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Abstract Linear rank-width is a linearized variation of rank-width, and it is deeply
related to matroid path-width. In this paper, we show that the linear rank-width of
every n-vertex distance-hereditary graph, equivalently a graph of rank-width at most
1, can be computed in time O(n2 · log2 n), and a linear layout witnessing the lin-
ear rank-width can be computed with the same time complexity. As a corollary, we
show that the path-width of every n-element matroid of branch-width at most 2 can be
computed in timeO(n2 · log2 n), provided that the matroid is given by its binary repre-
sentation. To establish this result, we present a characterization of the linear rank-width
of distance-hereditary graphs in terms of their canonical split decompositions. This
characterization is similar to the known characterization of the path-width of forests

The first author is supported by the German Research Council, Project GalA, AD 411/1-1. The third
author is supported by Basic Science Research Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2011-0011653). A preliminary
version appeared in the proceedings of WG’14.

B O-joung Kwon
ojoungkwon@gmail.com

Isolde Adler
I.M.Adler@leeds.ac.uk

Mamadou Moustapha Kanté
mamadou.kante@isima.fr

1 School of Computing, University of Leeds, Leeds, UK

2 Université Clermont Auvergne, Université Blaise Pascal, LIMOS, CNRS, Aubière, France

3 Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701,
South Korea

4 Present Address: Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Kende u.13-17, Budapest, Hungary

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-016-0164-5&domain=pdf


Algorithmica (2017) 78:342–377 343

given by Ellis, Sudborough, and Turner [The vertex separation and search number
of a graph. Inf. Comput., 113(1):50–79, 1994]. However, different from forests, it is
non-trivial to relate substructures of the canonical split decomposition of a graph with
some substructures of the given graph. We introduce a notion of ‘limbs’ of canonical
split decompositions, which correspond to certain vertex-minors of the original graph,
for the right characterization.

Keywords Rank-width · Linear rank-width · Distance-hereditary graphs ·
Vertex-minors · Matroid branch-width · Matroid path-width

1 Introduction

Rank-width [28] is a graph parameter introduced by Oum and Seymour with the goal
of efficient approximation of the clique-width [6] of a graph. Linear rank-width can
be seen as the linearized variant of rank-width, and it is similar to path-width, which
can be seen as the linearized variant of tree-width. While path-width is a well-studied
notion, much less is known about linear rank-width. Vertex-minor is a graph contain-
ment relation where rank-width and linear rank-width do not increase when taking
this operation.

Rank-width is related to matroid branch-width, which has an important role in
structural theory on matroids. We refer to the series of papers by Geelen, Gerards,
and Whittle on the Matroid Minors Project [14,15] and Rota’s Conjecture [16] for
more information on matroid branch-width. It is known that the matroid branch-width
(matroid path-width) of a binary matroid is equal to the rank-width (linear rank-width)
of its fundamental graph plus one [27]. This equality can be further generalized to
matroids over a fixed finite field with the finite field version of rank-width [24,25].
Hence new results on (linear) rank-widthwill immediately yield new results onmatroid
branch-width or onmatroid path-width. In this paper,wewill derive a complexity result
for computing matroid path-width from linear rank-width.

Kashyap [22] showed that it is NP-hard to compute matroid path-width on binary
matroids. By reducing from matroid path-width, we can show that computing linear
rank-width is NP-hard in general. But, fixed parameter tractable algorithms, parame-
trized by the linear rank-width, for testing whether the linear rank-width of a graph is
at most k exist. First, as the class of graphs of linear rank-width at most k, for fixed k,
is closed under taking vertex-minors, from the well-quasi-ordering theorem by Oum
[27], the class of graphs of linear rank-width at most k is characterized by a finite
set of forbidden vertex-minors. Since one can check in time O( f (�, h) · n3) whether
a fixed graph H on h vertices is isomorphic to a vertex-minor of a given graph of
rank-width at most � [7], we can deduce that, for any fixed k, one can check whether
a given graph has linear rank-width at most k in time O(g(k) · n3). But, as we need
to construct the set of forbidden vertex-minors and we do not know a bound on their
size, the above algorithm is non-constructive. Recently, Jeong et al. [19] showed that,
for fixed k, there is a constructive algorithm to test whether a given graph has linear
rank-width at most k in time O( f (k) · n3).

It is natural to ask which graph classes allow for an efficient computation. Adler and
Kanté [18] first showed that it is possible to compute the linear rank-width of forests
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in linear time. As Bodlaender and Kloks [4] showed that it is possible to compute the
path-width of graphs of bounded tree-width in polynomial time, one can ask whether
it is also possible to compute the linear rank-width of graphs of bounded rank-width in
polynomial time. This question was very recently settled by Jeong et al. [19], but the
exponent on n in the running time is not realistic and depends on the rank-width. To
the best of our knowledge, the existence of such an algorithm that runs in timeO(n3)
or even better is an open question.1

Ourmain result is anO(n2 ·log2 n)-time algorithm to compute the linear rank-width
of a distance-hereditary graph, and a linear layout witnessing its linear rank-width.
A graph G is distance-hereditary if for every pair of two vertices u and v of G, the
distance between u and v in any connected induced subgraph of G containing both u
and v, is the same as the distance between u and v in G. Distance-hereditary graphs
are exactly graphs of rank-width at most 1 [27], and include all forests and cographs.

Theorem 6.1 The linear rank-width of every n-vertex distance-hereditary graph can
be computed in timeO(n2 · log2 n). Moreover, a linear layout of the graph witnessing
the linear rank-width can be computed with the same time complexity.

In contrast, computing the path-width of distance-hereditary graphs is known to be
NP-hard [23].

A direct consequence of Theorem 6.1 is the possibility to compute the path-width
of matroids with branch-width at most 2 in polynomial time. It is known that every
matroid of branch-width at most 2 is a binary matroid [10,30,31].

Corollary 7.4 The path-width of every n-element matroid of branch-width at most 2
can be computed in timeO(n2 · log2 n), provided that the matroid is given by its binary
representation. Moreover, a linear layout of the matroid witnessing the path-width can
be computed with the same time complexity.

The main ingredient of our algorithm is a new characterization of the linear rank-
width of distance-hereditary graphs (Theorem 4.1). Our characterization makes use
of the special structure of canonical split decompositions [8] of distance-hereditary
graphs. Roughly, a canonical split decomposition decomposes a distance-hereditary
graph in a tree-like fashion into complete graphs and stars, and our characterization is
recursive along the sub-decompositions of the split decomposition.

While a similar idea has been exploited in [18,21,26] for other parameters, here we
encounter a new problem. When we take a subgraph of a given split decomposition,
the obtained split decomposition may have vertices that do not represent vertices
of the original graph. It is not at all obvious how to deal with these vertices in the
recursive step. We handle this by introducing limbs of canonical split decompositions,
that correspond to certain vertex-minors of the original graphs, and have the desired
properties to allow our characterization. We think that the notion of limbs may be
useful in other contexts, too, and hopefully, it can be extended to other graph classes
and allow for further new efficient algorithms.

The paper is structured as follows. Section 2 introduces the basic notions, in partic-
ular linear rank-width, vertex-minors, and split decompositions. In Sect. 3, we define

1 At the time this paper was submitted, the algorithm in [19] was not even known.
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limbs and its canonical decompositions, called canonical limbs, and show some basic
properties. We use them in Sect. 4 for our characterization of the linear rank-width
of distance-hereditary graphs. In Sect. 5, we establish essential properties of canoni-
cal limbs, which will be used to obtain the running time of our algorithm. Section 6
presents the O(n2 · log2 n)-time algorithm for computing the linear rank-width of
distance-hereditary graphs, and in Sect. 7, we obtain an algorithm for computing the
path-width of matroids of branch-width at most 2 as a corollary. To obtain the running
time, we need the fact that every n-vertex distance-hereditary graphG has linear rank-
width at most log2 n. Generally, we prove in Sect. 8 that every graph of rank-width k
has linear rank-width at most k�log2 n�.

2 Preliminaries

In this paper, graphs are finite, simple and undirected, unless stated otherwise. Our
graph terminology is standard, see for instance [11]. Let G be a graph. We denote
the vertex set of G by V (G) and the edge set by E(G). An edge between x and y is
written xy (equivalently yx). For X ⊆ V (G), we denote by G[X ] the subgraph of G
induced by X , and let G\X := G[V (G)\X ]. For shortcut we write G\x for G\{x}.
For a vertex x of G, let NG(x) be the set of neighbors of x in G and we call |NG(x)|
the degree of x in G. An edge e of G is called a cut-edge if its removal increases the
number of connected components of G.

A tree is a connected acyclic graph. A leaf of a tree is a vertex of degree one. A path
is a tree where every vertex has degree at most two. The length of a path is the number
of its edges. A star is a tree with a distinguished vertex, called its center, adjacent to
all other vertices. A complete graph is a graph with all possible edges. A graph G is
called distance-hereditary if for every pair of two vertices x and y of G the distance
of x and y in G equals the distance of x and y in any connected induced subgraph
containing both x and y [2].

2.1 Linear Rank-Width and Vertex-Minors

For sets R and C , an (R,C)-matrix is a matrix whose rows and columns are indexed
by R and C , respectively. For an (R,C)-matrix M , X ⊆ R, and Y ⊆ C , let M[X,Y ]
be the submatrix of M whose rows and columns are indexed by X and Y, respectively.

Linear Rank-Width

LetG be a graph.Wedenote by AG the adjacencymatrix ofG over the binary field. The
cut-rank function of G is a function cutrkG : 2V (G) → Z where for each X ⊆ V (G),

cutrkG(X) := rank(AG[X, V (G)\X ]).

A sequence (x1, . . . , xn) of the vertex set V (G) is called a linear layout of G. If
|V (G)| ≥ 2, then the width of a linear layout (x1, . . . , xn) of G is defined as

max
1≤i≤n−1

{cutrkG({x1, . . . , xi })}.
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The linear rank-width ofG, denoted by lrw(G), is defined as the minimumwidth over
all linear layouts of G if |V (G)| ≥ 2, and otherwise, let lrw(G) := 0.

Caterpillars and complete graphs have linear rank-width at most 1. Ganian [12]
characterized the graphs of linear rank-width at most 1, and called them thread graphs.
Adler andKanté [18] showed that linear rank-width and path-width coincide on forests,
and therefore, there is a linear-time algorithm to compute the linear rank-width of
forests. It is easy to see that the linear rank-width of a graph is the maximum over the
linear rank-widths of its connected components.

To obtain the bound presented in Theorem 6.1, we will need the fact that the linear
rank-width of an n-vertex distance-hereditary graph G is at most log2 n. In fact, we
generally show that the linear rank-width of a graph with rank-width k is at most
k�log2 n�. The proof scheme is similar to the one for path-width [3].

A tree is subcubic if it has at least two vertices and every internal vertex has degree 3.
A rank-decomposition of a graph G is a pair (T, L), where T is a subcubic tree and
L is a bijection from the vertices of G to the leaves of T . For an edge e in T , T \e
induces a partition (Xe,Ye) of the leaves of T . The width of an edge e is defined as
cutrkG(L−1(Xe)). The width of a rank-decomposition (T, L) is the maximum width
over all edges of T . The rank-width of G, denoted by rw(G), is the minimum width
over all rank-decompositions of G if |V (G)| ≥ 2, and otherwise, let rw(G) := 0.

Theorem 2.1 (Oum [27]). A graph is distance-hereditary if and only if it has rank-
width at most 1.

Lemma 2.2 Let k be a positive integer and let G be a graph of rank-width k. Then
lrw(G) ≤ k�log2|V (G)|�.

Lemma 2.2 will be proved in Sect. 8.

Vertex-Minors

For a graphG and avertex x ofG, the local complementationat x ofG is an operation to
replace the subgraph induced by the neighbors of x with its complement. The resulting
graph is denoted byG∗x . If H can be obtained fromG by applying a sequence of local
complementations, then G and H are called locally equivalent. A graph H is called
a vertex-minor of a graph G if H can be obtained from G by applying a sequence of
local complementations and deletions of vertices.

Lemma 2.3 (Oum [27]). Let G be a graph and let x be a vertex of G. Then for every
subset X of V (G), we have cutrkG(X) = cutrkG∗x (X). Therefore, every vertex-minor
H of G satisfies that lrw(H) ≤ lrw(G).

For an edge xy of G, let W1 := NG(x) ∩ NG(y), W2 := (NG(x)\NG(y))\{y},
and W3 := (NG(y)\NG(x))\{x}. The pivoting on xy of G, denoted by G ∧ xy, is the
operation to complement the adjacencies between distinct sets Wi and Wj , and swap
the vertices x and y. It is known that G ∧ xy = G ∗ x ∗ y ∗ x = G ∗ y ∗ x ∗ y [27].
See Fig. 1 for an example.

We introduce some basic lemmas on local complementations, which will be used
in several places.
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Fig. 1 Pivoting an edge ab a b b a

Lemma 2.4 Let G be a graph and x, y ∈ V (G) such that xy /∈ E(G). ThenG∗x∗y =
G ∗ y ∗ x.

Proof It is straightforward as applying a local complementation at x or y does not
change the neighbor sets of x and y. �

Lemma 2.5 Let G be a graph and x, y, z ∈ V (G) such that xy, xz /∈ E(G) and
yz ∈ E(G). Then G ∗ x ∧ yz = G ∧ yz ∗ x.

Proof By the definition of pivoting, G ∗ x ∧ yz = G ∗ x ∗ y ∗ z ∗ y. Note that
xy /∈ E(G), xz /∈ E(G ∗ y), and xy /∈ E(G ∗ y ∗ z). Therefore, by Lemma 2.4,
G∗x∗y∗z∗y = (G∗y)∗x∗z∗y = (G∗y∗z)∗x∗y = (G∗y∗z∗y)∗x = G∧yz∗x .

�

Lemma 2.6 (Oum [27]). Let G be a graph and x, y, z ∈ V (G) such that xy, yz ∈
E(G). Then G ∧ xy ∧ xz = G ∧ yz.

2.2 Split Decompositions and Local Complementations

Wewill follow the definition of split decompositions in [5].We notice that split decom-
positions are usually defined on connected graphs. For computing the linear rank-width
of a distance-hereditary graph, it is enough to compute the linear rank-width of its con-
nected components and take the maximum over all those values. Thus we will mostly
assume that the given graph is connected in this paper, and use split decompositions
in usual sense.

Let G be a connected graph. A split in G is a vertex partition (X,Y ) of G such
that |X |, |Y | ≥ 2 and rank(AG[X,Y ]) = 1. In other words, (X,Y ) is a split in
G if |X |, |Y | ≥ 2 and there exist non-empty sets X ′ ⊆ X and Y ′ ⊆ Y such that
{xy ∈ E(G) | x ∈ X, y ∈ Y } = {xy | x ∈ X ′, y ∈ Y ′}. Notice that not all connected
graphs have a split, and those that do not have a split are called prime graphs.

A marked graph D is a connected graph D with a set of edges M(D), called
marked edges, that form a matching such that every edge in M(D) is a cut-edge.
The ends of the marked edges are called marked vertices, and the components of
(V (D), E(D)\M(D)) are called bags of D. The edges in E(D)\M(D) are called
unmarked edges, and the vertices that are not marked vertices are called unmarked
vertices. If (X,Y ) is a split in G, then we construct a marked graph D that consists
of the vertex set V (G) ∪ {x ′, y′} for two distinct new vertices x ′, y′ /∈ V (G) and the
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edge set E(G[X ]) ∪ E(G[Y ]) ∪ {x ′y′} ∪ E ′ where we define x ′y′ as marked and

E ′ :={x ′x | x ∈ X and there exists y ∈ Y such that xy ∈ E(G)}
∪ {y′y | y ∈ Y and there exists x ∈ X such that xy ∈ E(G)}.

The marked graph D is called a simple decomposition of G.
A split decomposition of a connected graph G is a marked graph D defined induc-

tively to be either G or a marked graph defined from a split decomposition D′ of G by
replacing a component H of (V (D′), E(D′)\M(D′)) with a simple decomposition of
H . For a marked edge xy in a split decomposition D, the recomposition of D along
xy is the split decomposition D′ := (D∧ xy)\{x, y}. For a split decomposition D, let
G[D] denote the graph obtained from D by recomposing all marked edges. By defi-
nition, if D is a split decomposition of G, then G[D] = G. Since each marked edge
of a split decomposition D is a cut-edge and all marked edges form a matching, if we
contract all unmarked edges in D, then we obtain a tree. We call it the decomposition
tree of G associated with D and denote it by TD . To distinguish the vertices of TD from
the vertices of G or D, the vertices of TD will be called nodes. Obviously, the nodes
of TD are in bijection with the bags of D. Two bags of D are called neighbor bags if
their corresponding nodes in TD are adjacent. A subgraph of a split decomposition is
called a sub-decomposition.

A split decomposition D of G is called a canonical split decomposition (or canon-
ical decomposition for short) if each bag of D is either a prime graph, a star, or a
complete graph, and D is not the refinement of a decomposition with the same prop-
erty. The following is due to Cunningham and Edmonds [8], and Dahlhaus [9].

Theorem 2.7 (Cunningham and Edmonds [8]; Dahlhaus [9]). Every connected
graph G has a unique canonical decomposition, up to isomorphism, and it can be
computed in time O(|V (G)| + |E(G)|).

From Theorem 2.7, we can talk about only one canonical decomposition of a con-
nected graph G because all canonical decompositions of G are isomorphic.

Let D be a split decomposition of a connected graph G with bags that are either
prime graphs, complete graphs or stars (it is not necessarily a canonical decomposi-
tion). The type of a bag of D is either P , K , or S depending on whether it is a prime
graph, a complete graph, or a star. The type of a marked edge uv is AB where A and
B are the types of the bags containing u and v respectively. If A = S or B = S, then
we can replace S by Sp or Sc depending on whether the end of the marked edge is a
leaf or the center of the star.

Theorem 2.8 (Bouchet [5]). Let D bea split decomposition of a connected graphwith
bags that are either complete graphs or stars. Then D is a canonical decomposition
if and only if it has no marked edge of type K K or SpSc.

We will use the following characterization of distance-hereditary graphs.

Theorem 2.9 (Bouchet [5]). A connected graph is distance-hereditary if and only if
each bag of its canonical decomposition is of type K or S.
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We now relate the split decompositions of a graph and the ones of its locally
equivalent graphs. Let D be a split decomposition of a connected graph. A vertex v

of D represents an unmarked vertex x (or is a representative of x) if either v = x
or there is a path of even length from v to x in D starting with a marked edge such
that marked edges and unmarked edges appear alternately in the path. Two unmarked
vertices x and y are linked in D if there is a path from x to y in D such that unmarked
edges and marked edges appear alternately in the path.

Lemma 2.10 Let D be a split decomposition of a connected graph. Let v′ and w′
be two vertices in a same bag of D, and let v and w be two unmarked vertices of D
represented by v′ and w′, respectively. The following are equivalent.
(1) v and w are linked in D.
(2) vw ∈ E(G[D]).
(3) v′w′ ∈ E(D).

Proof It is not hard to show that v′ and w′ are adjacent in D if and only if there is
an alternating path from v to w in D from the definition of representativity. Note that
recomposing a marked edge in a split decomposition does not change the property
that two unmarked vertices are linked, and the adjacency of two vertices in G[D]. It
implies that v and w are linked in D if and only if vw ∈ E(G[D]). �

A local complementation at an unmarked vertex x in a split decomposition D,
denoted by D ∗ x , is the operation to replace each bag B containing a representative
w of x with B ∗ w. Observe that D ∗ x is a split decomposition of G[D] ∗ x , and
M(D) = M(D ∗ x). Two split decompositions D and D′ are locally equivalent if
D can be obtained from D′ by applying a sequence of local complementations at
unmarked vertices.

Lemma 2.11 (Bouchet [5]). Let D be the canonical decomposition of a connected
graph. If x is an unmarked vertex of D, then D ∗ x is the canonical decomposition of
G[D] ∗ x.

Remark If D is a canonical decomposition and D′ = D ∗ x for some unmarked
vertex v of D, then TD′ and TD are isomorphic because M(D) = M(D′). Thus, for
every node v of TD associated with a bag B of D, its corresponding node v′ in TD′ is
associated in D′ with either
(1) B if x has no representative in B, or
(2) B ∗ w if B has a representative w of v.

For easier arguments in several places, if TD is given for D, then we assume that
TD′ = TD for every split decomposition D′ locally equivalent to D. For a canonical
decomposition D and a node v of its decomposition tree, we write bD(v) to denote
the bag of D with which it is in correspondence.

Let x and y be linked unmarked vertices in a split decomposition D, and let P be
the alternating path in D linking x and y. Observe that each bag contains at most one
unmarked edge in P . Notice also that if B is a bag of type S containing an unmarked
edge of P , then the center of B is a representative of either x or y. The pivoting on xy
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Fig. 2 The split decomposition D ∗ v ∗ w ∗ v, which is the same as D ∧ vw

of D, denoted by D ∧ xy, is the split decomposition obtained as follows: for each bag
B containing an unmarked edge of P , if v,w ∈ V (B) represent respectively x and y
in D, then we replace B with B ∧ vw. (It is worth noticing that by Lemma 2.10, we
have vw ∈ E(B), hence B ∧ vw is well-defined.)

Lemma 2.12 Let D be a split decomposition of a connected graph. If xy ∈ E(G[D]),
then D ∧ xy = D ∗ x ∗ y ∗ x.

Proof Since xy ∈ E(G[D]), by Lemma 2.10, x and y are linked in D. It is easy to see
that by the operation D ∗ x ∗ y ∗ x , only the bags in the path from x to y are modified,
and they are modified according to the definition of D∧ xy. See Fig. 2 for an example
of this procedure. �

As a corollary of Lemmas 2.11 and 2.12, we get the following.

Corollary 2.13 Let D be the canonical decomposition of a connected graph. If xy ∈
E(G[D]), then D ∧ xy is the canonical decomposition of G[D] ∧ xy.

The following are split decomposition versions of Lemmas 2.4, 2.5, 2.6, and they
can be easily verified in a same way.

Lemma 2.14 Let D be the canonical decomposition of a connected graph. The fol-
lowing are satisfied.

(1) If x, y are unmarked vertices of D that are not linked, then D ∗ x ∗ y = D ∗ y ∗ x.
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(2) If x, y, z are unmarked vertices of D such that x is linked to neither y nor z, and
y and z are linked, then D ∗ x ∧ yz = D ∧ yz ∗ x.

(3) If x, y, z are unmarked vertices of D such that y is linked to both x and z, then
D ∧ xy ∧ xz = D ∧ yz.

For a bag B of D and a component T of D\V (B), let us denote by ζb(D, B, T )

and ζc(D, B, T ) the adjacent marked vertices of D that are in B and in T respectively.
The subscripts b and c stand for ‘bag’ and ‘component’, respectively. Observe that
ζc(D, B, T ) is not incident with any marked edge in T . So, when we take a sub-
decomposition T from D, we regard ζc(D, B, T ) as an unmarked vertex of T .

3 Limbs in Canonical Decompositions

We define the notion of limb that is the key ingredient in our characterization. The
linear-time algorithm for computing the path-width of trees (and hence their linear
rank-width by [18]) is based on the following characterization.

Proposition 3.1 (Ellis, Sudborough, and Turner [21]). A tree T has path-width at
most k if and only if for every vertex v of T at most two components of T \v have
path-width at most k, and all the other components have path-width at most k − 1.

We want to have a similar characterization for distance-hereditary graphs using
their canonical split decompositions, and the notion of limbs is intended to satisfy the
following property.

A distance-hereditary graph has linear rank-width at most k if and only if for
every bag B of its canonical decomposition, among the limbs obtained by remov-
ing B, there are at most two limbs whose corresponding graphs have linear
rank-width at most k, and for other limbs, the corresponding graphs have linear
rank-width at most k − 1.

Limbs of a canonical decomposition are roughly some of its proper vertex-minors.
Before defining it, let us first explain why taking sub-decompositions is not sufficient.

Let B be a bag of a canonical decomposition D.When defining sub-decompositions
of components of D\V (B) as limbs we have to deal with the marked vertices having a
neighbor in B. If limbs are decompositions obtained by removing these vertices from
the components of D\V (B), then we may lose the adjacency information between
sub-decompositions, and we cannot get such a characterization indeed; See Fig. 3 for
an example. On the other hand, if we regard these marked vertices as new vertices
in the sub-decompositions, then we still cannot obtain such a characterization. We
give an example in Fig. 4 where three sub-decompositions induce graphs of linear
rank-width 2, but the original graph also has linear rank-width 2.

It turns out that by applying local complementations on the marked vertices having
a neighbor in B, in the right way depending on the type of B, we can avoid the
difficulties showed in Figs. 3 and 4, and indeed obtain the wanted characterization.
We now define the notion of limb and prove some technical lemmas that will be used
in the subsequent sections. In this section let us fix D the canonical decomposition of
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Fig. 3 A graph of linear rank-width 2 and its canonical decomposition. If we regard the marked vertices
incident with vertices in the middle bag B as vertices not contained in sub-decompositions after removing
B, then each sub-decomposition corresponds to a graph without edges, which has linear rank-width 0

Fig. 4 The canonical
decomposition of a graph of
linear rank-width 2. If we regard
the marked vertices incident with
vertices in the middle bag B as
vertices of sub-decompositions
after removing B, then each
sub-decomposition corresponds
to a graph of linear rank-width 2

a connected distance-hereditary graph G. We recall from Theorems 2.8 and 2.9 that
each bag of D is of type K or S, and marked edges of types KK or SpSc do not occur.

For an unmarked vertex y in D and a bag B of D containing a marked vertex
that represents y, let T be the component of D\V (B) containing y, and let v :=
ζc(D, B, T ) and w := ζb(D, B, T ) be adjacent marked vertices of D. (Recall that
v ∈ V (T ) and w ∈ V (B).) We define the limb L := LD[B, y] with respect to B and
y as follows:

(1) if B is of type K , then L := T ∗ v\v,
(2) if B is of type S and w is a leaf, then L := T \v,
(3) if B is of type S and w is the center, then L := T ∧ vy\v.
Since v becomes an unmarked vertex in T , the limb is well-defined and it is a split
decomposition. While T is a canonical decomposition, L may not be a canonical
decomposition at all, because deleting v may create a bag of size 2. We analyze the
cases when such a bag appears, and describe how to transform it into a canonical
decomposition.
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(a) (b) (c)
Fig. 5 In a we have a canonical decomposition D of a distance-hereditary graph with a bag B. The dashed
edges aremarked edges of D. In bwe have limbs associatedwith the components of D\V (B). The canonical
limbs associated with limbs are shown in (c)

Suppose that a bag B ′ of size 2 appears in L by deleting v. If B ′ has no adjacent
bags in L, then B ′ itself is a canonical decomposition. Otherwise we have two cases.

(1) (B ′ has one neighbor bag B1.)
If v1 ∈ V (B1) is themarked vertex adjacent to a vertex of B ′ and r is the unmarked
vertex of B ′ in L, then we can transform the limb into a canonical decomposition
by removing the bag B ′ and replacing v1 with r . In other words, we recompose
along the marked edge connecting B ′ and B1.

(2) (B ′ has two neighbor bags B1 and B2.)
If v1 ∈ V (B1) and v2 ∈ V (B2) are the two marked vertices that are adjacent to
the two marked vertices of B ′, then we can first transform the limb into another
decomposition by removing B ′ and adding amarked edge v1v2. If the newmarked
edge v1v2 is of type KK or SpSc, then by recomposing along v1v2, we finally
transform the limb into a canonical decomposition.

Let LCD[B, y] be the canonical decomposition obtained from LD[B, y], and we
call it the canonical limb. Let LGD[B, y] be the graph obtained from LD[B, y] by
recomposing all marked edges. See Fig. 5 for an example of canonical limbs.

Lemma 3.2 Let B be a bag of D. If an unmarked vertex y of D is represented by a
marked vertex of B, then LD[B, y] is connected.
Proof Let T be the component of D\V (B) containing y, and v := ζc(D, B, T ), and B ′
be the bag of D containing v. Since local complementations maintain connectedness,
it suffices to verify that V (B ′)\{v} induces a connected subgraph in LD[B, y]. This
is not hard to see for each of the three cases. �
Lemma 3.3 Let B be a bag of D. If two unmarked vertices x and y are represented
by a marked vertex w in B, then LD[B, x] is locally equivalent to LD[B, y].
Proof Since x and y are represented by the same vertex w of B, they are contained in
the same component of D\V (B), say T . Let v := ζc(D, B, T ).
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If B is a complete bag or a star bag having w as a leaf, then by the definition of
limbs, LD[B, x] = LD[B, y]. So, we may assume that B is a star bag and w is its
center. Since v is linked to both x and y in T , by Lemma 2.14, T ∧vx ∧ xy = T ∧vy.
So, we obtain that (T ∧vx\v)∧xy = T ∧vx∧xy\v = T ∧vy\v.ThereforeLD[B, x]
is locally equivalent to LD[B, y]. �

For a bag B of D and a component T of D\V (B), we define fD(B, T ) as the
linear rank-width ofLGD[B, y] for some unmarked vertex y ∈ V (T ). By Lemma 3.3,
fD(B, T ) does not depend on the choice of y. Furthermore, by the following proposi-
tion, it does not changewhenwe replace Dwith somedecomposition locally equivalent
to D.

Proposition 3.4 Let B be a bag of D and let y be an unmarked vertex of D represented
by a vertex w in B. Let x ∈ V (G[D]). If an unmarked vertex y′ is represented by
w in D ∗ x, then LGD[B, y] is locally equivalent to LGD∗x [(D ∗ x)[V (B)], y′].
Therefore, fD(B, T ) = fD∗x ((D∗x)[V (B)], Tx )where T and Tx are the components
of D\V (B) and (D ∗ x)\V (B) containing y, respectively. Moreover, LCD[B, y] and
LCD∗x [(D ∗ x)[V (B)], y′] are locally equivalent as canonical decompositions.

Before proving it, let us recall the following by Geelen and Oum.

Lemma 3.5 (Geelen and Oum [17, Lemma3.1]). Let G be a graph and x, y be two
distinct vertices in G. Let xw ∈ E(G ∗ y) and xz ∈ E(G).

(1) If xy /∈ E(G), then (G ∗ y)\x, (G ∗ y ∗ x)\x, and (G ∗ y) ∧ xw\x are locally
equivalent to G\x, G ∗ x\x, and G ∧ xz\x, respectively.

(2) If xy ∈ E(G), then (G ∗ y)\x, (G ∗ y ∗ x)\x, and (G ∗ y) ∧ xw\x are locally
equivalent to G\x, G ∧ xz\x, and (G ∗ x)\x, respectively.

Proof of Proposition 3.4 Let v := ζc(D, B, T ) and B ′ := (D ∗ x)[V (B)]. Let T and
Tx be the components of D\V (B) and (D ∗ x)\V (B ′) containing y, respectively. Note
that V (T ) = V (Tx ).

We claim thatLGD[B, y] is locally equivalent toLGD∗x [B ′, y′] for some unmarked
vertex y′ represented by w in D ∗ x. We divide into cases depending on the type of the
bag B and whether x ∈ V (T ).
Case 1. x ∈ V (T ) and x is not linked to v in T .

Since x is not linked to v in T , applying a local complementation at x does not
change the bag B. Thus, B ′ = B and vx /∈ E(G[T ]). In this case, let y′ := y.

(1) (B is of type S andw is a leaf of B.)LD[B, y] = T \v andLD∗x [B ′, y′] = T ∗x\v.
Since (T \v) ∗ x = T ∗ x\v, LD[B, y] and LD∗x [B ′, y′] are locally equivalent,
and thus LGD[B, y] and LGD∗x [B ′, y′] are locally equivalent.

(2) (B is of type S andw is the center of B.)LD[B, y] = T∧vy\v andLD∗x [B ′, y′] =
(T ∗ x) ∧ vy\v, and we have

LGD[B, y] = G[T ∧ vy\v] = G[T ] ∧ vy\v.

Since vx /∈ E(G[T ]), by Lemma 3.5, LGD[B, y] is locally equivalent to

LGD∗x [B ′, y′] = G[(T ∗ x) ∧ vy\v] = G[T ] ∗ x ∧ vy\v.
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(3) (B is of type K.) LD[B, y] = T ∗ v\v and LD∗x [B ′, y′] = T ∗ x ∗ v\v, and we
have

LGD[B, y] = G[T ∗ v\v] = G[T ] ∗ v\v.

Since vx /∈ E(G[T ]), by Lemma 3.5, LGD[B, y] is locally equivalent to

LGD∗x [B ′, y′] = G[T ∗ x ∗ v\v] = G[T ] ∗ x ∗ v\v.

Case 2. x ∈ V (T ) and x is linked to v in T .
Since x is linked to v in T , vx ∈ E(G[T ]). Let y′ := x for this case.

(1) (B is of type S andw is a leaf of B.) Applying a local complementation at x does not
change the type of the bag B. So, LD[B, y] = T \v and LD∗x [B ′, y′] = T ∗ x\v.
Since (T \v)∗ x = T ∗ x\v,LGD[B, y] andLGD∗x [B ′, y′] are locally equivalent.

(2) (B is of type S and w is the center of B.) Applying a local complementation at x
changes the bag B into a bag of type K, and the component T into T ∗ x. Thus,
LD[B, y] = T ∧ vy\v and LD∗x [B ′, y′] = (T ∗ x) ∗ v\v, and

LGD[B, y] = G[T ∧ vy\v] = G[T ] ∧ vy\v.

Since vx ∈ E(G[T ]), by Lemma 3.5, LGD[B, y] is locally equivalent to

LGD∗x [B ′, y′] = G[(T ∗ x) ∗ v\v] = G[T ] ∗ x ∗ v\v.

(3) (B is of type K.) Applying a local complementation at x changes the bag B into
a bag of type S whose center is w. LD[B, y] = T ∗ v\v and LD∗x [B ′, y′] =
T ∗ x ∧ vx\v, and we have

LGD[B, y] = G[T ∗ v\v] = G[T ] ∗ v\v.

Since vx ∈ E(G[T ]), by Lemma 3.5, LGD[B, y] is locally equivalent to

LGD∗x [B ′, y′] = G[T ∗ x ∧ vx\v] = G[T ] ∗ x ∧ vx\v.

Case 3. x /∈ V (T ).
If x has no representative in the bag B, then applying a local complementation at

x does not change the bag B and the component T . Therefore, we may assume that
x is represented by some vertex in B, that is adjacent to w. In this case, v is still a
representative of y in D ∗ x. Let y′ := y.

(1) (B is of type S and w is a leaf of B.) If the representative of x in B is a leaf of B,
then it is not adjacent to w. Thus, the representative of x in B is a center of B,
and applying a local complementation at x changes B into a bag of type K, and
T into T ∗ v. We have LD∗x [B ′, y′] = (T ∗ v) ∗ v\v = T \v = LD[B, y].
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(2) (B is of type S andw is the center of B.) Sincew is the center of B, x is represented
by a leaf of the bag B. Applying a local complementation at x does not change
the bag B, but it changes T into T ∗ v. So we have LD[B, y] = T ∧ vy\v and
LD∗x [B ′, y′] = (T ∗ v) ∧ vy\v = T ∗ y ∗ v\v, and we have

LGD[B, y] = G[T ∧ vy\v] = G[T ] ∧ vy\v.

Since vy ∈ E(G[T ]), by Lemma 3.5, LGD[B, y] is locally equivalent to

LGD∗x [B ′, y′] = G[T ∗ y ∗ v\v] = G[T ] ∗ y ∗ v\v.

(3) (B is of type K.) After applying a local complementation at x in D, B becomes
a star with a leaf w, and T becomes T ∗ v. Therefore, we have LD∗x [B ′, y′] =
T ∗ v\v = LD[B, y].

We conclude that LGD[B, y] and LGD∗x [B ′, y′] are locally equivalent, and by
Lemma 3.3, we have fD(B, T ) = fD∗x (B ′, Tx ). Also, by construction LCD[B, y]
and LCD∗x [B ′, y′] are canonical decompositions of LGD[B, y] and LGD∗x [B ′, y′],
respectively. By Lemma 2.11, we can conclude that LCD[B, y] and LCD∗x [B ′, y′] are
locally equivalent as canonical decompositions. �

The following lemma is useful to reduce cases in several proofs.

Lemma 3.6 Let B1 and B2 be two distinct bags of D and for each i ∈ {1, 2}, let Ti
be the components of D\V (Bi ) such that T1 contains the bag B2 and T2 contains the
bag B1. Then there exists a canonical decomposition D′ locally equivalent to D such
that for each i ∈ {1, 2}, D′[V (Bi )] is a star and ζb(D, Bi , Ti ) is a leaf of D′[V (Bi )].

Proof Let vi := ζb(D, Bi , Ti ) for i = 1, 2. It is easy to make B1 into a star bag having
v1 as a leaf by applying local complementations. We may assume that v1 is a leaf of
B1 in D. If v2 is a leaf of B2, then we are done. If B2 is a complete bag, then choose
an unmarked vertex w2 of D that is represented by a vertex of B2 other than v2. Then
applying a local complementation at w2 makes B2 into a star bag having v2 as a leaf
without changing B1. Therefore, we may assume that v2 is the center of the star bag
B2. If B1 and B2 are neighbor bags in D, then the marked edge connecting B1 and B2
is of type SpSc, contradicting to the assumption that D is a canonical decomposition.
Thus, B1 and B2 are not neighbor bags in D.

Let T := D[V (T1) ∩ V (T2)] and w2 := ζc(D, B2, T2). By the definition of a
canonical decomposition, w2 is not a leaf of a star bag in D. Therefore, there exists
an unmarked vertex y ∈ V (T ) of D such that y is linked to w2 in T . Choose an
unmarked vertex y′ of D represented by w2 in D. Since y is linked to y′ and the
alternating path from y to y′ in D passes through B2 but not B1, pivoting yy′ in D
makes B2 into a star bag having v2 as a leaf without changing B1. Thus, each vi is a
leaf of (D ∧ yy′)[V (Bi )] in D ∧ yy′, as required. �

We conclude the section with the following.
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Proposition 3.7 Let B1 and B2 be two distinct bags of D, and T1 be a component of
D\V (B1) not containing B2, and T2 be the component of D\V (B2) containing B1.
If y1 ∈ V (T1) and y2 ∈ V (T2) are two unmarked vertices of D that are represented
by some vertices in B1 and B2, respectively, then LGD[B1, y1] is a vertex-minor of
LGD[B2, y2]. Therefore fD(B1, T1) ≤ fD(B2, T2).

Proof Let u2 := ζc(D, B2, T2) and v2 := ζb(D, B2, T2). By Lemma 3.6, there exists
a canonical decomposition D′ locally equivalent to D such that B2 is a star bag in D′
with a leaf v2. For each i ∈ {1, 2}, let T ′

i := D′[V (Ti )], B ′
i := D′[V (Bi )] and let y′

i
be an unmarked vertex of D′ represented by ζb(D′, B ′

i , T
′
i ).

Since v2 is a leaf of B ′
2 in D′, we have LD′ [B ′

2, y
′
2] = T ′

2\v2. Because T ′
1 is

a subgraph of T ′
2\v2, we can easily observe that LGD′ [B ′

1, y
′
1] is a vertex-minor of

LGD′ [B ′
2, y

′
2]. SinceLD[Bi , yi ] is locally equivalent toLD′ [B ′

i , y
′
i ] for each i ∈ {1, 2},

LGD[B1, y1] is a vertex-minor of LGD[B2, y2]. We conclude that fD(B1, T1) ≤
fD(B2, T2). �

4 Characterizing the Linear Rank-Width of Distance-Hereditary
Graphs

In this section, we prove the main structural result of this paper, which characterizes
the linear rank-width of distance-hereditary graphs.

Theorem 4.1 Let k be a positive integer and let D be the canonical decomposition
of a connected distance-hereditary graph G. Then lrw(G) ≤ k if and only if for each
bag B of D, D has at most two components T of D\V (B) such that fD(B, T ) = k,
and every other component T ′ of D\V (B) satisfies that fD(B, T ′) ≤ k − 1.

Let D be the canonical decomposition of a connected distance-hereditary graph G,
and we fix a positive integer k. For simpler arguments, we remove D from the notation
fD(B, T ) in this section. We first prove the forward direction.

Proof of the forward direction of Theorem 4.1 Suppose that there exists a bag B
of D such that D\V (B) has at least three components T which induce limbs L where
G[L] has linear rank-width k.

We claim that lrw(G) ≥ k + 1. We may assume that D\V (B) has exactly three
components T1, T2 and T3, where each component Ti satisfies f (B, Ti ) = k. Since
removing a vertex froma graph does not increase the linear rank-width, wemay further
assume that V (B) = {ζb(D, B, Ti ) | 1 ≤ i ≤ 3}. Now, every unmarked vertex of D is
contained in one of T1, T2, and T3. For each 1 ≤ i ≤ 3, letwi := ζc(D, B, Ti ), and let
Ni be the set of the unmarked vertices of Ti that are linked towi in Ti . Choose a vertex
ui in Ni and let Di := LD[B, ui ] and Gi := G[Di ]. We remark that Ni is exactly the
set of the vertices in Gi that have a neighbor in V (G)\V (Gi ). By Proposition 3.4 and
Lemmas 2.3 and 2.11, for any canonical decomposition D′ locally equivalent to D,
we have lrw(G[D]) = lrw(G[D′]) and f (B, Ti ) does not change. So, we may assume
that B is a complete bag of D.

We first claim that D2 = (D ∗ u1)[V (T2)\w2]. Since B is a complete bag, by the
definition of limbs, D2 = T2 ∗ w2\w2. Since u1 is linked to w1 in T1 and there is an
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alternating path from w1 to w2 in D, by concatenating alternating paths it is easy to
see that (D ∗ u1)[V (T2)\w2] = T2 ∗ w2\w2 = D2, as claimed.

Towards a contradiction, suppose that G has a linear layout L of width k. Let a and
b be the first and last vertices of L, respectively. Since B has no unmarked vertices,
without loss of generality, we may assume that a, b ∈ V (G1) ∪ V (G3). With this
assumption, we claim that G2 has linear rank-width at most k − 1.

Let v ∈ V (G2) and Sv := {x ∈ V (G) | x ≤L v} and Tv := V (G)\Sv . Since v is
arbitrary, it is sufficient to show that cutrkG2(Sv ∩ V (G2)) ≤ k − 1.

We divide into three cases. We first check two cases that are (1) (N1 ∩ Sv �= ∅ and
N3 ∩ Tv �= ∅), and (2) (N1 ∩ Tv �= ∅ and N3 ∩ Sv �= ∅). If both of them are not
satisfied, then we can easily deduce that N1 ∪ N3 ⊆ Sv or N1 ∪ N3 ⊆ Tv .
Case 1. N1 ∩ Sv �= ∅ and N3 ∩ Tv �= ∅.

Let x1 ∈ N1 ∩ Sv and x3 ∈ N3 ∩ Tv . We claim that

cutrkG2(Sv ∩ V (G2)) = cutrkG[V (G2)∪{x1,x3}]((Sv ∩ V (G2)) ∪ {x1}) − 1.

Because cutrkG[V (G2)∪{x1,x3}]((Sv ∩ V (G2)) ∪ {x1}) ≤ cutrkG(Sv) ≤ k, the claim
implies that cutrkG2(Sv ∩ V (G2)) ≤ k − 1.

Note that x1 and x3 have the same neighbors in G[V (G2) ∪ {x1, x3}] because B is
a complete bag. Since x1 is adjacent to x3 in G[V (G2) ∪ {x1, x3}], x3 becomes a leaf
in G[V (G2) ∪ {x1, x3}] ∗ x1 whose neighbor is x1. Since (D ∗ x1)[V (T2)\w2] = D2,
we have

G[V (G2) ∪ {x1, x3}] ∗ x1\x1\x3 = (G ∗ x1)[V (G2)] = G2.

Therefore,

cutrkG[V (G2)∪{x1,x3}]((Sv ∩ V (G2)) ∪ {x1})
= cutrkG[V (G2)∪{x1,x3}]∗x1((Sv ∩ V (G2)) ∪ {x1})

= rank

⎛
⎜⎝

x3 Tv ∩ V (G2)( )
x1 1 ∗

Sv ∩ V (G2) 0 ∗

⎞
⎟⎠

= rank

⎛
⎜⎝

x3 Tv ∩ V (G2)( )
x1 1 0

Sv ∩ V (G2) 0 ∗

⎞
⎟⎠

= cutrkG[V (G2)∪{x1,x3}]∗x1\x1\x3(Sv ∩ V (G2)) + 1

= cutrk(G2)(Sv ∩ V (G2)) + 1,

as claimed.
Case 2. N1 ∩ Tv �= ∅ and N3 ∩ Sv �= ∅.

In the same way as Case 1, we can prove cutrkG2(Sv ∩ V (G2)) ≤ k − 1.
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Case 3. N1 ∪ N3 ⊆ Sv or N1 ∪ N3 ⊆ Tv .
We can assume without loss of generality that N1∪N3 ⊆ Sv because the case when

N1 ∪ N3 ⊆ Tv is similar. Since a, b ∈ V (G1) ∪ V (G3) and the graph G[V (G1) ∪
V (G3)] is connected, there exist vertices s ∈ Sv ∩ (V (G1) ∪ V (G3)) and t ∈ Tv ∩
(V (G1) ∪ V (G3)) such that

(1) st ∈ E(G),
(2) t has no neighbors in N2.

We have

cutrkG(Sv) ≥ rank

⎛
⎜⎝

t Tv ∩ V (G2)( )
s 1 ∗

Sv ∩ V (G2) 0 ∗

⎞
⎟⎠

= rank

⎛
⎜⎝

t Tv ∩ V (G2)( )
s 1 0

Sv ∩ V (G2) 0 ∗

⎞
⎟⎠

= cutrkG2(Sv ∩ V (G2)) + 1.

Therefore, we conclude cutrkG2(Sv ∩ V (G2)) ≤ k − 1.
Thus, G2 has linear rank-width at most k − 1, which yields a contradiction. �
The proof of the converse direction can be summarized as follows.

(1) There is a path P in TD such that for each node v in P and each component T
of D\V (bD(v)) not containing a bag bD(w) with w ∈ V (P), f (B, T ) ≤ k − 1
(Lemmas 4.4 and 4.5).

(2) We then follow the linear order induced by the path P to construct a linear layout
of width k by concatenating the linear layouts of the graphs induced by the limbs
associated with the nodes of P (Lemmas 4.2 and 4.3).

For two linear layouts (x1, . . . , xn), (y1, . . . , ym), we define

(x1, . . . , xn) ⊕ (y1, . . . , ym) := (x1, . . . , xn, y1, . . . , ym).

Lemma 4.2 Let B be a bag of D of type S with two unmarked vertices x and y
such that x is the center and y is a leaf of B. If for every component T of D\V (B),
f (B, T ) ≤ k − 1, then the graph G[D] has a linear layout of width at most k whose
first and last vertices are x and y, respectively.

Proof Let T1, T2, . . . , T� be the components of D\V (B) and for each 1 ≤ i ≤ �, let
wi := ζc(D, B, Ti ) and let yi be a vertex in Ti represented by a vertex of B. Since
each wi is adjacent to a leaf of B, Ti\wi is the limb of D with respect to B and yi . Let

A := V (B)\
(⋃

1≤ j≤�{ζb(D, B, Ti )}
)

\{x, y}, and let LA be a sequence of A.

Suppose that for every component T of D\V (B), f (B, T ) ≤ k − 1. For each
1 ≤ i ≤ �, let Li be a linear layout of G[Ti\wi ] of width at most k − 1. We claim that

L := (x) ⊕ L1 ⊕ L2 ⊕ · · · ⊕ L� ⊕ L A ⊕ (y)
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is a linear layout of G[D] of width at most k. It is sufficient to prove that for every
w ∈ V (G[D])\{x, y}, cutrkG[D]({v | v ≤L w}) ≤ k.

Let w ∈ V (G[D])\(A ∪ {x, y}), and let Sw := {v : v ≤L w} and Tw :=
V (G[D])\Sw. Let j be the integer such that L j contains w. Then

cutrkG[D](Sw)

= rank

⎛
⎜⎜⎜⎝

y A Tw ∩ V (G[Tj ]) Tw\{y}\A\V (G[Tj ])( )x 1 1 ∗ ∗
Sw ∩ V (G[Tj ]) 0 0 ∗ 0

Sw\{x}\V (G[Tj ]) 0 0 0 0

⎞
⎟⎟⎟⎠

= rank

⎛
⎜⎜⎜⎝

y A Tw ∩ V (G[Tj ]) Tw\{y}\A\V (G[Tj ])( )x 1 0 0 0
Sw ∩ V (G[Tj ]) 0 0 ∗ 0

Sw\{x}\V (G[Tj ]) 0 0 0 0

⎞
⎟⎟⎟⎠

= cutrkG[Tj \w j ](Sw ∩ V (G[Tj ])) + 1 ≤ (k − 1) + 1 = k.

If w ∈ A, then it is easy to show that cutrkG[D]({v | v ≤L w}) ≤ 1. Therefore, L is a
linear layout of G[D] of width k whose first and last vertices are x and y, respectively.
�

We can remove the assumption on the shape of B in Lemma 4.2.

Lemma 4.3 Let B be a bag of D with two unmarked vertices x and y. If for every
component T of D\V (B), f (B, T ) ≤ k − 1, then the graph G[D] has a linear layout
of width at most k whose first and last vertices are x and y, respectively.

Proof Suppose that f (B, T ) ≤ k − 1 for every component T of D\V (B). We obtain
a decomposition D′ from D as follows:

(1) If B is a complete graph, then let D′ := D ∗ x .
(2) If B is a star whose center is x , then let D′ := D.
(3) Otherwise let D′ := D ∧ xz where z is an unmarked vertex represented by the

center of B.

It is clear that D′[V (B)] is a star whose center is x . By Proposition 3.4, for each com-
ponent T of D\V (B), f (B, T ) = fD′(D′[V (B)], D′[V (T )]). Thus, by Lemma 4.2,
G[D′] has a linear layout of width at most k whose first and last vertices are x and y,
respectively. Since G[D′] is locally equivalent to G[D], we conclude that G[D] also
has such a linear layout. �

Lemma 4.4 If

(1) for each bag B of D, there are at most two components T of D\V (B) satisfying
f (B, T ) = k, and

(2) for every other component T ′ of D\V (B), f (B, T ′) ≤ k − 1, and
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(3) P is the set of nodes v in TD such that exactly two components T of D\V (bD(v))

satisfy f (bD(v), T ) = k,

then either P = ∅ or TD[P] is a path.

Proof Suppose that P �= ∅. If P has two distinct nodes v1 and v2, then there exists a
component T1 of D\V (bD(v1)) not containing V (bD(v2)) such that f (bD(v1), T1) =
k, and there exists a component T2 of D\V (bD(v2)) not containing V (bD(v1)) such
that f (bD(v2), T2) = k. By Proposition 3.7, for every node v on the path from v1 to
v2 in TD , v must be contained in P . So P induces a tree in TD .

Suppose now that P contains a node v having three neighbor bags v1, v2, and v3 in
P . Then, again by Proposition 3.7, D must have three components T of D\V (bD(v))

such that f (bD(v), T ) = k, which contradicts the assumption. Therefore, P induces
a path in TD . �
Lemma 4.5 If

(1) for each bag B of D, there are at most two components T of D\V (B) satisfying
f (B, T ) = k, and

(2) f (B, T ′) ≤ k − 1 for all the other components T ′ of D\V (B),

then TD has a path P such that for each node v in P and each component T of
D\V (bD(v)) not containing a bag bD(w) with w ∈ V (P), f (bD(v), T ) ≤ k − 1.

Proof Let P ′ be the set of nodes v in TD such that exactly two components T of
D\V (bD(v)) satisfy f (bD(v), T ) = k. By Lemma 4.4, either P ′ = ∅ or TD[P ′] is a
path.

We first assume that P ′ �= ∅. Let TD[P ′] = v1v2 · · · vn , and for each 1 ≤ i ≤ n, let
Bi := bD(vi ). By the definition, there exists a component T1 of D\V (B1) such that T1
does not contain a bag bD(w) with w ∈ V (P ′) and f (B1, T1) = k. Let v0 be the node
of TD such that bD(v0) is the bag of T1 that is the neighbor bag of B1 in D. Similarly,
there exists a component Tn of D\V (Bn) such that Tn does not contain a bag bD(w)

with w ∈ V (P ′) and f (Bn, Tn) = k. Let vn+1 be the node of TD such that bD(vn+1)

is the bag of Tn that is the neighbor bag of Bn in D. Then P := v0v1v2 · · · vnvn+1 is
the required path.

Now we assume that P ′ = ∅. We choose a node v0 in TD and let B0 := bD(v0). If
D has no component T of D\V (B0) such that f (B0, T ) = k, then P := v0 satisfies
the condition. If not, we take a maximal path P := v0v1 · · · vn+1 in TD such that (with
Bi := bD(vi ))

– for each 0 ≤ i ≤ n, D\V (Bi ) has one component Ti such that f (Bi , Ti ) = k, and
Bi+1 is the bag of Ti that is the neighbor bag of Bi in D.

By the maximality of P , P is a path in TD such that for each node v of P and
a component T of D\V (bD(v)) not containing a bag bD(w) with w ∈ V (P),
f (bD(v), T ) ≤ k − 1. �
We are now ready to prove the converse direction of the proof of Theorem 4.1.

Proof of the Backward Direction of Theorem 4.1 Suppose that for each bag B of
D, at most two components T of D\V (B) induce limbs L where G[L] has linear
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rank-width exactly k, and all other component T ′ of D\V (B) induce limbs L ′ where
G[L ′] has linear rank-width at most k − 1. We claim that lrw(G) ≤ k.

Let P := v0v1 · · · vnvn+1 be the path in TD such that

– for each node v in P and a component T of D\V (bD(v)) not containing a bag
bD(w) with w ∈ V (P), f (bD(v), T ) ≤ k − 1 (such a path exists by Lemma 4.5).

For each 0 ≤ i ≤ n+1, let Bi := bD(vi ). If P consists of one node, then by Lemma4.3,
lrw(G) = lrw(G[D]) ≤ k. Thus, we may assume that n ≥ 0.

By adding unmarked vertices in B0 and Bn+1 if necessary, we assume that B0 and
Bn+1 have unmarked vertices a0 and bn+1 in D, respectively.

For each 0 ≤ i ≤ n, let bi be a marked vertex of Bi and let ai+1 be a marked
vertex Bi+1 such that biai+1 is the marked edge connecting Bi and Bi+1. Let D0 be
the component of D\V (B1) containing the bag B0. Let Dn+1 be the component of
D\V (Bn) containing the bag Bn+1. For each 1 ≤ i ≤ n, let Di be the component of
D\(V (Bi−1)∪V (Bi+1)) containing the bag Bi . Notice that the vertices ai and bi are
unmarked vertices in Di .

Since every component T of Di\V (Bi ) satisfies that fDi (Bi , T ) ≤ k − 1, by
Lemma 4.3, Gi has a linear layout L ′

i of width k whose first and last vertices are ai
and bi , respectively. For each 1 ≤ i ≤ n, let Li be the linear layout obtained from L ′

i
by removing ai and bi . Let L0 and Ln+1 be obtained from L ′

0 and L ′
n+1 by removing

b0 and an+1, respectively. Then we can easily check that L := L0 ⊕ L1 ⊕ · · · ⊕ Ln+1
is a linear layout of G[D] having width at most k. Therefore lrw(G[D]) ≤ k. �

5 Canonical Limbs

The objective now is to design an algorithm to compute the linear rank-width of
distance-hereditary graphs based on our characterization in Theorem 4.1. The scheme
of this algorithm is actually the same as the algorithm for computing the linear rank-
width (or path-width) of trees. Since our algorithm for distance-hereditary graphs needs
more notations, before describing it, we briefly describe, for easier understanding, the
algorithm for trees [21].

Let F be a rooted tree. The algorithm from [21] computes the linear rank-width of F
bottom-up, i.e., it computes for each internal node u the linear rank-width of the subtree
F(u) rooted at u. Let k := max{lrw(F(v)) | v is a child of u}. If there is a descendant
v of u, called a k-critical node, that has two children v1 and v2 such that lrw(F(v)) =
lrw(F(v1)) = lrw(F(v2)) = k, then by Proposition 3.1 in order to decide the linear
rank-width of F(u) we need to know the linear rank-width of F(u)\V (F(v)). We can
recursively call the algorithm on F(u)\V (F(v)), but this would not give a linear-time
algorithm, and similar situations can happen in F(u)\V (F(v)). The idea introduced
in [21] to cope with this difficulty was to keep in u the linear rank-width of the subtrees
that may cause a recursive call to the algorithm because of the presence of �-critical
nodes for � ≤ k. For instance, in F0 := F(u)\V (F(v)) we may have a k0-critical
node w with k0 := max{lrw(F0(v)) | v is a child of u in F0}, and then we may need
the linear rank-width of F0\V (F0(w)) to answer, and so on.

Similar to trees, in the case of a distance-hereditary graphG, wewill start by rooting
the canonical decomposition D ofG, and for each bag B with the parent bag B ′ and the
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component T of D\V (B ′) containing B, we compute fD(B ′, T ). For this, we define a
k-critical bag in the same fashion. Let D′ be the canonical limb with respect to B ′ and
an unmarked vertex y ∈ V (T )where y is represented by some vertex in B ′. Now, if B ′′
is a k-critical bag in D′, as in the case of trees we need to compute fD′(B ′′, T ′) where
T ′ is the component of D′\V (B ′′) containing the parent of B ′′. However, contrary to
the case of trees, the canonical limb LC[D′, B ′′, y′], for some unmarked vertex y′ in
V (T ′), is not necessarily an induced subgraph of D. We overcome this difficulty by
showing that the order in which we can recursively compute canonical limbs is not
important, which enables us to store information similar to the cases of trees.

As we explained above, we investigate useful properties of canonical limbs which
are related to the orders from which canonical limbs are taken. Note that for recur-
sively taking limbs, we need to transform an obtained limb into a canonical limb
because limbs are only defined on canonical decompositions. Let D be the canonical
decomposition of a connected distance-hereditary graph.

Proposition 5.1 Let B1 and B2 be two distinct bags of D and for each i ∈ {1, 2}, let
Ti be the component of D\V (Bi ), wi := ζb(D, Bi , Ti ) and yi be an unmarked vertex
of D represented by wi such that

• T1 contains the bag B2 and T2 contains the bag B1, and
• V (B1) induces a bag in LCD[B2, y2], and V (B2) induces a bag in LCD[B1, y1].

We define that

• B ′
1 := (LCD[B2, y2])[V (B1)],

• B ′
2 := (LCD[B1, y1])[V (B2)],

• y′
1 is an unmarked vertex of LCD[B2, y2] represented by w1, and

• y′
2 is an unmarked vertex of LCD[B1, y1] represented by w2.

Then LCLCD [B1,y1][B ′
2, y

′
2] is locally equivalent to LCLCD [B2,y2][B ′

1, y
′
1].

Proof For each i ∈ {1, 2}, let vi := ζc(D, Bi , Ti ). By Lemma 3.6, there exists a
canonical decomposition D′ locally equivalent to D such that for each i ∈ {1, 2},wi is
a leaf of D′[V (Bi )] in D′. For each i ∈ {1, 2}, let Pi := D′[V (Bi )], T ′

i := D′[V (Ti )],
and zi be an unmarked vertex of D′ represented by wi . We define that

• T ′ := D′[V (T ′
1) ∩ V (T ′

2)],• P ′
1 := (LCD′ [P2, z2])[V (P1)],

• P ′
2 := (LCD′ [P1, z1])[V (P2)],

• z′1 is an unmarked vertex of LCD′ [P2, z2] represented by w1,
• z′2 is an unmarked vertex of LCD′ [P1, z1] represented by w2.

Since D is locally equivalent to D′, byProposition 3.4,LCD[B1, y1] is locally equiv-
alent toLCD′ [P1, z1]. Again, sinceLCD[B1, y1] is locally equivalent toLCD′ [P1, z1],
by Proposition 3.4,

LCLCD [B1,y1][B ′
2, y

′
2] is locally equivalent to LCLCD′ [P1,z1][P ′

2, z
′
2].

Similarly, we obtain that

LCLCD [B2,y2][B ′
1, y

′
1] is locally equivalent to LCLCD′ [P2,z2][P ′

1, z
′
1].
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Since each vi is a leaf of Pi in D′, LCLCD′ [P1,z1][P ′
2, z

′
2] and LCLCD′ [P2,z2][P ′

1, z
′
1] are

canonical decompositions obtained from T ′\v1\v2 by recomposing if neceesary. From
the assumption that V (B1) induces a bag in LCD[B2, y2], and V (B2) induces a bag in
LCD[B1, y1], V (B1) and V (B2) also induce bags in LCD′ [P2, z2] and LCD′ [P1, z1],
respectively. Thus the order of taking canonical limbs with respect to P1 and P2 does
not affect on the resulting decompositions, and it implies that

LCLCD′ [P1,z1][P ′
2, z

′
2] = LCLCD′ [P2,z2][P ′

1, z
′
1].

Therefore, LCLCD [B1,y1][B ′
2, y

′
2] is locally equivalent to LCLCD [B2,y2][B ′

1, y
′
1]. �

Proposition 5.2 Let B1 and B2 be two distinct bags of D. Let T1 be a component
of D\V (B1) that does not contain B2, and T2 be the component of D\V (B2) con-
taining the bag B1. For i ∈ {1, 2}, let wi := ζb(D, Bi , Ti ), and yi be an unmarked
vertex of D represented by wi . If V (B1) induces a bag B ′

1 of LCD[B2, y2], then
LCD[B1, y1] is locally equivalent to LCLCD [B2,y2][B ′

1, y
′
1], where y′

1 is an unmarked
vertex of LCD[B2, y2] represented by w1.

Proof Suppose V (B1) induces a bag B ′
1 ofLCD[B2, y2] and y′

1 is an unmarked vertex
represented in LCD[B2, y2] by w1. By Lemma 3.6, there exists a canonical decompo-
sition D′ locally equivalent to D such that w2 is a leaf of a star bag D′[V (B2)]. We
define

• P1 := D′[V (B1)],
• P2 := D′[V (B2)],
• for each i ∈ {1, 2}, zi is an unmarked vertex of D′ represented by wi ,
• P ′

1 := (LCD′ [P2, z2])[V (B1)], and
• z′1 is an unmarked vertex of LCD′ [P2, z2] represented by w1.

Since D is locally equivalent to D′, by Proposition 3.4, LCD[B1, y1] is locally
equivalent to LCD′ [P1, z1]. Similarly, we obtain that LCD[B2, y2] is locally equiv-
alent to LCD′ [P2, z2]. Since LCD[B2, y2] is locally equivalent to LCD′ [P2, z2], by
Proposition 3.4,

LCLCD [B2,y2][B ′
1, y

′
1] is locally equivalent to LCLCD′ [P2,z2][P ′

1, z
′
1].

Since w2 is a leaf of P2 in D′, LCD′ [P1, z1] = LCLCD′ [P2,z2][P ′
1, z

′
1], and therefore,

LCD[B1, y1] is locally equivalent to LCLCD [B2,y2][B ′
1, y

′
1], as required. �

6 Computing the Linear Rank-Width of Distance-Hereditary Graphs

We describe an algorithm to compute the linear rank-width of distance-hereditary
graphs. Since the linear rank-width of a graph is the maximum linear rank-width over
all its connected components, we will focus on connected distance-hereditary graphs.

Theorem 6.1 The linear rank-width of every connected distance-hereditary graph
with n vertices can be computed in time O(n2 · log2 n). Moreover, a linear layout
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of the graph witnessing the linear rank-width can be computed with the same time
complexity.

As explained in Sect. 5, the main idea consists of rooting the canonical decomposi-
tion D of a connected distance-hereditary graph and associating each bag B of D with
a canonical limb LCD[B ′, y] where B ′ is the parent of B and y is an unmarked vertex
in some descendant bag of B, and computing the linear rank-width of LGD[B ′, y].
Following Theorem 4.1, in order to compute the linear rank-width of LGD[B ′, y],
we need to check the linear rank-width of proper limbs obtained from LCD[B ′, y]
by removing some bags of LCD[B ′, y]. Basically, we need to take canonical limbs
recursively from this reason. In contrast to the case of forests for computing linear rank-
width, the associated canonical limbs here are not necessarily sub-decompositions of
the original decomposition, and thus, it is not at all trivial how to store values to use
in the next steps. The crucial point of achieving our running time is to overcome this
problem using the results in Sect. 5.
Rooted Decomposition Trees. We define the notion of rooted decomposition trees.
A decomposition tree is rooted if we distinguish either a node or an edge and call it
the root of the tree. Let T be a rooted decomposition tree with the root r . A node v is
a descendant of a node v′ if v′ is in the unique path from the root to v, and when r is
an edge, this path contains both end nodes of r . If v is a descendant of v′ and v and
v′ are adjacent, then we call v a child of v′ and v′ the parent of v. Observe from the
definition of descendants that if r = vv′, then v is the parent of v′ and also v′ is the
parent of v. We allow this tricky part for a technical reason. A node in T is called a
non-root node if it is not the root node.

Two nodes v and v′ are called comparable if one node is a descendant of the
other one. Otherwise, they are called incomparable. Recall that for each node v of
T and each canonical decomposition D with T as its decomposition tree we write
bD(v) to denote the bag of D with which it is in correspondence. For convenience, let
pbD(v) := bD(v′) with v′ the parent of v.

Let D be the canonical decomposition of a connected distance-hereditary graph G
and let T be its decomposition tree rooted at r . Let B := bD(v) for some non-root
node v of T , and let y be an unmarked vertex of D that is represented by a vertex of B.
We define the root of the decomposition tree T̃ of LCD[B, y] as follows. We assume
that T̃ is obtained from T by removing v, and possibly adding an edge or identifying
two nodes following the definition of canonical limbs. If two comparable nodesw and
w′ with w the parent of w′ are identified, then let w be the identified node. Otherwise,
we give a new label for the identified node.

(1) If r exists in T̃ , then we assign r as the root of T̃ . In the other cases, we can
observe that either
• r is the root node and bD(r) is removed when taking the canonical limb or
• r is the root edge, and a bag bD(r ′) is removed where r ′ is a node incident
with the root edge, when taking the canonical limb.

(2) If the removed node has one neighbor in T \r , then we assign this neighbor as the
root of T̃ .

(3) If the removed node has two neighbors in T \r and they are linked by a new edge
in T̃ , then we assign the new edge as the root of T̃ .
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(4) If the removed node has two neighbors in T \r and they are identified in T̃ , then
we assign the new node as the root of T̃ .

The following observation is easy to check from the definition of rooted decompo-
sition trees of canonical limbs.

Fact 6.2 Ifw is a non-root node of the rooted decomposition tree T̃ of a canonical limb
LCD[B, y], then w is also a non-root node of T with the property that V (bD(w)) =
V (bLCD[B,y](w)).

For a non-root node v, we will frequently take two types of canonical limbs; one
is with respect to pbD(v) and the component of D\V (pbD(v)) containing bD(v),
and the other is with respect to bD(v) and the component of D\V (bD(v)) containing
pbD(v). For convenience, we define the following notations. For every non-root node
v of T with the parent node v′, we define that

• T1[D, v] is the component of D\V (bD(v′)) containing bD(v),
• T2[D, v] is the component of D\V (bD(v)) containing bD(v′),
• f1(D, v) := fD(pbD(v), T1[D, v]),
• f2(D, v) := fD(bD(v), T2[D, v]),
• ζ1(D, v) := ζb(D,bD(v′), T1[D, v]), and
• ζ2(D, v) := ζb(D,bD(v), T2[D, v]).

k-Critical Nodes. A node v of T is called k-critical if f1(D, v) = k and v has two
children v1 and v2 such that f1(D, v1) = f1(D, v2) = k.

From now on, we define some sequences of canonical limbs, which will be taken
sequentially in our algorithm. We recall that lrw(G) ≤ log2|V (G)| by Theorem 2.1
and Lemma 2.2. For convenience, let

η := �log2|V (G)|�.

For each non-root node v of T , we define recursively the following. We first choose
an unmarked vertex y of D represented by ζ1(D, v), and

• let Dv
η be any canonical limb LCD[pbD(v), y], and let T v

η be the rooted decom-
position tree of Dv

η .

For each 1 ≤ j ≤ η, let αv
j := max{ f1(Dv

j , w) | w is a non-root node of T v
j }, and we

define Dv
j−1 and T v

j−1 as follows:

(1) If αv
j �= j , then let Dv

j−1 := Dv
j and T v

j−1 := T v
j .

(2) If αv
j = j and one of the following is satisfied, then let Dv

j−1 := Dv
j and T v

j−1 :=
T v
j .• T v

j has a node with at least 3 children w such that f1(Dv
j , w) = j .

• T v
j has two incomparable nodes v1 and v2 where v1 is a j-critical node v1 and
f1(Dv

j , v2) = j .
• T v

j has no j-critical nodes.
(3) Otherwise, T v

j has the unique j-critical node vc. In this case, we choose
an unmarked vertex y of Dv

j represented by ζ2(Dv
j , vc) and let Dv

j−1 :=
LCDv

j
[bDv

j
(vc), y] and let T v

j−1 be the rooted decomposition tree of Dv
j−1.
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Lastly for each 0 ≤ j ≤ η, let βv
j := lrw(G[Dv

j ]).
Roughly, for a non-root node v with parent v′, and w1, w2, . . . , wp as children, we

define a sequence of 4-tuples (Dv
j , T

v
j , αv

j , β
v
j ), for each 1 ≤ j ≤ η = �log2|V (G)|�

where Dv
j is some rooted decomposition, T v

j is its rooted decomposition tree, βv
j is the

linear rank-width of G[Dv
j ], and αv

j is the maximum over {βwi
j | 1 ≤ i ≤ p}. These

4-tuples are the information needed to avoid the recursive calls to the algorithm (as
already explained inSect. 5). Dv

η is any limbof D\V (bD(v′)) associatedwithT1[D, v].
These 4-tuples are motivated by the following. Let k be the maximum over the linear
rank-width of the G[Dwi

η ]’s. If any of the conditions in (2) above is verified by T v
η ,

then we can decide easily the linear rank-width of G[Dv
η]. Otherwise, there is exactly

one critical node vc in one of the T
wi
η ’s. By Theorem 4.1 we need to compute the linear

rank-width of G[D′] where D′ is defined as one limb of Dv
η\V (bDv

η
(vc)) associated

with T2[Dv
η, vc]. We define Dv

k−1 as this D′, and Dv
j as Dv

η for all k ≤ j ≤ η − 1,
as we do not know whether we will need some of these Dv

j s in the future. Indeed, for
instance the same situation can happen in Dv

k−1 with some other �-critical nodew with

� := max{βw′
k−1 | w′ a child of the root of Dv

k−1}, hence we need again to compute
the linear rank-width of G[D′′] with D′′ defined as one limb of Dv

k−1\V (bDv
k−1

(w))

associated with T2[Dc
k−1, w], and this D′′ is denoted as Dv

j for k − 2 ≤ j ≤ � − 1.
The existence of the unique j-critical node in (3) is verified in the next proposition.

Proposition 6.3 Let 0 ≤ j ≤ η and let v be a non-root node of T such that αv
j ≤ j

and T v
j contains neither

• a node having at least 3 children w with f1(Dv
j , w) = αv

j , nor• two incomparable nodes v1 and v2 having the property that v1 is an αv
j -critical

node and f1(Dv
j , v2) = αv

j .

Let w be an αv
j -critical node of T v

j . Then w is the unique αv
j -critical vertex of T v

j .
Moreover, lrw(G[Dv

j ]) = αv
j + 1 if and only if lrw(G[Dv

j−1]) = f2(Dv
j , w) = αv

j .

Proof Let k := αv
j . We first show that w is the unique k-critical node of T v

j . Let w′
be a k-critical node of T v

j that is distinct from w. From the second assumption, w and
w′ must be comparable in T v

j . Without loss of generality, we may assume that w is
a descendant of w′ in T v

j . Then by the definition of k-criticality, w′ has a child w′′
such that f1(Dv

j , w
′′) = k and w is not a descendant of w′′ in T v

j , contradicting to the
second assumption.

Now we claim that lrw(G[Dv
j ]) = k + 1 if and only if f2(Dv

j , w) = k. By the
assumption on k and by Theorem 4.1, lrw(G[Dv

j ]) ≤ k + 1. Let w1 and w2 be the two
children of w such that f1(Dv

j , w1) = f1(Dv
j , w2) = k. By assumption, every other

child w′ of w satisfies that f1(Dv
j , w

′) ≤ k − 1.
If f2(Dv

j , w) = k, then clearly we have lrw(G[Dv
j ]) ≥ k + 1 by Theorem 4.1.

For the forward direction, suppose that lrw(G[Dv
j ]) ≥ k + 1. Since T v

j contains no
node having at least three children w such that f1(Dv

j , w) = k, by Theorem 4.1, there
should exist a k-critical node vc of T v

j such that f2(D
v
j , vc) = k. Sincew is the unique

k-critical node of T v
j , w = vc and f2(Dv

j , w) = lrw(G[Dv
j−1]) = k, as required. �
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Let v be a non-root node of T . From Theorem 4.1, we can easily observe that
αv

η ≤ lrw(G[Dv
η)]) ≤ αv

η + 1. By Proposition 6.3, if T v
η has no unique critical node,

then it is easy to determine βv
η , and otherwise the computation of βv

η can be reduced to
the computation of f2(Dv

η, vc) where vc is the unique αv
η-critical node of T

v
η . In order

to compute it, we can recursively call the algorithm on G[Dv
αv

η−1]. However, we will
prove that these recursive calls are not needed if we store the values βv

j .

Lemma 6.4 Let v be a non-root node of T . Let i be an integer such that 0 ≤ i < η.
If αv

i ≤ i , then αv
i+1 ≤ i + 1.

Proof Suppose that αv
i+1 ≥ i + 2. By the definition of Dv

i , D
v
i = Dv

i+1 and therefore,
αv
i ≥ i + 2, which yields a contradiction. �

Our Algorithm.Nowwe are ready to present and analyze our algorithm.We describe
the algorithm explicitly in Algorithm 2. First, we modify the given decomposition
as follows. For the canonical decomposition D′ of a connected distance-hereditary
graph G, we modify D′ into a canonical decomposition D by adding a root bag R and
making it adjacent to a bag R′ of D′ so that f1(D, v) = lrw(G), where v is the node
corresponding to the bag R′.We call (D, R) amodified canonical decomposition of G.
Let T be the decomposition tree of the new canonical decomposition D. Algorithm 2
computes βv

i = lrw(G[Dv
i ]) for all non-root nodes v of T and all integers i such that

αv
i ≤ i . We recall that η = �log2|V (G)|�. We refer to the correctness proof for the

exact description of the algorithm.
We present the subroutine Limb which computes a canonical limb associated with

Ti [D, w] for i ∈ {1, 2} in Algorithm 1.

Algorithm 1: Limb(D, T, {γ (v) | v ∈ V (T \r)}, w ∈ V (T \r), i ∈ {1, 2}).
Input: A canonical decomposition D of a connected distance-hereditary graph, its rooted

decomposition tree T with the root r , {γ (v) ∈ N | v ∈ V (T \r)}, a non-root node w of T , and
i ∈ {1, 2}.

Output: A canonical decomposition D′ of D associated with Ti [D, w], its rooted decomposition
tree T ′ with the root r ′, {γ (v) | v ∈ V (T ′\r ′)}, and α.

1 Let w′ be the parent of w;
2 if i = 1 then choose an unmarked vertex y of D represented by ζ1(D, w) and v ← w′;
3 else choose an unmarked vertex y of D represented by ζ2(D, w) and v ← w;
4 D′ ← LCD[bD(v), y] and obtain T ′ from T and assign the root r ′ of T ′;
5 α ← max{γ (v) | v ∈ V (T ′\r ′)};
6 return (D′, T ′, {γ (v) | v ∈ V (T ′\r ′)}, α);

Correctness of the Algorithm. The following proposition has a key role in the algo-
rithm. It mainly uses the results in Sect. 5.

Proposition 6.5 Let v be a non-root node of T and let 0 ≤ i ≤ η such that αv
i ≤ i . If

w is a non-root node of T v
i , then, β

w
i = f1[Dv

i , w].
Proof Let w be a non-root node of T v

i . By Fact 6.2, for each i + 1 ≤ j ≤ η,
w ∈ V (T v

j ) and hence w ∈ V (T ). Moreover, since αv
i ≤ i , by Lemma 6.4, αv

j ≤ j
for all i + 1 ≤ j ≤ η. For each i ≤ j ≤ η, we define that
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Algorithm 2: Compute Linear Rank- Width of Connected Distance-
Hereditary Graphs
Input: A connected distance-hereditary graph G.
Output: The linear rank-width of G.

1 Compute a modified canonical decomposition (D, R) of G, and the decomposition tree T of D with
the root node r ;

2 Let βv
i ← 0 for each non-root node v and each 0 ≤ i ≤ η;

3 For each non-root leaf node v in T and each 0 ≤ i ≤ η, let βv
i ← 1 ;

4 � ← {βv
i | v ∈ V (T \r), 0 ≤ i ≤ η};

5 while T has a non-root node v where βv
η is not computed do

6 Let v be a non-root node in T where βv
η = 0, but βv′

η �= 0 for each child v′ of v;
7 /* Compute canonical limbs necessary to compute f1(D, v)/*
8 (Dv

η, T v
η , �v

η, αv
η) ← Limb(D, T, �, v, 1);

9 Let S be a stack; i ← αv
η; k ← αv

η;

10 while (true) do
11 if (T v

i has a node having at least 3 children v′ with βv′
i = i ) or (T v

i has two incomparable

nodes v1 and v2 having the property that v1 is an i-critical node and β
v2
i = i ) or (T v

i has no
i-critical nodes) then

12 Stop this loop

13 Find the unique i-critical node vc of T v
i ;

14 (Dv
i−1, T

v
i−1, �

v
i−1, α

v
i−1) ← Limb(Dv

i , T v
i , �v

i , vc, 2);
15 push(S, i) and i ← αv

i−1;

16 /* Recursively compute βv
i for all i with αv

i ≤ i/*

17 if (T v
i has a node having at least 3 children v′ with βv′

i = i ) or (T v
i has two incomparable

nodes v1 and v2 with the property that v1 is an i-critical node and β
v2
i = i ) then

βv
i ← i + 1;

18 else βv
i ← i;

19 while (S �= ∅) do
20 j ← pull(S);
21 if βv

i = j then βv
j ← j + 1;

22 else βv
j ← j;

23 for � ← i + 1 to j − 1 do
24 βv

�
← βv

i ;

25 i ← j;

26 for j ← k + 1 to η do
27 βv

j ← βv
k ;

28 Let r ′ be the unique neighbor of the root and return βr ′
η ;

• y j is an unmarked vertex of Dv
j represented by the marked vertex ζ1(Dv

j , w).

Now, we claim that for each i ≤ j ≤ η,

• LCDv
j
[pbDv

j
(w), y j ] is locally equivalent to Dw

j .

If it is true, then we obtain that LCDv
i
[pbDv

i
(w), yi ] is locally equivalent to Dw

i , which
implies that βw

i = f1[Dv
i , w]. We prove it by induction on η − j .
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If j = η, then both Dv
η and Dw

η are canonical limbs of D. Since w is a non-root
node of T v

η , V (bD(w)) induces a bag in Dv
η , and hence by Proposition 5.2, Dw

η is
locally equivalent to LCDv

η
[pbDv

η
(w), yη].

Now let us assume that i ≤ j < η. By induction hypothesis Dw
j+1 is locally

equivalent toLCDv
j+1

[pbDv
j+1

(w), y j+1]. Assume first that αv
j+1 ≤ j . Then, by Propo-

sition 5.2, we have that αw
j+1 ≤ j . In that case, by the definition, we have Dv

j = Dv
j+1

and Dw
j = Dw

j+1, and we conclude the statement.
Assume now that αv

j+1 = j +1. Since αv
j+1 = j +1 and αv

j ≤ j , T v
j+1 should have

a unique ( j + 1)-critical node vc such that Dv
j = LCDv

j+1
[bDv

j+1
(vc), yc] for some

unmarked vertex yc of Dv
j+1 represented by ζ2(Dv

j+1, vc). We distinguish two cases:
either vc is incomparable with w in T v

j+1, or vc is a descendant of w in T v
j+1. Since w

is a node of T v
j , w cannot be a descendant of vc.

Case 1. vc is incomparable with w in T v
j+1.

Since vc is incomparable with w in T v
j+1 and vc is the unique ( j + 1)-critical node

in T v
j+1, there is no ( j + 1)-critical node in Tw

j+1. Hence, D
w
j = Dw

j+1 by definition.
Also, by Proposition 5.2,

• LCDv
j
[pbDv

j
(w), y j ] is locally equivalent to LCDv

j+1
[pbDv

j+1
(w), y j+1].

Hence, we can conclude that Dw
j is locally equivalent to LCDv

j
[pbDv

j
(w), y j ] because

Dw
j+1 is locally equivalent to LCDv

j+1
[pbDv

j+1
(w), y j+1].

Case 2. vc is a descendant of w in T v
j+1.

If vc is a child ofw in T v
j+1 and the bag bDv

j+1
(w) has size 3, then T v

j cannot contain
w as a node, and this contradicts the assumption that w is a node of T v

j . Therefore,
we may assume that either

(1) |bDj+1(w)| ≥ 4, or
(2) |bDj+1(w)| = 3 and vc is not a child of w in T v

j+1.

This implies that vc is a node of the decomposition tree of LCDv
j+1

[pbDv
j+1

(w), y j+1].
Let D′ := LCDv

j+1
[pbDv

j+1
(w), y j+1]. By induction hypothesis, we know that Dw

j+1

is locally equivalent to D′. Note that, by definition vc is also the unique critical node
of Tw

j+1, and

• Dw
j = LCDw

j+1
[bDw

j+1
(vc), z] for some unmarked vertex z of Dw

j+1 represented by
ζ2(Dw

j+1, vc).

Also, by Proposition 5.1,

• LCDv
j
[pbDv

j
(w), y j ] is locally equivalent to LCD′ [bD′(vc), z′] where z′ is an

unmarked vertex of D′ represented by ζ2(D′, vc).

Since D′ is locally equivalent to Dw
j+1, LCDv

j
[pbDv

j
(w), y j ] is locally equivalent to

Dw
j , and this concludes the proof. �

Proof of Theorem 6.1 We first show that Algorithm 2 correctly computes the linear
rank-width of G. If |V (G)| ≤ 1, then lrw(G) = 0 from the definition. We may assume
that |V (G)| ≥ 2. Let (D, R) be a modified canonical decomposition of G and let T
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be the canonical decomposition tree of D and let r ′ be the unique neighbor of the root
of T . As we observed, we have that lrw(G) = lrw(G[Dr ′

η ]) = βr ′
η , and want to prove

that Algorithm 2 correctly outputs βr ′
η . We claim that for each non-root node v of T

and 0 ≤ i ≤ η such that αv
i ≤ i , Algorithm 2 correctly computes βv

i .
Suppose v is a non-root leaf node of T . Since every canonical limb is connected

by Lemma 3.2 and |V (G)| ≥ 2, Dv
η is isomorphic to either a complete graph or a

star with at least two vertices. Thus, lrw(G[Dv
η]) = 1, and by construction for each

0 ≤ i ≤ η, Dv
i = Dv

η , and Line 3 correctly puts these values.
We assume that v is a non-root node in T that is not a leaf, and for all its descendants

v′ and integers 0 ≤ � ≤ η with αv′
� ≤ �, βv′

� is computed (i.e. βv′
� �= 0). We claim

that Line 10-15 recursively computes Dv
i for each i where αv

i ≤ i . We first remark
that for computing αv

i of T v
i , we use the fact that for each non-root node w of T v

i ,
βw
i = f1[Dv

i , w] from Proposition 6.5. So, αv
i = max{βw

i | w a non-root node w of
T v
i }.
Let i ∈ {0, 1, . . . , η} such that αv

i ≤ i . If αv
i < i , then by the definition, T v

i−1 = T v
i

and thus, we take Dv
i−1 = Dv

i . We may assume that αv
i = i . If either T v

i has a node

with at least 3 children v′ such that βv′
i = i , or T v

i has two incomparable nodes v1 and
v2 with v1 an i-critical node and β

v2
i = i , then from the definition of Dv

i , we have that
Dv
i−1 = Dv

i and for all 0 ≤ � ≤ i − 1, αv
� = i > �. Since we do not need to evaluate

βv
� when αv

� > �, we stop the loop. If T v
i has no i-critical node, then βv

i = αv
i = i ,

that is, the βv
i value cannot be increased by one. In this case, we also stop the loop.

These 3 cases are the conditions in Line 11.
Suppose neither of the conditions in Line 11 occur. Then by Proposition 6.3, T v

i has
a unique i-critical bag vc and Dv

i−1 is equal to a canonical limb LCDv
i
[bDv

i
(vc), y]

where y is some unmarked vertex of Dv
i represented by ζ2(Dv

i , vc). So, we compute
Dv
i−1 from Dv

i , the rooted decomposition tree T
v
i−1 of D

v
i−1 and compute subsequently

αv
i−1. Notice that for all αv

i−1 ≤ � ≤ i − 1, Dv
� = Dv

i−1 and thus it is sufficient in
the next iteration to deal with Dv

αv
i−1

directly. Thus, Line 10-15 correctly computes

canonical decompositions Dv
i for each i where αv

i = i .
Now we verify the procedure of computing βv

j in Line 17. Let 0 ≤ � ≤ η be the
minimum integer such that αv

� = �. If � = 0, then βv
� = 1. Suppose � ≥ 1. Then since

αv
�−1 > � − 1, by Theorem 4.1, we have that

(1) βv
� = � + 1 if either T v

� has a node having at least 3 children v′ with βv′
� = �, or

two incomparable nodes v1 and v2 with the property that v1 is an i-critical node
and β

v2
i = i ,

(2) βv
� = � if otherwise.

Thus, Line 17 correctly computes it.
In the loop in Line 10, we use a stack to pile up the integers i such that T v

i has the
unique i-critical node. When T v

i has the unique i-critical node, by Proposition 6.3,

(1) βv
i = i + 1 if βv

i−1 = i , and
(2) βv

i = i if βv
i−1 ≤ i − 1.

So, from the lower value in the stack we can compute βv
i recursively. From Line 19

to Line 26, Algorithm 2 computes all βv
i correctly where αv

i ≤ i , and in particular, it
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computes βv
η . Therefore, at the end of the algorithm, it computes βr ′

η that is equal to
the linear rank-width of G.
The Running Time of the Algorithm. Let us now analyze its running time. Let n
and m be the number of vertices and edges of G. Its canonical decomposition can
be computed in time O(n + m) by Theorem 2.7, and one can compute a modified
canonical decomposition (D, R) in constant time. Note that the number of bags in D
is bounded by O(n) (see [13, Lemma 2.2]).

We first remark that Algorithm 1 runs in time O(n). This is because when we take
a limb from a canonical decomposition, we need to take a local complementation or
a pivoting on a sub-decomposition, and in the worst case, we may visit each bag to
apply these operations. The decomposition tree and α, β values can be obtained in
linear time.

Now we observe the running time of Algorithm 2. The number of iterations of the
whole loop from Line 6 to Line 27 is at most O(n) because it runs in as many as the
number of bags in D. Lines 6-9 can be implemented in timeO(n). The loop in Line 10
runs log2(n) times because lrw(G) ≤ log2(n), and all the steps in Line 10 can be
implemented in time O(n). Also, Lines 17-26 can be done in time O(n). We conclude
that this algorithm runs in time O(n2 · log2 n).
Finding an Optimal Linear Layout. We finally establish how to find a linear layout
witnessing lrw(G). We may assume that G has at least 3 vertices. We can assume that
for each non-root node v of T and 0 ≤ i ≤ η with αv

i ≤ i , T v
i and βv

i are computed.
We inductively obtain optimal linear layouts of G[Dv

i ] using those values. If v is a
non-root leaf node of T v

i , then G[Dv
i ] is either a complete graph or a star for all i ,

and thus, any ordering of V (G[Dv
i ]) is a linear layout of width 1. We may assume that

v is a not a leaf node.
We will search for the path depicted in Lemma 4.5 to apply the same technique

used in the proof of Theorem 4.1. What we have shown in Theorem 4.1 is that for
a canonical decomposition D of a distance-hereditary graph with its decomposition
tree TD, if TD has a path P := v0v1 · · · vnvn+1 such that

• for each node v in P and a component T of D\V (bD(v)) not containing a bag
bD(w) with w ∈ P, f (bD(v), T ) ≤ k − 1,

then we can generate a linear layout of G[D] having width at most k. But it assumed
that we have linear layouts of graphs corresponding to pending limbs . So, for our
purpose, it is necessary to find such a path with k = βv

i such that

• for each node v in P and a component T of D\V (bD(v)) not containing a bag
bD(w) with w ∈ P, a linear layout of LGD[bD(v), T ] with an optimal width is
already computed.

Let us assume that k = βv
i . There are two cases; either T v

i has the k-critical node
or not.
Case 1. T v

i has no k-critical node.
In this case, we take a path P from the root node of T v

i (or both end nodes of the

root edge) to a nodew where βw
i = k but for every descendantw′ ofw, βw′

i < k. Since
T v
i has no k-critical node, every node outside of this path has β value less than k.

Thus, the graphs corresponding to limbs pending to this path have linear rank-width
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at most k−1, and moreover, by induction hypothesis, we already obtained an optimal
linear layout for each graph. This path can be computed in linear time.
Case 2. T v

i has a k-critical node.
First note that T v

i cannot have two k-critical nodes, otherwise, βv
i = k + 1, which

contradicts to our assumption. Let x be the unique k-critical node of T v
i , and let x1, x2

be two children of x where β
x j
i = k for each j ∈ {1, 2}. For each j ∈ {1, 2}, we choose

a descendant w j of x j where β
w j
i = k but for every descendant w′

j of w j , β
w j
i < k.

Let P be the path from w1 to w2 in T v
i . This path can be computed in linear time.

Since x is the unique k-critical node of T v
i , every node below of this path has β

value less than k, and the graphs corresponding to subtrees pending to the path are
computed in advance. Moreover, since this case is exactly when αv

i = k and βv
i = k

and T v
i has a unique critical node, the canonical decomposition corresponding to the

subtree of T v
i \x containing the parent of x is exactly Dv

k−1, and G[Dv
k−1] should have

linear rank-width at most k − 1 as βv
i = k. By the induction hypothesis, the optimal

linear layout of G[Dv
k−1] is also computed before, as required.

We conclude that we can compute an optimal layout of G in timeO(n2 · log2 n). �

7 Path-Width of Matroids with Branch-Width 2

As a corollary of Theorem 6.1, we can compute the path-width of matroids of branch-
width at most 2. We first recall the necessary materials about matroids. We refer to the
book written by Oxley [29] for our matroid notations.
Matroids.A pair (E(M), I(M)) is called amatroid M if E(M), called the ground set
of M , is a finite set and I(M), called the set of independent sets of M , is a nonempty
collection of subsets of E(M) satisfying the following conditions:

(I1) if I ∈ I(M) and J ⊆ I , then J ∈ I(M),
(I2) if I, J ∈ I(M) and |I | < |J |, then I ∪ {z} ∈ I(M) for some z ∈ J\I .
A maximal independent set in M is called a base of M . It is known that, if B1 and B2
are bases of M , then |B1| = |B2|.

For a matroid M and a subset X of E(M), we let (X, {I ⊆ X : I ∈ I(M)}) be the
matroid denoted by M|X . The size of a base of M|X is called the rank of X in M and
the rank function of M is the function rM : 2E(M) → N that maps every X ⊆ E(M)

to its rank. The rank of E(M) is called the rank of M .
If M is a matroid, then we define λM , called the connectivity function of M , such

that for every subset X of E(M),

λM (X) = rM (X) + rM (E(M)\X) − rM (E(M)) + 1.

It is known that the function λM is symmetric and submodular.
Let A be a binary matrix and let E be the column labels of A. Let I be the col-

lection of all those subsets I of E such that the columns of A with index in I are
linearly independent. Then (E, I) is a matroid. We denote it by M(A). Every matroid
isomorphic to M(A) for some matrix A is called a binary matroid and A is called a
representation of M over the binary field.
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We now define fundamental graphs of binary matroids. Let G be a bipartite graph
with a bipartition (A, B). We define M(G, A, B) as the binary matroid represented
by the (A× V )-matrix (IA AG [A, B]) where IA is the (A× A) identity matrix; and
we call G a fundamental graph of M(G, A, B). We remark that |E(M)| = |V (G)|.
Branch-Width and Path-Width of Matroids.A branch-decomposition of a matroid
M is a pair (T, L), where T is a subcubic tree and L is a bijection from the elements
of E(M) to the leaves of T . For an edge e in T , T \e induces a partition (Xe,Ye) of the
leaves of T . Thewidth of an edge e is defined as λM (L−1(Xe)). Thewidth of a branch-
decomposition (T, L) is the maximum width over all edges of T . The branch-width
of M , denoted by bw(M), is the minimum width over all branch-decompositions of
M . If |E(M)| ≤ 1, then M admits no branch-decomposition and bw(M) = 0.

A sequence e1, . . . , en of the ground set E(M) is called a linear layout of M . The
width of a linear layout e1, . . . , en of M is

max
1≤i≤n−1

{λM ({e1, . . . , ei })}.

The path-width of M , denoted by pw(M), is defined as the minimum width over all
linear layouts of M .

The following relation is established by Oum [27].

Proposition 7.1 (Oum [27]). Let G be a bipartite graph with a bipartition (A, B)

and let M := M(G, A, B). For every X ⊆ V (G), cutrkG(X) = λM (X) − 1. Thus,
rw(G) = bw(M) − 1 and lrw(G) = pw(M) − 1.

Here, we observe that every matroid of branch-width at most 2 is binary. This can
be observed from the knownminor characterizations for binary matroids and matroids
of branch-width at most 2. For the definition of matroid minors, we refer to [29].

Theorem 7.2 (Tutte [30,31]) A matroid is binary if and only if it has no minor iso-
morphic to U2,4.

Theorem 7.3 (Dharmatilake [10]). A matroid has branch-width at most 2 if and only
if it has no minor isomorphic to U2,4 and M(K4).

Corollary 7.4 The path-width of every n-element matroid of branch-width at most 2
can be computed in timeO(n2 · log2 n), provided that the matroid is given by its binary
representation. Moreover, a linear layout of the matroid witnessing the path-width can
be computed with the same time complexity.

Proof Let M be a matroid of branch-width at most 2 and assume that a binary rep-
resentation A of M is given. We first run a greedy algorithm to find a base B of
M [29, Sect. 1.8] in time O(|E(M)|2). After choosing one base B, for each e ∈ B
and e′ ∈ E(M)\B, we test whether (B\{e}) ∪ {e′} is again a base using the binary
representation, which can be done in time O(|E(M)|) if we first pre-compute the
sums of vectors in B\{e} for each e ∈ B. The fundamental graph G with respect
to M is then the bipartite graph with bipartition (B, E(M)\B) and ee′ is an edge
if (B\{e}) ∪ {e′} is a base [29]. From what precedes G can be constructed in time
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O(|E(M)|2). Since M has branch-width at most 2, by Proposition 7.1, the rank-width
of G is at most 1. Using Theorem 6.1, we can compute the linear rank-width of G in
time O(|E(M)|2 · log2|E(M)|), which is the same as pw(M) − 1. Moreover, we can
compute a linear layout witnessing lrw(G) in the same time, that corresponds to the
linear layout of M witnessing pw(M). �

8 An Upper Bound on Linear Rank-Width

As we promised, we prove the following lemma here. We remark that Bodlaender,
Gilbert, Hafsteinsson, and Kloks [3] proved a similar relation between tree-width and
path-width.

Lemma 8.1 Let k be a positive integer and let G be a graph of rank-width k. Then
lrw(G) ≤ k�log2|V (G)|�.

Proof Since k is a positive integer, we have |V (G)| ≥ 2. Let (T, L) be a rank-
decomposition of G having width k. For convenience, we choose an edge e of T
and subdivide it with introducing a new vertex x , and regard x as the root of T . For
each internal vertex t of T with two subtrees T1 and T2 of T \t not containing x , let
�(t) := T1 and r(t) := T2 if the number of leaves of T in T1 is at least the number of
leaves of T in T2. Let S be a linear layout of G satisfying that

• for each v1, v2 ∈ V (G) with the first common ancestor w of v1 and v2 in T ,
v1 <S v2 if L(v1) ∈ V (�(w)).

We can construct such a linear layout inductively.
We show that S has width at most k�log2|V (G)|�. Let w be a vertex of G that is

not the first vertex of S and let Sw := {v : v <S w}. Let Pw be the path from L(w) to
the root x in T . Note that for each t ∈ V (Pw)\{L(w)} and the subtree T ′ of T \t not
containing x and L(w),

• if r(t) = T ′, then all leaves of T in T ′ are not contained in Sw, and
• if �(t) = T ′, then all leaves of T in T ′ are contained in Sw.

Let Q be the set of all vertices t in Pw such that the subtree �(t) does not contain
L(w).

Let q1, q2, . . . , qm be the sequence of all vertices in Q such that for each 1 ≤ j ≤
m − 1, q j is a descendant of q j+1 in T . For 1 ≤ j ≤ m, let Qi be the set of all leaves
of T contained in �(qi ). Clearly, Sw = Q1 ∪ Q2 ∪ · · · ∪ Qm and V (G)\Sw �= ∅.
Therefore, we have

|V (G)| = |Q1| + · · · + |Qm | + |V (G)\Sw|
≥ 1 + 2 + 4 + · · · 2m−1 + 1

= 2m .

Thus, m ≤ �log2|V (G)|�.
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Note that for each 1 ≤ j ≤ m, rank(AG[Qi , V (G)\Sw]) ≤ k. Therefore, we have
that

cutrkG(Sw) = rank(AG[(Q1 ∪ · · · ∪ Qm, V (G)\Sw)]) ≤ km ≤ k�log2|V (G)|�.

Since w was arbitrarily chosen, it implies that lrw(G) ≤ k�log2|V (G)|�. �

9 Concluding Remarks

We have provided a characterization of the linear rank-width of distance-hereditary
graphs in terms of their canonical decompositions, and use this characterization to
derive a polynomial-time algorithm to compute their linear rank-width. An easy con-
sequence of this is also a polynomial-time algorithm for computing the path-width of
matroids of branch-width at most 2, which was not addressed in the past.

In the second part of this work [1], we will discuss structural properties of distance-
hereditary graphs related to linear rank-width. Note that Jeong et al. [20] provided a
lower bound on the size of the vertex-minor obstruction set for graphs with bounded
linear rank-width, by providing a set of pairwise locally non-equivalent vertex-minor
obstructions for graphs of linear rank-width at most k for each k. Their graphs are
indeed distance-hereditary graphs, and we will give a more general way to generate
all distance-hereditary vertex-minor obstructions using the characterization given in
this paper. Also, we prove that for a fixed tree T , every distance-hereditary graph of
sufficiently large linear rank-width contains T as a vertex-minor.

Acknowledgements The authors would like to thank Sang-il Oum for pointing out that the computation
of the path-width of matroids of branch-width at most 2 can be obtained as a corollary of our main result.
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