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Abstract Let G = (V, E) be a finite undirected graph. An edge set E ′ ⊆ E is a dom-
inating induced matching (d.i.m.) in G if every edge in E is intersected by exactly one
edge of E ′. The Dominating Induced Matching (DIM) problem asks for the existence
of a d.i.m. inG; this problem is also known as the Efficient Edge Domination problem.
The DIM problem is related to parallel resource allocation problems, encoding theory
and network routing. It is NP-complete even for very restricted graph classes such as
planar bipartite graphs with maximum degree three and is solvable in linear time for
P7-free graphs. However, its complexity was open for Pk-free graphs for any k ≥ 8;
Pk denotes the chordless path with k vertices and k − 1 edges. We show in this paper
that the weighted DIM problem is solvable in polynomial time for P8-free graphs.

Keywords Dominating induced matching · Efficient edge domination · P8-free
graphs · Polynomial time algorithm

1 Introduction

Let G = (V, E) be a finite undirected graph. A vertex v ∈ V dominates itself and its
neighbors. A vertex subset D ⊆ V is an efficient dominating set (e.d.s. for short) of G
if every vertex of G is dominated by exactly one vertex in D. The notion of efficient
domination was introduced by Biggs [1] under the name perfect code. The Efficient
Domination (ED) problem asks for the existence of an e.d.s. in a given graph G (note
that not every graph has an e.d.s.)
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If a vertex weight function ω : V → N is given, the Weighted Efficient Domina-
tion (WED) problem asks for a minimum weight e.d.s. in G, if there is one, or for
determining that G has no e.d.s.

A set M of edges in a graph G is an efficient edge dominating set (e.e.d.s. for short)
of G if and only if it is an e.d.s. in its line graph L(G). The Efficient Edge Domination
(EED) problem asks for the existence of an e.e.d.s. in a given graph G. Thus, the
EED problem for a graph G corresponds to the ED problem for its line graph L(G).
Again, note that not every graph has an e.e.d.s. An efficient edge dominating set is also
called dominating induced matching (d.i.m. for short) and the EED problem is called
the Dominating Induced Matching (DIM) problem in some papers (see e.g. [2,4,6]);
subsequently, we will use this notation in the manuscript. The edge-weighted version
of DIM for graph G corresponds to the vertex-weighted version of ED for L(G).

In [7], it was shown that the DIM problem is NP-complete; see also [2,6,10,11].
However, for various graph classes, DIM is solvable in polynomial time. For mention-
ing some examples, we need the following notions:

Let Pk denote the chordless path P with k vertices, say a1, . . . , ak , and k−1 edges
aiai+1, 1 ≤ i ≤ k − 1; we also denote it as P = (a1, . . . , ak).

For indices i, j, k ≥ 0, let Si, j,k denote the graph with vertices u, x1, . . . , xi ,
y1, . . . , y j , z1, . . . , zk such that the subgraph induced by u, x1, . . . , xi forms a Pi+1
(u, x1, . . . , xi ), the subgraph induced by u, y1, . . . , y j forms a Pj+1 (u, y1, . . . , y j ),
and the subgraph induced by u, z1, . . . , zk forms a Pk+1 (u, z1, . . . , zk), and there are
no other edges in Si, j,k . Thus, claw is S1,1,1, and Pk is isomorphic to e.g. S0,0,k−1.

DIM is solvable in polynomial time for S1,1,1-free graphs [6], for S1,2,3-free graphs
[9], and for S2,2,2-free graphs [8]. In [8], it is conjectured that for every fixed i, j, k,
DIM is solvable in polynomial time for Si, j,k-free graphs (actually, an even stronger
conjecture is mentioned in [8]); this includes Pk-free graphs for k ≥ 8. In [4], DIM is
solved in linear time for P7-free graphs.

In this paper we show that edge-weighted DIM can be solved in polynomial time
for P8-free graphs.

2 Definitions and Basic Properties

2.1 Basic Notions

Let G be a finite undirected graph without loops and multiple edges. Let V denote its
vertex set and E its edge set; let |V | = n and |E | = m. For v ∈ V , let N (v) := {u ∈
V | uv ∈ E} denote the open neighborhood of v, and let N [v] := N (v) ∪ {v} denote
the closed neighborhood of v. If xy ∈ E , we also say that x and y see each other, and
if xy /∈ E , we say that x and y miss each other. A vertex set S is independent inG if for
every pair of vertices x, y ∈ S, xy /∈ E . A vertex set Q is a clique inG if for every pair
of vertices x, y ∈ Q, x 	= y, xy ∈ E . For uv ∈ E let N (uv) := N (u) ∪ N (v)\{u, v}
and N [uv] := N [u] ∪ N [v].

For U ⊆ V , let G[U ] denote the subgraph of G induced by vertex set U . Clearly
xy ∈ E is an edge in G[U ] exactly when x ∈ U and y ∈ U ; thus, G[U ] will be often
denoted simply by U when that is clear in the context.
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Let A and B be disjoint sets of vertices of G. If a vertex from A sees a vertex from
B, we say that A and B see each other. If every vertex from A sees every vertex from
B then we denote this by A 1©B. In particular, if a vertex u /∈ B sees all vertices of B
then we denote this by u 1©B (in this case, u is called universal for B). If every vertex
from A misses every vertex from B, we say that A and B miss each other and denote
this by A 0©B. If for A′ ⊆ A, A′ 0©(A\A′) holds, we say that A′ is isolated in A.

As already mentioned, a chordless path Pk has k vertices, say v1, . . . , vk , and edges
vivi+1, 1 ≤ i ≤ k − 1. The length of Pk is k − 1. A chordless cycle Ck has k vertices,
say v1, . . . , vk , and edges vivi+1, 1 ≤ i ≤ k − 1, and vkv1. The length of Ck is k.

Let Ki denote the clique with i vertices. Let K4 − e or diamond be the graph with
four vertices and five edges, say vertices a, b, c, d and edges ab, ac, bc, bd, cd; its
mid-edge is the edge bc. A gem has five vertices, say, a, b, c, d, e, such that (a, b, c, d)

forms a P4 and e is universal for {a, b, c, d}. A butterfly has five vertices and six edges,
say, a, b, c, d, e and edges ab, ac, bc, cd, ce, de. The peripheral edges of the butterfly
are ab and de. A star is a graph formed by an independent set I plus one vertex (the
center of the star) which is universal for I ; in particular let us say that a star is trivial
if it is an edge or a single vertex, and is non-trivial otherwise.

We often consider an edge e = uv to be a set of two vertices; then it makes sense
to say, for example, u ∈ e and e ∩ e′ 	= ∅ for an edge e′. For two vertices x, y ∈ V ,
let distG(x, y) denote the distance between x and y in G, i.e., the length of a shortest
path between x and y in G. The distance between two edges e, e′ ∈ E is the length of
a shortest path between e and e′, i.e., distG(e, e′) = min{distG(u, v) | u ∈ e, v ∈ e′}.
In particular, this means that distG(e, e′) = 0 if and only if e ∩ e′ 	= ∅.

An edge set M ⊆ E is an induced matching if its members have pairwise distance
at least 2. Obviously, if M is a d.i.m. then M is an induced matching.

For an edge xy, let Ni (xy) denote the distance levels of xy:

Ni (xy) := {z ∈ V | distG(z, xy) = i}.

For a set F of graphs, a graph G is called F-free if G contains no induced subgraph
from F . A graph is hole-free if it is Ck-free for all k ≥ 5. A graph is weakly chordal if
it isCk-free and Ck-free for all k ≥ 5, i.e., the graph and its complement are hole-free.

If M is a d.i.m. then an edge is matched by M if it is either in M or shares a vertex
with some edge in M . Note that M is a d.i.m. in G if and only if it corresponds to a
dominating set (of vertices) in the line graph L(G) and an independent set of vertices
in the square L(G)2. The Maximum Weight Independent Set (MWIS) problem asks
for a maximum weight independent set in a given graph with vertex-weight function.
The DIM problem forG can be reduced to theMWIS problem for L(G)2 (see [3]). For
instance, in [5], it is shown that for weakly chordal graphsG, L(G)2 is weakly chordal,
and since MWIS can be solved in polynomial time for weakly chordal graphs [12],
DIM can be solved in polynomial time for weakly chordal graphs as well. Actually,
DIM can be solved in polynomial time even for hole-free graphs [2].

P8-free graphs having a d.i.m. are Ck-free for k ≥ 9 and Ck-free for k ≥ 6 (see
Corollary 1 below) but we do not yet have a proof that, using the reduction to L(G2),
DIM can be solved in polynomial time for P8-free graphs; our approach in this paper
is a direct one following the approach for P7-free graphs given in [4].
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2.2 Forbidden Subgraphs and Forced Edges

The subsequent observations are helpful (some of them are mentioned e.g. in [2,4]);
since we deal with the larger class of P8-free graphs instead of P7-free graphs and in
order to make this manuscript self-contained, we give all proofs where forbidding P8
plays a role.

Observation 1 ([2,4]) Let M be a d.i.m. in G.

(i) M contains at least one edge of every odd cycle C2k+1 in G, k ≥ 1, and exactly
one edge of every odd cycle C3, C5, C7 of G.

(ii) No edge of any C4 can be in M.
(iii) For each C6 either exactly two or none of its edges are in M.

Proof See Observation 2 in [4]. �
Since every triangle contains exactly one M-edge and no M-edge is in any C4, and
the pairwise distance of edges in any d.i.m. is at least 2, we obtain:

Corollary 1 If a graph G has a d.i.m. then G is K4-free, gem-free and Ck-free for
any k ≥ 6.

As a consequence of Observation 1 (ii), we give all edges in any C4 of G weight ∞.
Note that a d.i.m. of finite weight cannot contain any edge of a C4.

If an edge e ∈ E is contained in every d.i.m. of G, we call it a forced edge of G.

Observation 2 The mid-edge of any diamond in G and the two peripheral edges of
any induced butterfly are forced edges of G.

Note that in a graph with d.i.m., the set of forced edges is an induced matching. So
our algorithm solving the DIM problem on P8-free graphs has to check whether the
set of forced edges is an induced matching (and finally might be extended to a d.i.m.
of G). If M is an induced matching of already collected forced edges and edge vw is
a new forced edge, we can reduce the graph as follows:
Reduction-Step-(vw,M)

If M ∪ {vw} is not an induced matching then STOP—G has no d.i.m., otherwise
add vw to M , i.e., M := M ∪ {vw}, delete v and w and all edges incident to v and
w in G, and give all edges that were at distance 1 from vw in G weight ∞.

Obviously, the graph resulting from the reduction step is an induced subgraph of G.
In particular, edges with weight ∞ are not in any d.i.m. of finite weight in G.

Observation 3 ([4]) Let M ′ be an induced matching which is a set of forced edges in
G. Then G has a d.i.m. M if and only if after applying the reduction step to all edges
in M ′, the resulting graph has a d.i.m. M\M ′.

Subsequently, this approach will often be used. Note that after applying the Reduction
Step to all mid-edges of diamonds and all peripheral edges of butterflies in G, the
resulting graph is (diamond, butterfly)-free. By Corollary 1, a graph G having a d.i.m.
is K4-free. Thus, from now on, we can assume that G is (P8,K4, diamond, butterfly)-
free.
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3 The Structure of P8-Free Graphs with a Dominating Induced
Matching

Throughout this section, let G = (V, E) be a connected (P8, K4, diamond, butterfly)-
free graph having a d.i.m. M . Note that if G has a d.i.m. M and V (M) denotes the
vertex set of M then V \V (M) is an independent set, say I , i.e.,

V has the partition V = I ∪ V (M). (1)

3.1 The Distance Levels of an M-Edge xy in a P3

We first describe some general structure properties for the distance levels of an edge
in a d.i.m. Since G is (K4, diamond, butterfly)-free, we have:

Observation 4 For every vertex v of G, N (v) is the disjoint union of isolated vertices
and at most one edge. Moreover, for every edge xy ∈ E, there is at most one common
neighbor of x and y.

Since it is trivial to check whether G has a d.i.m. with exactly one edge, from now on
we can assume that |M | ≥ 2. Since G is connected and butterfly-free, we have:

Observation 5 If |M | ≥ 2 then there is an edge in M which is contained in a P3 of
G.

Let xy ∈ M be an M-edge for which there is a vertex r such that {r, x, y} induce a
P3 with edge r x ∈ E . We consider a partition into the distance levels Ni = Ni (xy),
i ≥ 1, with respect to the edge xy. By (1) and since we assume that xy ∈ M , clearly,
N1 ⊆ I and thus:

N1 is an independent set. (2)

Since G is P8-free and xy is contained in a P3 {r, x, y} of G, we obtain:

Nk = ∅ for k ≥ 6. (3)

Proof of (3) If N6 	= ∅ then there are vertices vi ∈ Ni , 2 ≤ i ≤ 6, such that
{v6, v5, v4, v3, v2} induce a chordless path with vivi+1 ∈ E for 2 ≤ i ≤ 5. If v2r ∈ E
then {v6, v5, v4, v3, v2, r, x, y}would induce a P8 inG. Thus, v2r /∈ E ; let v1 ∈ N1 be
a neighbor of v2. By (2), v1r /∈ E . Now, if v1x ∈ E then {v6, v5, v4, v3, v2, v1, x, r}
induce a P8 in G, and if v1x /∈ E then v1y ∈ E and thus, {v6, v5, v4, v3, v2, v1, y, x}
induce a P8 in G which is a contradiction. �

Subsequently, the principle of the proof of (3) will be applied in various cases
whenever a P8 has to be excluded.

Since xy ∈ M , no edge between N1 and N2 is inM . Since N1 ⊆ I and all neighbors
of vertices in I are in V (M), we have:

N2 is the disjoint union of edges and isolated vertices. (4)
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Let M2 denote the set of edges with both ends in N2 and let S2 = {u1, . . . , uk} denote
the set of isolated vertices in N2; N2 = V (M2) ∪ S2 is a partition of N2. Obviously:

M2 ⊆ M and S2 ⊆ V (M). (5)

If for xy ∈ M , an edge e ∈ E is contained in every dominating induced matching
M of G with xy ∈ M , we say that e is an xy-forced M-edge. The Reduction Step
for forced edges can also be applied for xy-forced M-edges (then, in the unsuccessful
case, G has no d.i.m. containing xy). We do this whenever an xy-forced M-edge is
found. The first example is the following one; obviously, by (5), we have:

Every edge in M2 is an xy-forced M-edge. (6)

Thus, from now on, we can assume that M2 = ∅, i.e., N2 = S2 = {u1, . . . , uk}.
For every i ∈ {1, . . . , k}, let u′

i ∈ N3 denote the M-mate of ui (i.e., uiu′
i ∈ M). Let

M3 = {uiu′
i : i ∈ {1, . . . , k}} denote the set of M-edges with one endpoint in S2 (and

the other endpoint in N3). Obviously, by (5) and the distance condition for a d.i.m. M ,
the following holds:

No edge with both ends in N3 and no edge between N3 and N4 is in M. (7)

As a consequence of (7) and the fact that every triangle contains exactly one M-edge
[see Observation 1 (i)], we have:

For every triangle abc with a∈N3, and b, c ∈ N4, bc ∈ M is an xy-forced M-edge.
(8)

This means that for the edge bc, the Reduction Step can be applied, and from now on,
we can assume that there is no such triangle abc with a ∈ N3 and b, c ∈ N4, i.e., for
every edge uv ∈ E in N4:

(N (u) ∩ N3) ∩ (N (v) ∩ N3) = ∅. (9)

According to (5) and the assumption that M2 = ∅ (recall N2 = {u1, . . . , uk}), let:
Tone := {t ∈ N3 : |N (t) ∩ N2| = 1};
Ti := Tone ∩ N (ui ), i ∈ {1, . . . , k};
S3 := N3\Tone.

By definition, Ti is the set of private neighbors of ui in N3 (note that u′
i ∈ Ti ), and

T1 ∪ · · · ∪ Tk is a partition of Tone, and Tone ∪ S3 is a partition of N3.

Lemma 1 The following statements hold:

(i) For all i ∈ {1, . . . , k}, Ti ∩ V (M) = {u′
i }.

(ii) For all i ∈ {1, . . . , k}, Ti is the disjoint union of vertices and at most one edge.
(iii) G[N3] is bipartite.
(iv) S3 ⊆ I , i.e., S3 is an independent vertex set.
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(v) If a vertex ti ∈ Ti sees two vertices in Tj , i 	= j , i, j ∈ {1, . . . , k}, then ui ti ∈ M
is an xy-forced M-edge.

Proof (i) Holds by definition of Ti and by the distance condition of a d.i.m. M .
(ii) Holds by Observation 4.
(iii) Follows by Observation 1 (i) since every odd cycle in G must contain at least

one M-edge, and by (7).
(iv) If v ∈ S3 := N3\Tone, i.e., v sees at least two M-vertices then clearly, v ∈ I , and

thus, S3 ⊆ I is an independent vertex set (recall that I is an independent vertex
set).

(v) Suppose that t1 ∈ T1 sees a and b in T2. Then, if ab ∈ E , u2, a, b, t1 induce a
diamond in G. Thus, ab /∈ E and now, u2, a, b, t1 induce a C4 in G; the only
possible M-edge for dominating t1a, t1b is u1t1, i.e., t1 = u′

1. �
Thus, by (v), from now on, we can assume that for every i, j ∈ {1, . . . , k}, i 	= j , any
vertex ti ∈ Ti sees at most one vertex in Tj .

Then let us split the problem of checking if a d.i.m. M with xy exists into two cases:
The case N4 = ∅ and the case N4 	= ∅.

4 The Case N4 = ∅
Throughout this section, we assume that N4 = ∅.
Lemma 2 The following statements hold:

(i) For every edge vw ∈ E, v,w ∈ N3, with vui ∈ E and wu j ∈ E, |{v,w} ∩
{u′

i , u
′
j }| = 1.

(ii) For every edge st ∈ E with s ∈ S3 and t ∈ Ti , t = u′
i holds, and thus ui t is an

xy-forced M-edge.

Proof (i) Since N4 = ∅ and vw /∈ M [by (7), N3 does not contain any M-edge],
vw has to be dominated by exactly one of the M-edges uiu′

i , u ju′
j .

(ii) By Lemma 1, S3 ⊆ I and thus, by (i), for the edge st with s ∈ S3, t = u′
i holds.�

From now on, we can assume that S3 is isolated in N3. This means that every edge
between N2 and N3 containing a vertex of S3 is dominated; thus, we can assume that
S3 = ∅. This means that for every t ∈ N3, there is exactly one i ∈ {1, . . . , k} such
that ui t ∈ E . Recall that N2 = S2 = {u1, . . . , uk}.

Let us observe that to check if a vertex setW ⊆ Tone may be such thatW ⊂ V (M)

(i.e., formed by the M-mates of some vertices of S2) and to check the implications of
this choice can be done by repeatedly applying forcing rules; the details are given in
the following procedure which is correct by the above and which can be executed in
polynomial time.
Procedure Extend[W-in-M]
GivenAvertex setW ⊆ Tone and the vertex setW ′ ⊆ S2∪Tone formed by the vertices
of those connected components of G[S2 ∪ Tone] containing W .
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Task Return a proof that G has no d.i.m. M with W ⊂ V (M), or return a partition
of Tone ∩ W ′ into the set Tone,Col of colored vertices (by black or white) and the set
Tone,Uncol of uncolored vertices such that:

(i) Tone,Col 0©Tone,Uncol

(ii) the set of black vertices of Tone,Col and the set S2,Col of their respective neighbors
in S2 induce a d.i.m. of G[S2,Col ∪ Tone,Col ], and

(iii) the set of white vertices of Tone,Col is that of vertices of G[S2,Col ∪ Tone,Col ]
which are not in such a d.i.m.

Comment Once assumed that W ⊂ V (M), the procedure colors vertices of Tone ∩W ′
which should be in V (M) black, and vertices of Tone ∩W ′ which should be in I white.

Step 1 Color all vertices of W black.
Step 2 Color some vertices of Tone ∩ W ′ either black or white by repeatedly
applying the following forcing rules:
(a) set X := ∅;
(b) Repeat

(b.1) take a colored vertex of (Tone ∩ W ′)\X , say v ∈ Ti ∩ W ′, and set
X := X ∪ {v};

(b.2) if v is black, then color all neighbors of v in Tone ∩ W ′ white, and color
all vertices of Ti\{v} white;

(b.3) if v is white, then color all neighbors of v in Tone ∩ W ′ black.
until there is no colored vertex in (Tone ∩ W ′)\X .

Step 3 If referring to Step 2, a vertex of Tone ∩ W ′ should change its color, i.e.,
it is colored white (black, respectively) while being black (white, respectively),
then return a proof that G has no d.i.m. M with t1 ∈ V (M). Otherwise, return a
partition of Tone ∩ W ′ according to the Task (of the procedure).

Let us say that Procedure Extend[W -in-M] is complete if it either returns a proof
that G has no d.i.m. M withW ⊂ V (M), or returns Tone,Uncol = ∅, and is incomplete
otherwise. Note that Procedure Extend[W -in-M] may be incomplete. Furthermore
note that a white vertex of Tone,Col may have a neighbor in S2\S2,Col .

Then let us focus on G[S2 ∪ Tone]. Only two cases are possible according to the
following Sects. 4.1 and 4.2:

4.1 Ti 0©Tj

4.2 Ti sees Tj for some 1 ≤ i < j ≤ k

4.1 There is No Edge Between Ti and Tj for 1 ≤ i < j ≤ k

In this case the problem of checking if M exists can be solved in polynomial time as
follows: For each vertex ti ∈ Ti , for i = 1, . . . , k, run Procedure Extend[W -in-M]
withW = {ti } and choose a minimum finite weight solution (if such a solution exists)
over t ∈ Ti . Note that Procedure Extend[W -in-M] with W = {ti } is complete (that
can be easily checked since the connected component of G[S2 ∪ Tone] containing ti
is G[{ui } ∪ Ti ]). Finally either return that G has no d.i.m. M with xy or return M .
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4.2 There is an Edge Between Ti and Tj for Some 1 ≤ i < j ≤ k

Assume that there is an edge ti t j ∈ E between ti ∈ Ti and t j ∈ Tj , for some
i, j ∈ {1, . . . , k}, i 	= j ; without loss of generality, let i = 1 and j = 2 and t1t2 ∈ E .
Let G ′ be the subgraph of G induced by the non-neighborhood of t1, t2.

Lemma 3 The following statements hold for every i ∈ {3, . . . , k} in G ′:

(i) Each edge ei in Ti misses each vertex in {T3, . . . , Tk}\{Ti }.
(ii) Each vertex ti ∈ Ti sees at most one vertex in {T3, . . . , Tk}\{Ti }.
Proof (i) Without loss of generality, suppose to the contrary that for an edge ti t ′i ∈ E

with ti , t ′i ∈ Ti , there is a vertex t j ∈ Tj with ti t j ∈ E . Then by Lemma 1 (iii),
t ′i t j /∈ E but now, the subgraph of G induced by t2, t1, u1, N1, x, y, u j , t j , ti , t ′i
contains a P8.

(ii) By Lemma 1 (v), we can assume that no vertex in Ti sees two vertices in Tj .
Without loss of generality, suppose to the contrary that there is a vertex ti ∈ Ti
which sees t j ∈ Tj and tq ∈ Tq , j 	= q. Then again by Lemma 1 (iii), t j tq /∈ E
but now, the subgraph of G induced by t2, t1, u1, N1, x, y, uq , tq , ti , t j contains
a P8. �

Let Z be the graph with nodes {z3, . . . , zk}, where zi corresponds to Ti for i ∈
{3,. . . , k}, such that for i 	= j , zi z j is an edge in Z if and only if Ti sees Tj in
G. Let us say that:

(i) Ti forms a singleton-type in G[H ] if the node of Z corresponding to Ti is an
isolated node of Z .

(ii) Ti and Tj form an edge-type in G[H ] if zi z j is an isolated edge of Z .
(iii) Ti , Tj1 , . . . , Tjh form a star-type in G[H ] if the nodes of Z corresponding

to Ti , Tj1 , . . . , Tjh form an isolated non-trivial star of Z with center Ti , for
i, j1, . . . , jh ∈ {3, . . . , k}. Let

T ′
i := {ti ∈ Ti : ti sees an element of {Tj1, . . . , Tjh }} and

T ′
i, j := {ti ∈ Ti : ti sees an element of Tj } for j ∈ { j1, . . . , jh}.

Lemma 4 Each component of Z in G ′ is either a singleton or an edge or a non-trivial
star.

Proof If for all i ∈ {3, . . . , k}, Ti sees at most one element of {T3, . . . , Tk}\{Ti },
then the components of Z are either singletons or edges, and Lemma 4 follows. Thus
assume that there is an i ∈ {3, . . . , k} such that Ti sees more than one element of
{T3, . . . , Tk}\{Ti }, say Ti sees Tj1 , . . . , Tjh , for some { j1, . . . , jh} ⊆ {3, . . . , k}\{i}
with h ≥ 2. Let us prove that the nodes of Z corresponding to Ti , Tj1 , . . . , Tjh induce
in Z an isolated non-trivial star with center Ti ; that will imply Lemma 4.

Let T ′
i and T

′
i, j be as defined in (iii) above. Then T

′
i = T ′

i, j1
∪ . . .∪T ′

i, jh
is a partition

of T ′
i by Lemma 3 (ii). Moreover T ′

i misses Ti\T ′
i by Lemma 3 (i).

Notation: For a clear reading let us write j1 = ξ and j2 = η. �
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Claim 1 T ′
i ⊂ I .

Proof By contradiction assume that a vertex from T ′
i is in V (M), say a vertex ti,ξ ∈

T ′
i,ξ without loss of generality, i.e., ti,ξ is the M-mate of ui . Then T ′

i, j ⊂ I for all
j ∈ { j2, . . . , jh} by Lemma 1 (i). By definition of T ′

i,ξ , ti,ξ sees a vertex t ′ξ ∈ Tξ .
Then, since ti,ξ ∈ V (M), we have t ′ξ ∈ I . Then by Lemma 1 (i) there is a vertex
tξ ∈ Tξ such that tξ ∈ V (M), namely the M-mate u′

ξ of uξ : In particular by Lemma 3
(i) we derive that t ′ξ misses tξ .

On the other hand by definition of T ′
i,η, a vertex ti,η ∈ T ′

i,η sees a vertex t ′η ∈ Tη.
Then since ti,η ∈ I , one has t ′η ∈ V (M), i.e., t ′η is the M-mate u′

η of uη: In particular
by Lemma 3 (i) we derive that ti,η misses ti,ξ but then, by Lemma 3 (ii) and by the
above, uη, t ′η, ti,η, ui , ti,ξ , t ′ξ , uξ , tξ induce a P8. This shows Claim 1. �
Claim 1 implies: Ti\T ′

i 	= ∅ and contains the M-mate of ui by Lemma 1 (i); each
vertex of T ′

i, j , for j ∈ { j1, . . . , jh}, sees exactly one vertex of Tj , namely the M-mate
u′
j of u j (in particular all vertices of T ′

i, j have the same neighborhood in Tj ).

Claim 2 The elements of {Tj1, . . . , Tjh } miss each other.

Proof Without loss of generality, by symmetry let us only show that T ′
ξ misses T ′

η. By
contradiction assume that there is an edge t ′ξ t ′η between T ′

ξ and T ′
η. Let ti,η ∈ T ′

i,η and
let tη ∈ T ′

η be the M-mate of uη. Then ti,η sees tη (by the above) and consequently:
tη 	= t ′η by Lemma 3 (ii), any ti,ξ ∈ T ′

i,ξ misses t ′η since they are both in I , tη
misses t ′η by Lemma 3 (i), and finally ti,ξ and tη miss t ′ξ by Lemma 3 (ii). Then
uξ , t ′ξ , t ′η, uη, tη, ti,η, ui and any vertex of Ti\T ′

i induce a P8. This completes the proof
of Claim 2. �
Claim 3 No element of {Ti , Tj1 , . . . , Tjh } sees any element of {T3, . . . , Tk}\
{Ti , Tj1 , . . . , Tjh }.
Proof The fact holds true for Ti by construction. Without loss of generality by sym-
metry we only need to show that Tη misses Tζ , where ζ ∈ {3, . . . , k}\{i, j1, . . . , jh}.
Suppose to the contrary that there is an edge t ′ηt ′ζ between Tη and Tζ . Let ti,η ∈ Ti,η
and let tη ∈ Tη be the M-mate of uη. Then ti,η sees tη (by the above) and consequently:
tη 	= t ′η by Lemma 3 (ii), ti,η misses t ′η since they are both in I , tη misses t ′η by Lemma 3
(i) , and finally ti,η and tη miss t ′ζ by Lemma 3 (ii). Then uζ , t ′ζ , t ′η, uη, tη, ti,η, ui and
any vertex of Ti\T ′

i induce a P8. This completes the proof of Claim 3. �
Now Claims 1, 2, and 3 imply that the nodes of Z corresponding to Ti , Tj1 , . . . , Tjh
induce an isolated non-trivial star in Z . Thus Lemma 4 follows.

According to Lemma 4, let us focus on a connected component ofG[{u3, . . . , uk}∪
T3∪. . .∪Tk], say Q = G[{ui , u j1 , . . . , u jh }∪Ti∪Tj1∪· · ·∪Tjh ], with Ti , Tj1 , . . . , Tjh
inducing a (trivial or non-trivial) star in Z with center Ti (recall that the cardinality of
the family {Tj1, . . . , Tjh } may be even equal to 0 or to 1).

Then let us observe that, to compute a minimum weight d.i.m. of Q (if it exists),
say M ′, with {ui , u j1 , . . . , u jh } ∈ V (M ′), and with a fixed vertex ti ∈ Ti being in
V (M ′) (i.e., being the M-mate of ui ), can be done by the following procedure which
is correct by the above and which can be executed in polynomial time.
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Step 1 Run Procedure Extend[W -in-M] with W = {ti }.
Step 2 If it returns Tone,Uncol = ∅ (i.e., if it is complete) then we are done.
Step 3 If it is incomplete and returns a partition of Tone ∩ W ′, namely {Tone,Col ,

Tone,Uncol}, with Tone,Uncol 	= ∅ then we can easily color the vertices of Tone,Uncol

such that black vertices are finally the M-mates of {ui , u j1 , . . . , u jh }: in fact by
construction and by the above, we have Tone,Uncol ⊆ Tj1 ∪ . . . ∪ Tjh , and in
particular, for each j ∈ { j1, . . . , jh}, Tone,Uncol ∩ Tj has a co-join to Tone,Col ∪
(Tone,Uncol\Tj ) and induces a subgraph with at most one isolated edge e j = ab
(say with w(au j ) ≤ w(bu j )) and isolated vertices; now, if ab exists then we
color vertex a black, and if ab does not exist then we color exactly one vertex
t j ∈ Tone,Uncol ∩ Tj black such that w(t j u j ) ≤ w(tu j ) for t ∈ Tone,Uncol ∩ Tj .

Then let us summarize the above (recall that without loss of generality, there is an
edge between T1 and T2). In this case the problem of checking if a d.i.m. M exists can
be solved in polynomial time by Lemma 4 as follows:

(a) For a vertex t1 ∈ T1 such that t1 has a neighbor t2 ∈ T2, and for each vertex
t ′2 ∈ T2 such that t ′2 is a non-neighbor of t1 in T2 (such a non-neighbor may not
exist), do as follows:

(a.1) Run Procedure Extend[W -in-M] with W = {t1, t ′2}. If it returns a partition
of Tone ∩ W ′, namely {Tone,Col , Tone,Uncol}, then go to Step (a.2). Note that
Tone,Uncol ⊆ T3∪. . .∪Tk , and thatmoregenerallyG[(S2\S2,Col)∪Tone,Uncol ]
is a subgraph of G[{u3, . . . , uk} ∪ T3 ∪ . . . ∪ Tk\(N (t1) ∪ N (t2))].

(a.2) For each connected component Q of G[(S2\S2,Col) ∪ Tone,Uncol ] do as fol-
lows: for each q ∈ Q, compute a minimum finite weight d.i.m. of Q (if it
exists), say M ′, with {ui , u j1 , . . . , u jh } ∈ V (M), and with q being in V (M ′),
as shown above, and choose a minimum weight solution (if a solution exists)
over q ∈ Q.

(a.3) Obtain a minimum finite weight d.i.m. containing t1 and t ′2 by collecting
those solutions found in steps (a.1)–(a.2) (if those solutions exist).

(b) Analogously, for a vertex t2 ∈ T2 such that t2 has a neighbor t1 ∈ T1, and for
each t ′1 ∈ T1 such that t ′1 is a non-neighbor of t2 in T1 (such a non-neighbor may
not exist), proceed as in steps (a.1), (a.2), (a.3), by symmetry.

(c) Choose a minimum finite weight solution (if such a solution exists) among those
found in steps (a)–(b) respectively for (t1, t ′2) ∈ T1×T2 and for (t ′1, t2) ∈ T1×T2
as defined above and return M , or return that G has no d.i.m. M with xy.

5 The Case N4 �= ∅
The aim of this section is to reduce the graph step by step so that finally N4 = ∅.

5.1 Components of N4

The aim of this subsection is to reduce the graph so that N4 becomes an independent
set. For showing this, we need several lemmas:

Lemma 5 N4 is P3-free.
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Proof Suppose to the contrary that there is a P3 in G with vertices a, b, c ∈ N4 and
edges ab and bc. Let a′ be a neighbor of a in N3. This proof follows the principle of
the proof of (3). Let us recall that {r, x, y} induces a P3 with edge r x . Then, to avoid
a P8 in the subgraph induced by c, b, a, a′, N2 ∪ N1, x, y (in detail, denoted as a′′
a neighbor of a′ ∈ N2, and denoted as r ′′ a neighbor of a′′ in N1, the P8 would be
induced by c, b, a, a′, a′′, and: either r ′′, x, y if r ′′ = r , or r ′′, x, r if r ′′ 	= r ), a′ sees
either b or c but not both since G is diamond-free.
Case 1 a′ sees c (and misses b).
Then a′, a, b, c induce a C4 in G, and thus, by Observation 1 (ii), either a′, b ∈ V (M)

(and a, c ∈ I ), or a, c ∈ V (M) (and a′, b ∈ I ).
Assume first that a′, b ∈ V (M) (and a, c ∈ I ). Let b∗ be the M-mate of b. Since

by (7), no edge between N3 and N4 is in M , it follows that b∗ ∈ N4 ∪ N5 but then to
avoid a P8 (in the subgraph induced by b∗, b, a, a′, N2 ∪ N1, x, y), a sees b∗, and to
avoid a P8 (in the subgraph induced by b∗, b, c, a′,N2 ∪ N1, x, y), c sees b∗ but now
a, b, b∗, c induce a diamond which is a contradiction.

Thus, assume that a, c ∈ V (M) (and a′, b ∈ I ). Let a∗, c∗ respectively be the
M-mates of a and c. Since by (7), no edge between N3 and N4 is in M , it follows that
a∗, c∗ ∈ N4 ∪ N5. Let b′ be a neighbor of b in N3; clearly, b′ 	= a′. Then b′ ∈ V (M)

(since b ∈ I ). Then b′ misses c, c∗, and thus a P8 arises (in the subgraph induced
by c∗, c, b, b′, N2 ∪ N1, x, y if bc∗ /∈ E or in the subgraph induced by a∗, a, b, b′,
N2 ∪ N1, x, y if bc∗ ∈ E ; in that case, ba∗ /∈ E since G is butterfly-free). Thus, Case
1 is impossible.
Case 2 a′ sees b (and misses c).
Let c′ be a neighbor of c in N3. By symmetry with respect to Case 1, c′ sees b
(and misses a). Then the subgraph induced by a′, a, b, c, c′ contains a butterfly or a
diamond. Thus, also Case 2 is impossible which completes the proof of Lemma 5. �
Recall that a graph is P3-free if and only if it is the disjoint union of complete graphs.
Since we can assume that G is K4-free, we have:

Corollary 2 The components of N4 are triangles, edges or isolated vertices.

5.1.1 Triangles in N4

Lemma 6 Let H be a triangle component of N4 with vertices a, b, c, edges ab, ac, bc,
and let A := N (a) ∩ N3, B := N (b) ∩ N3, and C := N (c) ∩ N3. Then the following
statements hold:

(i) A, B,C are pairwise disjoint independent sets.
(ii) H 0©N5.
(iii) (A ∪ B ∪ C) ∩ S3 = ∅.
(iv) There exists j, 1 ≤ j ≤ k, such that A ∪ B ∪ C ⊆ Tj .

Proof (i) Holds by Observation 4 since G is (K4, diamond, butterfly)-free.
(ii) Without loss of generality, suppose to the contrary that there is a neighbor of c

in N5, say z. Then z misses b, otherwise a diamond or a K4 arises. Let b′ be a
neighbor of b in N3. Then by (i), b′ misses c but now, a P8 arises (with z, c, b, b′,
N2 ∪ N1 and a P3 containing x, y).
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(iii) Without loss of generality, suppose to the contrary that there is a vertex a′ ∈
A ∩ S3, say a′u1 ∈ E and a′u2 ∈ E . Let b′ ∈ B and c′ ∈ C . If b′ ∈ S3 and
c′ ∈ S3 as well, then a, b, c ∈ V (M) (recall that by Lemma 1 (iv), S3 ⊆ I ).
Thus, assume that b′ /∈ S3, i.e., b′ has only one neighbor in u1, . . . , uk and thus,
b′ misses u1 or u2, say b′u1 /∈ E . Then if a′b′ /∈ E , the subgraph induced by
b′, b, a, a′, u1, N1, x, y contains a P8, and if a′b′ ∈ E , the subgraph induced by
c, b, b′, a′, u1, N1, x, y contains a P8 which is a contradiction.

(iv) The proof is similar to that of (iii); without loss of generality, let a′ ∈ A see u1
and suppose to the contrary that there is a vertex b′ ∈ B missing u1. Then if
a′b′ /∈ E , the subgraph induced by b′, b, a, a′, u1, N1, x, y contains a P8, and if
a′b′ ∈ E , the subgraph induced by c, b, b′, a′, u1, N1, x, y contains a P8 which
is a contradiction. �

As in Lemma 6, for a triangle aibi ci in N4 let Ai (Bi ,Ci , respectively) denote the
neighborhood of ai (of bi , ci , respectively) in N3.

Corollary 3 There exists j, 1 ≤ j ≤ k, such that for all triangles aibi ci in N4,
Ai ∪ Bi ∪ Ci ⊆ Tj .

Proof Let a1b1c1 and a2b2c2 be two triangles in N4 such that, without loss of gener-
ality, A1 ∪ B1 ∪ C1 ⊆ T1. If there is a vertex in A2 ∪ B2 ∪ C2\T1, say a′

2 ∈ A2 with
a′
2u1 /∈ E then by Lemma 6, a P8 arises. Thus, A2 ∪ B2 ∪ C2 ⊆ T1 holds as well. �
From now on, without loss of generality, suppose that for every triangle aibi ci in N4,
Ai ∪ Bi ∪ Ci ⊆ T1. Assume that for the triangle a1b1c1, the M-edge is b1c1 ∈ M .
Then A1 = {u′

1} since otherwise, if there is a′ ∈ A1 with a′ 	= u′
1 then the edge

aa′ ∈ E is not dominated by M . Since every triangle contains exactly one M-edge,
this implies that one of the sets A2, B2,C2 is equal to {u′

1}, say A2 = {u′
1} which

forces the M-edge b2c2 ∈ M and similarly for every triangle aibi ci in N4.
Thus, if there is a triangle in N4, we have to consider three possible cases according

to the M-edges in the triangles (which in each of the cases can be considered as
xy-forced).

5.1.2 Edges in Triangle-Free N4

From now on, we can assume that N4 is triangle-free. If component H in N4 is not a
triangle then by Lemma 5, H is either a vertex or an edge.

Lemma 7 Let H be a component of N4 and assume that H 0©N5. Then we have:

(i) If H = {h} then h ∈ I .
(ii) If H = {a, b} with ab ∈ E then ab ∈ M and thus, ab is an xy-forced M-edge.

Proof The lemma follows by (7)—none of the edges in N3 and between N3 and N4
is in M . �
From now on, we can assume that N4 is triangle-free and every edge in N4 has a
neighbor in N5. If uv is an edge in N4 then by (9), we can assume that u and v do not
have a common neighbor in N3; let u′ ∈ N3 (v′ ∈ N3, respectively) be a neighbor of
u (of v, respectively).
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Lemma 8 Let edge ab ∈ E be a component H in N4 (i.e., {a, b} 0©(N4\{a, b})) and
let c ∈ N5 be a neighbor of ab. Let A := N (a) ∩ N3 and B := N (b) ∩ N3. Then the
following statements hold:

(i) Any neighbor c ∈ N5 of ab must see both of a and b.
(ii) A ∩ B = ∅ and A, B are independent sets.
(iii) For all a′ ∈ A and b′ ∈ B, N (a′) ∩ N2 = N (b′) ∩ N2.
(iv) If there is a′ ∈ A with |N (a′) ∩ N2| ≥ 2 (there is b′ ∈ B with |N (b′) ∩ N2| ≥ 2,

respectively), then A 0©B and ab is an xy-forced M-edge.
(v) Otherwise, if for all a′ ∈ A, |N (a′)∩N2| = 1 and for all b′ ∈ B, |N (b′)∩N2| = 1

then there is an index i, 1 ≤ i ≤ k such that A ∪ B ⊆ Ti .

Proof (i) If a neighbor c ∈ N5 of ab sees only one of a and b, say bc ∈ E and
ac /∈ E , then there is a P8 in the subgraph induced by c, b, a, a′, N2 ∪ N1 and
a P3 containing x, y. Thus, we can assume that each edge component in N4 is
contained in such a triangle with a common neighbor in N5.

(ii) By (9), we can assume that a and b do not have a common neighbor in N3.
Moreover, since a and b have the common neighbor c ∈ N5, a common neighbor
of a and b in N3 would lead to a diamond. Thus, A ∩ B = ∅. Moreover, A and
B are independent sets since otherwise, there is a butterfly in G.

(iii) Without loss of generality, suppose to the contrary that a′ ∈ A sees u1 and
b′ ∈ B misses u1. Then if a′b′ ∈ E , a P8 arises in the subgraph induced by
c, b, b′, a′, u1, N1, x, y, and if a′b′ /∈ E , a P8 arises in the subgraph induced by
b′, b, a, a′, u1, N1, x, y.

(iv) Without loss of generality, assume that a′ ∈ A sees u1 and u2. Then by (iii) each
vertex of A ∪ B sees u1 and u2. Then A 0©B, since otherwise a diamond arises.
Moreover, since {u1, a′, u2, b′} induce a C4, a′ 	= u′

1 and a′ 	= u′
2, and thus,

for the C5 induced by {u1, a′, b′, a, b} (with b′ ∈ B), exactly one edge is in M
(recall Observation 1 (i) for C5). Then, since a′, b′ ∈ I (as they are in S3), the
only possible way is that ab ∈ M .

(v) It follows by statement (iii). �
According to Lemma 8 (iv)–(v), in what follows let us assume that, for any triangle
abc with an edge ab in N4 and c ∈ N5, A ∪ B ⊆ Tj for some index j , 1 ≤ j ≤ k.

Lemma 9 Let a1b1 and a2b2 be distinct edge components in N4 such that a1b1c1
and a2b2c2 are triangles with c1, c2 ∈ N5, and denote by Ai (Bi , respectively) the
neighborhood of ai (bi , respectively), i = 1, 2, in N3. Then there is an index j, 1 ≤
j ≤ k such that A1 ∪ B1 ∪ A2 ∪ B2 ⊆ Tj .

Proof Clearly, c1 	= c2 since otherwise there is a butterfly in G. Now, if there are two
such triangles, say a1b1c1 and a2b2c2 such that without loss of generality, there are
a′
1 ∈ A1 with u1a′

1 ∈ E and a′
2 ∈ A2 with u2a′

2 ∈ E then a P8 arises. �
Let {a1b1c1, . . . , a�b�c�}, � ≤ m, be the set of all triangles with an edge aibi in N4
and ci ∈ N5. As above, denote by Ai (Bi , respectively) the neighborhood of ai (bi ,
respectively), in N3.

Without loss of generality, assume that u1 is a common N2-neighbor of Ai and Bi ,
i ∈ {1, . . . , �}. Now there are at most n (where n = |V |) possible cases for u1u′

1 ∈ M
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and the M-edges in the triangles according to the property whether the M-mate u′
1

of u1 is in A1 ∪ B1 ∪ . . . ∪ A� ∪ B� or not (which implies the other M-edges in the
triangles):

Corollary 4 (i) If for i ∈ {1, . . . , �} and for a′
i ∈ Ai , u1a′

i ∈ M, then:
– for all j such that a′

i /∈ A j and a′
i /∈ Bj , it follows that a j b j ∈ M;

– for all j such that a′
i ∈ A j and a′

i /∈ Bj , it follows that b j c j ∈ M;
– for all j such that a′

i /∈ A j and a′
i ∈ Bj , it follows that a j c j ∈ M.

Likewise, by symmetry, if for i ∈ {1, . . . , �} and for b′
i ∈ Bi , u1b′

i ∈ M, the
corresponding implications follow.

(ii) If for all i ∈ {1, . . . , �} and for all (a′
i , b

′
i ) ∈ Ai × Bi , neither u1a′

i ∈ M nor
u1b′

i ∈ M then for all i ∈ {1, . . . , �}, ai bi ∈ M.

Subsequently, we can assume that N4 is an independent set.

5.2 Components of N5

Throughout this subsection, let H be a component in N5. Recall that we can assume
that N4 is an independent set.

Lemma 10 The following statements hold:

(i) For every neighbor u ∈ N4 of any vertex of H, u 1©H holds.
(ii) H is either a single vertex or an edge.

Proof (i) It follows since otherwise a P8 arises (with a P3 containing x, y).
(ii) It follows by statement (i) and since G is (diamond, K4)-free. �
Now we have two cases which will be examined in the following subsections.

5.2.1 H is an Edge, Say h1h2

Lemma 11 Let h1h2 ∈ E be an edge in N5, let c ∈ N4 be a common neighbor of
h1, h2 and let N (c) ∩ N5 contain another vertex h /∈ {h1, h2}. Then:
(i) N (c) ∩ N5 is formed by the disjoint union of vertices and edge h1h2 ∈ E, and is

isolated in N5.
(ii) If without loss of generality, w(h1c) ≤ w(h2c) then h1c ∈ M is an xy-forced

M-edge.

Proof (i) By Observation 4, N (c) ∩ N5 is formed by the disjoint union of vertices
and at most one edge, namely h1h2 ∈ E .

For showing that N (c) ∩ N5 is isolated in N5, suppose to the contrary that there is
an edge between N (c) ∩ N5 and N (d) ∩ N5 for some d ∈ N4, d 	= c. Then there are
h ∈ N (c) ∩ N5 and h′ ∈ (N (d)\N (c)) ∩ N5 such that hh′ ∈ E . Then, by Lemma 10
(i), ch′ ∈ E which is a contradiction.

(ii) By Observation 1 (i), any triangle contains exactly one M-edge. We claim that
the M-edge in the triangle h1h2c must be either h1c or h2c: Suppose to the
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contrary that h1h2 ∈ M . Then in order to dominate the edge hc, we need another
neighbor c′ ∈ N4 of h such that c′h ∈ M (clearly, cc′ /∈ E). Now for any neighbor
d ∈ N3 of c, d sees c′, since otherwise a P8 arises (with c′, h, c, d, N2 ∪ N1 and
a P3 containing x, y) but then d, c, h, c′ induce a C4 with hc′ ∈ M which is a
contradiction to Observation 1 (ii). Thus, either h1c ∈ M or h2c ∈ M and by the
weight condition we can assume that h1c ∈ M is an xy-forced M-edge. �

From now on, we can assume that for every v ∈ N4, N (v)∩ N5 is either an edge or an
independent set. Subsequently, we first consider the case when N (v) ∩ N5 is an edge.

Lemma 12 The following statements hold:

(i) |N (H) ∩ N4| = 1, say N (H) ∩ N4 = {c}.
(ii) N (c) ∩ N3 is an independent set.

Proof (i) By Lemma 10 (i), N (h1) ∩ N4 = N (h2) ∩ N4. Let c ∈ N (h1) ∩ N4. If h1
has another neighbor c′ 	= c in N4 then by Lemma 10 (i) (and by the assumption
that N4 is an independent set), c′h2 ∈ E , and thus h1, h2, c, c′ induce a diamond
which is a contradiction.

(ii) It follows by Observation 4 since otherwise, there is a butterfly in G. �
Without loss of generality assume that w(h1c) ≤ w(h2c). Then let:

D := N (c) ∩ N3 (then by Lemma 12 (ii), D is an independent set);
Di := Ti ∩ D, for i ∈ {1, . . . , k}.

Lemma 13 If D ∩ S3 	= ∅ or |Di | ≥ 2 for some i ∈ {1, . . . , k}, then h1c ∈ M is an
xy-forced M-edge.

Proof First assume that D ∩ S3 	= ∅: Since S3 ⊆ I by Lemma 1 (iv), it follows that
c ∈ V (M), and then since h1h2c is a triangle the assertion follows.

If |Di | ≥ 2 for some i ∈ {1, . . . , k} then for every d ∈ Di , the edges uid belong to
a C4; then, since ui ∈ V (M), by Observation 1 (ii) it follows that Di ⊆ I , and then
c ∈ V (M), and since h1h2c is a triangle, Lemma 13 has been shown.

According toLemma13, inwhat follows let us assume that D∩S3 = ∅ (i.e., D ⊆ Tone),
and that |Di | ≤ 1 for all i ∈ {1, . . . , k}.

Let {a1b1c1, . . . , a�b�c�}, be the set of all triangles with ai ∈ N4 and bi , ci ∈ N5.
Without loss of generality, let w(aibi ) ≤ w(ai ci ). Clearly, ai 	= a j for i 	= j since
otherwise there is a butterfly in G, and aia j /∈ E since we can assume that N4 is an
independent set.

Similarly as for triangles in N4 and for triangles with an edge in N4, we are going
to show that there are only polynomially many possible cases for M-edges in these
triangles. Clearly, either aibi ∈ M or bi ci ∈ M since aibi ci is a triangle, bi ci is
a component in N5 having exactly one neighbor in N4, namely ai , and w(aibi ) ≤
w(ai ci ).

Let di denote a neighbor of ai in N3. By Lemma 13, we can assume that every di
sees only one of u1, . . . , uk .
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Lemma 14 Let a1b1c1 and a2b2c2 be triangles as above with b1, b2, c1, c2 ∈ N5,
and denote by di a neighbor of ai , i = 1, 2, in N3. If d1 ∈ T1 and d2 ∈ T2 then
d1, d2, a1, a2 induce a C4 in G.

Proof First let us show that d1d2 /∈ E . Assume to the contrary that d1d2 ∈ E . Then
d2 misses a1, since otherwise a butterfly arises. Let us recall that {r, x, y} induces a
P3 with edge r x . Then there is a P8 with b1, a1, d1, d2, u2, N1 and x, y which is a
contradiction. Thus d1d2 /∈ E .

Since there is no P8 in the subgraph induced by b1, a1, d1, u1, N1, u2, d2, a2, b2, it
follows that either d1a2 ∈ E or d2a1 ∈ E .We claim that d1a2 ∈ E if and only if d2a1 ∈
E : In fact, if d1a2 ∈ E and d2a1 /∈ E , then a P8 is induced by b1, a1, d1, a2, d2, u2, a
vertex of N1, and x or y; the other implication can be shown similarly by symmetry.
Then a C4 is induced by d1, d2, a1, a2. �
Now the C4 leads to the fact that a1b1 ∈ M if and only if a2b2 ∈ M . We say that
two triangles a1b1c1 and a2b2c2 are C4-connected if there are d1, d2 as above such
that d1, d2, a1, a2 induce a C4 in G, and we say that a set of such triangles is a C4-
connected component if there is a sequence of suchC4-connected pairs reaching all of
them. Obviously, for such a component, there are only two possibilities for M-edges.

Then let us focus on triangles which are not in such a C4-connected component.
Similarly as for Lemma 9, we claim:

Lemma 15 Let a1b1c1 and a2b2c2 be triangles as above with b1, b2, c1, c2 ∈ N5,
and denote by di a neighbor of ai , i = 1, 2, in N3. Assume that a1b1c1 and a2b2c2
are not C4-connected. Then there is an index j, 1 ≤ j ≤ k such that d1, d2 ∈ Tj .

Proof If there are two such triangles a1b1c1 and a2b2c2 such that d1, d2 do not have a
common neighbor in N2, say without loss of generality, u1d1 ∈ E and u2d2 ∈ E but
u1d2 /∈ E and u2d1 /∈ E then a P8 arises. �
Let {a1b1c1, . . . , a�b�c�}, be the set of all triangles, which are not in a C4-connected
component, with an edge bi ci in N5, and let Ai be the neighborhood of ai in N3.
Assume without loss of generality thatw(aibi ) ≤ w(ai ci ). Without loss of generality,
assume that u1 is the only N2-neighbor of Ai , i ∈ {1, . . . , �}. Now there are at most
n (where n = |V |) possible cases for u1u′

1 ∈ M and the M-edges in the triangles:

Corollary 5 (i) If for i ∈ {1, . . . , l} and for di ∈ Ai , u1di ∈ M then for all j such
that di ∈ A j it follows that b j c j ∈ M, and for all j such that d j /∈ A j it follows
that a j b j ∈ M.

(ii) If for all i ∈ {1, . . . , �} and for all di ∈ Ai , u1di /∈ M then for all i ∈ {1, . . . , �},
a j b j ∈ M.

Subsequently, we can assume that N5 is an independent set.

5.2.2 H is a Single Vertex, Say h

Lemma 16 If |N (h) ∩ N4| ≥ 2 then h ∈ I .
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Proof Let us recall that N (h)∩N4 is an independent set. Let a, b ∈ N (h)∩N4, a 	= b,
and let c ∈ N3 be a neighbor of a. Then bc ∈ E since otherwise a P8 with b, h, a, c,
N2 ∪ N1 and x, y arises. This holds for every pair of neighbors a, b ∈ N (h) ∩ N4 of
h. Thus every edge incident to h is in a C4, i.e., h ∈ I . �
Lemma 17 Assume that |N (h) ∩ N4| = 1, say N (h) ∩ N4 = {v4}. Then v4v5 ∈ M is
an xy-forced M-edge for some v5 ∈ N (v4) ∩ N5 having exactly one neighbor in N4,
depending on the best alternative.

Proof Since we can assume now that N5 is an independent set, since by (7) no edge
between N3 and N4 is in M , since by Lemma 16, v4u /∈ M for every u ∈ N5
having more than one neighbor in N4, and since v4 is the only neighbor of h in N4, it
follows that v4v5 ∈ M for some v5 ∈ N (v4) ∩ N5 having exactly one neighbor in N4
(depending on the best alternative; possibly h = v5) since otherwise, the edge v4h is
not dominated. �
Thus, from now on, we can assume that every vertex of N5 has more than one neighbor
in N4, i.e., N5 ⊂ I by Lemma 16.

Lemma 18 No vertex of N5 has more than one neighbor in N4, i.e., N5 = ∅.
Proof Suppose to the contrary that |N (h)∩N4| ≥ 2 for h ∈ N5. As shown in the proof
of Lemma 16, there is a vertex c ∈ N3 such that c sees every vertex of N (h) ∩ N4.
Thus every edge incident onto h is in a C4 (and thus not in M). Then, since N5 ⊂ I
and since by (7) no edge between N3 and N4 is in M , the edges of such C4’s are not
dominated which is a contradiction. �
Thus, from now on, we can assume that N5 = ∅ and N4 is an independent set.

Lemma 19 If w ∈ N4 and w′ ∈ N3 is a neighbor of w then w′ is an M-mate u′
i of

some ui , and thus, every w ∈ N4 leads to xy-forced M-edges.

Proof Since we can assume that N5 = ∅, N4 is an independent set and there is no
M-edge in N3, edges between N3 and N4 must be dominated by M-edges uiu′

i . The
only possible way is that every neighbor w′ ∈ N3 of w ∈ N4 is an M-mate u′

i of some
ui . �
From now on, we can assume that N4 = ∅.

6 A Polynomial-Time Algorithm for DIM on P8-Free Graphs

In this section let us describe a polynomial-time algorithm to solve DIM on P8-free
graphs. The main part of the algorithm is simple: For every edge xy in a P3 of G apply
the subsequent procedure DIM-with-xy, which either returns a proof that G has no
d.i.m. with xy or returns a minimum (finite) weight d.i.m. of G with xy (by the results
introduced above). Note that every possible d.i.m. M has to be checked whether it is
really a d.i.m.; this can be done in linear time for each candidate M (see [4]).
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Procedure DIM-with-xy

Given A connected (P8, K4,diamond,butterfly)-free G = (V, E) with edge weights,
and an edge xy ∈ E of finite weight which is part of a P3 in G.
Task Return a proof that G has no d.i.m. M with xy ∈ M (STOP with failure), or
return a d.i.m. M with xy ∈ M of finite minimum weight (STOP with success).

1. Set M := {{x, y}}. Determine the distance levels Ni = Ni (xy), 1 ≤ i ≤ 5, with
respect to xy.

2. Check if N1 is an independent set [see condition (2)] and N2 is the disjoint union
of edges and isolated vertices [see condition (4)]. If not, then STOP with failure.

3. For the set M2 of edges in N2, apply the Reduction Step for every edge in M2
correspondingly.Moreover, apply the Reduction Step for each edge bc according
to condition (8) and then for each edge ui ti according to Lemma 1 (v).

4. If N4 	= ∅ then, using the results of Sects. 5.1 and 5.2 according to the xy-forced
M-edges and the polynomially many cases described in Corollaries 3, 4, and 5,
split the problem into polynomially many such cases. Then, since each such case
allows us to finally reduce the problem to the case in which N4 = ∅, solve each
such case according to the next step and choose a minimum finite weight solution
(if such a solution exists).

5. {Now N4 = ∅.} Apply the approach described in Sect. 4. Then either return that
G has no d.i.m. M with xy ∈ M or return M as a d.i.m. of smallest finite weight
with xy ∈ M .

Theorem 1 Procedure DIM-with-xy is correct and runs in polynomial time.

Proof The correctness of the procedure follows from the structural analysis of P8-free
graphs with a d.i.m.

The polynomial time bound follows from the fact that Steps 1, 2 can clearly be
done in polynomial time, Step 3 can be done in polynomial time since the Reduction
Step can be done in polynomial time, Step 4 can be done in polynomial time by the
results in Sect. 5, and Step 5 can be done in polynomial time as shown in Sect. 4. �
Since a graphG with a d.i.m. is K4-free, we can assume that the input graph is K4-free.

Algorithm DIM-P8

Given A connected (P8, K4)-free graph G = (V, E) with edge weights.
Task Determine a d.i.m. of G of finite minimum weight if one exists or find out that
G has no d.i.m. of finite weight.

(a) Determine the set F1 of all mid-edges of diamonds in G, and the set F2 of all
peripheral edges of butterflies in G. Let M := F1 ∪ F2. Check whether M is an
induced matching in G. If not then STOP—G has no d.i.m. Otherwise, check
whether M is a dominating edge set of G. If yes, we are done. Otherwise apply
the Reduction Step for every edge in F1 ∪ F2; without loss of generality, assume
that the resulting graph G ′ = (V ′, E ′) is connected (if not, do the next steps for
each connected component of G ′). Let G := G ′.
{From now on, G is (P8, K4, diamond, butterfly)-free.}
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(b) Check whether G has a single edge uv ∈ E of finite weight which is a d.i.m. of
G. If yes then select such an edge with smallest weight as output and STOP—this
is a d.i.m. of G of finite minimum weight.
{Otherwise, every d.i.m. of G would have at least two edges.}

(c) For each edge xy ∈ E of finite weight in a P3 of G carry out procedure DIM-
with-xy. If DIM-with-xy stops with failure for all edges xy in a P3 of G, then
STOP—G has no d.i.m. Otherwise, select the best result from all successful
applications of the procedure DIM-with-xy. If the result does not have finite
weight then STOP—G has no d.i.m. of finite weight. Otherwise, STOP and
return the best result as solution.

Theorem 2 Algorithm DIM-P8 is correct and runs in polynomial time.

Proof The correctness of the procedure follows from the structural analysis of P8-free
graphs with a d.i.m. In particular: concerning Step (b), one can easily verify that if G
has a d.i.m. of one edge, then G has no d.i.m. with more than one edge; concerning
Step (c), one can refer to Observation 5. The time bound follows from the fact that
Step (a) can be done in polynomial time (in particular the Reduction Step can be done
in polynomial time), Step (b) can be done in polynomial time, and Step (c) can be
done in polynomial time by Theorem 1. �
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