.While its isolated (1+1)
memory-restricted as well as its ranking-based black-box complexity for bit strings of
length n is only of order n/ log n, the combined model does not allow for algorithms
being faster than linear in n, as can easily be seen by standard information-theoretic
considerations. Our main result is a matching upper bound. That is, we show that the
(1+1) memory-restricted ranking-based black-box complexity of OneMax is linear.
We also analyze its black-box complexity for memory sizes other than (1+1). More-
over, we show that these results apply to the (Monte Carlo) complexity of OneMax in
the recently introduced elitist model [Doerr/Lengler GECCO 2015] that combines the
above-mentioned memory-restrictions and ranking-based decisions with an enforced
usage of truncation selection. Finally, we also provide improved lower bounds for the
complexity of OneMax in the regarded models.
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1 Introduction

A black-box algorithm optimizing an unknown objective function is an algorithm
that does not have direct access to the problem data (e.g., due to size, complexity,
or availability of the data, or due to privacy concerns). Thus, instead of operating on
the problem input directly, such an algorithm learns about the problem at hand only
through querying the function value of possible solution candidates. This evaluation
often being the most costly part, the complexity of a black-box algorithm on a problem
instance p is measured by the number of such queries. More precisely, the running
time of a black-box algorithm A on P is the number of function evaluations needed
until for every problem instance p ∈ P an optimal solution is queried for the first
time. We are typically interested in bounding the expectation of this random variable,
but also other quantities like its concentration are in the focus of the research domain
dealing with running time analysis for randomized search heuristics.

The black-box complexity of problem P is the expected running time of a best
possible algorithm solving it. It is thus a measure for the difficulty of P for black-box
optimization algorithms. By studying different variants of black-box complexity we
gain insight into how algorithmic choices such as the population size, the variation
operators in use, or the selection principles affect the optimization time of evolutionary
algorithms (EAs) and other (deterministic or randomized) search heuristics. Lower
bounds from black-box complexity theory provide information about the limits of
certain classes of evolutionary algorithms (e.g., memory-restricted, ranking-based, or
unbiased EAs), while upper bounds can serve as an inspiration for the development
of new EAs.

We regard in this work the black-box complexity of so-called OneMax functions
under several algorithmic restrictions. Informally, we study how its complexity
changes in a model that combines a memory-restriction for the algorithms with a
restricted oracle output (instead of absolute function values only the relative quality of
the search points is revealed to the algorithm). In the evenmore restrictive elitist setting
we also enforce the algorithms to perform truncation selection, i.e., they are forced to
work only with the best so far solutions. Before stating more precisely the contribution
of our work in Sect. 1.2, we give a brief introduction to black-box complexity.

1.1 Related Work on Black-Box Complexity

In the context of evolutionary computation (EC), black-box complexity has first been
studied by Droste, Jansen, (Tinnefeld,) and Wegener in [11] and [12]. The authors
regard twodifferent black-boxmodels, anunrestricted version, inwhich the algorithms
have arbitrary memory and full access to function values, and a memory-restricted
one, in which the algorithms are allowed to store only a limited number of previously
queried search points and their function values.While the unrestrictedmodel is mostly
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used for analyzing lower bounds, thus showing hardness of a problem class for all
black-box algorithms, research for the memory-restricted model has rather concen-
trated on proving upper bounds. Since most EAs have a limited population size, these
upper bounds were hoped to provide a more realistic view on what running times can
be achieved with such general-purpose optimizers.

The theory seemed to have come to an early end afterward since even the
memory-restricted version yielded black-box complexities thatwere unreasonably low
compared to the performance of evolutionary algorithms. The notion thus seemed to be
of little use for the understanding of such algorithms. However, the field experienced a
major revivalwith theworkofLehre andWitt [16,17] on theunbiasedblack-boxmodel.
In this version, new search points can be obtained by the algorithm only by sampling
uniformly at random from the underlying search space, or—for the search space being
the n-dimensional hypercube {0, 1}n—by combining previously queried search points
in a way that does not discriminate between the bit positions 1, 2, . . . , n nor between
the bit values 0 and 1. Many EAs use variation operators of this unbiased type.

Lehre and Witt could show that their unbiased black-box complexity notion can
give much better estimates for the efficiency of typical EAs than the previous models.
This also applies to the OneMax problem, whose unrestricted black-box complexity
is only of order n/log n [1,12,13] while its unary unbiased black-box complexity is
of order n log n [17, Theorem 6], thus matching the expected optimization time of
search heuristics such as the so-called (1+1) EA and Randomized Local Search. The
(generalized)OneMax problem is to identify an unknown bit string z if with each each
query x the algorithm learns the number Omz(x) := |{i ∈ {1, 2, . . . , n} | xi = zi }|
of bit positions in which x and z agree (in other words, Omz(x) equals n minus the
Hamming distance of x and z). This problem can be seen as a generalization of the
popular Mastermind game with two colors (cf. [6]), and is one of the easiest pseudo-
Boolean optimization problems as it only requires trap-free hill-climbing. As such
it is typically one of the first test problems that is regarded when introducing a new
black-box model.

It was left as an open question in [12] whether or not restricting the memory of an
algorithm already yields a similar runtime bound of Ω(n log n) for the optimization
of OneMax. This hope was dashed in [6], where it has been shown that even for the
smallest possible memory size, in which algorithms may store only one previously
queried search point and its fitness, an O(n/log n) algorithm exists. Similarly, in the
ranking-based black-box model, in which the algorithms learn only the ranking of
the function values, but not their absolute values, OneMax can still be solved in an
expected number of O(n/log n) function evaluations [7].

1.2 Our Results

While previous work in black-box complexity theory focused on analyzing the influ-
ence of single restrictions on the efficiency of the algorithms under consideration, we
regard in thiswork combinations of such algorithmic constraints. As testbed,we regard
the above-mentioned class of OneMax functions. Since for this problem many, often
provably tight, bounds are available for the single-restriction models, we can easily
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compare our results to see how the combined restrictions impact the best-possible
optimization times, cf. Table 1 below.

In a first step, we study the combined memory-restricted ranking-based model, i.e.,
we study the black-box complexity of OneMax with respect to (μ + λ) memory-
restricted ranking-based algorithms. Algorithms fitting this framework are allowed to
store up to μ previously queried search points and their ranking with respect to the
underlying objective function f . (Solely) from this information, the algorithms then
generate and query λ new search points (so-called offspring). They receive informa-
tion of how these newly generated search points perform with respect to the parent
population (more precisely, the full ranking of the μ + λ search points with respect to
f is revealed to the algorithms), and the algorithms then select an arbitrary subset of
μ of these search points, which form the parent population of the next iteration. This
process continues until a search point x ∈ argmax f is queried for the first time.

For the most restrictive case μ = λ = 1 (i.e., the often regarded (1+1) scheme),
the algorithms under consideration are easily seen to be comparison-based, i.e., they
learn with each query only whether the offspring has better, equal, or worse fitness
than its parent. Therefore, by a simple information-theoretic argument (cf., e.g., [12,
Theorem 2]), their expected optimization time on OneMax is at least linear in n. This
already shows that the combined (1+1) memory-restricted ranking-based black-box
complexity of OneMax is asymptotically larger than either the pure ranking-based or
the pure memory-restricted version. However, this is not the end of the story. In this
workwe show lower bounds for the combined (1+1)model that are by a constant factor
stronger than the best known bounds for comparison-based algorithms. Thus they are
stronger than any boundobtained by reducing the combinedmodel to an existing black-
box model with a single restriction. On the other hand, we show that the mentioned
linear lower bound is asymptotically tight. That is, we provide a linear time algorithm
solving OneMax in a (1+1) scheme and using only relative fitness information. Also
for many other combinations of μ and λ we show that the information-theoretic lower
bound is matched by a (μ + λ) memory-restricted ranking-based algorithm.

In a next step, we combine the memory-restricted ranking-based model with yet
another restriction, namely with an enforced usage of truncation selection. The com-
bination of these three restrictions have recently been studied in the work [9] on elitist
black-box models. In this context we require that the algorithm selects the μ fittest
individuals out of theμ+λ parents and offspring (where it may break ties arbitrarily).
Notably, the achievable optimization times stay the same (asymptotically), though in
a slightly different sense as we shall discuss below. This is rather surprising, as all
previous black-box optimal algorithms make substantial use of search points having
fitness smaller than the currently best search search points.

Table 1, taken from [3] and extended to cover the results of the present paper,
summarizes known lower and upper bounds of the complexity of OneMax in the
different black-box models. Bounds given without reference follow trivially from
identical bounds in stronger models, e.g., the Ω(n/ log n) lower bound for the
memory-restricted black-box complexity follows directly from the same bound for
the unrestricted model.

A short version of this work has been presented at the Genetic and Evolutionary
Computation Conference (GECCO 2015) in Madrid, Spain [10].
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Table 1 The black-box complexities of OneMax in the different models. r.b. abbreviates ranking-based;
info-theo. the information-theoretic bound [21], cf. also [12]; for (1 + λ) and (1, λ) we assume 1 < λ <

2n
1−ε

for some ε > 0, and for (μ + 1) we assume that μ = ω(log2 n/log log n) and μ ≤ n

Model Lower Bound Upper Bound

unrestricted Ω(n/log n) info.-theo. O(n/log n) [1,13]

unbiased, arity 1 Ω(n log n) [17] O(n log n)

unbiased, arity 2 ≤ k ≤ log n Ω(n/log n) O(n/k) [4,8]

r.b. unrestricted Ω(n/log n) O(n/log n) [7]

r.b. unbiased, arity 1 Ω(n log n) O(n log n)

r.b. unbiased, arity 2 ≤ k ≤ n Ω(n/log n) O(n/ log k) [7]

(1+1) comparison-based Ω(n) info.-theo. O(n)

(1+1) memory-restricted Ω(n/log n) O(n/ log n) [6]

(1+1) elitist Las Vegas Ω(n) Thm. 2 O(n log n)

(1+1) elitist log n/n-Monte Carlo Ω(n) O(n) Thm. 3

(2+1) elitist Monte Carlo/Las Vegas Ω(n) O(n) Thm. 4

(1+λ) elitist Monte Carlo (# generations) Ω(n/log λ) O(n/log λ) Thm. 5

(μ+1) elitist Monte Carlo Ω(n/logμ) O(n/logμ) Thm. 6

(1, λ) elitist Monte Carlo/Las Vegas (# generations) Ω(n/log λ) cf.Sect. 9 O(n/log λ) Thm. 7

1.3 Relevance of Our Work and Techniques

While at a first glance the obtained upper bounds may seem to be a shortcoming of
the model (most EAs need Ω(n log n) steps to optimize OneMax -functions), it does
not have to be. In light of [4], where a simple and natural EA has been designed
that optimizes OneMax in o(n log n) time, it is possible that such a result can be
extended (of particular interest is an extension to (1+1)-type algorithms). As we know
from [4], black-box complexity results like our mentioned OneMax bound can be an
inspiration for developing such algorithms.

One obvious challenge for designing algorithms in the combinedmemory-restricted
ranking-basedmodel is the fact that the best-known algorithms in the single-restriction
case either make heavy use of knowing the absolute fitness values (in the memory-
restricted case, see [6]) or of having access to a large number of previously queried
search points (in the ranking-based case, cf. [7]). It is thus not obvious how to design
efficient algorithms respecting both restrictions at the same time. Our results therefore
require approaches and strategies that are significantly different from those found in
previous works, though, at the other hand, we can and also do make significant use
of several ideas developed in previous works on OneMax in the different black-box
models. For example, for the (1+1) memory-restricted ranking-based elitist black-
box model the algorithm certifying the linear upper bound nicely combines previous
techniques from the black-box complexity literature with some newly developed tools
such as the neutral counters designed in Sect. 6.2.3. We believe that the insights
from these tools will be useful in future research in evolutionary computation, both in
algorithm analysis and in algorithm design.
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For the lower bounds, a technical difficulty that we face in the proofs is a puta-
tive non-applicability of Yao’s principle. More precisely, there may be randomized
algorithms that even in the worst case perform much better than any deterministic
algorithm on a random problem instance, cf. Sect. 4.2 and [9]. We overcome these
problems by expanding the class of algorithms regarded. This needs some care as we
do not want to decrease the complexity too much by this expansion.

1.4 Structure of the Paper

Our paper is structured as follows.We start with a formal introduction of the models in
Sect. 2, followed by a brief discussion on the difference between Las Vegas andMonte
Carlo complexities, which can be crucially different in memory-restricted models. In a
nutshell, the Las Vegas complexity measures the expected time until an optimal search
point is hit, while the p-Monte Carlo complexity asks for the time needed until an
optimum is hit with probability at least 1− p. These bounds can be exponentially far
apart as shown in [9] and thus need to be regarded separately. In Sect. 3 we formally
introduce the generalized OneMax functions and recapitulate the known bounds on
its complexity in different black box models. We conclude the introductory sections
by providing some basic tools in Sect. 4.

In Sect. 5we provide thementioned lower bounds for the (μ+λ)memory-restricted
ranking-based black-box complexity of OneMax for a wide range of μ and λ. For
the upper bounds, most of our proofs work directly in the elitist black box model, so
the remainder of the paper is devoted to the proofs of such upper bounds in the elitist
model, which imply the same upper bounds for the memory-restricted ranking-based
model. At the heart of this paper is Sect. 6, where we show the linear upper bound for
the (1+1) Monte Carlo elitist black-box complexity of OneMax. This section starts
with a high-level overview of the proof, and we first illustrate the main idea of the
proof by showing a linear upper bound for the (2+1) (Las Vegas and Monte Carlo)
elitist black-box complexity of OneMax (Theorem 4), which is much easier than the
(1+1) case. In Sects. 7 and 8, we consider more generally (1 + λ) and (μ + 1) elitist
black-box algorithms. Finally, in Sect. 9 we make some remarks on the (μ, λ) elitist
black-box complexities of OneMax and point out some important differences from
the (μ + λ) complexities.

2 Black-Box Models and Complexity Measures

We are primarily interested in analyzing the memory-restricted ranking-based black-
box complexities of OneMax. An important difference to purely memory-restricted
algorithms is that the available memory is strictly smaller in this combined memory-
restricted and ranking-based model. If we regard, for example, the (1+1) case, then
in the purely memory-restricted model the algorithm does not only have access to the
current search point, but also to its fitness value. It thus has strictly more than n bits
of information when sampling the offspring. If, on the other hand, the algorithm is
in addition also ranking-based, then it may not access the fitness; thus its available
information is restricted to exactly n bits. So the fitness-based variant has effectively
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a larger available memory than the ranking-based one (but of course both are not
completely free in how to use the memory).

Formally, a (μ + λ) memory-restricted, ranking-based black-box algorithm main-
tains a population (parent generation) of μ search points, and knows the ranking of
their fitnesses. Based solely on this information it samples λ additional search points
(offspring), and receives the ranking of all μ+λ fitnesses. From the parent generation
and the offspring, it selects μ search points to form the new parent generation. A
(μ+λ) memory-restricted, ranking-based black-box algorithm is elitist if in addition
it uses truncation selection, that is, if in the selection step it selects the μ best search
points with respect to the ranking. The algorithm may break ties arbitrarily: for exam-
ple, if all μ + λ search points have the same fitness, then it may choose an arbitrary
subset of size μ to form the next parent generation. The formal structure of a (μ + λ)

elitist black-box algorithm is given by Algorithm 1.

Algorithm 1:The (μ+λ) elitist black-box algorithm formaximizing an unknown
function f : {0, 1}n → R

1 Initialization:
2 X ← ∅;
3 for i = 1, . . . , μ do
4 Depending only on the multiset X and the ranking ρ(X, f ) of X induced by f , choose a

probability distribution p(i) over {0, 1}n and sample x(i) according to p(i);

5 X ← X ∪ {x(i)};
6 Optimization: for t = 1, 2, 3, . . . do
7 Depending only on the multiset X and the ranking ρ(X, f ) of X induced by f choose a

probability distribution p(t) on ({0, 1}n)λi=1 and sample (y(1), . . . , y(λ)) according to p(t);

8 Set X ← X ∪ {y(1), . . . , y(λ)};
9 for i = 1, . . . , λ do Select x ∈ argmin X and update X ← X \ {x};

Note that the only difference to the (μ+λ)memory-restricted ranking-based black-
box model is the enforced truncation selection in line 9, which in the former model
can be replaced by

for i = 1, . . . , λ do Select x ∈ X and update X ← X \ {x};
Since the elitist model is more restrictive than the combined memory-restricted
ranking-based one, every upper bound on the (μ + λ) elitist black-box complex-
ity also holds for the (μ+λ) memory-restricted ranking-based black-box complexity.
As discussed in [9] several meaningful variants of the elitist model co-exist, but this
being beyond the scope of the present paper, so we stick to the model described above.

Following the standard convention for black-box optimization, we define the run-
time (or optimization time) of a (μ + λ) black-box algorithm A to be the number
of search points sampled by A until an optimal search point is sampled for the first
time (samples are counted with multiplicities if they are sampled several times). Since
a (μ + λ) algorithm samples λ search points in each generation, the runtime of an
algorithm after t generations isμ+λt , but see also our comment at the end of Sect. 2.1.
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2.1 Las Vegas versus Monte Carlo Complexities

Elitist black-box algorithms cannot do simple restarts since a solution intended for a
restart is not allowed to be accepted into the population if its fitness is not as good as
those of the search points currently in the memory. Regarding expected runtimes can
therefore be significantly different from regarding algorithms with allowed positive
failure probability. In fact, it is not difficult to see that these two notions can be expo-
nentially far apart [9, Theorem 3]. One may argue that this is a rather artificial problem
since in practice there is no reason why one would not want to allow restarts. Also,
almost all algorithms used to show upper bounds in the previous black-box models
have small complexity only because of the possibility of doing random restarts. One
convenient way around this problem is to allow for small probabilities of failure. Such
(high) probability statements are actually often found in the evolutionary computation
literature. The following definition captures its spirit.

Let us regard for a black-box algorithm A the smallest number T of function
evaluations that is needed such that for any problem instance f ∈ F the optimum of f
is foundwith probability at least 1−p.We call T = T (A,F) the p-MonteCarlo black-
box complexity of A onF . The p-Monte Carlo black-box complexity ofF with respect
to a classA of algorithms isminA∈A T (A,F). If wemake a statement about theMonte
Carlo complexity without specifying p, then we mean that for every constant p > 0
the statement holds for the p-Monte Carlo complexity. However, we sometimes also
regard p-Monte Carlo complexities for non-constant p = p(n) = o(1), thus yielding
high probability statements.

The standard black-box complexity (which regards the maximal expected time that
an algorithm A needs to optimize any f ∈ F) is called Las Vegas black-box complexity
in [9]. We adopt this notation.

We recall from [9] that, by Markov’s inequality, every Las Vegas algorithm is
also (up to a factor of 1/p in the runtime) a p-Monte Carlo algorithm. We also
repeat the following statement which is a convenient tool to bound p-Monte Carlo
complexities.

Remark 1 (Remark 1 in [9]) Let p ∈ (0, 1). Assume that there is an event E of
probability pE < p such that conditioned on ¬E the algorithm A finds the optimum
after expected time atmost T . Then the p-Monte Carlo complexity of A on f is at most
(p − pE )−1T . In particular, if p − pE = Ω(1) then the p-Monte Carlo complexity is
O(T ).

For some applications it is more natural to count the number of generations rather
than the number of sampled search points (e.g., because the evaluations of differ-
ent search points may be parallelizable). For this reason, we give some complexities
also for the number of generations, cf. Table 1. All definitions above transfer anal-
ogously, with the runtime of an algorithm replaced by the number of generations
needed before an optimal search point is sampled for the first time. However, note
that all black-box complexities refer to the expected runtime unless explicitly stated
otherwise.
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3 Background on OneMax Complexities and Overview of Results

Oneof themost prominent problems in the theoryof randomized searchheuristics is the
running time of evolutionary algorithms and other heuristics on theOneMax problem.
OneMax is the function that counts the number of ones in a bitstring. Maximizing
OneMax thus corresponds to finding the all-ones string.

Search heuristics are typically invariant with respect to the problem encoding, and
as such they have the same runtime for any function from the generalized One-
Max function class

OneMax := {
Omz | z ∈ {0, 1}n} ,

where Omz is the function

Omz : {0, 1}n → R, x �→ n −
n∑

i=1

(xi ⊕ zi ), (1)

assigning to x the number of positions in which x and z agree. We call z, the unique
global optimum of function Omz , the target string of Omz . Whenever we speak of
the OneMax problem or a OneMax function we mean the whole class of One-
Max functions or an unknown member of it, respectively.

TheOneMax problem is by far themost intensively studied problem in the runtime
analysis literature and, due to its close relation to the classic board game Master-
mind [6], to cryptographic applications, and to coin-weighing problems, it is also
studied in other areas of theoretical computer science. Also for black-box complexi-
ties it is themost commonly found test problem.Without going toomuch into detail, we
recall that the unrestricted black-box complexity of OneMax isΘ(n/log n) [1,12,13].
While the lower bound is a simple application of Yao’s principle (Lemma 1, cf. [12] for
a detailed explanation of the Ω(n/log n) lower bound), the upper bound is achieved
by an extremely simple, yet elegant algorithm: sampling O(n/log n) random search
points and regarding their fitness values, with high probability, reveals the target string
z.We shallmake use of (variants of) this strategy in someof our proofs of upper bounds.

Another important bound for the OneMax problem is the simple Θ(n) bound for
comparison-based algorithms as introduced in [20].1 Since (1+1) memory-restricted
ranking-based algorithms are comparison-based, this gives a linear lower bound for
their complexity on OneMax.

Remark 2 The (1+1) memory-restricted ranking-based black-box complexity of
OneMax is Ω(n), thus implying a linear lower bound for the (1+1) elitist Las Vegas
and Monte Carlo black-box complexity of OneMax.

1 The lower bound is again a simple application of Yao’s principle (Lemma 1), while the upper bound is
attained, for example, by the algorithm which checks one bit at a time, going through the bitstring from one
end to the other. Alternatively, the upper bound is also verified by the (1+ (λ, λ)) GA of [4], thus showing
that it can also be achieved by unbiased algorithms of arity two.
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If we consider the leading constants hidden in the Ω-notation, then the lower bounds
coming from the comparison-based complexity are not optimal. In Theorem 2 we
will prove lower bounds for memory-restricted ranking-based algorithms that are by a
constant factor higher than the best known bounds for comparison-based algorithms.

Our upper bounds will show that there are elitist black-box optimization algorithms
optimizing OneMax more efficiently than typical heuristics like RLS or evolution-
ary algorithms. In particular we show that the (1+1) elitist Monte Carlo black-box
complexity is atmost linear (which is best possible byTheorem2).Our results are sum-
marized in the lower part of Table 1. Note that the upper bounds for elitist algorithms
immediately imply upper bounds for the (Monte Carlo and Las Vegas) black-box
complexity of OneMax in the respective memory-restricted ranking-based models.
The lower bounds also carry over in asymptotic terms (i.e., up to constant factors),
cf. Theorem 2. Since the memory-restricted ranking-based bounds were the original
motivation for our work, we collect them in the following statement.

Corollary 1 The (1+1)memory-restricted ranking-based (Las Vegas) black-box com-
plexity of OneMax isΘ(n). For 1 < λ < 2n

1−ε
, ε > 0 being an arbitrary constant, its

(1+λ)memory-restricted ranking-based black-box complexity isΘ(n/log λ) (in terms
of generations), while for μ = ω(log2(n)/ log log n) its (μ + 1) memory-restricted
ranking-based black-box complexity is Θ(n/logμ).2

4 Tools

In this section we list some tools that we need to study the (μ+ λ) memory-restricted
ranking-based black-box and the (μ+λ) elitist black-box complexity. More precisely,
we recapitulate the RLS algorithm, Yao’s principle, and a Negative Drift Theorem.

4.1 Random Local Search

A very simple heuristic optimizingOneMax inΘ(n log n) steps is Randomized Local
Search (RLS). Since this heuristic will be important in later parts of this paper, we state
it here for the sake of completeness. RLS, whose pseudo-code is given in Algorithm 2,
is initialized with a uniform sample x . In each iteration one bit position j ∈ [n] :=
{1, 2, . . . , n} is chosen uniformly at random. The j-th bit of x is flipped and the fitness
of the resulting search point y is evaluated. The better of the two search points x and
y is kept for future iterations (favoring the newly created individual in case of ties).
As is easily verified, RLS is a unary unbiased (1+1) elitist black-box algorithm, where
we understand unbiasedness in the sense of Lehre and Witt [17].

2 We do not consider in this work (μ+λ) elitist algorithms forμ and λ both being strictly greater than one.
We feel that the required tools are given in the (1+λ) and (μ+ 1) settings, so that analyzing the additional
settings would not give sufficiently many new insights.
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Algorithm 2: Randomized Local Search for maximizing f : {0, 1}n → R.
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and query f (x);
2 Optimization: for t = 1, 2, 3, . . . do
3 Choose j ∈ [n] uniformly at random;
4 Set y ← x ⊕ enj and query f (y) ; //mutation step

5 if f (y) ≥ f (x) then x ← y ; //selection step;

4.2 Yao’s Principle

We will use the following formulation of Yao’s principle. See [9] for a more detailed
exposition of Yao’s principle in the context of elitist black-box complexity.

Lemma 1 (Yao’s Principle [18,21]) Let Π be a problem with a finite set I of input
instances (of a fixed size) permitting a finite set A of deterministic algorithms. Let p
be a probability distribution over I and q be a probability distribution over A. Then,

min
A∈A

E[T (Ip, A)] ≤ max
I∈I

E[T (I, Aq)] , (2)

where Ip denotes a random input chosen fromI according to p, Aq a randomalgorithm
chosen from C according to q and T (I, A) denotes the runtime of algorithm A on
input I .

For most problem classes Yao’s principle implies that the runtime T of a best-
possible deterministic algorithms on a random input is a lower bound to the best-
possible performance of a random algorithm on an arbitrary input. However, this
is not true for (μ + λ) memory-restricted algorithms, since there are randomized
memory-restricted algorithms that are not convex combinations of deterministic ones
(i.e., that can not be obtained by deciding randomly on one deterministic algorithm,
and then running this algorithm on the input). The same holds for elitist algorithms as
described by Algorithm 1.

For example, every deterministic (1+1)memory-restricted ranking-based algorithm
that ever rejects a search point (i.e., does not go to the newly sampled search point)
will be caught in an infinite loop on OneMax with positive probability if the input
is chosen uniformly at random. Hence, such an algorithm will have infinite expected
runtime. On the other hand, if the algorithm does not reject any search point, then
it is easy to see that its expected runtime on OneMax is Ω(2n). However, there are
certainly (1+1) memory-restricted ranking-based randomized algorithms (e.g., RLS)
that optimize OneMax in expected time O(n log n). We refer the reader to [9] for a
more detailed discussion. To solve this putative non-applicability of Yao’s principle
(cf. again [9] for a more detailed discussion), we apply it to a suitable superset of
algorithms. In particular, Yao’s principle applies to every set of algorithm that have
access to their whole search histories.
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4.3 Negative Drift

We recall the Negative Drift Theorem as given in [19].

Theorem 1 (Negative Drift Theorem [19]) Let Xt , t ≥ 0 be real-valued random
variables describing a stochastic process over some state space, with filtration Ft :=
(X0, . . . , Xt ). Suppose there exists an interval [a, b] ⊆ R, two constants δ, ε > 0 and,
possibly depending on 
 := b − a, a function r(
) satisfying 1 ≤ r(
) = o(
/ log 
)

such that for all t ≥ 0 the following two conditions hold:

1. E[Xt − Xt+1 | Ft ∧ a < Xt < b] ≤ −ε,
2. Pr[|Xt − Xt+1| ≥ j | Ft ∧ a < Xt ] ≤ r(
)

(1+δ) j
for j ∈ N0.

Then there is a constant c∗ > 0 such that for T ∗ := min{t ≥ 0 : Xt ≤ a | Ft∧X0 ≥ b}
it holds Pr[T ∗ ≤ 2c

∗
/r(
)] = 2−Ω(
/r(
)).

5 Lower Bounds

In this section we show that the (1+1) memory-restricted ranking-based black-box
complexity of OneMax is at least Ω(n). In fact, we show this bound for a large
range of function classes. We also show (mostly tight, as the algorithms in subsequent
sections will show) lower bounds for general (μ + λ) elitist black-box algorithms.

We use Yao’s principle (Theorem 1 in Sect. 4.2). However, as outlined in Sect. 4.2,
Yao’s principle is not directly applicable to memory-restricted black-box algorithms.
Still we can apply Yao’s principle to a suitable superset of algorithms, yielding the
following bounds.

Theorem 2 Let F be a class of functions such that for every z ∈ {0, 1}n there is a
function fz ∈ F with unique optimum z. Then the (1+1) memory-restricted ranking-
based black-box complexity of F (and thus, also the (1+1) elitist Las Vegas black-box
complexity) is at least n− 1. Moreover, for every p > 0 the p-Monte Carlo black-box
complexity of F is at least n + �log(1 − p)�.

In general, for every μ ≥ 1 and λ ≥ 1, the following statements are true for
the memory-restricted ranking-based black box complexity, for the elitist Las Vegas
black box complexity, and for the elitist p-Monte Carlo black box complexity for every
constant 0 < p < 1.

– The (1 + λ) black-box complexity of F is at least n/log(λ + 1) − O(1).
– The (μ + 1) black-box complexity of F is at least n/log(2μ + 1) − O(1).
– The (μ + λ) black-box complexity of F is at least n/(b + o(1)) − O(1), where
b = log(

(
μ+λ
μ

)
) + μ(logμ − 1 − log ln 2) − 1.

Proof (of Theorem 2)3 We first give the argument for the (1+1) case to elucidate the
argument, although this case is covered by the more general (1 + λ) case. We use

3 The extended abstract [10] published at GECCO contains a proof that covers only the elitist case, but is
more intuitive and less technical. We advise the reader who is only interested in the proof ideas to read that
proof rather than the general version given here.
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Yao’s principle on the set A′ of all algorithms A satisfying the following restrictions.
A is a comparison-based (1+1) black-box algorithm that has access to thewhole search
history. (Thus wemay apply Yao’s principle, see Sect. 4.2.) The algorithm learns about
f by oracle queries of the following form. It may choose a search point x that it has
queried before (in the first round, it simply chooses a search point without querying),
and a search point y. Then Amay choose a subset S of {“<′′, “=′′, “>′′} and the oracle
will return yes if the relation between f (x) and f (y) is in S, and no otherwise. For
example, if S = {“<′′, “=′′} then the oracle answers the question “Is f (x) ≤ f (y)?”.

LetA be the set of all (1+1)memory-restricted ranking-based black-box algorithms.
We need to show A ⊆ A′, so let A ∈ A. When the current search point of A is x , the
algorithm may first decide on the next search point y (i.e., it assigns to each search
point y a probability py to be queried). If the oracle (of model A) tells the algorithm
“ f (x) < f (y)”, then Amay choose to stay in x with some probability p
 and to go to
y with probability 1− p
. Similarly, let pe and pg be the probability that the algorithm
stays in x if the oracle responds “ f (x) = f (y)” or “ f (x) > f (y)”, respectively.

We may simulate A in the model A′ as follows. We first choose the point y with
probability py as A does. Then we set S to be {“<′′, “=′′, “>′′} with probability
p
 · pe · pg , the set {“<′′, “=′′} with probability p
 · pe · (1− pg), and so on. (I.e., for
every symbol in S we include a corresponding factor p, and for every symbol not in
S we include a corresponding factor 1− p). If the answer to our query is yes then we
stay at x , and if the answer is no then we go to y. Note that the marginal probability
that “<′′ ∈ S is p
, so the probability to stay in x conditioned on f (x) < f (y) is also
p
, and similar for “=” and “>”. Hence, by an easy case distinction on whether f (x)
is less, equal, or larger than f (y), we find that in all cases the probability of going to
y is the same as for the algorithm A. Thus we can simulate A in the model A′.

It remains to prove a lower bound on theA′-complexity ofF . By Yao’s principle, it
suffices to prove such abound for the expected runtimeof every deterministic algorithm
A ∈ A′ on a randomly chosen function. We regard a distribution on F where for each
z ∈ {0, 1}n exactly one function fz ∈ F with optimum z has probability 2−n to be
drawn, and all other functions inF have zero probability. Note that theA′-oracle gives
only two possible answers (one bit of information) to each query. In the following we
will use a standard information-theoretic argument [12] to show that the probability
that the i-th query of A is the optimum is at most 2−n+i−1.

So fix i ≥ 0. Observe that there are 2i−1 binary sequences over the alphabet
{yes, no} of length i − 1, which we enumerate as {s(1), . . . , s(2i−1)}. For each 1 ≤
j ≤ 2i−1, let C j be the set of search points compatible with the answer sequence
s( j) for algorithm A, i.e., the set of search points z such that: if fz is the function to
be optimized, then A will receive the answers s( j)

1 , . . . , s( j)
i−1 to the first i − 1 queries

from the oracle. Equivalently, if A receives the answer sequence s(1) to its first i − 1
queries, then C j is the set of search points which could still be the optimum.

Note that the setsC j form a partition of the search space. For simplicity of notation,
we may assume that A goes on querying the oracle even if it hits the optimal search
point. (But these additional queries are not counted for the runtime, i.e., the runtime is
still the number of queries until A queries the optimum for the first time.) We say that
we are in case j if the optimum lies in C j , i.e., if A receives the input sequence s( j).
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By the choice of our distribution on F , every search point is equally likely to be the
optimum, so Pr[case j] = 2−n|C j |. On the other hand, if A is in case j , then there are
|C j | search points left which might be the optimum, and all of them are equally likely.
Therefore, if A is in case j , then no matter which search point x ∈ C j it queries in the
i-th step, the probability that x is the optimum is exactly |C j |−1. (It is also allowed
that A queries a search point outside of C j , in which case the probability of hitting
the optimum is 0.) Therefore, the probability of hitting the optimum in the i-th step is
at most

∑

j∈[2i−1]
Pr[case j]>0

Pr[case j] · |C j |−1 =
∑

j∈[2i−1]
Pr[case j]>0

2−n ≤ 2−n+i−1.

Hence, by a union bound the probability that the optimum is among the fist i queries
is at most

∑i
j=1 2

−n+i−1 < 2i−n . This implies the statement on the Monte Carlo
complexity, since for any 0 < p < 1, the probability to hit the optimum in strictly
less than i := n + �log(1 − p)� steps is at most 2(i−1)−n < 1 − p. For the other
complexities, the claim follows by observing that the number T of queries to find the
optimum has expectation

E[T ] ≥
n−1∑

i=0

Pr[T > i] ≥
n−1∑

i=0

(1−2i−n) = n − 2−n
n−1∑

i=0

2i = n − (1 − 2−n) ≥ n − 1.

For the (1 + λ)-case with λ ≥ 1 we consider the following set A′ of algorithms,
which have access to their complete search history. We require the algorithm to parti-
tion the set of weak orderings of λ + 1 elements (i.e., orderings with potentially equal
elements) into λ + 1 subsets S1, . . . , Sλ+1, and the oracle tells the algorithm to which
subset the ordering of the fitnesses of the λ + 1 search points belongs. Then each
(1 + λ) memory-restricted ranking-based black-box algorithm A can be simulated
in this model. More precisely, fix λ + 1 search points y1, . . . , yλ+1 (where y1 is the
parent individual and y2, . . . , yλ+1 are the offspring). Then for each weak ordering σ

of these search points, let p1(σ ), . . . , pλ+1(σ ) be the probability that A selects the
first, second, . . . , λ+1-st search point, respectively, if they are ordered according to σ .
Then we can simulate A by choosing a partitioning (S1, . . . , Sλ+1) with probability

p(S1, . . . , Sλ+1) =
λ+1∏

i=1

∏

σ∈Si
pi (σ ).

In this way, for every ordering σ of the λ+1 search points and for every 1 ≤ i ≤ λ+1
the marginal probability that σ ∈ Si is pi (σ ). Thus, if the oracle tells us that the
ordering of the search points is in the i-th partition then we select the search point yi .
In this way, we have the same probability pi (σ ) as A to proceed to search point yi .
Hence, we can simulate A in this model.

In order to prove a lower bound for A′ we employ Yao’s principle as for the (1+1)
case. Note that the algorithm learns log(λ + 1) bits per query. Similarly as before, the
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probability that the i-th query of a deterministic algorithm is the optimum is at most
(λ+1)i−12−n , and a similar calculation as before shows that Pr[T ≤ i] ≤ (λ+1)i2−n .
The statement for the p-Monte Carlo complexity (for any constant 0 < p < 1) follows
since for i = �n/ log(λ + 1) + log(1 − p)/ log(λ + 1)� ≥ n/ log(λ + 1) − O(1) we
have Pr[T < i] ≤ (λ + 1)i−12−n < 1 − p. Moreover, similar as before,

E[T ] ≥
�n/ log(λ+1)�−1∑

i=0

(1 − (λ + 1)i2−n)

≥
⌈

n

log(λ + 1)

⌉
− 2−n

�n/ log(λ+1)�−1∑

i=0

(λ + 1)i ≥ n

log(λ + 1)
− 2.

We now turn to μ > 1 and λ = 1. In this case, we learn the position of the new
search point among the μ previous search points. There are at most 2μ + 1 positions
for the new search point (its fitness may equal the fitness of one of the other search
points, or it may lie between them). Thus we only learn at most log(2μ + 1) bits
of information per query. Analogously to the previous case, the probability that a
deterministic algorithm hits the optimum in the i-th step is at most (2μ + 1)i−12−n ,
from which Pr[T ≤ i] ≤ (2μ + 1)i2−n follows as before. The statements about the
complexities can now be derived in the same way as in the previous cases, with λ + 1
replaced by 2μ + 1 throughout the calculations.

If both μ and λ are larger than 1, then there are at most
(
μ+λ
μ

)
ways to select μ out

ofμ+λ search points, and there are Bμ = (1+o(1))μ!(ln 2)−μ/2 weak orderings on
theseμ elements (i.e., orderings with potentially equal elements), where Bμ is theμ-th
ordered Bell number [14]. Hence, the algorithm can learn at most log(

(
μ+λ
μ

)
Bμ) =

b + o(1) bits per query, where b = log(
(
μ+λ
μ

)
) + μ(log(μ) − 1 − log ln 2) − 1 is

defined as in the statement of the theorem. By the same calculations as before, with
λ + 1 replaced by B := (

μ+λ
μ

)
Bμ ≥ 2, the p-Monte Carlo complexity is at least

�n/ log(B) + log(1 − p)/ log(B)� > (n/ log B) − O(1) for all constant 0 < p < 1,
and the expected runtime is at least E[T ] ≥ (n/ log B) − 2. Since log(B) = b+ o(1),
this implies the theorem. ��

Note that the lower bounds given by Theorem 2 are by a constant factor stronger
than the lower bounds for general comparison-based algorithms (that are not memory-
restricted), if they learn all comparisons among the μ+λ search points. For example,
in the classical case where we may compare exactly two search points (corresponding
to the (1+1) case), we only get a lower bound of n/log(3) − O(1) instead of n − 1.
Intuitively speaking, the reason is that a comparison-based algorithm may use the
three possible outcomes “larger”, “less”, or “equal” of a comparison, while memory-
restricted comparison-based algorithms only get two outcomes “stay at x” or “advance
to y”.

We remark that the analysis for μ > 1 can be tightened in several ways. Firstly, for
the elitist (μ+1) black-box complexity, we only have 2μ cases instead of 2μ+1 since
we can – sloppily speaking – not distinguish between the case that the new search point
is discarded because it has worse fitness than the worst of the μ old ones, or whether
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it is discarded because it has equal fitness to the worst of the μ old search points.
Moreover, for all black-box models under consideration we learn log(2μ + 1) bits of
information in the i-th round only if all previous search points have different fitnesses;
otherwise, we get less information. However, if the new search point has fitness equal
to one of the old fitnesses, then with the next query we get less information. Also for
the case μ > 1 and λ > 1 the bound in Theorem 2 can be tightened at the cost of a
more technical argument.

6 The (1+1) and (2+1) Elitist Black-Box Complexity of OneMax

This section contains ourmain result (Theorem 3), a (1+1)memory-restricted ranking-
based black-box algorithm optimizing OneMax in linear time. Before presenting its
details, we first give a high level overview of the algorithm in Sect. 6.1. This section
also contains a discussion of the (2+1) case (Theorem 4), which we use to illustrate a
key idea of the proof, namely to encode the position of the bit we are currently trying
to optimize. We develop the tools to implement this idea for the (1+1) case (especially
“neutral counters” and “trading bits”) in Sect. 6.2, while the formal analysis of the
algorithm is carried out in Sect. 6.3.

6.1 Overview

The results presented in Sect. 5 imply in particular a linear lower bound for the (1+1)
memory-restricted ranking-based black-box complexity of OneMax, and thus also
for the corresponding elitist black-box complexity. The following result shows that
these bound are asymptotically tight.

Theorem 3 The Monte Carlo (1+1) elitist black-box complexity of OneMax is
Θ(n). That is, for every constant 0<p<1 there exists a (1+1) memory-restricted,
ranking-based algorithm using truncation selection that finds the optimum of any
OneMax instance in time O(n) with probability at least 1 − p, and this runtime is
asymptotically optimal.

The lower bound in Theorem 3 follows from Theorem 2. We thus concentrate in
the following on the upper bound. As in previous works on black-box complexities for
OneMax, in particular the memory-restricted algorithm from [6], we will use some
parts of the bit string for storing information about the search history.

In an ideal case, we would like to store the position of the bit we are currently
optimizing, checking each position at a time, and arrive at a deterministic method that
can solve OneMax in linear time. However, we cannot store the position so easily:
firstly, in the (1+1) case we have to deal with a quite severe memory restriction, and
secondly,we can notmanipulate bits arbitrarily due to the enforced truncation selection
in the elitist model. In fact, these restrictions are so severe that we do not know the
Las Vegas (1+1) elitist black-box complexity of OneMax. As we shall discuss below,
if we only had one additional bit that we could manipulate in an arbitrary way, we
could show that it is of linear order. Unfortunately, we do not know how to create
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such a bit. Still, the general idea to store the current working position in the search
points sufficec to show a linearMonte Carlo black-box complexity in the (1+1) case.
The details of the algorithm are fairly involved, so we first illustrate the main idea
by giving an algorithm for the (2+1) case, in which the aforementioned obstacles are
fairly easy to overcome. The algorithm is deterministic, so it provides an upper bound
to both the Monte Carlo complexity and the Las Vegas complexity.

Theorem 4 The (Monte Carlo and Las Vegas) (2+1) elitist black-box complexity of
OneMax is at most n + 1.

Proof Throughout the algorithm, we maintain the invariant that in the i-th step we
have two strings xi and x ′

i that are both optimal in the first i bits, that are both zero on
bits i + 2, . . . , n and that differ on bit i + 1 (one of them is 0, the other is 1).

We thus start with the all-zero string x0 = (0, . . . , 0) and the string x ′
0 =

(1, 0, . . . , 0). Given xi and x ′
i , take the string with the smaller fitness (say x ′

i ), and flip
both the i-th and the (i +1)-st bit in it, giving a string x ′

i+1. (The index i is determined
by xi and x ′

i .) Since the i-th bit in x ′
i was incorrect, the fitness of x

′
i+1 is at least as

high as the fitness of x ′
i and we may thus replace x ′

i by x ′
i+1. The invariant is main-

tained with xi+1 = xi , since both xi+1 and x ′
i+1 are optimal on the i-th bit (and on all

previous bits by induction). In this way, the n-th generation will contain an optimal
search string, and at most n + 1 fitness evaluations are needed in these n generations.

��
As discussed above we can do something similar for the (1+1) case, but we have to

be a bitmore clever.We still aim at optimizing one bit at a time. Sincewe cannot encode
anymore the current iteration in the population, we implement instead a counter which
tells us which bit is to be tested next. The main difficulty is in (i) designing a counter
that does not affect the fitness of the bit string, and (ii) optimizing a bit with certainty
in constant time. As we shall see in Sect. 6.2, a counter can be implemented reserving
O(log n) bits of the string exclusively for this counter, solving (i). Point (ii) can be
solved if we may access a small pool of non-optimal bits (which we call trading bits).
The key idea is that throughout the algorithm in expectation we gain more trading bits
than we spend, so we never run out of trading bits.

The main steps of the algorithm verifying Theorem 3 are thus as follows.

1. Create a neutral counter for counting numbers from 1 to n.
2. Create a pool of ω(log n) trading bits, all of which are non-optimal.
3. Using the trading bits, optimize the remaining string (the part unaffected by the

counter) by testing one bit after the other. Use the counter to indicate which bit to
test next. At the same time, try to recover trading bits if possible.

4. Using RLS (Algorithm 2), optimize the part which had been used as a counter. We
use bit b0 as a flag bit to indicate that we are in Step 4.

5. Optimize b0.

The technicallymost challenging parts are Step 1 andStep 3.But, interestingly enough,
the key problem in turning the Monte Carlo algorithm into a Las Vegas one lies in
separating Step 5 from Step 4: we need to test every once in a while during the fourth
phase whether or not bit b0 is optimal. If we test too early, that is, before Step 4 is
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finished, it may happen that we have to accept this offspring and thus misleadingly
assume that we are in one of the first three steps, yielding the algorithm to fail. Note
though that this problem could be completely ignored if we had just one bit that we
could manipulate as we want (i.e., without having to use truncation selection).

Due to all the necessary preparation, the formal proof of Theorem 3 will be post-
poned to Sect. 6.3.

6.2 Tools for Proving Upper Bounds

In this section we collect tools that are common in the algorithms of the subsequent
sections. All the following operations will be Monte Carlo operations, i.e., they have
some probability of failure. Recall fromRemark 1 that if we have a “failure event” Efail
of probability pfail, it suffices to prove a good bound on the conditional probability
Pr[runtime > T | ¬Efail]. More precisely, if we have an algorithm A for a set of
functions F that satisfies Pr[runtime > T | ¬Efail] ≤ (p − pfail), then the p-Monte
Carlo complexity of A on F is at most T , by the law of total probability. In particular,
if conditioned on ¬Efail the algorithm A succeeds after expected time T , then by
Markov’s inequality it needs more than (p − pfail)−1T queries with probability at
most (p− pfail). Therefore, the p-Monte Carlo complexity of A onF is at most O(T )

for any p > pfail with p − pfail ∈ Ω(1).

6.2.1 Copying or Overwriting Parts of the String

Our first operation will be a copy operation. If we have a large part B of the string with
a constant fraction of non-optimal bits, then we can efficiently copy a small substring
into a new position by flipping some non-optimal bits of B. After the operation, B is
still of a form that may be used for further copy operations, except that the number
of non-optimal bits in B has decreased. Note that a string drawn uniformly at random
of, say, length n/2 may serve as B since with high probability roughly half of the bits
in B will be correct.

Lemma 2 Assume we have a set B of b known bit positions, of which at least b0 = βb
bits are non-optimal, for some β > 0, and the position of the non-optimal bits are
uniformly at random in B. Assume further that we have two sets C,C ′ of bit positions
such that |C | = |C ′| ≤ b0/2, and that B,C,C ′ are pairwise disjoint.

There is a (1+1) elitist black-box strategy that copies the bits from C into C ′. For
any c > 0 this algorithm requires at most c · |C | · log(n)/β iterations with probability
1 − n−Ω(c). After the copy operation, at least b0 − |C | bits in B will be non-optimal,
and their positions will be uniformly at random in B.

The same strategy can be used to overwrite C ′ with a fixed string (e.g., (1, . . . , 1)).

Proof We perform the following operation until C and C ′ are equal. Assume that in
the current search point x the first i − 1 bits of C and C ′ coincide, but the i-th bits
differ, for some i > 0. Sample a new search point x ′ by flipping the i-th bit of C ′ and
a random bit in B. Accept x ′ if f (x ′) ≥ f (x). Note that we flip exactly one bit in B
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for every bit in C that we copy, so at all times at least b0 − |C | ≥ b0/2 bits in B are
non-optimal.

If the i-th bit of C ′ was non-optimal, we accept x ′ in any case. Otherwise, we
accept it if the random bit in B was non-optimal, which happens with probability at
least b0/(2b) = β/2. Thus we need in expectation at most 2/β trials to copy the i-th
bit, proving that the expected runtime is at most O(|C |/β). By the Chernoff bounds,
the runtime is more than c|C | log(n)/β with probability at most n−Ω(c). Finally, since
we choose the bits in B uniformly at random, the positions of the non-optimal bits in
B are uniformly at random after each step. ��

6.2.2 Reliable Optimization

In this section we give a routine that allows to be sure with very high probability that
some small part of the string is optimal.

Lemma 3 For every 0 < p < 1/2, p = e−o(n), there is 
 = O(log(1/p)) such that
the following holds for all β > 0 and k ∈ N. Let x be a bit string in {0, 1}n such that
x1 = x2 = . . . = x
 = 0, and assume that in the remaining string there is a block B
of known position of size at least 2
/β such that at least a β fraction of the bits in B
are non-optimal, their positions distributed uniformly at random in B. Moreover, let
C be a block of size k that is disjoint of x1, . . . , x
 and of B.

Then there exists a (1+1) elitist black-box strategy that with probability at least
1 − p optimizes C in time O(
k log(k)/β) and marks termination by setting x
 to
1. The algorithm will optimize at most 
 random bits of B by copy operations as in
Lemma 2.

Note that Lemma 3 can be achieved with trivial algorithms (e.g., RLS) if we do not
insist that the algorithm marks termination. This is an important part since knowing
when a phase has finished will be a crucial ingredient for further algorithm.We remark
that the bits x1, . . . , x
 in Lemma 3may be replaced by any bits as long as the positions
are known. We remark further that the requirement p = e−o(n) can be replaced by
p = Ω(e−cn) for some suitably chosen constant c > 0. For our purposes the claimed
setting suffices.

Proof We will use the number of one-bits among x1, . . . , x
 as an estimator for the
time that we have already spent. In each step with probability 1− 1/(3k log k) we use
an RLS step (Randomized Local Search, Algorithm 2) on C . Otherwise, we flip the
first of the bits x1, . . . , x
 that is still zero, and we flip simultaneously a random bit in
B.

By our assumption made above, at most 
 bits of B will be flipped, so during
the the whole algorithm each one of them is non-optimal with probability at least
(β|B|−
)/|B| ≥ β/2. Thus in each stepwe successfully flip one of the bits x1, . . . , x


with probability at least p′ := β/(2k log k). By the Chernoff bound, the probability
that after n′ = 4
k log(k)/β steps we have not flipped all of them is at most

Pr[Bin(n′, p′) ≤ 
] ≤ e−Ω(
) ≤ p/3
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for a suitable choice of 
 = O(log(1/p)). Thus the algorithm terminates after at most
n′ steps with probability 1 − p/3.

Let us split the execution into 
 rounds, where the i-th round is characterized by
x1 = . . . = xi−1 = 1 and xi = . . . = x
 = 0. Let us call a round which takes at least
2k log k RLS steps on C a long round. Since the number of RLS steps in each round
is geometrically distributed, a round is long with probability at least

(
1 − 1

3k log k

)2k log k

≥
(
1 − 1

3

)2

= 4

9
,

since the function (1 − 1/x)x is monotonically increasing in x ≥ 1. Thus, by the
Chernoff bound there are at least 2
/9 long rounds with probability at least 1 −
e−Ω(
) ≥ 1 − p/3 for a suitable choice of 
. On the other hand, the probability
that C is not optimized in a long round is at most 1/k (this is an application of the
coupon collector problem, see [2, Theorem 1.23]). So the probability that C is not
optimized by any of Ω(
) long rounds is at most e−Ω(
) ≤ p/3 for a suitable choice
of 
. Summarizing, with probability 1 − p, the algorithm succeeds in time at most
O(
k log(k)/β). ��

6.2.3 A Neutral Counter

Next we show that it is possible to set up a counter in a way that increasing the counter
does not affect the OneMax values of the string. The counter can be implemented
in the (1+1) elitist black-box model, and is hence applicable in any (μ + λ) elitist
black-box model.

Lemma 4 (Neutral Counter) For every 0 < p < 1/2, p = e−o(n), there is 
 =
O(log(1/p)) such that the following holds. Let x be a bit string in {0, 1}n such that
x1 = x2 = . . . = x
+2 = 0 and (x
+3, . . . , xn) is uniformly distributed in {0, 1}n−
+3.

Then there exists a (1+1) elitist black-box strategy that with probability at least
1 − p implements in x a counter which can be used during future iterations without
changing the OneMax value of the string. For counting up to j = O(n), the counter
requires a total number of O(log j) bits that are blocked in all iterations in which
the counter is active. The setup of the counter requires O(
 log( j) log log j) function
evaluations. During the setup of the counter, O(
+log j) randombits of the remainder
of the string are optimized by copy operations as in Lemma 2.

Proof In all that follows we use a partition C , C ′, and B of [n] \ [
+ 2], thus splitting
the string x (minus the first 
 + 2 bits) into three parts, which by abuse of notation
we also call C , C ′, and B. The sizes of C and C ′ are k = O(log n) each (see below),
so the size of B is n − o(n). By assumption, the entries in B are initialized uniformly
at random. Note that by the Chernoff bound, with exponentially high probability at
least a 1/3 fraction of the bits in B are non-optimal. We will henceforth assume that
this is the case (giving the algorithm a failure probability of e−Ω(n) ≤ p/2). As we
will see, the counter algorithm will use at most 2|C | + 
 + 2 “payoff bits” which are
flipped from a non-optimal into the correct state, so that at any point time during the
algorithm at least a 1/3 − o(1) fraction of the bits in B will be non-optimal.
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Let k be the smallest even integer such that
( k
k/2

) ≥ j . Note that k = O(log j),

since
( k
k/2

) ≥ 2k/
√

πk by Stirling’s formula. We use Lemma 3 to optimize block C
with probability 1 − p/2, using x3, . . . , x
+2 as flag bits.

Once we have a string in the memory which satisfies x1 = x2 = 0 and x
+2 = 1,
we assume that part C is optimized and we copy the entries of C into part C ′ using
Lemma 2 with part B as payoff bits. As soon as C has been copied into C ′, we want
to change the second flag bit. We do this by flipping x2 plus a random bit in B until
the corresponding string is accepted. The flag 011 in the first three positions tells us
to move on to initializing the counter.

We fix an enumeration of all the
( k
k/2

)
possible ways to set exactly k/2 out of the

k entries to their correct values. Let r1, . . . , r j be the first j strings corresponding to
this enumeration. For initializing the counter to one we copy the string r1 into C by
applying Lemma 2, again with part B as payoff bits. When we have initialized the
counter, we finally flip the flag bit x1 (together with a random bit in B) to indicate that
the counter is ready.

Note that throughout the whole algorithm, we use at most 2|C | + 
+ 2 payoff bits,
as we claimed at the beginning of the proof. Note also that if at least n/3 of the bits in
B are non-optimal, the second and the third phase are Las Vegas operations (they can
never fail, but the time needed for these phases is random).

Since the optimal entries of C are stored in C ′ (the bits in C ′ will not be touched
as long as the counter is active), we can at any time read the value of the counter by
comparing C with C ′. Similarly, if we want to increase the counter from some value
i to i + 1, we flip simultaneously those bits of C in which ri and ri+1 differ. Since
there are exactly k/2 ones in either of the two strings ri and ri+1, this does not affect
the OneMax -value of the string. ��

6.2.4 Optimizing in Linear Time with Non-optimal Bits

The following lemma allows us to optimize a large part of the string in linear time,
provided that we have some small area B ′ with “trading bits”, i.e., with bits that are
non-optimal.

Lemma 5 Let 0 < α < 1 be constant. Assume we have two counters C,C ′ that can
count up to n and a flag bit b that is set to 0. Assume further that we have two blocks
B, B ′, with |B|, |B ′| = ω(log n) such that all bits in B ′ are non-optimal, and that at
least an α fraction of the bits in B is non-optimal, their positions distributed uniformly
at random. Then there is a (1+1) elitist black-box algorithm that optimizes B and B ′
in linear time with probability 1 − o(1/n).

Proof We start with the counters C and C ′ at 0, and go through the bits in B one by
one, maintaining the following invariants. When C is at i then the first i bits in B are
optimal. When C ′ is at i ′ then the first i ′ bits in B ′ are optimal, and all further bits in
B ′ are non-optimal. We will call the non-optimal bits in B ′ trading bits.

Choose 0 < p < 1 so small that 2p/(1 − p) − α < 0. Assume C is at position
i and C ′ at position i ′. If i ′ = 0 then we simply flip the first bit in B ′ and increase
C ′, so assume i ′ > 0 from now on. In each step we flip a coin. If it turns head (with
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probability 1 − p), then we flip the i + 1-st bit in B, increase C , flip the i ′-th bit
of B ′ and decrease C ′. If the offspring has equal fitness, we accept it. Note that the
fitness is equal if and only if the bit in B was non-optimal, and that we recover one
of the non-optimal trading bits in B ′ in this case. On the other hand, if the bit in B
was optimal in the original string then the fitness of the new search point is strictly
smaller than the previous one so that the offspring is immediately discarded. So we
only accept an increase in C if the i-th bit of B is correct in the new string. If the coin
flip was tail (with probability p) then we just flip the i + 1-st bit in B, flip the i ′ + 1-st
bit in B ′, and increase C ′ (but do not touch C). Note that we may (and will) accept
the offspring in any case.

Evidently, we maintain the invariant mentioned above. Moreover, we spend only an
expected constant number of iterations for optimizing a bit in B, and by the Chernoff
bound the algorithm optimizes B in at most c|B| steps with probability 1−e−Ω(|B|) =
1 − o(1/n), for a suitable c > 0. Once B is optimized (i.e., once the counter C is at
position |B|), we flip all non-optimal bits in B ′ in one step. The only way the algorithm
can fail (except by taking too long, which only happens with probability 1− o(1/n))
is by running out of trading bits, so it remains to show that with high probability this
does not happen.

Let Xi be the number of trading bits that are used up after the i-th round, and let
Δi := Xi+1 − Xi be the number of trading bits that we spend in this round. For the
sake of exposition, assume first that there is an unlimited number of trading bits that
can be gained or used in this round (while in fact, the total number of trading bits
must stay between 0 and B ′). If the i-th bit of B was optimal then the algorithm waits
for tails to proceed. This costs us one trading bit and brings us into the position that
the i-th bit of B is non-optimal. In that position, we either (with probability 1 − p)
proceed to the i + 1-st bit and gain a trading bit, or we proceed (with probability p) to
the other position, pay a trading bit, and pay another one to return to the old position.
So if the i-th bit is initially non-optimal, then the expected number of trading bits that
we spend for optimizing the i-th bit is

E[Δi | i-th bit non-optimal] = −(1 − p) + p(2 + E[Δi | i-th bit non-optimal]),

from which we easily deduce E[Δi | i-th bit non-optimal] = −1 + 2p/(1 − p) and
E[Δi | i-th bit optimal] = 1 + E[Δi | i-th bit non-optimal] = 2p/(1 − p). The
probability that the i-th bit is non-optimal is at least α, and so

E[Δi ] < α

(
−1 + 2p

1 − p

)
+ (1 − α)

2p

1 − p
= 2p

1 − p
− α < 0.

Now we examine how the drift changes if the number Xi of trading bits that we can
gain in the i-th round is bounded. Since the probability to spend more than b trading
bits in one round goes (geometrically) to zero as b → ∞, there is a constant b0 > 0
and a constant ε > 0 such that

E[Δi | Xi ≥ b0] ≤ −ε
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Therefore, the number Xi of used trading bits performs a random walk with negative
drift while it is between b0 and |B ′|. Moreover, the probability Pr[|Δi | ≥ j] decreases
geometrically in j . Therefore, by the Negative Drift Theorem 1 (with constant r(
)
and 
 = |B ′| − 1− b0 = ω(log n)) the probability that any of the Xi exceeds |B ′| − 1
for 1 ≤ i ≤ |B| is at most e−Ω(|B′|−1−b0) = o(1/n), so we are not out of trading bits
after any round. But in every round we gain at most one trading bit, so if Xi does not
exceed |B ′| − 1 then at no point during the i-th round the algorithm uses more than
|B ′| trading bits. This proves that we never run out of trading bits with probability
1 − o(1/n). ��

We remarkwithout proof that Lemma 5 can be strengthened to holdwith probability
1 − p for any p = e−o(n) if |B|, |B ′| = ω(log(1/p)).

6.3 Proof of Theorem 3

Proof Wesplit the string into four parts: firstly a constant number of flag bits indicating
in which phase of the algorithm we are. Some of them we use for the subroutines, but
bit b0 is kept to be 0 until the very last phase. Then two counters C,C ′ that can count
up to n. Further, we have a part B ′ of the string of size O(log2 n) which we use as
trading bits, and the remaining part B.

Now we put all pieces together. We initialize the flag bits as 0, and initialize B
uniformly at random. Then we build the counters as described in Lemma 4, using the
randomness from B, and indicate with a flag bit when we are finished. We split B ′ into
two parts B ′

1 and B ′
2 of equal size. Then we use Lemma 3 to optimize B ′

1 with high
probability, setting a flag bit when finished. When this flag is set, we copy B ′

1 into B ′
2,

and then we copy the string B ′
2 ⊕ (1, . . . , 1) into B ′

1, effectively inverting all bits in
B ′
1. For both copy operations we use the randomness from B. Note that afterwards we

still have an (1/2) − ε fraction of non-optimal bits in B (using Chernoff bounds and
the fact that all copy operations together touch o(n) bits), and that all bits in B ′

1 are
non-optimal. Thus we can apply Lemma 5 to optimize B, B ′

1 and B ′
2 in linear time

with probability 1− o(1/n). In the last step of this phase, we also set x0 to 1. (We can
do this since the last operation flips all the non-optimal bits in B ′

1).
While x0 is 1, we do the following.With probability 1−ln(n)/n we flip a bit outside

of B∪{x0}. With probability ln(n)/n we flip x0. Note that there are at most O(log2 n)

bits outside of B, so this region (except of x0) will be optimized after an expected
number of O(log2(n) log log n) steps. Moreover, by the Coupon Collector Theorem
the probability that it takes more than c log2 n log log n steps to optimize B is at most
1/n for at suitable constant c ≥ 1 [2, Theorem 1.23]. Hence, when x0 is flipped, then
with probability at least 1− log3(n)/(n log log n) we have found the optimum. On the
other hand, with probability 1 − (1 − ln(n)/n)n ≥ 1 − 1/n this phase takes at most
n steps. This concludes the proof. ��
Remark 3 In the proof of Theorem 5 the main part is Las Vegas. We have failure
probabilities only for initializing the counter, by running out of trading bits, and for
the optimization of the bits which are reserved for the counter. The first two failure
probabilities can bemade superpolynomially (in fact, exponentially) small. The failure
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probability stemming from the last phase can be decreased byusing an iterated counter,
which is used to reduce the number of bits that are blocked for the operation of the
counter.

More precisely, we start with the counter(s) described above which can count from
one to n, and which use j1 = O(log n) bits. A second counter is implemented, again
using Lemma 4, to count from 1 to j1 using j2 = O(log j1) = O(log log n) bits, a
third one for counting from one to j2 using j3 = O(log j2) bits, and so on until the
number ji of bits that are needed for the counter is at most constant. Then we optimize
the main part of the string as before, but making sure that j1+ j2+ . . . = O(log n) bits
remain that are all non-optimal. With these bits, we can optimize the region of the first
counter without error probability, using the second counter and j1 of the non-optimal
bits. Then we optimize the region of the second counter using the third counter, and
so on until we end up with a counter that has only constant size. This counter we then
optimize with RLS steps as described in the proof. Effectively, this allows us to design
an algorithm (by flipping the last bit with probability ln(n)/n) that needs time O(n)

with probability 1 − O(log(n)/n).
Alternatively, although it gives neither a Monte Carlo nor a Las Vegas complexity,

note that there is an algorithm (by flipping the last bit with probability 1/n) for which
there is an event Ebad of probability Pr[Ebad] = O(1/n) (namely, the event that either
initialization fails, or that the last bit is flipped too early) such that conditioned on
¬Ebad the algorithm has an expected runtime of O(n).

Remark 4 Note that if we had only one bit of additional memory, then we could use
it as an indicator bit for random local search: in any step of the algorithm, we could
with some small probability (e.g., with probability 1/(n log n)) flip this bit, and then
proceed with random single bit flips from this point on. If the success probability of the
Monte Carlo algorithm is at least 1− O(1/ log n) (we proved much stronger bounds),
then this results in a Las Vegas algorithm with linear expected runtime. Unfortunately,
it is unclear how to make use of high success probabilities without an additional bit
of memory, so our results do not imply a linear Las Vegas runtime.

7 The (1+ λ) Elitist Black-Box Complexities of OneMax

We have already seen in Theorem 4 that a slight increase of the population size of the
elitist black-box model can significantly simplify the OneMax problem. In the (2+1)
model considered there we were in the comfortable situation that we could use the
two strings of the memory to encode an iteration counter. In this section we regard
the (1 + λ) elitist black-box model. Intuitively, this model is less powerful than the
(λ + 1) model since we have to base our sampling strategies solely on the one search
point in the memory. Still the model allows to check and compare several alternatives
at the same time, so it should be considerably easier than the (1+1) situation. The core
idea of the following theorem is to divide the bit string into blocks of size log λ each
and to optimize these blocks iteratively by exhaustive search.

Theorem 5 Let ε,C > 0, and let 2 ≤ λ < 2n
1−ε

. For suitable p =
O(log2(n) log log(n) log(λ)/n) there exists a (1 + λ) elitist p-Monte Carlo black-
box algorithm that needs at most O(n/log λ) generations on OneMax.
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We emphasize that the bound in Theorem 5 is in number of generations, not in terms
of function evaluations.We feel that this is themore useful measure, in particular when
the λ offspring can be generated in parallel. Note that an algorithm optimizing for the
number of function evaluations can be substantially different from the onesminimizing
the number of generations, e.g., for very large λ the former algorithms typically use
ω(n) function evaluations in each generation.

Proof (of Theorem 5) We initialize the algorithm by implementing the (1+1) counter
as described in Lemma 4. We split the remaining string into blocks of length at most
�log2 λ� ≥ 1, and we want to optimize each block with exhaustive search. There are
j = �n/�log2 λ�� = Ω(nε) such blocks, and we thus apply Lemma 4 with this j .
This requires O(log(1/p) log( j)(log log j)2) = O(log3 n) generations. The counter
blocks O(log j) bits which we cannot touch during the optimization of the blocks
(except, of course, for operating the counter).

We then optimize the n − O(log j) bits which are not blocked for the counter. We
optimize �log2 λ� bits in each iteration, by sampling all possible 2�log2 λ� ≤ λ entries in
the block. In each sampled offspring the counter is increased by one (when compared
with the counter of the parent individual). In the last generation we possibly optimize
a block that is smaller than �log2 λ�, but the routine is the same, i.e., exhaustive search.
Note that this optimization routine is deterministic. It requires at most j generations.

Once the counter of the parent individual shows j we need to optimize those bits
that were reserved for the counter. We do this in the same way as we did in the (1+1)
situation (see Sect. 6.3). That is, we use Randomized Local Search (RLS, Algorithm 2)
on the yet unoptimized part and with some probability p′ = O(log(n) log(λ)/n) we
flip the bit b0 indicating us to do RLS steps. At the time that bit b0 is flipped for the
first time, the remainder of the bit string is optimized with probability at least 1− p/2
for a suitable choice of p′, and the probability that it needs more than Cn/log λ steps
is O(1/n) = o(p) for a suitable choice of C > 0. ��

We remark without formal proof that the requirement on p can be relaxed by
regarding an iterated counter (cf.Remark 3). If λ is a small constant, then we may use
p = O(log(n)/n) as in the (1+1) case. On the other hand, if λ is a sufficiently large
constant, then we can optimize the constantly many bits of the last counter and b0
simultaneously in just one step. In this case, we may even use p = e−o(n), i.e., for all
such p there are (1+ λ) p-Monte Carlo black-box algorithms using only O(n/log λ)

generations. Despite these small failure probabilities it is still not clear how to derive
an upper bound on the corresponding Las Vegas complexities.

8 The (μ + 1) Elitist Black-Box Complexities of OneMax for μ > 2

As mentioned earlier, the (μ + 1) model is quite powerful as it allows to store infor-
mation about the search history. We shall use this space to implement a variant of
the random sampling optimization strategy of Erdős and Rényi [13] (see Sect. 3). To
apply this random sampling strategy in our setting, we need to make this approach
satisfy the ranking-basedness condition, the memory-restriction, and the truncation
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selection requirement. Luckily, the first two problems have been solved in previous
works, though not for both restrictions simultaneously (see Sect. 3).

In the elitist model we do not obtain absolute fitness values but merely learn the
ranking of the search points induced by the fitness function. It has been shown in [7]
that the ranking-restriction does not change the complexity of the random sampling
strategy bymore than an at most (small) constant factor. That is, there exists a function
t (n) = O(n/log n) such that for n large enough the ranking of a sequence s1, . . . , st (n)

of random strings in {0, 1}n induced by the OneMax -function uniquely determines
the target string with probability at least 1 − O(

√
n exp(−Δ

√
n/ log n)), where Δ is

some positive constant.
By the restricted memory we may not be able to store all t (n) search points. But,

following previous work (see for example [8] for a description of this method invented
in [5]), we can split the string into smaller blocks of size m each such that t (m) ≤ μ.
We then optimize these n/t (m) blocks iteratively. Note that this is different from the
strategy in Sect. 7, where all 2t possible entries for a block of size t are sampled.

The last challenge that we need to handle is the truncation selection. Intuitively, if
we replace after the i-th phase (in which we sampled the required search points for
optimizing the i-th block) the entries in the i-th block by the optimal ones, this should
give us enough flexibility (in terms of fitness increase) to replace the entries in the
(i + 1)-st block by the random samples s1, . . . , st needed to determine the optimal
entries of the (i + 1)-st block. The theorem below shows that this is indeed possible,
with high probability.

Theorem 6 For constantμ, the (μ+1) (Monte Carlo and Las Vegas) elitist black-box
complexity of OneMax is Θ(n).

For μ = ω(log2(n)/log log n)∩ O(n/log n) the (μ+ 1) Monte Carlo elitist black-
box complexity of OneMax is Θ(n/logμ).

There exists a constant C > 1 such that for μ ≥ Cn/log n, the (μ + 1) (Monte
Carlo and Las Vegas) elitist black-box complexity is Θ(n/log n).

Proof The lower bounds follow from Theorem 2. For constant μ the upper bound
follows from the (2+1) elitist algorithm in Theorem 4.

The result for μ ≥ Cn/log n follows from the result on the ranking-based black-
box complexity in [7]. For the Las Vegas result recall that, as commented in [8,
Section 3.2], the random sampling technique of Erdős andRényi can be derandomized;
that is, there exists a function t (n) = O(n/log n) and sequences s1, . . . , st (n) ∈ {0, 1}n
such that the fitness values of these samples uniquely determine the target string of
the OneMax function. This, together with the ranking-based strategy of [7] implies
the upper bound in the third statement. For the lower bound, a simple information-
theoretic argument shows that if the target string is uniformly at random, then with
high probability n/(2 log n) samples are not enough to find the optimum [13].

To prove the statement for intermediate values of μ, note that it suffices to show
the case μ = ω(log2(n)/log log n) ∩ O(n/log2 n). The case μ′ = ω(n/log2 n) ∩
O(n/log n) follows from the case μ = n/log2 n since the (μ′ + 1)-complexities can
only be smaller than the corresponding (μ + 1)-complexities, and O(n/logμ) =
O(n/logμ′) = O(n/log n).
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So we may assume that μ = ω(log2(n)/log log n) ∩ O(n/log2 n). Let k =
Θ(μ logμ) = ω(log2 n) such that for some t ≤ μ the ranking of a random sequence
s1, . . . , st ∈ {0, 1}k induced by theOneMax values of an arbitraryOneMax function
Omz determines the target string zwith probability at least 1−δ

√
k exp(−Δ

√
k/ log k),

δ and Δ being the constants implicit in the result of [7].
Setting up the counter: The algorithm starts by building a neutral counter (a

counter as in Lemma 4) for counting values from one to �n/k�. As in previous proofs
we denote the counter by C . Its length is O(log n).

We initialize the algorithm by sampling the string with all zeros in the first |C | + 3
positions and random entries in the remaining positions. We place C in the positions
{4, . . . , |C |+3}, and the optimal entries ofC will be copied into partC ′, which is placed
in positions {|C |+4, . . . , 2|C |+3}. First we use the (2+1) linear optimization strategy
from Theorem 4 to optimize part C . This requires O(|C |) = O(log n) (deterministic)
iterations. At the end of this phase we set the first bit to one, indicating that we are
now ready to copy C into C ′. We do so by applying the strategy from Lemma 2 with
B := {2|C | + 4, . . . , n}.

WhenC is copied intoC ′ we flip the second flag bit and continue by initializing the
counter. This requires to flip |C |/2 bits from the correct into their non-optimal state.
Again we apply Lemma 2 with B as above. Note that by Chernoff’s bound, B satisfies
the requirements of Lemma 2 with high probability.

By comparison of C with C ′ we recognize when the counter is initialized. We are
then ready to enter the main part of the algorithm in which we optimize part B. Note
that at this point the first three bits are 110. Note further that at most O(log n) bits in B
have been touched at this point, so that, as also commented in the proof of Theorem 3
in Sect. 6.3, by Chernoff’s bound, with probability at least 1−exp(−ε2n/3), after this
copy operation at least a (1/2) − ε fraction of B is non-optimized, for any constant
ε > 0. The −ε2n/3 part (en lieu of the typical −ε2n/2 expression) in this bound
accounts for the fact that O(log n) bits have been optimized during the implementation
and initialization of the counter and the fact that we regard the substring B of size only
n − O(log n).

Optimization of theMain Part Using Random Sampling: We divide part B into
blocks of length k each; only the last block, which will be treated differently, may
have smaller size. We aim at optimizing the blocks iteratively.

To this end, we first show that with high probability we can for each of the �|B|/k�
blocks determine the target entries in the block from the t random samples. Recall
that for each block individually this probability is 1 − δ

√
k exp(−Δ

√
k/ log k). By

a union bound, the probability that it works for all �|B|/k� blocks is thus at least
1 − δ(n/

√
k) exp(−ω(

√
log2 n)) = 1 − O(n−c) for any positive constant c.

Fix 0 < ε, ε′ < 1/6.We shownext thatwith high probability thefitness contribution
of each block (except for, potentially, the last one, which we can and do ignore in the
following) is between ((1/2) − ε)k and (1/2 + ε)k initially. After initialization of
the algorithm, the expected fitness contribution of each block is half the length of the
block, i.e., k/2. During the setup and the initialization of the counter, we have changed
at most O(log n) bits in B, their positions being uniformly distributed in B. Therefore,
each block has an expected fitness contribution after the setup and initialization of the
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counter of (1−o(1))k/2. By Chernoff’s bound, its contribution is between the desired
((1/2)−ε)k and (1/2+ε)k with probability at least 1−2 exp(−δk) for some positive
constant δ. By a union bound, the fitness contribution of every (but potentially the
last) block is thus between ((1/2) − ε)k and ((1/2) + ε)k with probability at least
1 − 2(n/k) exp(−δk). Together with the requirement k = ω(log2 n) this shows that
the failure probability is at most n−c for any positive constant c. We may therefore
condition all the following statements on this event.

By the same reasoning as above, the probability that for all blocks i and for all j ∈ [t]
the fitness contribution of the random string s j in block i is between ((1/2) − ε′)k
and ((1/2)+ε′)k is at least 1− (n/log k) exp(−δ′k), for some positive constant δ′. As
above, this expression is at least 1−n−c for any positive constant c. We may therefore
also condition on this event.

Let us assume that for some block 1 ≤ i < �|B|/k� − 1 we have sampled the
required t random strings. We show how to optimize block i + 1. (The optimization
of the first and the last block needs to be handled differently and will be considered
below.) That is, the entries of the first i − 1 blocks are already optimized, the counter
of the μ strings in the population is set to i and the entries in the i th block of t of
these strings are taken from {0, 1}k uniformly at random.4 The next t queries are as
follows. In each query, we replace the entries in the i-th block by the optimal ones,
we increase the neutral counter by one, and we replace the entries in the (i + 1)-st
block by entries that are taken from {0, 1}k independently and uniformly at random.
Let us first argue that these queries will be accepted into the population. When we
replace the initial entries in block i + 1 by the random string s j we lose a fitness
contribution of at most (ε + ε′)k. On the other hand, we have a fitness increase of at
least ((1/2) − ε′)k > (ε + ε′)k from replacing the random entries in the i th block by
the optimal ones. The neutral counter does not have any effect on the fitness and can
thus be ignored.

It remains to describe how to optimize the first and the last block. For the last block,
we simply use the (2+1) elitist linear optimization strategy of Theorem 4. Since the
size of this block is at most k = Θ(μ logμ) = O(n/logμ), this does not affect the
overall runtime by more than a constant factor. Of course, we increase in each query
for the last block the neutral counter by one and we replace the random strings in the
penultimate block by the optimal ones.

Getting the desired random samples into the first block is a bit more challenging.We
need to respect the truncation selection rule and need thus tomake sure that the random
samples in the first block are accepted. A simple trick enables us to guarantee that. We
first optimize the first block with the linear (2+1) elitist strategy from Theorem 4 (note
again that the size of the block is k = O(n/logμ)). We then invert all the bits in the
first block by applying the strategy from Lemma 2 to the first block and part B. Since
this affects at most k = O(n/logμ) = o(n) bits in B, all the probabilistic statements

4 In more precision, one substring is the median query required for the ranking-based algorithm from [7].
See Lemma 12 in [7] for the details of this query, which is needed to verify that the fitness level k/2 is
correctly identified. It is only important for us to know that we need to make one additional non-random
query, the fitness contribution of which is �k/2� with very high probability. We ignore this query in this
presentation, as it is obvious that it does not create any problems with our approach.
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that we made about B above still hold. At this point the fitness contribution of the first
block is zero and all random samples in the first block can thus be accepted.

There are �|B|/k� = O(n/k) blocks in total. For each block we sample t =
O(k/ log k) random strings to determine the optimum. The overall number of samples
performed in this phase of the algorithm is thus O(n/log k) = O(n/logμ).

Optimizing the Counter: Once all the blocks have been optimized, that is, as soon
as st has been sampled in the last block, we sample the search point which replaces st
by the optimal entries for this block and which has the third bit set to one (it has been
zero in all previous iterations). This indicates that we can now go to the next phase,
in which we optimize all the bits in positions {1, 2} ∪ {4, . . . , 2|C | + 3} using the
linear (2+1) elitist strategy from Theorem 4. Finally, we check if replacing the third
bit by a zero improves the fitness further. This last phase is deterministic and requires
O(|C |) = O(log n) queries. ��

9 Remark on (μ, λ) Elitist Black-Box Complexities

It is interesting to note that it can be significantly easier in the elitist black-box model
to optimize a function when allowed to use so-called comma strategies instead of the
plus strategies described by Algorithm 1. To make things formal, we call an algorithm
that follows the scheme of Algorithm 1 with Line 8 replaced by

Set X ← {y(1), . . . , y(λ)}

and Line 9 running only to λ − μ a (μ, λ) elitist algorithm. That is, a (μ, λ) elitist
algorithm has to keep in each iteration the μ best sampled offspring, but it is allowed
(and forced) to ignore the parent solutions (which, consequently, can be of better
fitness). In any case, if the algorithmwants tomaintain parts of the parental population,
it can simply resample those individuals that should be kept.

Note in particular that (μ, λ) elitist algorithms can do restarts. Therefore, as dis-
cussed in Sect. 2.1, to upper bound the (μ, λ) elitist Las Vegas black-box complexity
of a problem, it suffices to bound its corresponding Monte Carlo complexity. Note
further that for all λ′ with μ + λ′ ≤ λ we can imitate every (μ + λ′) elitist black-box
algorithm by a (μ, λ) elitist black-box algorithm. Thus, from Theorems 3 and 5 (for
λ = 2 and λ ≥ 3, respectively) we get the following corollary.

Corollary 2 For any λ ≥ 2, there are (1, λ) (Las Vegas and Monte Carlo) elitist
black-box algorithms that need at most O(n/log λ) generations on OneMax.

Asymptotically, these bounds are tight, since matching lower bounds can be
obtained by the same information-theoretic arguments as used in Theorem 2. We
can easily improve the bounds in Corollary 2 as follows.

Theorem 7 The (1,2) Las Vegas elitist black-box complexity of OneMax is at most
2n + 1, and the correspnding algorithm needs at most n + 1 generations.

For any λ ≥ 2 there are (1, λ) elitist Las Vegas and Monte Carlo black-box algo-
rithms that need at most �n/�log2 λ�� generations on OneMax.
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Proof We first regard the (1,2) situation. Initialize the algorithm with the string x1 =
(1, 0, . . . , 0). We maintain the following invariant: at the beginning of iteration t the
string xt in the memory has entry 1 in position t and zeros in all positions i ≥ t .

We sample in iteration t the two search points xt ⊕ et+1 and xt ⊕ et ⊕ et+1, where
for all j ∈ [n] the string e j is the string with all entries except the j-th one set to
zero. That is, we either flip only the t + 1-st bit in xt or we flip both the t-th and the
t + 1-st bit. Since the two offspring differ in exactly one position, one of them has
strictly better fitness than the other, and we (necessarily) keep the better one. At the
end of the t-th iteration the search point in the memory is thus optimized in the first t
positions. After the n-th iteration, the optimum is found.

For the (1, λ) situation we simply apply the previous idea with an exhaustive search
on blocks of length 
 := �log2 λ�. That is, we always move the one by 
 positions to
the right while at the same time testing all possible 2
 ≤ λ possible entries in these 


positions.
Both algorithms are deterministic and therefore Las Vegas. ��

For completeness, we note that the (1,1) (Las Vegas or Monte Carlo) complexity of
OneMax is Θ(2n). The Las Vegas upper bound is given by random sampling, and it
implies the Monte Carlo upper bound as discussed in Sect. 2.1. For the lower bound,
note that the algorithm does not get any information about the search point it stores,
except whether it is the optimum. Therefore, the problem is at least as hard as the
needle-in-haystack problem Needle where all search point except the optimum have
the same fitness. Even if we give the algorithm access to infinite memory, for any
0 < c < 1 after c2n steps the optimum of Needle will not be found with probability
at least 1 − c, proving the lower bounds.

10 Conclusions

We have analyzed black-box complexities of OneMax with respect to (μ + λ)

memory-restricted ranking-based algorithms. Moreover, we have shown that the com-
plexities do not change if we also require the algorithms to use truncation selection,
provided that we regard Monte-Carlo complexities. For different settings of μ and λ

we have seen that such algorithms can be fairly efficient and attaining the information-
theoretic lower bounds.

An interesting open question arising from our work is a tight bound for the Las
Vegas complexity of OneMax in the (1+1) elitist black-box model. We have sketched
in Sect. 6 the main difficulties in turning our Monte Carlo algorithm into a Las Vegas
heuristic. The possible discrepancy between these two notions also raises the question
which problems can be optimized substantially more efficiently with restarts than
without, an aspect for which some initial findings can be found in the literature,
e.g., [15], but for which no strong characterization exists.
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