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Abstract The greedy spanner is the highest quality geometric spanner (in e.g. edge
count and weight, both in theory and practice) known to be computable in polynomial
time. Unfortunately, all known algorithms for computing it on n points take Ω(n2)
time, limiting its applicability on large data sets. We propose a novel algorithm design
which uses the observation that for many point sets, the greedy spanner has many
‘short’ edges that can be determined locally and usually quickly. Tofind the usually few
remaining ‘long’ edges, we use a combination of already determined local information
and thewell-separated pair decomposition.Wegive experimental results showing large
to massive performance increases over the state-of-the-art on nearly all tests and real-
life data sets. On the theoretical side we prove a near-linear expected time bound
on uniform point sets and a near-quadratic worst-case bound. Our bound for point
sets drawn uniformly and independently at random in a square follows from a local
characterization of t-spannerswe give on such point sets.We give a geometric property
that holds with high probability, which in turn implies that if an edge set on these points
has t-paths between pairs of points ‘close’ to each other, then it has t-paths between
all pairs of points. This characterization gives an O(n log2 n log2 log n) expected time
bound on our greedy spanner algorithm,making it the first subquadratic time algorithm
for this problem on any interesting class of points. We also use this characterization to
give an O((n+|E |) log2 n log log n) expected time algorithm on uniformly distributed
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points that determines whether E is a t-spanner, making it the first subquadratic time
algorithm for this problem that does not make assumptions on E .

Keywords Computational geometry · Spanners · Greedy spanner · Uniform points

1 Introduction

A Euclidean graph on a set of n points in the Euclidean plane is a weighted graph
with geometric distances as edge weights. If a shortest route in the graph is at most
t times longer than the direct geometric distance between its endpoints, we say these
endpoints have a t-path: a Euclidean graph is a t-spanner if all pairs of points have

t-paths. For any t > 1, we can efficiently find a t-spanner with O
(

n
t−1

)
edges in

the Euclidean plane [20]. These ‘approximations’ thus have very few edges compared
to the complete Euclidean graph, while approximately maintaining distances. This
makes them a useful tool in many areas.

Bounded degree spanners are used inwireless network design [14], where for exam-
ple points of high degree tend to have problems with interference. By using such a
bounded degree spanner the problem of interference is reduced while the connectiv-
ity is maintained. A considerable amount of research has been done on the topic of
spanners [15,20] since they were introduced in network design [21] and in geome-
try [10]. Spanners have been used as components in various geometric and distributed
algorithms.

Many different construction methods exist for t-spanners, where t can be para-
meterized to an arbitrary value greater than 1, each having different advantages and
disadvantages. An in-depth treatise of these spanners can be found in the book [20].We
focus on the greedy spanner, which is defined as the graph resulting from repeatedly
adding the edge between the closest pair of points which do not have a t-path yet. The
result is a very sparse graphwith asymptotically optimal edge count, degree andweight.
On uniform point sets and for t = 2, one of its closest well-known competitors with
respect to these three properties is the Θ-graph. It has about ten times as many edges,
twenty times higher total weight and six times higher maximum degree on uniformly
distributed point sets in practice. Figure 1 clearly shows the contrast between these
two spanners. Unfortunately, all known algorithms computing the greedy spanner use
Ω(n2) time [3], making the spanner impractical to compute on large point sets.

We observed that on real-world examples, the greedy spanner contains mostly short
edges with at most a few longer edges. Whether an edge is included in the greedy
spanner depends only on the points and edges in an ellipse with its endpoints as foci
and with eccentricity 1/t . For pairs of points close to each other, this is a small area
that tends to contain few other points. We will show that you can easily find these
short edges using a bucketing scheme, giving a speedup on such point sets.

For the ‘long’ edges, we consider the ‘long’ well-separated pairs from a well-
separated pair decomposition (WSPD) [9]: it is known that the greedy spanner contains
at most one edge per well-separate pair in this decomposition [3]. We first compute
information from the ‘short’ edges, attempting to find witnesses that show that certain
‘long’ well-separated pairs will not contain greedy spanner edges. This information
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Fig. 1 The left rendering shows the greedy spanner on 100 points distributed uniformly in a square with
t = 2. The right rendering shows the Θ-graph on the same points with k = 6 for which it has been proven
that it achieves a dilation of 2

is represented by path-hyperbola. We then perform a standard algorithm [3] on the
(hopefully only few) well-separated pairs for which we cannot find such a witness.

We present experimental results showing that the algorithm above works very well
on many data sets, ranging from real-world data sets to sets which are generated
according to different distributions. Speedups vary from an (apparently) linear factor
to a constant factor. In particular, on a uniformly distributed point set with 300,000
points, our new algorithm needs 19 minutes to compute the greedy spanner for t = 2,
while the currently fastest linear space algorithm, WSPD-Greedy [3], needs 17 hours
on the same set. The only other linear space algorithm, lazy-greedy [7], even needs
55 hours on this set. The quadratic space algorithms already use gigabytes of memory
at 10,000 points making a time comparison on large sets impossible. See [7] for a
comparison of WSPD-Greedy, lazy-greedy and the main quadratic space algorithms.

We show that our algorithm has a near-quadratic worst-case time bound. We give
formal evidence for the algorithm’s good behavior observed in experiments on realistic
point sets (which are often reasonably spread out) by analyzing its performance on
point sets distributed uniformly and independently at random in a square (or ‘uniformly
distributed points’ for short).

Euclidean graphs are frequently analyzed on uniformly distributed points, both
concerning theoretical properties and experimental evaluation of structures and algo-
rithms. One can find examples in computational geometry [8,18], combinatorial
optimization [25,28] and the analysis of ad-hoc networks [22,27].

Various spanner constructions have been analyzed on uniformly distributed point
sets [1,6,12,24,26]. Some of these constructions are a t-spanner for fixed t , others
are parameterizable with arbitrary t > 1. Relatively sharp bounds have been obtained
on various qualities of these spanners. This gives insight into the behavior of these
constructions in situations arguably closer to realistic point sets than worst case situ-
ations.

The spanner constructions studied in these analyses have a ‘local’ characterization:
for example, Gabriel graphs connect u, v if the disk having uv as its diameter contains
no points other than u and v. For graphs with such a local characterization there are
well-developed techniques to analyze them on uniformly distributed points [11]. In
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this paper, however, we look at the ‘global’ property t-spannerness and the greedy
spanner, a graph for which the existence of an edge may depend on all other points.
Previous analysis techniques do not directly apply on such properties.

Weconsider points distributed uniformly and independently at random in a
√
n×√

n
square. We use a

√
n × √

n scale for our square so that if a part of this square has area
A, then O(A) points lie in it in expectation.We only consider the case of the Euclidean
plane—our results may generalize to higher dimensions, but we did not explore this.
In this introduction, when stating bounds, we assume t is a constant.

We prove that such uniformly distributed point sets are, with high probability, con-
figured in such away that for any edge set E , if there are t-paths between points at most
O(log n) away from each other, then there are t-paths between all points. In particular,
we show that we can construct a ‘witness’ of this configuration in O(n log2 n log log n)

expected time if it exists, thus allowing our algorithms to always give the correct
answer.

This result easily implies that with high probability the greedy spanner has no long
edges (longer than O(log n)) and furthermore that the ‘proof’ phase of our algorithm
will find the witnesses for this if it exists. As the grid strategy works well on uniformly
distributed point sets, we obtain an O(n log2 n log2 log n) expected time bound on our
algorithm, thus giving the first subquadratic algorithm to compute the greedy spanner
on any interesting class of point sets.

Another application of our result is a method to test whether a Euclidean graph
G = (P, E) is a t-spanner on uniformly distributed points running in O((n +
|E |) log2 n log log n) expected time. This gives us the first subquadratic time algo-
rithm for testing t-spannerness on any interesting class of points. Various algorithms
are known for specific graphs on arbitrary points, but not for arbitrary graphs on spe-
cific sets of points. Hellweg et al. [16] give a Monte Carlo algorithm for bounded
degree graphs that distinguishes between being a t-spanner and being far away from
a spanner. For specific graph classes the minimum t can be computed [2,13], and for
general graphs this t can be approximated [19].

The rest of the paper is organized as follows. In Sect. 2we introduce bridgedness and
give a geometric lemma that will help us obtain our results. In Sect. 3 we show uniform
point sets are locally-O(log n)-bridgedwith high probability. In Sect. 4we give several
fast algorithms that use this result. Finally, in Sect. 5 we present experimental results
for our greedy spanner algorithm.

2 Bridging Points

In this section we will introduce the concept of λ-bridgedness for point sets. We will
later use this concept in our characterization of t-spanners on uniformly distributed
point sets. We prove two geometric lemmas that will help us with the result of Sect. 3.

Let P be a finite set of points in R
2, let n = |P|, and let t ∈ R be the intended

dilation (t > 1). Let G = (P, E) be a graph on P whose edges are weighted with
the Euclidean distance between its endpoints. For two points u, v ∈ P , we denote
the Euclidean distance between u and v by |uv|, and the network distance in G by
δG(u, v) (or just δ(u, v) if G is clear from the context). We say a pair of points (u, v)
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Fig. 2 (p, q) bridges (a, b)
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has a t-path if δ(u, v) ≤ t · |uv|. If all pairs of points have a t-path, the graph is called
a t-spanner.

Let a, b, p, q ∈ P be pairwise different points. We say that the pair (p, q) bridges
the pair (a, b) if t · |ap| + |pq| + t · |qb| ≤ t · |ab|. Bridging points guarantee a t-path
for (a, b) if (p, q) is an edge and the pairs (a, p) and (q, b) already have t-paths. Note
that |ap|, |qb| < |ab| as a consequence.

We say that (p, q) ismandatory if the ellipse with foci p and q and eccentricity 1/t
including its border contains no points in P other than p and q. Any t-path between
p and q must fully lie within this ellipse, so a mandatory (p, q) will be in E for any
t-spanner E .

Let λ ∈ R
+. We say that a point a ∈ P is λ-bridged if for all b ∈ P with |ab| > λ,

there exist some mandatory pair of points (p, q), p, q ∈ P , bridging (a, b). We say
that the point set P is λ-bridged if all points in P are λ-bridged. We say a point a ∈ P
is locally-λ-bridged if it is λ-bridged using only mandatory bridging pairs of points
with distance most λ from a. A point set P is locally-λ-bridged if all points in P are
locally-λ-bridged. Lemma 1 shows the usefulness of this concept.

Lemma 1 Let P be a set of points that is λ-bridged. For any Euclidean graph G =
(P, E) it holds that G is a t-spanner if and only if all pairs of points (a, b), a, b ∈ P,
with |ab| ≤ λ have a t-path in G.

Proof Follows by induction over all pairs of points (a, b) with |ab| ascending and
earlier observations. ��

As a warm-up exercise, we now develop a sufficient geometric condition for bridg-
ing pairs of points.

Lemma 2 Suppose we are given points a, b ∈ P, rectangles R1 and R2 and t > 1,
such that (as per Fig. 2): R1 and R2 lie in between a and b, have a side parallel to ab,
have their centers on line segment ab, both have width w and height h, are separated
by s ≥ t+1

t−1h and R1 lies closer to a than R2.
Then, for any p, q ∈ P with p lying in R1 and q lying in R2, (p, q) bridges (a, b).

Proof Let u be the projection of p onto the line piece ab, and v the same for q. We
have |uv| ≥ s ≥ t+1

t−1h, so h ≤ t−1
t+1 |uv|, which leads to the lemma using the triangle

inequality as follows:

t |ap| + |pq| + t |qb| ≤ t (|au| + |up|) + |pq| + t (|qv| + |vb|)
≤ t

(
|au| + 1

2
h

)
+ (|uv| + h) + t

(
1

2
h + |vb|

)

= t (|au| + |vb|) + (t + 1)h + |uv|
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Fig. 3 The situation of Lemma 3

≤ t (|au| + |vb|) + (t + 1)
t − 1

t + 1
|uv| + |uv|

= t (|au| + |uv| + |vb|)
= t |ab|

��
Wewill now prove a stronger statement than Lemma 2 (albeit with a slightly stricter

bound on s) using a similar proof method.We will use this statement to prove the main
Theorem 1. Let a, p, q ∈ P be pairwise different points and let region A ⊆ R

2 with
a, p, q /∈ A. We say that the pair (p, q) bridges (a, A) if for every point b ∈ P with
b ∈ A we have that (p, q) bridges (a, b).

Lemma 3 Assume we are given a ∈ P, a line � through a, an angle α ≤ π/4,
rectangles R1 and R2 and t > 1, such that (as per Fig. 3): R1 and R2 have width w

and height h, are separated by s, have a side parallel to �, have their centers on �, R1
lies between a on the left and R2 on the right and b lies to the right of the right side
of R2.

Define cw as the distance from a to the right side of R2. For the cone with apex a,
angle 2α and bisector �, we define A as the area that is at least ccone = cw +h/2 away
from a and ch as the length of the line piece perpendicular to � going through the right
side of R1 that start and ends at the border of the cone. If s sin

(
arctan

( s
h

) − α
) ≥√

2t+√
2

t−1 (ch + h), then for any p, q ∈ P with p lying in R1 and q lying in R2, (p, q)

bridges (a, A). Note that this is true regardless of whether R1 and R2 lie fully within
the cone.
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Proof We will first give some definitions, then prove two bounds and use these to
make the final derivation.

We now give some definitions resulting in the situation found in Fig. 3. Let b ∈ A
and b ∈ P . Let u be the projection of p onto the line piece ab, and v the same for q.
Let c be the corner of R1 lying closest to b. Let d be the corner of R1 that is the mirror
of c in �, and let e be the corner of R2 closest to d. Let ab⊥ be the line going through
c that is perpendicular to the line ab. Let f be the projection of e onto ab⊥.

We continue to prove two bounds: we wish to show that (t + 1)
√
2(ch + h) ≤

(t − 1)|uv| and that |up|, |vq| ≤
√
2
2 (h + ch).

We first bound |uv| from below, by using that |uv| ≥ |e f |. Note that |cd| = h,
|de| = s, so 
 dce = arctan

( s
h

)
. Define β = 
 f cd (note that β is the angle between

ab and �). We therefore have 
 f ce = arctan
( s
h

) − β. Using that |ce| = √
h2 + s2,

we get |e f | = |ce| sin( 
 f ce) = √
h2 + s2 sin

(
arctan

( s
h

) − β
)
.

We therefore have |uv| ≥ √
h2 + s2 sin

(
arctan

( s
h

) − β
) ≥ s sin

(
arctan

( s
h

) − α
)
.

By the assumption in the lemma, we get |uv| ≥
√
2t+√

2
t−1 (ch + h), which implies

(t + 1)
√
2(ch + h) ≤ (t − 1)|uv|. This proves our first bound.

Next, we prove that |up|, |vq| ≤
√
2
2 (h + ch): we prove the case for |vq|, the case

for |up| is analogous. Let g be the point on the line perpendicular to � going through v

which is placed such that 
 vgq is right. As v lies inside the cone and within distance
ccone from a, its distance to � is at most ch/2. Combined with the fact that g lies at
most h/2 from � we have |vg| ≤ h+ch

2 . Next we observe that |vq| cos(β) = |vg|, and
since β ≤ π/4 and therefore cos(β) ≥ 1√

2
we get |vq| 1√

2
≤ h+ch

2 . Dividing both

sides by 1√
2
gives us our second bound. Using these bounds we can prove the lemma

as follows.

t |ap| + |pq| + t |qb| ≤ t (|au| + |up|) + |pq| + t (|qv| + |vb|)
= t (|au| + |vb|) + |pq| + t (|qv| + |up|)
≤ t (|au| + |vb|) + |pu| + |uv| + |vq| + t (|up| + |qv|)
= t (|au| + |vb|) + |uv| + (t + 1)(|up| + |qv|)
≤ t (|au| + |vb|) + |uv| + (t + 1)

√
2(h + ch)

≤ t (|au| + |vb|) + |uv| + (t − 1)|uv|
= t (|au| + |vb|) + t |uv|
= t |ab|

We now have the tool needed for the main result.

3 Uniform Point Sets

Theorem 1 There exists ct dependent only on t such that for every c > 0, if P is a
set of points uniformly and independently distributed at random in a

√
n×√

n square
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Fig. 4 Covering the plane with
cones

a

and n is large enough, then with probability at least 1−n−c, P is locally-(c ·ct log n)-
bridged.

We first give a high level overview of the proof. In Sect. 3.2 the full proof is given.

3.1 The Main Idea of the Proof

We need to prove that every point in P is locally-(c · ct log n)-bridged simultaneously
with high probability. We show that every point individually is locally-(c · ct log n)-
bridged with sufficiently high probability that a simple union bound shows that it
will happen to all points simultaneously with high probability. We will use Lemma 3
to achieve this. For ease of presentation, we assume t is a constant in this proof
sketch.

The rectangles in Lemma 3 can be chosen to have a roughly constant chance of
containing a point and, as we will show, we can fulfill the other requirements of this
lemma, the resulting pair of points bridges a relatively large part of R2. In fact, we
need only �π/α� cones to cover the area we wish to cover, as depicted in Fig. 4. We
show the likely existence of a pair of mandatory points that bridges a single cone
and use a union bound to show such pairs are likely to exist for all cones simultane-
ously. Note that this union bound allows us to ignore all dependency issues between
cones.

We will place O(log n) pairs of rectangles in every cone as depicted in Fig. 5. If
any pair of boxes ends up containing a point per box, these two points will satisfy
the requirements for Lemma 3. We just need this pair of points to be mandatory, and
therefore consider an ellipse around such a pair of boxes (defined in terms of the boxes,
not the points, for easy analysis), such that if this ellipse is empty apart from these
two points, these points must be mandatory. Using careful analysis, the chance that a
pair of boxes contains one point per box and the ellipse contains no more points (an
event we will call a ‘success’) is at least some constant p (dependent only on t). We
need only one success per cone and the events are nearly independent (the ellipses
don’t overlap), so the chance that we get at least one success is at least (roughly)
pO(log n) = n−O( f (t)) (with f (t) a function depending only on t), which then shows
the theorem.
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Fig. 5 Rectangle configuration
in a cone (not to scale)

2α
a

3.2 The Full Proof

Note that we will often introduce a constant (say, the height h of R1), give it a value
(say h = 1) but still refer to the name of the variable later for clarity (so h instead of
1).

3.2.1 Positioning the Cones

Let c be given as per the theorem. Let k = (c + 2) 3210e
133t4

(t−1)2 . Let S′
major = 9t2+4t

2(t−1)
(we derive this number later). Let cmax be the space needed to put all ellipses in a
cone next to each other, i.e. cmax = k log n · S′

major . We partition the disk with radius
ccone = cmax + 1/2 around every point a into m cones, as depicted in Fig. 4. We
choose m and then α = π

m such that the height of the cone at the start of the grey area
as per Lemma 3 is 1. Because k is so large, we have that m ≥ 19 - we don’t need any
more specifics on m or α other than this bound.

We will prove that P is very likely to be locally-2ccone-bridged, as per the theorem.
We will do this by showing that every cone contains a mandatory pair of points that
together bridge the gray area in Fig. 4. This gives us the following bound:

2ccone = 1 + 2k log n · S′
major = 1 + 2(c + 2)

32

10
e

133t4

(t−1)2 log n
9t2 + 4t

2(t − 1)

Recall that we place rectangles and ellipses in the area of cones colored white in
Fig. 4. We first note that if a point lies very close to the edge of the

√
n × √

n square
in which our points lie, then for some of the cones we place, this white area may end
up lying partially outside of this square, and so it is less likely that points end up in
the rectangles we place there. We will deal with these cones now, and assume for the
rest of the proof that these white areas lie fully within the square.

We divide the area around the origin a of such a boundary cone in three regions:
Anear , Abetween and A f ar based on their distance to a. Anear is the white area with
distance at most ccone from a that partially overlaps the square. A f ar is the area more
than 2ccone away from a and Abetween lies between Anear and A f ar . We want to show
that A f ar is bridged by some local pair of points. Note that the angle of the cones will
end up being small (at most π / 19). We look at the (part of the) boundary between
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Anear and Abetween that is outside the square. There are three cases: this part of the
boundary consists of two pieces (the cone then points to a corner of the square), the
part of the boundary is a single piece that touches a cone edge or the part is a single
piece that does not touch the cone edge. For most of these cases, it is easy to see that
A f ar is completely outside the square: if the boundary has two pieces, the cone points
to the corner of the square and so A f ar is outside the square. If it has a single piece
not touching the cone edge, it must be pointing (almost) perpendicularly to a square
edge, and then A f ar is outside the square again.

Now consider the case of the boundary touching the cone edge: in this case, the
cone is (somewhat) parallel to a square edge, and we attempt to rotate the cone around
its origin away from the square edge, until A′

near (defined the same as Anear but for
the rotated cone) is completely within the square. There are again two cases: if the
cone hits a different square edge during this rotation, then we note that we again must
be near a corner of a square and again that A f ar is not within the square. If it does
not, then we note that A′

f ar (defined the same as A f ar but for the rotated cone) now
encompasses the part of A f ar that is fully inside the square, and that A′

near is fully
inside the square. We therefore simply assume we use this rotated cone for the rest of
the proof, as this will obtain the same result.

3.2.2 Boxes in Cones

Wefirst describe the rectangle and ellipse placement and show that this geometric setup
will indeed allow us to invoke Lemma 3, which is needed to achieve local bridgedness.
We also analyze the areas of the rectangles and ellipses involved, which will be useful
later.

We place k log n rectangles R1 and R2 in every cone as per Lemma 3 and as depicted
in Fig. 5. Every rectangle has width w = 1, height h = 1, and R1 and R2 are placed

s = max
(
3 t+1
t−1 , 6

)
apart. The rectangles are aligned with the bisector � of the cones.

Neighboring pairs of rectangles are placed at a pitch of S′
major (so two neighboring

left rectangles have a distance of S′
major between their centers). Let A = w · h = 1 be

the area of R1 and R2.
We surround the rectangles by an ellipse E with foci d and e and eccentricity 1/t

such that the centers of R1 and R2 lie on de and d and e are placed at a distance
X = h+2w+th

2(t−1) = 3+t
2(t−1) from R1 and R2 respectively.

We first show that both rectangles lie entirely in E . Clearly, if the top left corner of
R1 (which we will call a for this proof) is in E then both rectangles lie in E due to their
symmetric placement. Hence all we have to argue is that |da| + |ae| ≤ t |de|. Using
the triangle inequality we have |da| ≤ X + 0.5h and |ae| ≤ 0.5h + w + s + w + X
which leads us to h + 2w + 2X + s ≤ t |de|. As |de| = 2X + s + 2w this clearly
holds for our w = h = 1 if t ≥ 1.5. To see why this holds for any t > 1 we
rewrite the inequality to (2w + 2X + s) + h ≤ (t2w + 2t X + s) + (t − 1)s. Clearly

this inequality holds if h ≤ (t − 1)s. Recall that s = max
(
3 t+1
t−1 , 6

)
, which (for

t < 1.5) we can simplify to s = 3 t+1
t−1 . Let t = 1 + ε, with 0 < ε < 0.5, we have
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(t − 1)s = εs = ε3 (1+ε)+1
(1+ε)−1 = 6 + 3ε. Since we picked h = 1 the inequality holds

which proves that R1 lies in E .
We now show that if our ellipse E is empty apart from two points (one inside R1

and the other in R2), then this pair of points is mandatory. We note that if a ∈ R1 and
b ∈ R2, then any point f lying in the ellipse with foci a and b and eccentricity 1/t
also lies in E as follows: from |a f | + | f b| ≤ t |ab| ≤ t (h + 2w + s) we conclude
|d f | + | f e| ≤ |da| + |a f | + | f b| + |be| ≤ 2X + h + 2w + t (h + 2w + s) =
t (2X + 2w + s) = t |de| (by filling in X and simplifying), and so f ∈ E . However,
we assumed that the ellipse was empty apart from a and b, hence such an f does not
exist implying that (a, b) is mandatory.

The semi-major axis of the ellipse is given by:

Smajor = t |de|
2

= t (2X + 2w + s)

2

=
t
(
3+t
t−1 + 2 + max

(
3 t+1
t−1 , 6

))

2

= t

(
3 + t

2(t − 1)
+ 1 + max

(
3t + 3

2(t − 1)
, 3

))

= t

(
max

(
3t + 3

2(t − 1)
+ 3 + t

2(t − 1)
+ 1,

3 + t

2(t − 1)
+ 4

))

= t

(
max

(
6t + 4

2(t − 1)
,
9t − 5

2(t − 1)

))

= max

(
6t2 + 4t

2(t − 1)
,
9t2 − 5t

2(t − 1)

)

≤ 9t2 + 4t

2(t − 1)
= S′

major

The semi-minor axis can be expressed in terms of Smajor and the eccentricity:

Sminor = Smajor

√
1 −

(
1

t

)2

≤ S′
major

√
1 −

(
1

t

)2

This allows us to calculate the area of the ellipse:

|E | = π Smajor Sminor

≤ π S′
major Sminor

= π

(
9t2 + 4t

2(t − 1)

)2
√
1 −

(
1

t

)2
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≤ π

(
9t2 + 4t

2(t − 1)

)2

= π

(
81t4 + 72t3 + 16t2

4(t − 1)2

)

≤ π

4

(
(81 + 72 + 16)t4

(t − 1)2

)

≤ 133t4

(t − 1)2

If exactly one point ends up in R1, and exactly one point ends up in R2 and no
other point ends up in E (making the pair of points mandatory), then we say that this
pair of rectangles is a success. We now show that the pair of points corresponding to
a success would fit the conditions of Lemma 3 and would therefore bridge the cone
we are considering.

First, consider the requirement s sin
(
arctan

( s
h

) − α
) ≥

√
2t+√

2
t−1 (ch + h). Filling

in known values, we get s sin (arctan(s) − α) ≥ 2
√
2t+√

2
t−1 . Now, by m = 19, we get

α = π/m ≤ 1/6. Also, s ≥ 6 by definition, so we get sin(arctan(6) − 1/6) ≥ 0.943.

Finally, 2
√
2t+√

2
t−1 = 2

√
2 t+1
t−1 = 2

√
2 s
3 . Given that 0.943 ≥ 2

√
21
3 (≈ 0.9428), we

find that the requirement is met. The Lemma also requires that the angle of the cones
is at most π/4, which follows from m ≥ 8.

We have now shown that our geometric setup is able to prove local bridgeness by
fulfilling the conditions of Lemma 3.

3.2.3 Probability of Success

We will show next that we will have at least one success for a given cone with high
probability. Using the union bound we can then ignore all dependency issues between
cones, such as ellipses overlapping with neighboring cones, and yet still obtain that
all cones will simultaneously have at least one success.

We consider the chance that no ellipses yield a success for a given cone. Unfortu-
nately, the chance that a given ellipse is a failure or not is dependent on whether other
ellipses are failures or not, so we cannot simply consider every ellipse in isolation. For
example, an ellipse can be a failure because all n points ended up in that ellipse, thus
making the chance that any other ellipse is a success equal to 0.

We first narrow down the number of points that end up in an ellipse. The expected
number of points ending up in an ellipse is μ = |E |. By a Chernoff bound, the chance
that we have more than μ(1+ δ) points in an ellipse is (with high probability) at most

e− δ|E|
3 . We fill in δ = ln n 3k+3

|E | , giving at most |E | + ln n(3k + 3) points in an ellipse.
Since we eventually want this to happen for all ellipses simultaneously, we apply the
union bound and multiply by k log n (and using that k log n ≥ n for sufficiently large
n), giving:
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k log ne− δ|E|
3 = k log ne−

3k+3|E| ln n|E|
3

= k log ne−(k+1) ln n

= k log nn−(k+1)

≤ n−k

At the ‘cost’ of an extra factor n−k , we will now assume any ellipse in the cone
contains at most |E | + ln n(3k + 3) points, regardless of whether any ellipse in that
cone is a success or not.

We number the ellipses from 1 to k log n and consider the chance P(ellipses 1
through k log n are failures). By definition of conditional probability, this equals
P(ellipse k log n is a failure | ellipses 1 through k log n − 1 are failures) · P(ellipses
1 through k log n − 1 are failures). Applying this definition k log n times in total, this
chance equals �

k log n
i=1 P(ellipse i is a failure | ellipses 1 through i are failures). Let

pi = P(ellipse i is a failure | ellipses 1 through i are failures). We are effectively
interested in the chance �

k log n
i=1 pi .

We now look to the 1− pi chances (so the chance of a success). We will be able to
give a lower bound for all these chances with a similar formula structure, which we
use to obtain a single lower bound for all these chances by filling in the ’worst case’
value for every variation point in these lower bounds, to get a simple end result. First,
as a warm-up, let’s calculate p1, the chance that the first ellipse is a failure regardless
of whether the other ellipses are failures. Since both rectangles lie entirely in E , we
have the following:

1 − p1 =
(
n

2

)( |A|
n

)2 (
1 − |E |

n

)n−2

This equation is a straightforward application of probability theory. For a success,
wemust have exactly one point end up in both rectangles, and all other points must end
up outside the ellipse. Since the locations of the points are independent (as opposed

to the number of points falling in particular areas), we obtain a factor
( |A|

n

)2
for the

chance that two points end up in the square, and a factor
(
1 − |E |

n

)n−2
for the chance

that all other points end up outside the ellipse. The factor
(n
2

) = n(n − 1)/2 accounts
for the number of ways we can pick two points to land in the rectangles.

Now, to bound 1 − pi , we take the same basic formula, but we now consider the
more general 1 − pi case in which all ellipses before it have produced failures, and
limit ourselves to an upper bound. In particular, we essentially look at the ‘worst case’
for every factor in the 1 − p1 formula.

The factor
(n
2

)
now becomes

(n−k log n(|E |+ln n(3k+3))
2

)
since the reason that all the

k log n previous ellipses (actually at most i−1 ellipses, but we bound it for simplicity)
have produced a failure may be that they were filled with the maximum of |E | +
ln n(3k + 3) points.
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The factor
( |A|

n

)2
stays the same. Although the 1

n factor here can conceivably be

larger (a failure in another ellipse may have been caused by an empty rectangle, which
would imply that the chance that a points falls into a different rectangle increases a
tiny bit because it can no longer fall in that empty rectangle), it will definitely not be
smaller for any 1 − pi and any reason for the failure of the previous ellipses.

We change the factor
(
1 − |E |

n

)n−2
to

(
1 − |E |

n−k log n|E |
)n

. As
(
1 − |E |

n−k log n|E |
)

<

1, setting the exponent to n only decreases the chance,which is allowed. The nominator
in the fraction becomes smaller as we may be in the case where the reason that all
previous ellipses failed is that theywere all empty, which influences where these points
may end up instead.

Using the previous arguments and using the well-known inequality (1 + x
n )n ≥

ex (1 − x2
n ), we now bound our expression bounding pi . We use that

n − log2 n(|E |+ln n(3k+3))
ln 2 ≥ n√

2
+ 1 and n

k log n − |E | ≥ n/2 for sufficiently large
n.

1 − pi ≥
(
n − k log n(|E | + ln n(3k + 3))

2

) ( |A|
n

)2 (
1 − |E |

n − k log n|E |
)n

≥
( n√

2
+ 1

2

) ( |A|
n

)2 (
1 − |E |

n − k log n|E |
)n

≥ n2

4

( |A|
n

)2 (
1 − |E |

n − k log n|E |
)n

= |A|2
4

(
1 − |E |

n − k log n|E |
)n

= |A|2
4

(
1 − |E |

n − k log n|E |
)n−k log n|E | (

1 − |E |
n − k log n|E |

)k log n|E |

≥ |A|2
4

e−|E |
(
1 + |E |2

n − k log n|E |
) (

1 − |E |
n − k log n|E |

)k log n|E |

As
( |E |2
n−k log n|E |

)
goes to 0 and we can bound

(
1 − |E |

n−k log n|E |
)k log n|E | ≥ 1

2 for large

enough n we have

1 − pi ≥ |A|2
4

e−|E |
(
1 − |E |

n − k log n|E |
)k log n|E |

≥ |A|2
4

e−|E | 1
2

≥ 1

8
|A|2e−|E |

Using the union bound to couple the pi chances with the events that not too many
points end up in ellipses, we get that the chance that all ellipses in a cone produce
failures is at most

123



Algorithmica (2017) 78:209–231 223

n−k + pk log ni ≤ n−k +
(
1 − 1

8
|A|2e−|E |

)k log n

= n−k + n
k log

(
1− 1

8 |A|2e−|E|
)

We concentrate on the logarithm, and fill in the values for |A| and |E |:

log

(
1 − 1

8
e
− 133t4

(t−1)2

)
≤ −1

8
e
− 133t4

(t−1)2

Going back to the bound:

n−k + n−k 1
8 e

− 133t4

(t−1)2 ≤ n−k 10
32 e

− 133t4

(t−1)2

3.2.4 Conclusion

We now apply the union bound again, to ensure that we have a success for all cones
simultaneously. Using that m log n ≤ n holds for sufficiently large n, we have that the
chance that one of the cones of any point produces only failures is therefore at most
the following:

(mn log n)n−k 10
32 e

− 133t4

(t−1)2 ≤ n2−k 10
32 e

− 133t4

(t−1)2

≤ n−c

The last step follows from our definition of k. The theorem is now proven. �

4 Algorithms

We first introduce three tools used in the results below. Let c and ct be as in Theorem 1
throughout this section. The first tool is that we can divide the input into a

√
n

c·ct log n ×√
n

c·ct log n grid in O(n log n) time, with every cell containing in expectation O((c ·
ct log n)2) points.

The second tool is the ‘local’ Dijkstra algorithm. It determines for all points at
most λ away from a source point s whether it has a t-path to s and if so, their network
distance. It differs from the standard Dijkstra algorithm in that it only adds the points
to the queue if they are at most λt away from the source s and only considers the edges
Es that have such a point as either endpoint. Using the grid to quickly find these points
this can be done in O((λ2 + |Es |) log λ) expected time.

The third tool is called path-hyperbola. It is an area given by an origin point u ∈ P ,
a focus v ∈ P and an edge set E . When using G to denote the graph G = (P, E) we
define the path hyperbola as PH(u, v, E) = {a ∈ R

2 | δG(u, v) + t · |va| ≤ t · |ua|}.
Obviously, if (p, q) bridges (a, b), then b ∈ PH(a, q, E) for every edge set E with
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t-paths for pairs of points (u, v) with |uv| ≤ |ab|, making path-hyperbola at least as
powerful as bridging points for guaranteeing t-paths.

If we perform a local Dijkstra on s, we either find pairs of points without t-path, or
we find a set of network distances that induce a set of path-hyperbola. If s is locally-
λ-bridged, the union of path-hyperbola will be a superset of the area more than λ

away from s. This union can be computed in O(λ2 log λ) expected time: using polar
coordinates, the union corresponds to a lower envelope. Since the hyperbolas pairwise
intersect at most twice, this envelope has linear complexity and can be computed in
O(n log n) time [4,23]. This gives an efficient test of t-paths from s to all other points
as least as accurate as local-λ-bridgedness.

4.1 Testing t-Spanners

The first application of Theorem 1 and our tools is a faster algorithm to test if a
Euclidean graph is a t-spanner on uniformly distributed point sets. To the best of
our knowledge, this leads to the first subquadratic algorithm for this problem on any
interesting class of point sets not making assumptions on E .

Theorem 2 There is an algorithm that, given a point set P whose points are uniformly
distributed in a

√
n × √

n square and a Euclidean graph G = (P, E) on P, checks if
G is a t-spanner using O((n + |E |)(ct log n)2 log(ct log n)) expected time, where ct
is a constant dependent only on t.

Proof Applying our three tools with λ = c · ct log n almost immediately gives us the
desired result: we run a local Dijkstra for every point, maintaining the union of the
path hyperbola. If we find any pair of points without t-path, we return that the input
is not a t-spanner. If some union of path-hyperbola for a point s does not cover the
area more than λ away from s, we perform an O(n2 log n) test for t-spannerness, and
otherwise we return that the input is a t-spanner, which happens with high probability
by Theorem 1. This algorithm therefore uses O((n + |E |)(ct log n)2 log(ct log n))

expected time.

4.2 Greedy Spanner

Algorithm GreedySpannerOriginal(V, t)
1. E ← ∅
2. for every pair of distinct points (u, v) in ascending order of |uv|
3. do if δ(V,E)(u, v) > t · |uv|
4. then add (u, v) to E
5. return E

Consider the original greedy algorithm above as introduced in [17]. The graph
returned by this algorithm is called the greedy spanner on V for t and it is obviously a
t-spanner, but the algorithm has an O(n3 log n) running time. (Note that more complex
algorithms to compute the same spanner in near quadratic time exist). We make the
following observation:
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Lemma 4 If P is λ-bridged, then the greedy spanner on P does not have edges longer
than λ.

Proof After ensuring t-paths for all (u, v) with |uv| ≤ λ the algorithm will not add
more edges as all (u, v) with |uv| > λ have t-paths by Lemma 1. ��

We can combine Lemma 4 with Theorem 1 to quickly compute the greedy spanner
on uniform point sets. We first give a preliminary algorithm which we then employ in
two greedy spanner algorithms.

Theorem 3 For every λ > 0, there is an algorithm that, given a point set P whose
points are uniformly distributed in a

√
n × √

n square, computes in O(n log n +
nλ2 log2 λ) expected time the edges of length at most λ in the greedy spanner on P
with dilation t.

Proof We use the algorithm introduced in [3]. This algorithm is able to compute the
greedy spanner in linear space by initially working on well-separated pairs instead
of single edges. It first computes the well-separated pair decomposition and sorts the
linear number of pairs instead of the quadratic number edges. It then considers the
well-separated pairs by length sorting the small set of edges in similar sized pairs
to ensure that the correct edge is added. For a well-separated pair {Ai , Bi } we use
min(Ai , Bi ) and to denote the distance between the closest pair of points a, b with
a ∈ Ai and b ∈ Bi . Our algorithm also initially considers well-separated pairs except
we keep Lemma 4 in mind and use our local Dijkstra instead of a normal Dijkstra and
only consider well-separated pairs {Ai , Bi } with min(Ai , Bi ) ≤ λ. Using the analysis
in [3] and using that the greedy spanner has degree O(1), we conclude that if m is the
number of consideredwell-separated pairs, the running time of ourmodified algorithm
is O(n log n + λ2 log λ

∑m
i=1 min(|Ai |, |Bi |)). We therefore need to bound

m∑
i=1

min(|Ai |, |Bi |) ≤
m∑
i=1

(|Ai | + |Bi |) =
∑
a∈P

|{{Ai , Bi } | a ∈ Ai ∨ a ∈ Bi }|.

For any l ∈ R, a point p can only be in O(1) well-separated pairs of length at most
a constant factor higher or lower than l [9, Lemma4.6.1]. We can therefore partition
the well-separated pairs containing p into O(1)-sized sets of similar length. As the
minimal length per set differs by at least a constant factor, we conclude |{{Ai , Bi } |
a ∈ Ai ∨ a ∈ Bi }| = O

(
log maxi {Ai ,Bi }

mini {Ai ,Bi }
)
(here min({Ai , Bi }) and max({Ai , Bi })

denote the minimum and maximum distance respectively between a pair of points in
the set {Ai , Bi }).This last expression is O(log λ) in expectation on uniform point sets,
giving an expected running time of O(n log n + nλ2 log2 λ). ��

Note that we could have adapted the algorithm from [5], but this algorithm sorts
all potential edges, resulting in an expected O(n log nλ2 log λ) running time, which is
slower when filling in λ = O(log n).

Combining Lemma 4, Theorems 1 and 3 (with λ = c · ct log n) gives:
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Corollary 1 There is an algorithm that, given a point set P whose points are uniformly
distributed in a

√
n×√

n square, computes in O(n(ct log n)2 log2(ct log n)) expected
time a graph on P which is with high probability the greedy t-spanner (with ct is a
constant dependent only on t).

4.3 The Full Distribution-Sensitive Algorithm

The algorithm fromTheorem3 is the first phase of our distribution-sensitive algorithm.
We now present the second and third phase that ensure that all long edges are also
computed. Note that it is relatively easy to prove Theorem 4 by chaining Theorem 3
and Theorem 2 and invoking an existing quadratic algorithm if the t-spannerness test
fails, but our aim is to provide an algorithm that ‘gradually’ slows down as the input
is less uniformly distributed instead of tanking as soon as the property does not hold.

The second phase of our algorithm gathers path-hyperbola as described at the start
of this section. We then consider the well-separated pairs that did not get considered
in the first stage of the algorithm and try to prove for them that they will not produce
a greedy spanner edge. For the remaining pairs, we employ the algorithm of [3] in the
third phase of our algorithm to find the remaining greedy spanner edges.

If for a point u ∈ Ai , the bounding box Bi is covered by the union of path-
hyperbola computed foru (testing this takesO(log n) time), thenwe sayu isdiscounted
with respect to {Ai , Bi }. If all u ∈ Ai are discounted, then {Ai , Bi } will not contain
a greedy spanner edge and we say {Ai , Bi } is discounted. This can be computed
in O(log n

∑m
i=1(|Ai | + |Bi |)) = O(n log n log λ) expected time (The log λ factor

follows from the same argument as used in the proof of Theorem 3).
In the third phase we perform the algorithm from [3], with small differences. We

ignore pairs that have been discounted in the previous phase, and we do not perform
a Dijkstra operation on points which have been discounted with respect to that pair
as well. By Theorem 1, all pairs are discounted with high probability and hence this
phase takes constant time in expectation on uniform point sets.

In practice, using a λ lower than predicted by Theorem 1 will suffice and be faster.
From experiments we observe that λ = log n

4√t−1 log log n
is the ‘right’ bound for the length

of the longest edge in the greedy spanner. Using 1.1 ·λ the initial phase nearly always
finds all edges, with the second phase usually discounting 99.7% of the pairs and 95%
of the points in non-discounted pairs, with the second phase taking about 20% of the
time of the first. Using 1.5 · λ, all pairs are typically discounted.

Theorem 4 There is an algorithm that, given t and a point set P whose points are
uniformly distributed in a

√
n×√

n square, computes in O(n(ct log n)2 log2(ct log n))

expected time its greedy spanner, with ct a constant dependent only on t. The algorithm
uses O(n2 log2 n) time on arbitrary P.

5 Experimental Results

We have experimentally compared the performance of our algorithm and the two other
linear space algorithms, WSPD-Greedy [3] and lazy-greedy [7]. For the comparison
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we used point sets whose size ranged from 500 to 128,000 points. On small point sets
the WSPD-Greedy algorithm has a running time comparable to the major quadratic
space algorithms. Since running these quadratic space algorithms onmore then 10,000
points quickly becomes unfeasible we did not include them in our experiments. For a
detailed comparison between themajor quadratic space algorithms andWSPD-Greedy
we refer to [3]. Note that we have verified that all our implemented algorithms give
the same output.

Throughout this section we will refer to our algorithm as “bucketing” in the graphs.
We generated point sets according to several distributions. We have recorded space
usage and running time (wall clock time). The results are averages over several runs
where new point sets were generated each time. We included graphs for the uniform
point set and for a clustered point set as these represent the best and worst cases
respectively for our algorithm (with respect to our set of tests). To generate the clustered
point set we used the same method as [3,7], that is, for n points, it consists of

√
n

uniformly distributed point sets of
√
n uniformly distributed points.

5.1 Environment

The algorithms have been implemented in C++. The random generator used was the
Mersenne Twister PRNG—we have used a C++ port by J. Bedaux of the C code by the
designers of the algorithm, M. Matsumoto and T. Nishimura. We have implemented
all other necessary data structures and algorithms not already in the std ourselves.
The implementations do not use parallelism and run on a single thread.

Our experiments have been run on a server using an Intel Xeon E5530 CPU (2.40
GHz) and 8 GB (1600 MHz) RAM. It runs the Debian 7 OS and we compiled for 64
bits using G++ 4.7.2 with the -O3 option.

5.2 Dependence on Instance Size

We have compared running time and space usage of the different linear space algo-
rithms for different values of n. We plotted the results using t = 2 on both uniform
(Fig. 6) and clustered points (Fig. 7).

The space usage of our algorithm appears to be a constant factor less than that
of WSPD-Greedy. Its running time on uniformly distributed points is (nearly) linear
making it a massive improvement over WSPD-Greedy. This allows us to calculate
greedy spanners on such point sets in a matter of minutes whereWSPD-Greedy would
need hours or even days for bigger instances. When comparing to lazy-greedy we see
that our memory requirements are bigger. The reduced memory requirements of lazy-
greedy come at a cost of a significant performance hit, making the gap in running
times even more extreme.

The clustered point set is a bad case for our algorithm since the greedy spanner
will contain a considerable amount of very long edges between clusters. Nevertheless,
the algorithm still beats both other algorithms by quite a margin. Our experiments on
clustered data with smaller t values (up to t = 1.1 as plotted in Fig. 8) show that the
performance of the algorithms gets more similar as t decreases. On point sets drawn
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Fig. 6 The left plot the running time of our algorithm (bucketing) and the other linear space algorithms for
t = 2 on variously sized uniformly distributed instances. The right plot the memory usage on the same data
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Fig. 7 The left plot the running time of the linear space algorithms for t = 2 on variously sized clustered
instances. The right plot the memory usage on the same data

using either a uniform or normal distribution our algorithm massively outperforms
both algorithms for both small and large t . Since the performance on point sets drawn
from a normal distribution was very similar to the performance on uniform point sets
we only plotted the latter (Figs. 6 and 9). Interestingly, the lazy-greedy algorithm
becomes our closest competitor in the low t case on the non-clustered point sets. This
is a result of the huge number of well-separated pairs on such point sets which are all
processed by the WSPD-Greedy algorithm.

5.3 Real Data

Aside from generated instances we also experimented on some real point sets from the
TSPLIB.1 The performance of our algorithm on these real datasets seems to be close

1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
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Fig. 8 The left plot the running time of our algorithm (bucketing) andWSPD-Greedy for t = 1.1 variously
sized clustered instances. The right plot the memory usage on the same data
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Fig. 9 The left plot shows the running time of our algorithm (bucketing) and WSPD-Greedy for t = 1.1
variously sized uniformly distributed instances. The right plot shows the memory usage on the same data

Fig. 10 Real point sets from the TSPLIB and their greedy spanners using t = 2. Left A PCB instance of
3.038 points. Right Cities in Germany, 15.112 points

to the uniform point sets. Figure 10 shows two point sets and their greedy spanners.
For the PCB the computation using our algorithm took on average about 2 s for t = 2
and 11 s for t = 1.1. The same computations using WSPD-Greedy took 12 and 203 s
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respectively and lazy-greedy needed 8.4 and 28 s. The bigger Germany instance took
21 and 147 s to compute using our algorithm while WSPD-Greedy needed 274 and
7486s and lazy-greedy needed 255 and 795 s for t = 2 and t = 1.1. This is a factor
50 improvement for the low t case over WSPD-Greedy which suffers from the huge
number of well-separated pairs at these low t values. The different approach taken by
lazy-greedy makes it more efficient than WSPD-Greedy for low t , but it is still more
than a factor 5 slower than our algorithm.

6 Conclusion

We have introduced a distribution-sensitive algorithm for computing the greedy span-
ner. Experiments show large improvements in both time and space for most data sets,
while results are never worse than the state-of-the-art. The performance gap in many
cases increases further for lower t . To explain these results, we have analyzed the
algorithm on uniformly distributed point sets.

To this end, we have introduced the concept of bridgedness and have shown that
point sets that are uniformly distributed in a

√
n × √

n square are O(log n)-bridged
with high probability. This implies that ‘t-spannerness’ is a ‘local’ property on these
point sets: a Euclidean graph is a t-spanner if and only if all pairs of ‘close-by’ points
have t-paths. This locality shows that our algorithm runs in near-linear expected time
on these point sets and yields a near-linear time algorithm for testing whether an edge
set is a t-spanner on these point sets.

We leave several questions open that may be answered in future work. First, in
our experiments, we have observed that the length of the longest edge of the greedy
spanner on uniform point set tends towards log n/ log log n/(t−1)1/4, leaving a gap to
our upper bound; similarly, our bridgedness bound may also be improvable. Second,
it would be interesting to find an even faster algorithm on uniform point sets. Third,
it would be interesting to see if our results generalize to higher dimensions. Lastly,
there is still no general subquadratic time algorithm for the greedy spanner. One could
consider our algorithm to be a divide and conquer algorithm where the conquer step
may be very slow and possibly susceptible to improvement.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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