
Algorithmica (2017) 78:86–109
DOI 10.1007/s00453-016-0149-4

Steiner Trees with Bounded RC-Delay

Rudolf Scheifele1

Received: 15 June 2015 / Accepted: 15 April 2016 / Published online: 27 April 2016
© Springer Science+Business Media New York 2016

Abstract We consider the Minimum Elmore Delay Steiner Tree Problem, which is a
key problem in VLSI design: We are given a set of pins which have to be connected
by a Steiner tree. One of the pins is the source. Challenging timing constraints impose
tight bounds on the delay of propagating a signal from the source to the other pins. The
commonly used measure is Elmore delay (Elmore in J Appl Phys 19:55–63, 1948).
We consider two variants: minimizing the maximum Elmore delay or a weighted
sum of Elmore delays. Both variants are strongly N P-hard even for very restricted
special cases. Although it is a central problem in VLSI design (Kahng and Robins in
On optimal interconnections for VLSI. Kluwer, Boston, 1995; Korte and Vygen in
Building bridges—between mathematics and computer science. Springer, Berlin, pp
333–368, 2008), no approximation algorithms were known so far. In this work, we
give the first constant-factor approximation algorithm. It works for both variants. The
algorithm achieves an approximation ratio of 3.39 in the rectilinear plane and 4.11 in
general metric spaces. We can show that our algorithm is best possible in a certain
sense. We also demonstrate that our algorithm leads to improvements on real world
VLSI instances compared to the currently used standard method of computing short
Steiner trees.

Keywords Steiner trees · Approximation algorithm · VLSI design

1 Introduction

Due to its complexity, computing the physical layout of a modern computer chip is
a task that is largely performed by automated software tools. In this physical design

B Rudolf Scheifele
scheifele@or.uni-bonn.de

1 Research Institute for Discrete Mathematics, University of Bonn, Lennéstr. 2,
53113 Bonn, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-016-0149-4&domain=pdf


Algorithmica (2017) 78:86–109 87

process many combinatorial optimization problems arise—see Held et al. [19] for an
overview. In this work, we consider the Minimum Elmore Delay Steiner Tree Problem.
It appears as one of the ten selected open problems in chip design in the list ofKorte and
Vygen [27] and occurs in routing: Here, pins located on the chip have to be connected
by metal wires in order to allow propagation of computed information. This means
that information is available at one pin (the source) and has to be sent to other pins
(the sinks). Finding a connection transmitting the signal can then be formulated as
a Steiner tree problem in a weighted graph or the rectlinear plane (wires never run
diagonal) with pins as terminals.

Here, a signal can be regarded as a voltage change at the source pin, which triggers
a voltage change at the sink pins. Tight timing constraints on the chip require the
difference in time between these two events, called delay, to be as small as possible.
Since the layout of the Steiner tree connecting the given set of pins has a large influence
on signal delay, it is natural to formulate a mathematical optimization problem asking
for a Steiner tree that minimizes source-sink delays. There are numerous ways to
approximate signal delays ranging from very accurate but computationally expensive
simulations to very simple but imprecise estimates (e.g. signal delay is a linear function
in the distance between source and sink in the Steiner tree).

When it comes to getting a fast and reasonably accurate delay approximation, the
model that is ubiquitously used in VLSI design is called the Elmore delay model [13].
In a Steiner tree, the Elmore delay between a root vertex s and a sink vertex t depends
on the total length of the tree, the square of the length of the path from s to t in the tree,
and on the capacitance of each subtree rooted at the vertices of this path, which is the
sum of edge lengths plus the capacitances of all sink vertices in the subtree (see Fig. 1).
This makes the Elmore delay formula an objective function which is comparatively
complicated to state.

Although the Elmore delay model has been used for decades to evaluate signal
delays of given Steiner trees, the problem of constructing a Steiner tree minimizing
Elmore delay has only been approached heuristicallywithout achieving any theoretical

s t

(a) (b) (c)
s

s

Fig. 1 Three Steiner trees for the same terminal set with probably very different source-sink delays. a
Example of a shortest Steiner tree with presumably bad source-sink delays. The red sink t has a short
distance to the source s, but the s–t path in the tree is very long. bA better Steiner tree with the same length.
All paths are shortest paths here. Nevertheless, Elmore delay may not be optimal. c With regard to Elmore
delay, this might be a better tree. The tree is a bit longer, but delay along the source-sink paths might be
smaller due to less capacitance in some of the subtrees (Color figure online)

123



88 Algorithmica (2017) 78:86–109

approximation bounds. Instead, the VLSI design community attacked this problem
either by using heuristics without proven performance bounds or by simplifying the
objective function to one which is better understood from a theoretical point of view,
e.g. to the construction of short Steiner trees with bounded source-sink path lengths.
We give a short summary of previous approaches:

Previous Work The rectilinear version of the Minimum Elmore Delay Steiner Tree
Problem has received quite some attention in the past, but almost nothing is known
from a theoretical point of view. Boese et al. show in [4] that for the variant minimizing
theweighted sumof source-sink delays there is always an optimum solution using only
Steiner points on theHanan grid.1 Therefore, they can solve the problem in exponential
time. They also give an example in [3] showing that the existence of optimum solutions
on the Hanan grid is generally not given for the variant minimizing maximum source-
sink delay. Kadodi [22] and Peyer [28] show how to solve the problem of minimizing
maximumsource-sink delay for instanceswith atmost three sinks optimally in constant
time. For larger terminal sets, various heuristics have been implemented and evaluated
in practice, but no performance bounds are proven [3–5,35]. Moreover, there has been
work by Cong et al. [10] on optimizing a simplification of the Elmore delay formula,
which seems to be easier to optimize and yields an upper bound for the actual Elmore
delay. Finally, Peyer et al. [29] give heuristics for improving the Elmore delay of a
given rectilinear Steiner tree without increasing its length. A more extensive summary
of results is given by the book of Kahng and Robins [23].

Related Work A related problem with more theoretically founded results is the con-
struction of so called shallow-light Steiner trees, i.e. short Steiner trees with bounded
source-sink path lengths. Here, one has to mention the Rectilinear Steiner Arbores-
cence Problem, where the task is to construct a minimum length shortest-path tree in
the rectilinear plane for a root vertex and a set of sinks. This problem is N P-hard as
was shown by Shi and Su [34], but a 2-factor approximation can be achieved using the
algorithm of Rao et al. [30] with the improvements of Córdova and Lee [11]. How-
ever, this result is only of minor interest for our purpose since it can produce very long
trees. More precisely, Rao et al. [30] give an example that shows that the length of a
shortest rectilinear shortest-path tree can be as long as Ω(log n) times the length of a
shortest rectilinear Steiner tree, where n is the number of terminals. A more flexible
approach is that of Khuller et al. [25], which also had a highly visible influence on
the development of the algorithm we are going to present in this paper. They start
with an initial short Steiner tree and a parameter ε > 0 and compute a tree where the
distance from the source to every sink in the tree is at most (1+ ε) times the distance
in the metric space. To achieve this, they increase the length of the tree compared to
the initial tree by a factor of at most (1+ 2

ε
). Their algorithm works for general metric

spaces, and in case that the metric space is the rectilinear plane, Held and Rotter [20]
improve this result for small values of ε to produce a tree whose length only increases
by a factor of (2 + �log( 2

ε
)�) if 0 < ε ≤ 2.

As we can see, little is known about minimizing Elmore delay from a theoretical
point of view, while on the other hand the simpler problem of constructing shallow-

1 The Hanan grid is the grid that is induced by the set of x- and y-coordinates of all terminals—see Hanan
[18].

123



Algorithmica (2017) 78:86–109 89

light Steiner trees is a lot better understood. However, simplifying the delay model to
be a linear function in source-sink path lengths results in a significant loss of precision
in practice and does not provide any non-trivial performance bounds in theory, as
Proposition 2 will prove. For this reason it is crucial to have an algorithm that is
capable of minimizing Elmore delay directly. In this work, we will present the first
such algorithm with a provable performance guarantee.

The rest of the paper will be structured as follows: Sect. 2 will contain a short
introduction to theElmore delaymodel. In Sect. 3wewill formally define theMinimum
Elmore Delay Steiner Tree Problem and show that short trees with short source-sink
path lengths do not suffice for minimizing Elmore delay. In Sect. 4 we will then
prove strong N P-hardness for a very restricted special case of our problem. Our
main contribution will be in contained in Sect. 5: Here, we will present the first
constant-factor approximation algorithm for constructing Steiner trees minimizing
Elmore delay. In Sect. 6 we will prove that in a certain sense, this algorithm is best
possible. Finally, Sect. 7 contains experimental results that show that our newalgorithm
leads to significant improvements on real world VLSI instances.

2 The Elmore Delay Model

The Elmore delay model is a rather simple method to approximate the signal delay
through what is called an RC tree. It was originally introduced by Elmore [13] in 1948
and later on extended by Rubinstein, Penfield and Horowitz [32], who also give a
simple formula that can be used for fast computation. Their model is a tree structured
network consisting of a discrete number of resistors and capacitors, where each resistor
has a fixed resistance and each capacitor has a fixed capacitance.

We number the k resistors and n capacitors for some k, n ∈ N consecutively
with resistances r1, . . . , rk and capacitances c1, . . . , cn respectively, and let C j for
j ∈ {1, . . . , k} denote the sum of capacitances of all capacitors in the subtree rooted at
resistor j . They show that the Elmore delay at capacitor i is then given by

∑
j∈I r j ·C j ,

where I ⊆ {1, . . . , k} denotes the set of resistors on the path from the root to capacitor
i . Figure 2 gives an illustration of this.

We omit their definition of an RC tree at this point but rather give a graph theoretical
interpretation with emphasis on our application in VLSI design. In this regard, an RC
tree can be modeled as a directed Steiner tree Y with a source s and a terminal set T ,
where s is the origin of the signal and the orientation of the edges corresponds to the
direction in which the signal propagates. Here, the source s is regarded as a resistor
with resistance r(s) ≥ 0 and the sink vertices t ∈ T are regarded as capacitors with
capacitances c(t) ≥ 0, t ∈ T . Each edge in the tree corresponds to a metal wire,
which is simultaneously a resistor with resistance R := rwire · l and capacitor with
capacitance C := cwire · l, where l is the length of the wire and rwire, cwire > 0 are
given constants. Steiner points do not have any resistance or capacitance.

To match the previous model, a wire is divided into two resistors with resistance
R/2 and one capacitor with capacitance C in between, as shown in Fig. 3. It can be
shown that in terms of Elmore delay, this is exactly the limit of dividing the wire into k
alternating resistors and capacitors with resistance R/k and C/k, respectively, when

123



90 Algorithmica (2017) 78:86–109

r1 r2

r3

r4

r5

r6 r7

c1

c2 c3

c4 c5 c6

root

Fig. 2 An RC tree with seven resistors and six capacitors: We have C6 = c5+c6 and C2 = c2 +c3+c4+
c5 + c6. Resistor 2 imposes a delay of r2 · C2. The capacitors accountable for the downstream capacitance
of resistor 2 (green) are shown in red. Resistors closer to the root have a higher downstream capacitance
and therefore impose higher delays per resistance unit (Color figure online)

R/2 R/2

C

R

C/2 C/2

R/4 R/4 R/4 R/4

C/4 C/4 C/4 C/4

Fig. 3 Left A wire with resistance R and capacitance C is modeled as two resistors with a capacitor in
between. In terms of Elmore delay, it is equivalent to modelling it as two capacitors with a resistor in
between (center). It is also the same as modelling it as k alternating resistors and capacitors with resistance
R/k and C/k, respectively, and taking the limit for k → ∞ (right shows k = 4)

k goes to infinity. Using this modelling of RC networks as Steiner trees we arrive at
the following mathematical definition of Elmore delay:

Definition 1 Given a metric space (M, dist), an arborescence Y = (V, E) rooted
at s ∈ V with resistance r(s) ∈ R≥0, a set of sinks T ⊆ V with capacitances
c : T → R≥0 and vertex positions p : V → M , we fix the following notation:

– For v,w ∈ V , we define dist (v,w) := dist (p(v), p(w)).
– Let l(Y ) := ∑

(v,w)∈E dist (v,w) denote the length of Y .
– For v,w ∈ V , let PY (v,w) denote the v-w path in the underlying undirected graph
of Y and distY (v,w) := ∑

(x,y)∈PY (v,w) dist (x, y) the distance of v and w in Y .
– For v ∈ V , let Y (v) denote the subtree rooted at v.

Then the Elmore delay to t ∈ T is defined as

dY (t) := r(s) · CY (s) + ∑
(v,w)∈E(PY (s,t)) dist (v,w) ·

(
dist (v,w)

2 + CY (w)
)
,

where CY (v) := l(Y (v)) + ∑
t ′∈V (Y (v))∩T c(t ′) is said to be the downstream capaci-

tance of v ∈ V .
We partition the Elmore delay into the terms source delay and wire delay, where

sd(Y ) := r(s) · CY (s) is the source delay of Y and wdY (t) := ∑
(v,w)∈E(PY (s,t)) dist

(v,w) ·
(

dist (v,w)
2 + CY (w)

)
is the wire delay to t in Y .

123



Algorithmica (2017) 78:86–109 91

We first want to remark that it is straightforward to check that Elmore delay is
well-behaved with respect to Steiner points of degree 2 in the following sense: Given
an edge (u, w) in the tree, inserting a Steiner point v of degree 2 will not decrease
the Elmore delay to any sink, and it stays the same for all sinks if dist (u, w) =
dist (u, v) + dist (v,w).

In our definition of Elmore delay, the constants rwire and cwire do not appear as they
can be normalized to be 1 for the sake of mathematical simplicity. A great advantage
of the Elmore delay model is that it can be computed in linear time by first computing
the downstream capacitances CY (v), v ∈ V (Y ), in reverse topological order, and then
computing the delay to all vertices in topological order. This way it is fast to compute
for a given tree while being reasonably accurate in most cases. It has been shown by
Boese et al. [2] that even in cases where it is not very accurate, it is still a high fidelity
estimate, which means that improving Elmore delay will almost certainly improve
real delay simulated by tools that are too computationally expensive to be called more
often than a very few times in the VLSI design flow. For these reasons, the Elmore
delay model has been the delay model of choice in VLSI design for the last decades.
For more on it, see also Gupta et al. [17], Peyer [28] or the book of Celik et al. [8].

3 The Problem Formulation

Looking at the definition of Elmore delay from Sect. 2, one can see that shortest
Steiner trees produce minimum source delays, while Steiner trees connecting every
sink directly to the source produce minimum wire delays. The main difficulty is to
find a good tradeoff between both extremes. We now give the problem definition:

Problem: Minimum Elmore Delay Steiner Tree Problem (MDST).
Input: A metric space (M, dist), a source s with resistance r(s) ∈ R≥0, a set of

sinks T with capacitances c : T → R≥0 and positions p : {s} ∪ T → M .
Task: Find a directed Steiner tree Y rooted at s and positions p : V (Y )\({s} ∪

T ) → M minimizing
a) d(Y ) := maxt∈T dY (t) (MAX-MDST),
b) d(Y ) := ∑

t∈T w(t) · dY (t) for w : T → R≥0 (SUM-MDST).

We first point out that in general metric spaces an optimum solution of the above
problem does not have to exist. However, in the metric spaces that we are mainly
interested in, namelymetric graphs and the rectilinear plane, this is trivial for the former
and easy to prove for the latter [33]. Secondly, we note that by setting r(s) sufficiently
large, theMDSTproblemdegenerates into theShortest Steiner Tree Problem,2 which is
known to be N P-hard both in metric graphs and (R2, l1) [14,24]. Theorem 3will even
prove strong N P-hardness for a very restricted special case of the MDST problem.

Before starting the technicalwork,wewant to remark a small subtlety in the problem
formulation. To express a solution,we use a tree structure thatwe embed into themetric
space by the mapping p, which is not required to be injective. There are applications

2 The Shortest Steiner Tree Problem is the problem of finding a Steiner tree Y with l(Y ) minimum. It is
more commonly referred to as Minimum Steiner Tree Problem, but since in our application edge weights
can most suitably be regarded as lengths, we will use this term instead.

123



92 Algorithmica (2017) 78:86–109

s t1, ...,tk

single connection

Bad: dY (ti) = 1
2 + kC for all i= 1, ...,k

s t1, ...,tk

k disjoint connections

Good: dY (ti) = 1
2 +C for all i= 1, ...,k

Fig. 4 Illustration of the proof of Proposition 2: The shortest Steiner tree on the left is also a shortest-path
tree, but the delay from the source to every sink is Ω(k) times the delay that we get when connecting every
sink directly to the source (right)

in VLSI design where this model is more useful, e.g. the global routing step, where
many vertices of the original routing graph are contracted to a single vertex, resulting
in a grid graph that is much smaller than the actual routing graph. In this case it makes
sense to allow multiple vertices (including terminals) of the tree to be mapped to the
same spot in the metric space. This is not relevant when the goal is to construct a
shortest Steiner tree, but it is when trying to minimize Elmore delay. For more on
the VLSI routing problem see e.g. Gester et al. [16]. As already pointed out before,
we now want to give an easy example that shows that constructing short Steiner trees
with short source-sink paths does not suffice for achieving any non-trivial performance
bound for minimizing Elmore delay:

Proposition 2 For any k ∈ N and γ < 1 there is an instance of the MDST problem
with |T | = k and (M, dist) = (R, l1) such that for every shortest Steiner tree Y we
have distY (s, t) = dist (s, t) for all t ∈ T and d(Y ) ≥ γ k · O PT , where d(Y ) can be
measured in any of the two given objective functions and O PT denotes the optimum
objective function value in that respective function.

Proof We first note that in (R, l1) every shortest Steiner tree is also a shortest-path
tree. Let p(s) = 0, p(t) = 1 for all t ∈ T , r(s) = 0 and c(t) = C for all t ∈ T .
Now every shortest Steiner tree (without Steiner vertices of degree 2) connects some
arbitrary sink t ∈ T to s and links all sinks in T together with an arbitrary tree structure
of edges of length 0. This yields a delay of 1

2 + kC to every sink while connecting
every sink directly to s yields a delay of 1

2 + C to every sink, as shown in Fig. 4. By
choosing C sufficiently large we get the result. �

4 NP-Hardness

In this section we want to prove our hardness result:

Theorem 3 Both variants of the MDST problem are strongly N P-hard even for
|M | = 2 or (M, dist) = (R2, l1) and all sinks have the same position.

Before giving the proof, we cite a theorem of Boese et al. [4] that is an extension
of Hanan’s theorem [18] for the SUM-MDST problem:

Theorem 4 (Boese, Kahng, McCoy, Robins 1995) For any instance of the SUM-
MDST problem with (M, dist) = (R2, l1) there exists an optimum solution using only
Steiner points on the Hanan grid.

123



Algorithmica (2017) 78:86–109 93

We will actually only prove Theorem 3 for SUM-MDST. Although Boese et al.
also show in [3] that Theorem 4 does not hold for MAX-MDST, Theorem 3 can also
be proven for MAX-MDST in a way very similar to what is presented here. This proof
can be found in [33].

So if we only consider SUM-MDST, Theorem 4 tells us that |M | = 2 is equivalent
to (M, dist) = (R2, l1) and all sinks have the same position. Therefore we only need
to consider the case |M | = 2 in our proof. This special case of the MDST problem
can be regarded as a partitioning problem, and so it seems natural to apply a reduction
from the 3-Partition Problem, which is known to be strongly N P-complete (see Garey
and Johnson [15]):

Problem: 3-Partition Problem.
Input: Numbers a1, . . . , an ∈ N with n = 3m and

∑n
j=1 ai = m B for some

m, B ∈ N.
Task: Decide whether there exists a partitioning {1, ..., n} = S1∪̇ · · · ∪̇ Sm

such that
∑

j∈Si
a j = B for all i = 1, . . . , m.

Usually, one restricts the problem further by requiring B
4 < a j < B

2 for all j =
1, . . . , n. This special case remains strongly N P-hard [15], but we actually do not
need this restriction. The idea of our proof will be the following:

Given a 3-Partition instance a1, . . . , an , n = 3m, we create a SUM-MDST instance
with T = T ′ ∪ T ∗, T ′ = {t1, . . . , tn} and T ∗ = {

t∗1 , . . . , t∗m
}
, w(t j ) = c(t j ) = a j ,

j = 1, . . . , n, w(t∗i ) = W and c(t∗i ) = C , i = 1, . . . , m. As stated in the theorem, all
sinks will have the same position and we will have dist (s, t) = 1 for all t ∈ T . We
will choose r(s), W and C in such a way that

– It is never optimal to put two sinks of T ∗ into the same set of the partition.
– It is never optimal to make a partition that consists of more than m sets.

If we have achieved this, every optimum solution Y of the SUM-MDST instance
consists of exactlym sets and each set contains exactly one sinkofT ∗. It follows that the
delay of any such solution is solely defined by the partitioning of T ′ = T ′

1∪̇ · · · ∪̇ T ′
m

(where we allow that some T ′
i are the empty set). It can then be seen that

∑m
i=1 dY (t∗i )

is independent of this partitioning of T ′. Therefore, the total delay of the solution can
be written as K + ∑m

i=1 w(T ′
i ) · c(T ′

i ) = K + ∑m
i=1 a(T ′

i )
2, where K is a suitable

constant and for T ′
i = {

ti1 , . . . , tik

}
we define a(T ′

i ) := ∑k
j=1 ai j .

Since
∑m

i=1 a(T ′
i ) is constant, we can apply the following Lemma in order to get

that the delay is minimized by a partition T ′ = T ′
1∪̇ · · · ∪̇ T ′

m where all a(T ′
i ) are

equal:

Lemma 5 Given S ∈ R≥0 and n ∈ N, consider the optimization problem
min

{∑n
i=1 x2i : ∑n

i=1 xi = S, x ≥ 0
}
. Then the unique optimum solution is given by

x∗
i = S

n , i = 1, . . . , n. �

Because such a partition exists if and only if a1, . . . , an define a yes-instance of the
3-Partition Problem, we get the result. This was a coarse outline and now comes the
formal proof:

123



94 Algorithmica (2017) 78:86–109

Proof Given a 3-Partition instance a1, . . . , an ∈ N with n = 3m and
∑n

j=1 a j = m B
for some B ∈ N that is polynomially bounded in the instance size, we construct an
instance of the SUM-MDST problem according to the description above, i.e. with
A := ∑n

j=1 a j we set

– T = T ′∪̇ T ∗ with T ′ = {t1, . . . , tn} and T ∗ = {
t∗1 , . . . , t∗m

}
,

– p(t) = p(t ′) for all t, t ′ ∈ T , dist (s, t) = 1 for all t ∈ T ,
– w(t j ) = c(t j ) = a j for j = 1, . . . , n,
– w(t∗i ) = W := 4Am2, i = 1, . . . , m,
– c(t∗i ) = C := 4Am2, i = 1, . . . , m,
– r(s) = 2A,

For the rest of the proof we will identify solutions of the MDST instance with
partitions of T in the sense that every tree defines a partition and every partition defines
a set of trees with identical delays (edges of length 0 might be arranged arbitrarily). As
outlined before, we first have to show that every optimum solution of the SUM-MDST
instance consists of exactly m sets and that no two sinks from T ∗ are in the same set
of the partition. We will call a solution with these properties an m-set solution. So let
Y be an arbitrary m-set solution and Y1 be a solution where two sinks in T ∗ are put
into the same set of the partition. Then we have
∑

t∈T

w(t) · dY (t) ≤ w(T ) · max
t∈T

dY (t)

≤ (mW + A)

(

r(s)(m + A + mC) + 1

2
+ A + C

)

= (mW + A)

(

r(s)(A+mC)

)

+(mW + A)

(

r(s)m + 1

2
+ A + C

)

≤ (mW + A)

(

r(s)(A + mC)

)

+ (mW + A)

(

4Am + C

)

= (mW + A)

(

r(s)(A + mC)

)

+
(

m + 1

4m2

)

W ·
(

1 + 1

m

)

C

< (mW + A)

(

r(s)(A + mC)

)

+ (m + 2)WC

≤
∑

t∈T

dY1(t),

where the last inequality follows from (mW +A) (r(s)(A + mC)) being a lower bound
for the weighted source delay in any solution and (m +2)WC = (m −2)WC +4WC
being a lower bound for the weighted wire delay for the sinks in T ∗ in Y1, which is
higher because two sinks of T ∗ are in the same set of the partition (accounting for the
4WC term). Next, let Y again correspond to an m-set solution and Y2 to a solution
with more than m sets. With S := (mW + A)r(s)(m + A + mC) we get:

∑

t∈T

w(t) · dY (t) ≤ (mW + A)

(

r(s)(m + A + mC) + 1

2
+ A + C

)

123



Algorithmica (2017) 78:86–109 95

= S + (mW + A)

(
1

2
+ A + C

)

= S + mW

(
1

2
+ C

)

+ mW A + AC + A

(
1

2
+ A

)

< S + mW

(
1

2
+ C

)

+ 2mW A + 2A2

= S + mW

(
1

2
+ C

)

+ r(s)

(

mW + A

)

≤ (mW + A)

(

r(s)
(

m + 1 + A + mC
))

+ mW

(
1

2
+ C

)

≤
∑

t∈T

w(t) · dY2(t),

where this time the last inequality follows from (mW + A)r(s)(m + 1 + A + mC)

being a lower bound for the weighted source delay if more than m sets are used, and
mW ( 12 + C) being a lower bound for the weighted wire delay for the sinks in T ∗ in
any solution.

This means that any optimum solution has indeed m sets and each such set contains
exactly one sink of T ∗. Let T = T1∪̇ · · · ∪̇ Tm define an m-set solution Y and set
T ′

i := Ti ∩ T ′, i = 1, . . . , m. Then the delay of this solution can be written as

∑

t∈T

w(t) · dY (t) = mW

(

r(s)(m + A + mC) + 1

2
+ A

m
+ C

)

+
m∑

i=1

∑

t∈T ′
i

w(t)

(

r(s)(m + A + mC) + 1

2
+ c(T ′

i ) + C

)

= K +
m∑

i=1

w(T ′
i ) · c(T ′

i )

= K +
m∑

i=1

a(T ′
i )

2,

where K = w(T )
(

r(s)(m+A+mC)+ 1
2+ A

m +C
)
+w(T ′)

(
1
2+C

)
is a constant of the

instance that is independent of the partition.UsingLemma5, the term K+∑m
i=1 a(T ′

i )
2

is minimized if and only if a(T ′
i ) = A

m = B for all i = 1, . . . , m. It follows that an
optimum solution of the SUM-MDST instance must define a feasible solution of the
3-Partition instance if there is one. As all occuring numbers are polynomially bounded
in the size of the 3-Partition instance, we get the result. �

123



96 Algorithmica (2017) 78:86–109

s

v

w

t1 t2

t3

t4

t5

s

t1 t2

t3

t4

t5

v

w

Fig. 5 Reconnection step of Algorithm 6: If CY (w) + dist (v, w) is too large, the edge (v,w) is deleted
from the tree. Connectivity is then reestablished by connecting s to a vertex of minimum distance in Y (w)

5 The Algorithm

We have seen that the MDST problem is strongly N P-hard. Now we present the first
constant-factor approximation algorithm. The algorithmwill require an initial solution
Y0 and a parameter ε > 0 as additional input, where this initial solution Y0 should be
as short as possible. It is well known that the Shortest Steiner Tree Problem can be
approximated efficiently (see e.g. the work of Korte and Vygen [26] for an overview
on the topic). Now here comes the description of the algorithm.

Consider an instance of the MDST problem and let Y0 and ε > 0 as described
above. We may assume that Y0 is a binary tree with root s such that the leaves of Y0
are exactly the vertices in T .3 We also fix the terminology that reconnecting a subtree
Y (v) for a tree Y and v ∈ V (Y ) to s by a shortest path means deleting the incoming
edge of v from Y , choosing x ∈ V (Y (v)) with dist (s, x) = minw∈V (Y (v)) dist (s, w),
connecting x to s and changing the orientation of the edges in E(Y (v)) such that they
are directed away from s again.

Algorithm 6 Let Y be the tree that we are constructing, initially Y = Y0. We traverse
the vertices of V (Y0)\ {s} in reverse topological order of V (Y0). Let w ∈ V (Y0)\ {s}
be a vertex that we are traversing and v its predecessor in Y . We check whether
CY (w)+dist (v,w) ≥ ε

2 min
{
dist (s, x) : x ∈ V (Y (w))∪{v} }

and reconnect Y (w)

to s by a shortest path (as described above) if the inequality is true. The algorithm
stops when all vertices in V (Y0)\ {s} have been traversed.

Figure 5 gives an illustration of the reconnection step of Algorithm 6. We note here
that when v = s, a reconnect is always performed, even if it means deleting an edge
and adding it again. This is a technicality that we will use to simplify the description
of the following proofs. We start our analysis with an obvious bound for the running
time of the algorithm.

Proposition 7 Algorithm 6 can be implemented in O(τ ) time, where τ denotes the
time it takes to compute dist (s, v) for all v ∈ V (Y0).4 �

3 Every general Steiner tree can be transformed into such a tree in linear time by adding additional Steiner
points and edges of length 0.
4 Here we assume τ = Ω(|V (Y0)|).

123



Algorithmica (2017) 78:86–109 97

In order to analyze the performance guarantee of the algorithm, we first give simple
lower bounds that we will use to establish the quality of our solution:

Definition 8 Given anMDST instance, let smt ({s}∪T ) denote the length of a shortest
Steiner tree for {s} ∪ T . Then lbsd := r(s) · (smt ({s} ∪ T ) + ∑

t∈T c(t)) is a lower

bound for the source delay and lbwd(t) := dist (s, t) ·
(

dist (s,t)
2 + c(t)

)
is a lower

bound for the wire delay to t ∈ T . The sum lb(t) := lbsd + lbwd(t) is a lower for the
total delay to t ∈ T .

We want to point out here that both bounds can be achieved, but in general not
simultaneously. A shortest Steiner tree will have a source delay equal to lbsd , while
a star with center s will have a wire delay of lbwd(t) to every sink. Note that lbwd

is indeed a lower bound for the wire delay: Given a sink t , the path from s to t must
have a length of at least dist (s, t). Given that Elmore delay cannot be reduced by
inserting Steiner points of degree 2 and any Steiner point of degree larger than 2 on
the path from s to t will in general only increase the delay to t by adding additional
downstream capacitance to the edges, it is not possible to have a wire delay of less
than lbwd(t) to t .

Basically, we will prove that for some functions f, g : R>0 → R>0 the source
delay of the output is bounded by f (ε) · r(s)CY0(s) and the wire delay to each sink
t ∈ T by g(ε) · lbwd(t), where f will be decreasing while g will be increasing in ε.
The next lemma gives the bound for the source delay. Before stating it, we add the
following notation for a Steiner tree Y and a vertex v ∈ V (Y ):

– Let δY (v) := δ+
Y (v)∪δ−

Y (v), where δ+
Y (v) (δ−

Y (v)) is the set of outgoing (incoming)
edges of v.

– Let ΓY (v) := Γ +
Y (v) ∪ Γ −

Y (v) with Γ +
Y (v) := {w ∈ V : (v,w) ∈ E} and

Γ −
Y (v) := {w ∈ V : (w, v) ∈ E} be the set of neighbours of v.

Lemma 9 Consider an instance of the MDST problem, an initial solution Y0 and
ε > 0. Then Algorithm 6 returns a solution Y with CY (s) ≤ (

1 + 2
ε

) · CY0(s).

Proof Let Γ +
Y (s) = {x1, . . . , xk} be the set of vertices that were reconnected to s

during the algorithm. Let ei = (vi , wi ) ∈ E(Y0) be the edge that was deleted from the
tree when xi was reconnected to s, i = 1, . . . , k. We fix some x ∈ {x1, . . . , xk}. As
in the description of the algorithm, let w be the vertex that was being traversed at the
point of time when x was reconnected to s (possiblyw = x), Y ′ the tree directly before
this reconnect and v the predecessor ofw in Y ′. Then by definition of the algorithmwe
know CY ′(w) + dist (v,w) ≥ ε

2 min {dist (s, x), dist (s, v)}, because x was a vertex
with minimum distance to s in V (Y ′(w)). Since dist is a metric function, we know
that dist (s, x) − dist (v,w) ≤ dist (s, w) − dist (v,w) ≤ dist (s, v), so we have
dist (s, x)−dist (v,w) ≤ min {dist (s, x), dist (s, v)} ≤ 2

ε

(
CY ′(w)+dist (v,w)

) =
2
ε

(
CY (x) + dist (v,w)

)
, where (v,w) is the edge that was deleted in this step.

Noting that all Y (xi ) are disjoint subtrees of Y0 (apart from edge orientation),
ei �= e j for all i �= j ∈ {1, ..., k} and {e1, . . . , ek} ∩ ⋃k

j=1 E(Y (x j )) = ∅, we can
bound the total length that was added to Y0 by

123



98 Algorithmica (2017) 78:86–109

k∑

i=1

(
dist (s, xi ) − dist (vi , wi )

)
≤

k∑

i=1

2

ε

(
CY (xi )) + dist (vi , wi )

)
≤ 2

ε
CY0(s).

Therefore, we get CY (s) ≤ (
1 + 2

ε

) · CY0(s), proving the claim. �
For the analysis of the wire delay, we first give an estimate that helps us to bound

the wire delay of a sink by a more simplified formula. In order to do so, we extend the
definition of wire delay by setting

wdY (x, z) := ∑
(v,w)∈PY (x,z) dist (v,w) ·

(
dist (v,w)

2 + CY (w)
)

for a solution Y of the MDST problem and x, z ∈ V (Y ) with z ∈ V (Y (x)). With this
definition, we can formulate the next lemma:

Lemma 10 Let Y be a solution of an MDST instance, x ∈ V (Y ) and let y be a direct
successor of x in Y , i.e. (x, y) ∈ E(Y ). Then we have

wdY (x, z) ≤ distY (x, z) ·
(

dist (x, y) − distY (y, z)

2
+ CY (y)

)

for any z ∈ V (Y (y)).

Proof Let P be the x-z path in Y and let E(P) = {(v1, w1), . . . , (vk, wk)} be the edge
set of P ordered from x to z (i.e. v1 = x , v2 = y and vi = wi−1 for i = 2, . . . , k).
Using CY (wi ) ≤ CY (y) − ∑i

j=2 dist (v j , w j ) we get

wdY (x, z) =
k∑

i=1

dist (vi , wi ) ·
(

dist (vi , wi )

2
+ CY (wi )

)

≤
k∑

i=1

dist (vi , wi )

·
(

dist (vi , wi )

2
+ CY (y) −

k∑

j=2

dist (v j , w j ) +
k∑

j=i+1

dist (v j , w j )

)

=
k∑

i=1

dist (vi , wi ) ·
(

dist (vi , wi )

2
+

k∑

j=i+1

dist (v j , w j )

)

+
k∑

i=1

dist (vi , wi ) ·
(

CY (y) −
k∑

j=2

dist (v j , w j )
)

= 1

2
distY (x, z)2 + distY (x, z) ·

(
CY (y) − distY (y, z)

)

= distY (x, z) ·
(

distY (x, z)

2
+ CY (y) − distY (y, z)

)

= distY (x, z) ·
(

dist (x, y) − distY (y, z)

2
+ CY (y)

)

,

where we used the general formula (
∑k

i=1 ai )
2 = ∑k

i=1 ai (ai +2
∑k

j=i+1 a j ) for any
sequence a1, . . . , ak of real numbers. This proves the claim. �

123



Algorithmica (2017) 78:86–109 99

Now we are able to formulate and prove our main theorem:

Theorem 11 Given an instance of the MDST problem, an initial solution Y0 and
ε > 0, Algorithm 6 computes a solution Y such that

– sd(Y ) ≤ (
1 + 2

ε

)
r(s) · CY0(s),

– wdY (t) ≤ max
{
(1 + ε)2, 1 + 1

16ε
3 + 3

4ε
2 + 2ε

} · lbwd(t) for all t ∈ T ,

in O(τ ) time, where τ denotes the time it takes to compute dist (s, v) for all v ∈ V (Y0).

Proof The running time follows from Proposition 7 and the bound for the source delay
from Lemma 9. Therefore, it only remains to show the claim for the wire delay. To this
end, let t ∈ T and let x be the unique vertex with x ∈ V (PY (s, t)) and (s, x) ∈ E(Y ).
Letw be the vertex that was being traversed when x was reconnected to s and Y ′ be the
tree directly before this reconnect. When w = t , we have that t is connected directly
to s in Y with V (Y (t)) = {t} due to the fact that t is a leaf in Y0, so the claim is true.

Otherwise, w is a Steiner point and we let Γ +
Y ′ (w) = {u1} or Γ +

Y ′ (w) = {u1, u2}
depending on |Γ +

Y ′ (w)|. Without loss of generality we may assume x ∈ Y ′(u1) ∪
{w} and we set C1 := CY ′(u1) + dist (w, u1) and C2 := CY ′(u2) + dist (w, u2)

if |ΓY ′(w)| = 2 and C2 := 0 otherwise. With α := 2wdY (t)/dist (s, t)2 it suffices
to show α ≤ max{(1 + ε)2, 1 + 1

16ε
3 + 3

4ε
2 + 2ε}. In order to do so, we first note

CY (x) = CY ′(w) = C1+C2 and proveα ≤ 1+ 1
16ε

3+ 3
4ε

2+2ε in case t ∈ V (Y ′(u1))

and α ≤ (1 + ε)2 in case t ∈ V (Y ′(u2)). Since the latter case is the easier one, we
will handle it first:
Case 1: t ∈ V (Y ′(u2))

Here, we can assume that C1 < ε
2dist (s, x) due to x ∈ V (Y ′(u1)) ∪ {w} and

C2 < ε
2dist (s, t) due to t ∈ V (Y ′(u2))—otherwise Y ′(u1) or Y ′(u2) would have

been reconnected to s by the algorithm when u1 and u2 had been traversed. Therefore,
CY (x) = C1 + C2 < ε

2 (dist (s, x) + dist (s, t)) and we can use Lemma 10 to bound
the wire delay of t by

wdY (t) ≤
(

dist (s, x) + distY (x, t)
)

·
(

dist (s, x) − distY (x, t)

2
+ CY (x)

)

≤
(

dist (s, x) + distY (x, t)
)

·
(

dist (s, x) − distY (x, t)

2
+ ε

2

(
dist (s, x) + dist (s, t)

))

=: h
(

distY (x, t), dist (s, t)
)
,

where dist (s, x) is regarded as a constant in the function h. Let the domain for h be
R × [dist (s, x),∞), i.e. distY (x, t) ∈ R and dist (s, t) ∈ [dist (s, x),∞) (this is
clearly a superset of the set of feasible choices for distY (x, t) and dist (s, t) since
x was a vertex with minimum distance to s in V (Y ′(w))). Then the maximum value
of 2h(distY (x, t), dist (s, t))/dist (s, t)2 on this domain is an upper bound for α,
and since this function is monotonically decreasing in dist (s, t), its maximum value
is attained for dist (s, t) minimum, i.e. dist (s, t) = dist (s, x). Therefore, we can

123



100 Algorithmica (2017) 78:86–109

dist(s,x)

distY (x,z) distY (z, t)

distY (z,w)

s

x t

z u1

u2

w

dist(s,x)

1
4 ε ·dist(s,x) 1

4 ε ·dist(s,x)

s

x t

z= w= u1

u2

Fig. 6 Left Situation ofCase 2 in the proof ofTheorem11.Right Theworst case is attained fordistY (x, z) =
distY (z, t) = ε

4 dist (s, x) and distY (z, w) = 0. When x was reconnected to s, the green edge was added
and the dashed red edge was deleted from the tree (Color figure online)

bound α by 2β/dist (s, x)2, where β is the optimum objective function value of the
optimization problem

max

{(
dist (s, x) + distY (x, t)

)(
dist (s, x) − distY (x, t)

2
+ ε · dist (s, x)

)

: distY (x, t) ∈ R

}

.

Solving this optimization problem by elementary analytical methods yields α ≤ (1+
ε)2, constituting the first term in the factor bounding the wire delay of t ∈ T .
Case 2: t ∈ V (Y ′(u1))

Let z be the last common vertex on the s-t and s-w paths in Y , as shown in Fig. 6.
Applying Lemma 10 twice, we can bound the wire delay to t by

wdY (t) ≤
(

dist (s, x) + distY (x, z)
)

·
(

dist (s, x) − distY (x, z)

2
+ C1 + C2

)

+ distY (z, t)

(
distY (z, t)

2
+ C1 − distY (x, z) − distY (z, w) − distY (z, t)

)

=: f1
(

distY (x, z), distY (z, t), distY (z, w)
)
,

i.e. α is at most the optimum value of the following maximization problem:

max
2 f1

(
distY (x, z), distY (z, t), distY (z, w)

)

dist (s, t)2

s.t. distY (x, z) + distY (z, t) + distY (z, w) ≤ C1,

distY (x, z), distY (z, t), distY (z, w) ≥ 0.

123



Algorithmica (2017) 78:86–109 101

Now for the partial derivative ∂ f1
∂distY (z,t) we have

∂ f1
∂distY (z,t) (y) = C1 − distY (x, z) −

distY (z, w) − y. This term is non-negative for y ≤ C1 − distY (x, z) − distY (z, w).
Since we have distY (z, t) ≤ C1 − distY (x, z) − distY (z, w) as a constraint, we can
deduce that there must be a maximum of f1 located on the hyperplane distY (x, z) +
distY (z, t) + distY (z, w) = C1. Therefore, we can define

f2
(

distY (x, z), distY (z, t)
)

:=
(

dist (s, x) + distY (x, z)
)((

dist (s, x) − distY (x, z)
)

+ 2(C1 + C2)

)

+ distY (z, t)2

and bound α by the optimum objective function value of the slightly simplified max-
imization problem

max
f2

(
distY (x, z), distY (z, t)

)

dist (s, t)2

s.t. distY (x, z) + distY (z, t) ≤ C1,

distY (x, z), distY (z, t) ≥ 0.

In order to obtain an upper bound for C1 and C2, we use C1 ≤ ε
2dist (s, x) and

C2 ≤ ε
2dist (s, w) ≤ ε

2 (dist (s, t) + distY (z, t) + distY (z, w)) (due to the triangle
inequality) with the same argumentation as in Case 1 and get

2(C1 + C2) ≤ ε

(

dist (s, x) + dist (s, t) + distY (z, t) + distY (z, w)

)

= ε

(

dist (s, x) + dist (s, t) − distY (x, z)

+ distY (x, z) + distY (z, t) + distY (z, w)

)

≤ ε

((ε

2
+ 1

)
dist (s, x) + dist (s, t) − distY (x, z)

)

,

where we used distY (x, z) + distY (z, t) + distY (z, w) ≤ C1 ≤ ε
2dist (s, x) to get

the last inequality. This allows us to define a third function

f3
(

distY (x, z), distY (z, t), dist (s, t)
)

:=
(

dist (s, x) + distY (x, z)
)((ε2

2
+ ε + 1

)
dist (s, x) + ε · dist (s, t).

− (ε + 1)distY (x, z)

)

+ distY (z, t)2

123



102 Algorithmica (2017) 78:86–109

and a corresponding optimization problem

max
f3

(
distY (x, z), distY (z, t), dist (s, t)

)

dist (s, t)2

s.t. distY (x, z) + distY (z, t) = ε

2
dist (s, x),

dist (s, t) ≥ dist (s, x),

distY (x, z), distY (z, t) ≥ 0,

whose optimum objective function value again bounds α. Here, we could substitute
C1 by its upper bound ε

2dist (s, x) and use equality in the first constraint due to the
fact that the objective function is monotonically increasing in distY (z, t). To justify
the constraint dist (s, t) ≥ dist (s, x) we recall that x was a vertex with minimum
distance to s in Y ′(w). In order to obtain an optimization problem in only one variable
that we are finally able to solve, we note that the objective function of the above
program is monotonically decreasing in dist (s, t). Therefore, we can always assume
that dist (s, t) is as small as possible, i.e. dist (s, t) = dist (s, x). Moreover, we can
substitute distY (z, t) = ε

2dist (s, x) − distY (x, z). Finally, for

f4
(

distY (x, z)
)

:=
(

dist (s, x) + distY (x, z)
)((ε2

2
+ 2ε + 1

)
dist (s, x) −

(
ε + 1

)
distY (x, z)

)

+
(ε

2
dist (s, x) − distY (x, z)

)2

we arrive at our last optimization problem

max

⎧
⎨

⎩

f4
(

distY (x, z)
)

dist (s, x)2
: distY (x, z) ∈

[
0,

ε

2
dist (s, x)

]
⎫
⎬

⎭
.

Again, this is an optimization problem that can be solved easily applying elementary
analysis, and solving it yields a maximum for distY (x, z) = ε

4dist (s, x), resulting in
α ≤ 1

16ε
3 + 3

4ε
2 + 2ε + 1, as desired. �

We also get the following side result.

Corollary 12 Given an instance of the MDST problem, an initial solution Y0 and
ε > 0, Algorithm 6 computes a solution Y such that

– CY (s) ≤ (
1 + 2

ε

) · CY0(s),
– distY (s, t) ≤ (1 + ε) · dist (s, t) for all t ∈ T ,

in O(τ ) time, where τ denotes the time it takes to compute dist (s, v) for all v ∈ V (Y0).

123



Algorithmica (2017) 78:86–109 103

Proof We only need to show the claim for the distances. We proceed as in the proof
of Theorem 11: Let t, x, w, u1, u2, C1, C2 and Y ′ be as in the proof. When w = t ,
we again get that t is connected directly to s, so the claim is true. Otherwise we again
have two cases, namely t ∈ Y ′(u1) and t ∈ Y ′(u2):
Case 1: t ∈ V (Y ′(u1))

We again use C1 ≤ ε
2dist (s, x), because otherwise Y ′(u1)would have been recon-

nected to s before. Then we get:

distY (s, t) ≤ dist (s, x) + distY (x, t) ≤ dist (s, x) + C1 ≤
(
1 + ε

2

)
dist (s, x),

and this is sufficient, because x was a vertex with minimum distance to s in Y ′(w),
and so dist (s, x) ≤ dist (s, t).
Case 2: t ∈ V (Y ′(u2))

Herewewill useC1 ≤ ε
2dist (s, x) andC2 ≤ ε

2dist (s, t) as in the proof of Theorem
11, and we directly get:

distY (s, t) ≤ dist (s, x) + distY (x, w) + distY (w, t)

≤ dist (s, x) + C1 + C2

≤ dist (s, x) + ε

2
dist (s, x) + ε

2
dist (s, t)

≤ (1 + ε) dist (s, t),

proving the claim. �

Corollary 12 shows that by setting c(t) = 0 for all t ∈ T , Algorithm 6 can also
be used to construct shallow-light Steiner trees as introduced in Sect. 1, i.e. Steiner
trees Y with l(Y ) ≤ α · smt ({s} ∪ T ) and distY (s, t) ≤ β · dist (s, t) for all t ∈ T
for some constants α, β ≥ 1. Our algorithm then achieves the same tradeoff as the
one of Khuller et al. [25], which is known to be optimal in general metric spaces. We
will recapitulate this optimality result in Sect. 6 and use it to prove optimality of our
algorithm.

The approximation bounds given by Algorithm 6 can also be restated as in the
following corollary:

Corollary 13 Given an instance of the MDST problem, an initial solution Y0 with
l(Y0) ≤ β · smt ({s} ∪ T ) for some β ≥ 1 and ε > 0, Algorithm 6 computes a tree
Y such that dY (t) ≤ max

{
(1 + 2

ε
)β, (1 + ε)2, 1 + 1

16ε
3 + 3

4ε
2 + 2ε

} · lb(t) for all
t ∈ T . �

By Corollary 13, Algorithm 6 is a constant-factor approximation algorithm for the
MDST problem for any choice of ε. To get the best approximation guarantee that is
independent of the instance parameters, we choose ε to be (a numerical approximation
of) the solution of the equation (1 + 2

ε
)β = (1 + ε)2, since for β ≤ 2 the solution

of this equation is small enough to never let the term 1 + 1
16ε

3 + 3
4ε

2 + 2ε attain

123



104 Algorithmica (2017) 78:86–109

Table 1 Approximation bounds of Algorithm 6 for different metric spaces: “O(n log(n))” means
O(|T | log |T |) in (R2, l1) and O(|V | log |V | + |E |) if (M, dist) is the metric closure of an edge-weighted
graph G = (V, E)

(R2, l1) Graphs

Polynomial time 3.39 (ε = 0.839) 4.11 (ε = 1.025)

“O(n log(n))” 4.31 (ε = 1.073) 5.16 (ε = 1.270)

the maximum in the bound for the wire delay.5 This way we get dY (t) ≤ α · lb(t)
for all t ∈ T for a constant α depending on β, and Table 1 shows the values of α

in dependence of our given metric space and the running time that we are willing to
spend for the construction of the initial short Steiner tree.

For the row allowing all polynomial time algorithms we make use of the existence
of a PTAS for the Shortest Steiner Tree Problem in (R2, l1) (see Arora [1] or Rao and
Smith [31]) and use the algorithm of Byrka et al. [7] with an approximation ratio of
1.39 for graphs. As algorithms for the second row we use the fact that a minimum
terminal spanning tree yields a 2-approximation for the Shortest Steiner Tree Problem
in all metric spaces and, as proven by Hwang [21], a 3

2 -approximation in (R2, l1).6

Finally, we note that we can achieve an approximation ratio of 3.39 in all metric spaces
in case that the input Steiner tree is a shortest Steiner tree (see e.g. Dreyfus andWagner
[12], Vygen [36], Chu and Wong [9] or Brazil and Zachariasen [6] for algorithms for
computing shortest Steiner trees on not too large instances). A lower bound for the best
possible maximum ratio between source-sink delay and our lower bound in general
metric spaces can be found in Sect. 6. It turns out that our algorithm achieves this
bound in case that the input Steiner tree is a shortest Steiner tree.

6 Optimality of the Algorithm

In this section we are going to prove that in a certain sense, the algorithm presented
in Sect. 5 is best possible. In order to do so, we adapt a result from Khuller et al. [25]
and apply it to our problem. They prove the following:

Theorem 14 (Khuller, Raghavachari, Young 1993) For any ε1 > 0 and ε2 > ε1
there exists a finite metric space (M, dist) and a terminal set {s} ∪ T with bijective
positions p : {s}∪ T → M such that for all Steiner trees Y for {s}∪ T the implication
distY (s, t) ≤ (1 + ε1) · dist (s, t) for all t ∈ T ⇒ l(Y ) > (1 + 2

ε2
) · smt ({s} ∪ T )

holds.

Proof Let ε1 > 0 and ε2 > ε1. For k ∈ N we consider the metric closure7 of the
graph G = (V, E) with V = {s} ∪ T , where T = {c} ∪ {t1, . . . , tk} ∪ {

v1, . . . , vq
}

5 β ≤ 2 can always be assumed by not using anything worse than a minimum spanning tree for the terminal
set as initial solution.
6 A rectilinear minimum spanning tree can be computed in O(|T | log |T |) time using only edges of the
Delaunay Triangulation.
7 The metric closure of a graph G = (V, E) with edge lengths l : E → R≥0 is defined as the complete
graph with vertex set V and a metric distance function dist such that dist (v, w) equals the length of a
shortest path between v and w with respect to l in G.

123



Algorithmica (2017) 78:86–109 105

Fig. 7 The graph used to prove
Theorem 14. The dashed black
edge has length 2 + ε1, dashed
blue edges have length ε1 + δ

for some small δ > 0 and red
edges have length 2. Dashed
edges represent paths that are
subdivided by edges of length at
most γ for some small γ > 0.
All vertices except s (including
the endpoints of edges of length
≤ γ ) are terminals terminals
(Color figure online)

2

ε1+δ

2+ε1

s

c

t1

t2 tk−1

tk

... ... ...

for some k, q ∈ N. The edge set is constructed the following way: Connect s to c by
a path of length 2+ ε1 and c to all vertices ti , i = 1, . . . , k, by a path of length ε1 + δ

for some δ > 0. We subdivide these paths (including the one from s to c) by inserting
vertices v1, . . . , vq of degree 2 so that all edges on these paths have length at most γ
for some 0 < γ < 2 (q is chosen in such a way that this construction can be done).
Finally, we connect s directly to all ti , i = 1, . . . , k, by an edge of length 2 (Fig. 7).

In this graph, we can construct a minimum spanning tree for the terminal set with
total length 2 + ε1 + k(ε1 + δ) by connecting s to c and c to ti , i = 1, . . . , k, and
collecting all the terminals vi , i = 1, . . . , q, on the way. Therefore, smt ({s} ∪ T ) =
2+ε1+k(ε1+δ).On theother hand, letY be a treewithdistY (s, t) ≤ (1+ε1)·dist (s, t)
for all t ∈ T . Then Y must contain all edges (s, ti ), i = 1, . . . , k, and so l(Y ) =
smt ({s} ∪ T ) + k(2 − γ ). For γ = δ = 1

k we then have

l(Y )

smt ({s} ∪ T )
= smt ({s} ∪ T ) + k(2 − γ )

smt ({s} ∪ T )
= 1 + 2k − 1

3 + ε1 + kε1

Since limk→∞ 2k−1
3+ε1+kε1

= 2
ε1

> 2
ε2
, we may choose k large enough so that l(Y ) >

(1 + 2
ε2

) · smt ({s} ∪ T ), concluding the proof. �
This result can easily be extended to the MDST problem.

Corollary 15 For any ε1 > 0 and ε2 > ε1 there exists an instance of the MDST
problem with |M | < ∞ and c(t) = 0 for all t ∈ T such that for all solutions Y the
implication wdY (t) ≤ (1 + ε1)

2 · lbwd(t) ⇒ sd(Y ) > (1 + 2
ε2

) · lbsd holds.

Proof If c(t) = 0 for all t ∈ T , we have lbsd = r(s) ·smt ({s}∪T ) and the implication
distY (s, t) > (1 + ε) · dist (s, t) ⇒ wdY (t) > (1 + ε)2 · lbwd(t) for all solutions Y ,
t ∈ T and ε > 0. Theorem 14 then yields the result. �

123



106 Algorithmica (2017) 78:86–109

Finally, we get a lower bound for the best possible maximum ratio between source-
sink delay and our delay lower bounds:

Corollary 16 Let ε∗ > 0 be the positive solution of the equation 1 + 2
x = (1 + x)2.

Then for all 0 < ε < ε∗ there exists an instance of the MDST problem with |M | < ∞
and c(t) = 0 for all t ∈ T such that there is no tree Y with dY (t) ≤ (1 + ε)2 · lb(t)
for all t ∈ T .

Proof Let ε > 0 with ε < ε∗. We use the instance of Theorem 14 with ε1 = ε and
ε2 = ε∗ and add a new sink t∗ with p(t∗) = p(s). Let δ > 0 be as in the proof of
Theorem 14. We set r(s) = δ2

2(1+ε)2·smt ({s}∪T )
and assume there is a solution Y for this

instance with dY (t) ≤ (1 + ε)2 · lb(t) for all t ∈ T . Consider a sink ti , i ∈ {1, ..., k},
and assume Y does not connect ti to s by the direct edge (s, ti ). Then we have

dY (ti ) ≥ (2 + 2ε + δ)2

2
>

(2 + 2ε)2 + δ2

2

= (1 + ε)2
(

2 + δ2

2(1 + ε)2

)

= (1 + ε)2lb(ti ),

a contradiction. Therefore, Y must contain all edges (s, ti ), i = 1, . . . , k. But then we
get

dY (t∗)
lb(t∗)

= l(Y )

smt ({s} ∪ T )
>

(

1 + 2

ε∗

)

= (1 + ε∗)2 > (1 + ε)2,

a contradiction as well. �
As already pointed out before, (1+ε∗)2 with ε∗ as in Corollary 16 above is exactly

the approximation bound that we are able to achieve by application of Algorithm 6
in case that the initial tree Y0 is a shortest Steiner tree (apart from the inaccuracy that
stems from the fact that ε∗ may not be a rational number). Moreover, Corollary 15 tells
us that at least for small values of ε, i.e. ε > 0 s.t. (1 + ε)2 ≥ 1 + 1

16ε
3 + 3

4ε
2 + 2ε,

we will not be able to prove a result as Theorem 11 bounding source and wire delay
by functions yielding smaller bounds. So in this sense, Algorithm 6 is best possible.

7 Experimental Results

WeranAlgorithm6on instances of the rectilinearMDSTproblemextracted from state-
of-the-art chips provided by IBM. In our experiments, we start with a short Steiner
tree, apply our algorithm and compare source-sink delays of the initial Steiner tree to
the ones of the result of our algorithm. Since computing short Steiner trees is today’s
method of choice for VLSI routing, we can expose the benefits of our new algorithm
this way. Here, the initial short Steiner tree is constructed optimally for |T | ≤ 8 using
the approach of Chu and Wong [9], while it is computed by fast 3

2 -approximation
algorithms for larger terminal sets.8 We then apply Algorithm 6 on this tree for every

8 The actual algorithm used depends on the size of the terminal set.

123



Algorithmica (2017) 78:86–109 107

Table 2 Experimental results of Algorithm 6: for a tree Y the delay of Y is defined as d(Y ) :=
maxt∈T dY (t)/ lb(t)

Chip # Inst. Avg |T | Avg d(Y0) → d(Y ) Min
d(Y )

d(Y0)
Max d(Y0) → d(Y )

∑
l(Y )

∑
l(Y0)

45-1 56,834 4.06 1.06 → 1.06 0.50 4.69 → 2.40 1.05

45-2 719,690 3.81 1.18 → 1.12 0.28 7.34 → 2.62 1.23

32-1 400,397 5.25 1.08 → 1.07 0.40 4.99 → 2.57 1.04

32-2 474,490 4.77 1.05 → 1.04 0.26 5.51 → 2.50 1.04

22-1 1042 5.35 1.17 → 1.12 0.41 3.20 → 1.88 1.11

22-2 68,247 3.88 1.12 → 1.10 0.37 4.41 → 2.35 1.10

14-1 29,183 3.60 1.12 → 1.09 0.38 4.38 → 2.13 1.16

14-2 32,159 3.98 1.10 → 1.09 0.52 2.87 → 2.09 1.09

Y denotes the output of Algorithm 6 while Y0 denotes the initial short Steiner tree. The avg/min/max/sum
values are taken over all instances on the whole chip. Instances with |T | = 1 are omitted because they are
trivial in our setting. The initial number in a chip name denotes the technology node

value of ε ∈ [0.25, 25] that is amultiple of 0.25, and take the solutionY with the lowest
delay, where we define the delay of a Steiner tree Y as d(Y ) := maxt∈T dY (t)/ lb(t)
throughout this section. The running time is not listed in the table because it is very
small on every testcase—we can solve the 719,690 instances on 45-2 in only 226 s
even though we call Algorithm 6 100 times on every instance. The machine used for
our experiments is an Intel Xeon CPU running at 3.46 GHz.

As one can see, the average number of terminals per instance is very small on
every chip. This together with the fact that the source resistance value r(s) is fairly
large on most instances explains why the shortest Steiner tree approach is already very
close to the lower bound on average. Nevertheless, our algorithm still produces major
improvements, reducing the average ratio between delay and lower bound further.

However, more important than the reduction in average delay is the reduction of the
maximum ratio between delay and lower bound. Our algorithm can bound this ratio for
every sink by a reasonable number, while we have connections with quite bad delays
when using the shortest Steiner tree approach. This is a very desirable behaviour of
our algorithm, as such outliers are likely to cause trouble in the design process.

On the other hand, onemust keep an eye on the increase inwiring length, whichmay
cause routability problems on the chip. Here, one needs a better approach than the one
that we used for our experiments (i.e. always taking the tree with the best delaywithout
consideringwiring length at all), e.g. bounding the allowed capacitance for a particular
tree depending on timing-criticality of the sinks, which is possible in our algorithm by
picking the right values of ε. More precisely, it would be possible to fix a parameter
α > 1 and restrict the solution space of the problem to trees with a capacitance of
at most α times the capacitance of a shortest Steiner tree. Given an approximation
algorithm for the Shortest Steiner Tree Problem with approximation guarantee β < α,
we would still get a constant-factor approximation algorithm for this restricted version
of the problem. It is also possible to bound the length of the resulting tree compared
to the initial tree Y0 by a factor of at most γ > 1, but using our bounds, one would

123



108 Algorithmica (2017) 78:86–109

need to choose a value of ε that is at least 2(1 + ∑
t∈T c(t)/ l(Y0))/(γ − 1). Since

ε now depends on
∑

t∈T c(t)/ l(Y0), our analysis would not yield a constant-factor
approximation algorithm.

However, in our experiments we just wanted to show the potential benefits of
our algorithm when applied in VLSI design, and looking at the numbers in Table
2, Algorithm 6 proves to be a valuable improvement over the existing approach of
exclusively using short Steiner trees to route the connections on a chip.

Acknowledgements We would like to thank Jens Vygen for his helpful comments and support.

References

1. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geo-
metric problems. J. ACM 45, 753–782 (1998)

2. Boese, K.D., Kahng, A.B., McCoy, B.A., Robins, G.: Fidelity and near-optimality of Elmore-based
routing constructions. In: IEEE International Conference on Computer Design, pp. 81–84 (1993)

3. Boese, K.D., Kahng, A.B., McCoy, B.A., Robins, G.: Rectilinear Steiner trees with minimum Elmore
delay. In: Proceedings of the 31st Annual Design Automation Conference, pp. 381–386. ACM, New
York (1994)

4. Boese, K.D., Kahng, A.B., McCoy, B.A., Robins, G.: Near-optimal critical sink routing tree construc-
tions. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 14, 1417–1436 (1995)

5. Boese, K.D., Kahng, A.B., Robins, G.: High-Performance routing trees with identified critical sinks.
In: Proceedings of the 30th International Design Automation Conference, pp. 182–187 (1993)

6. Brazil, M., Zachariasen, M.: Optimal Interconnection Trees in the Plane. Springer, Berlin (2015)
7. Byrka, J., Grandoni, F., Rothvoss, T., Sanità, L.: Steiner tree approximation via iterative randomized

rounding. J. ACM 60, 6:1–6:33 (2013)
8. Celik, M., Pileggi, L., Odabasioglu, A.: IC Interconnect Analysis. Kluwer, Boston (2002)
9. Chu, C., Wong, Y.C.: FLUTE: Fast lookup table based rectilinear Steiner minimal tree algorithm for

VLSI design. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27, 70–83 (2008)
10. Cong, J., Leung, K.S., Zhou, D.: Performance-driven interconnect design based on distributed rc delay

model. In: Proceedings of the 30th International Design Automation Conference, pp. 606–611. ACM
(1993)

11. Córdova, J., Lee, Y.: A Heuristic Algorithm for the Rectilinear Steiner Arborescence Problem. Tech.
rep., University of Puerto Rico, Computer Science Department (1994)

12. Dreyfus, S., Wagner, R.: The Steiner problem in graphs. Networks 1, 195–207 (1972)
13. Elmore, W.: The transient response of damped linear networks with particular regard to wideband

amplifiers. J. Appl. Phys. 19, 55–63 (1948)
14. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math.

32, 826–834 (1977)
15. Garey,M.R., Johnson, D.S.: Computers and Intractability: AGuide to the Theory of NP-Completeness.

W. H. Freeman & Company, New York (1990)
16. Gester,M.,Müller, D., Nieberg, T., Panten, C., Schulte, C., Vygen, J.: BonnRoute: Algorithms and data

structures for fast and good VLSI routing. ACM Trans. Des. Autom. Electron. Syst. 18, 32:1–32:24
(2013)

17. Gupta, R., Tutuianu, B., Pileggi, L.: The Elmore delay as a bound for RC trees with generalized input
signals. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 16, 95–104 (1997)

18. Hanan, M.: On Steiner’s Problem with rectilinear distance. SIAM J. Appl. Math. 14, 255–265 (1966)
19. Held, S., Korte, B., Rautenbach, D., Vygen, J.: Combinatorial optimization in VLSI design. In: Com-

binatorial Optimization: Methods and Applications, pp. 33–96. IOS Press, Amsterdam (2011)
20. Held, S., Rotter, D.: Shallow-light Steiner arborescences with vertex delays. In: Proceedings of the

16th International Conference on Integer Programming and Combinatorial Optimization, pp. 229–241.
Springer, Heidelberg (2013)

21. Hwang, F.: On Steiner minimal trees with rectilinear distance. SIAM J. Appl. Math. 30, 104–114
(1976)

123



Algorithmica (2017) 78:86–109 109

22. Kadodi, T.: Steiner Routing Based on Elmore Delay Model for Minimizing Maximum Propagation
Delay. Master’s Thesis, Japan Advanced Institute of Science and Technology (1999)

23. Kahng, A., Robins, G.: On Optimal Interconnections for VLSI. Kluwer, Boston (1995)
24. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Complexity

of Computer Computations, pp. 85–103. Plenum Press, New York (1972)
25. Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning and shortest path trees. In:

Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 243–250.
Society for Industrial and Applied Mathematics, Philadelphia (1993)

26. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 5th edn. Springer, Heidel-
berg (2012)

27. Korte, B., Vygen, K.: Combinatorial problems in chip design. In: Grötschel, M., Katona, G.O.H. (eds.)
BuildingBridges—BetweenMathematics andComputer Science, pp. 333–368. Springer, Berlin (2008)

28. Peyer, S.: Elmore-Delay-optimale Steinerbäume im VLSI-Design. Diploma’s Thesis (in german),
Research Institute for Discrete Mathematics, University of Bonn (2000)

29. Peyer, S., Zachariasen, M., Jørgensen, D.G.: Delay-related secondary objectives for rectilinear Steiner
minimum trees. Discrete Appl. Math. 136, 271–298 (2004)

30. Rao, S., Sadayappan, P., Hwang, F., Shor, P.: The rectilinear Steiner arborescence problem. Algorith-
mica 7, 277–288 (1992)

31. Rao, S.B., Smith, W.D.: Approximating geometrical graphs via “spanners” and “banyans”. In: Pro-
ceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 540–550. ACM,
New York (1998)

32. Rubinstein, J., Penfield, P., Horowitz, M.A.: Signal delay in RC tree networks. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 2, 202–211 (1983)

33. Scheifele, R.: Steiner Trees with Bounded Elmore Delay. Master’s Thesis, Research Institute for
Discrete Mathematics, University of Bonn (2013)

34. Shi, W., Su, C.: The rectilinear Steiner arborescence problem is NP-complete. SIAM J. Comput. 35,
729–740 (2005)

35. Vittal, A., Marek-Sadowska, M.: Minimal delay interconnect design using alphabetic trees. In: Pro-
ceedings of the 31st Annual Design Automation Conference, pp. 392–396. ACM (1994)

36. Vygen, J.: Faster algorithm for optimum Steiner trees. Inf. Process. Lett. 111, 1075–1079 (2011)

123


	Steiner Trees with Bounded RC-Delay
	Abstract
	1 Introduction
	2 The Elmore Delay Model
	3 The Problem Formulation
	4 NP-Hardness
	5 The Algorithm
	6 Optimality of the Algorithm
	7 Experimental Results
	Acknowledgements
	References




