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Abstract We introduce efficient indexes for a problem in non-standard stringology:
jumbled pattern matching. An index is a data structure constructed for a text of length
n over an alphabet of size σ that can answer queries asking if the text contains a frag-
ment which is jumbled (Abelian) equivalent to a pattern, specified by its so-called
Parikh vector. We denote the length of the pattern by m. Moosa and Rahman (J
Discrete Algorithms 10:5–9, 2012) gave an index for the case of binary alphabets

with O
(

n2

(log n)2

)
-time construction in the word-RAM model. Several earlier papers

stated as an open problem the existence of an efficient solution for larger alphabets.
In this paper we develop an index for any constant-sized alphabet. The construc-
tion involves a trade-off parameter, which in particular lets us achieve the following
complexities: O(n2−δ) space and O(m(2σ−1)δ) query time for any 0 < δ < 1, or

O
(
n2(log log n)2

log n

)
space and polylogarithmic, o(log2σ−1 m), query time. The construc-

tion time in both cases is subquadratic: O
(
n2(log log n)2

log n

)
in the word-RAM model

(using bit-parallelism). Our construction algorithms are randomized (Las Vegas, run-
ning time w.h.p.), which is due to the usage of perfect hashing. On the other hand, all
queries are answered deterministically. A preliminary version of this work appeared
at ESA 2013 (Kociumaka et al. in Algorithms, ESA 2013. LNCS, vol 8125. Springer,
Berlin, pp. 625–636, 2013). Here we improve it in several ways. We achieve O(n2)-
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time construction of the indexwithO(n2−δ) space andO(m(2σ−1)δ) query time, which
was not present in the preliminary version. We also extend the index so that the posi-
tion of the leftmost occurrence of the query pattern is provided at no additional cost in
the complexity; this required rather nontrivial changes in the construction algorithm.

Keywords Jumbled indexing · Jumbled pattern matching · Abelian equivalence ·
Histogram indexing

1 Introduction

The problem of jumbled pattern matching is a variant of the standard pattern matching
problem. The match between a given pattern and a factor of the text is defined by
their commutative (Abelian) equivalence: one word can be obtained from the other
by permuting its symbols. This relation can be conveniently described using Parikh
vectors, which show frequency of each symbol of the alphabet in a word: u and v

are commutatively equivalent (denoted as u ≈ v) if and only if their Parikh vectors
are equal. We consider the following problem of constructing an index for jumbled
pattern matching; see Fig. 1.

Indexing for jumbled pattern matching
Preprocessing Input: a text x of length n over an alphabet of size σ.
Query: for a given Parikh vector (jumbled pattern) p of length m, decide
whether p occurs in the text x and, if so, find its leftmost occurrence.

1.1 The Binary Case

Most results related to indexes for jumbled pattern matching so far have been obtained
for binary words. Cicalese et al. [11] proposed an index with O(n) size and O(1)
query time and gave an O(n2)-time construction algorithm for the index. The key
observation used in this index is that if a binary word contains two factors of length
� containing i and j ones respectively, then it must contain a factor of length � with
any intermediate number of ones. The index provides only a yes/no answer for a
query pattern; additional O(log n) time can be used to restore a witness occurrence
[12]. The construction time was improved independently by Burcsi et al. [6] (see also

[7,8]) and Moosa and Rahman [20] to O
(

n2
log n

)
, and then by Moosa and Rahman

[21] toO
(

n2

(log n)2

)
. All these results work in the word-RAMmodel. For trees vertex-

1 2 3 1 2 3 4 3 2 1 3 4 1 2 2 3 1 3 4 3

Fig. 1 All occurrences of a jumbled pattern p = (1, 2, 2, 1) in the text x=1 2 3 1 2 3 4 3 2 1 3 4 1 2 2 3 1
3 4 3. The leftmost occurrence is at position 2
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labeled with {0, 1} an index, withO
(

n2

(log n)2

)
construction time, O(n) size and O(1)

query time was given in [15]. Hermelin et al. [17] reduced binary jumbled indexing
to all-pairs shortest paths problem and used the latest results of Williams for the latter

problem [23] to obtain preprocessing time ofO
(

n2

2�((log n/ log log n)0.5)

)
for binary jumbled

indexing on bothwords and trees (a similar reductionwas shown byBremner et al. [5]).
The general problem of computing an index for jumbled pattern matching in graphs
is known to be NP-complete [13,19] but fixed-parameter tractable by the pattern size
[13] (see also [4]).

1.2 Indexes for Larger Alphabets

For arbitrary alphabets, Amir et al. [1] presented an index with O(n1+ε) space,

O(n1+ε log σ) construction time and O(m
1
ε + log σ) query time for any positive

ε < 1. Nevertheless, this query time is o(n) only for m = o(nε). Jumbled pattern
matching in a run-length encoded text over arbitrary alphabet was considered in [9].

Amir et al. [2] presented hardness results for jumbled indexing over large alphabets.
They showed that, under 3SUM-hardness assumption, for σ = ω(1) jumbled indexing
requires �(n2−ε) preprocessing time or �(n1−δ) query time for every ε, δ > 0.
Furthermore, under strong 3SUM-hardness assumption, for σ ≥ 3 jumbled indexing
requires �(n2−εσ ) preprocessing time or �(n1−δσ ) query time, where εσ , δσ < 1 are
computable constants. Recall that the 3SUM problem asks if one can choose elements
a ∈ A, b ∈ B, and c ∈ C from given integer sets A, B,C so that a + b = c. It is
believed that this problem cannot be solved in strongly subquadratic time; for precise
formulations of the related hardness assumptions; see [2].

Several researchers (see, e.g., [8,20,21]) posed an open problem asking for a con-
struction of an o(n2) indexing scheme with o(n) query time for general alphabets. In
particular, even for a ternary alphabet none was known, since the basic observation
used to obtain a binary index is not applicable to any larger alphabet.

1.3 Our Results

Weprove that the answer for the open problem asking for a subquadratic jumbled index
with sublinear-time queries is positive for any constant-sized alphabet. We show an

index of size O
(
n2
L

)
answering queries in O(L2σ−1) time where L is a trade-off

parameter which can attain any given value between 1 and n. For some choices of
L we also improve the query time so that it depends on the pattern size m only.

More precisely, we show an index of size O
(
n2(log log n)2

log n

)
which enables queries in

O
((

logm
(log logm)2

)2σ−1
)
time, and for any 0 < δ < 1 an index of size O(n2−δ) with

O(mδ(2σ−1))-time queries. Both these variants takeO
(
n2(log log n)2

log n

)
time to construct,

and the query algorithm provides the leftmost occurrence of the pattern if it exists.
Our index works in the word-RAM model with word size �(log n) [16], and the
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construction algorithm uses bit-parallelism. The construction algorithm is randomized
(Las Vegas, running time w.h.p.) due to perfect hashing. On the other hand, all query
algorithms are deterministic.

After the submission of this journal paper, Chan and Lewenstein [10] presented
a breakthrough work where they improved the construction time of the binary index
to O(n1.859). They also obtained an index with strongly subquadratic construction
and strongly sublinear queries for larger alphabets. Moreover, Chan and Lewenstein
provide an extension of our idea of heavy and light factors which improves query time
in the index.

1.4 Organization of the Paper

Section 2 is devoted mostly to combinatorial properties of Parikh vectors. In Sect. 3
we describe the basic version of the index together with the query algorithm. The

size of the index is O
(
n2
L

)
and the queries are answered in O(L2σ−1) time. We also

present a naive O(n2)-time construction algorithm. In Sect. 4 we introduce variants
of the index whose query time depends on the pattern size rather than the text size.
Using the auxiliary tools based on bit parallelism in the word-RAM model that we
provide in Sect. 5, in Sect. 6 we develop a subquadratic-time construction algorithm
for the index. Section 7 contains some concluding remarks.

2 Preliminaries

In this paper we assume that the alphabet	 is {1, 2, . . . , σ } for σ = O(1). Let x ∈ 	n .
By xi (for i ∈ {1, . . . , n}) we denote the i th letter of x . A word of the form xi . . . x j ,
also denoted as x[i . . . j], is called a factor of x .We say that the factor x[i . . . j] occurs
at the position i . A factor of the form x[1 . . . i] is called a prefix of x . If i > j then
x[i . . . j] represents an empty word.

A Parikh vector is a vector of dimension σ with non-negative integer components.
Parikh vectors can be used to describe frequencies of letters in aword. Let #s(x) denote
the number of occurrences of the letter s in x . Then the Parikh vector P(x) of a word
x ∈ 	∗ is defined as:

P(x) = (#1(x), #2(x), #3(x), . . . , #σ (x)) . (1)

Example 2.1 P(1 2 3 1 2 3 4 3 2 1 3 4 1 2 2 3 1 3 4 3) = (5, 5, 7, 3).

We say that words x and y are commutatively equivalent (denoted as x ≈ y) if y can
be obtained from x by a permutation of its letters. Observe that we have:

x ≈ y ⇐⇒ P(x) = P(y).

Example 2.2 1 2 2 1 ≈ 2 2 1 1, since P(1 2 2 1) = (2, 2) = P(2 2 1 1).

For a fixed word x , we define Occ(p) as the set of the starting positions of all occur-
rences of factors of x with Parikh vector p. For the zero Parikh vector 0̄σ we assume
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that Occ(0̄σ ) = {1, . . . , n + 1}. If Occ(p) �= ∅, we say that p occurs in x (at each
position i ∈ Occ(p)), or that p is an Abelian factor of x .

Example 2.3 Let x =1 2 3 1 2 3 4 3 2 1 3 4 1 2 2 3 1 3 4 3. A factor 2 3 1 2 3 4 occurs
(as a subword) at position 2. We have P(2 3 1 2 3 4) = (1, 2, 2, 1), hence the Parikh
vector p = (1, 2, 2, 1) also occurs at position 2. There are several other occurrences
of the Abelian factor p; see Fig. 1. We have:

Occ((1, 2, 2, 1)) = {2, 4, 5, 11, 14}.

The remainder of this section is devoted to combinatorial and algorithmic properties
of Parikh vectors. We define the norm of a Parikh vector p = (p1, p2, . . . , pσ ) as:

|p| =
σ∑
i=1

|pi |. (2)

For two Parikh vectors p, q, by p + q we denote their component-wise sum and by
p − q their component-wise difference. The latter is well-defined only if p ≥ q, i.e.,
if pi ≥ qi for each i ∈ 	.

For a fixed integer r we define the extension sets of Parikh vectors:

Ext+=r (p) = {
p + p′ : ∣∣p′∣∣ = r, ∀i p′

i ≥ 0
}
, (3)

Ext−=r (p) = {
p − p′ : ∣∣p′∣∣ = r, ∀i pi ≥ p′

i ≥ 0
}
, (4)

Ext+<r (p) = {
p + p′ : ∣∣p′∣∣ < r, ∀i p′

i ≥ 0
}
. (5)

In other words, Ext+<r (p) is the open ball of radius r centered in p, and Ext+=r (p) is
the sphere of radius r centered in p (in both cases restricted to points with integer
coordinates and to the non-negative hyperoctant with origin p). Ext−=r (p) is similar to
Ext+=r (p); the only difference is that we take care to subtract only those Parikh vectors
p′ that yield non-negative resulting components of p − p′.

Lemma 2.4 For any Parikh vector p and integer r ≥ 0:

(a) |Ext+=r (p)|, |Ext−=r (p)| ≤ 2rσ−1;
(b) |Ext+<r (p)| ≤ rσ .

Proof Both |Ext+=r (p)| and |Ext−=r (p)| are bounded by the number of Parikh vectors
of norm r , which is

(r+σ−1
σ−1

)
, since each such Parikh vector corresponds to a placement

of r indistinguishable balls into σ distinguishable urns (‘letters’). For r ≤ 1 this is
O(1), since σ = O(1), and for σ = 1 this is 1. Otherwise:

(
r + σ − 1

σ − 1

)
= r + 1

1

r + 2

2
. . .

r + σ − 1

σ − 1
≤ (r + 1)rσ−2 ≤ 2rσ−1.

This proves part (a).
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To bound |Ext+<r (p)|, it suffices to observe that

Ext+<r (p) =
r−1⋃
k=0

Ext+=k(p).

Thus the size of the set is at most

r−1∑
k=0

(
k + σ − 1

σ − 1

)
=

(
r + σ − 1

σ

)
= r

1

r + 1

2
. . .

r + σ − 1

σ
≤ rσ .

This proves part (b). 
�
Let us also introduce an efficient tool for determining Parikh vectors of factors of a
given word.

Lemma 2.5 A text x of length n can be preprocessed in O(n) time so that for any
1 ≤ i ≤ j ≤ n, the Parikh vector P(x[i . . . j]) can be computed in O(1) time.

Proof We precompute P(x[1 . . . k]) for all k = 0, . . . , n in O(n) time. Then

P(x[i . . . j]) = P(x[1 . . . j]) − P(x[1 . . . i − 1]).

Subtraction of Parikh vectors takes constant time, since σ = O(1). 
�

3 Index with Sublinear-Time Queries

In this section we describe an index for jumbled pattern matching which has sub-
quadratic size and allows sublinear-time queries. We also show a simple O(n2)-time
construction of the index. Let us fix a trade-off parameter L ∈ {1, . . . , n}; the space
of the index and the query time will depend on L .

3.1 A Sketch of the Algorithm

The intuition behind the index is as follows. We explicitly store all Abelian factors of
the text whose norm is a multiple of L (L-factors) together with all their occurrences

in x . There are only O
(
n2
L

)
occurrences of such Abelian factors and thus we are

aiming at O
(
n2
L

)
space. Hence, if a query Parikh vector has norm divisible by L ,

we can answer the query immediately. Otherwise the query Parikh vector, say q, has
norm kL + r for some 0 < r < L . If q indeed occurs in the text at some position i
(assume that it is the leftmost occurrence), then we may consider the Abelian factor
p of length kL occurring at the same position. We say that the L-factor p generates
the Abelian factor q; see Fig. 2. In the index we find the position i differently when
the generating L-factor p turns out to have few occurrences in x (then p is a so-called
light L-factor) and differently if it turns out to have many occurrences in x (then p is
a heavy L-factor).
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x
i rL L L L

p

q

Fig. 2 An Abelian factor q occurring at position i and its generating L-factor p

3.1.1 The “Light” Case

If p is a light L-factor, then we can afford to iterate through all its occurrences in x .
To find the position i we use the following observation:

Observation 3.1 p ∈ Ext−=r (q) and i ∈ Occ(p).

Hence, the query for q is answered by iterating through all possible generating L-
factors p ∈ Ext−=r (q), filtering out those which are not light L-factors, and then
iterating through all elements i ∈ Occ(p). Lemma 2.4(a) limits the size of the set
Ext−=r (q) and the size of the set Occ(p) is bounded due to the fact that p is light.

3.1.2 The “Heavy” Case

For each heavy L-factor p we store all Abelian factors generated by it (this set is
denoted asDL(p)), togetherwith their leftmost occurrences generated by p. To answer
a query for a Parikh vector q in this case, we simply return the precomputed answer.

We need to argue that the space used here is small enough. A single L-factor p
generates at most |Ext+<L(p)| different Abelian factors. Even though a heavy L-factor
has many occurrences in x , the total number of occurrences of heavy L-factors is still

O
(
n2
L

)
. Hence, we can afford O(

∑
pheavy |Occ(p)|) space. If we pick the threshold

value on the number of occurrences of light/heavy L-factors so that every heavy L-
factor p satisfies the condition |Occ(p)| ≥ |Ext+<L(p)|, then we can indeed afford to
store all Abelian factors generated by each heavy L-factor.

In Sect. 3.2 we formally define the notions of light and heavy L-factors and the set
DL . Then in Sect. 3.3 we give a full description of the data structure and the query
algorithm. A simple construction of the index (subject to improvement in the later
sections) is shown in Sect. 3.4. Finally in Sect. 3.5 we analyze the complexity of the
index depending on the trade-off parameter L .

3.2 Combinatorial Tools

By FL we denote the set of all Abelian factors of the text x whose norm is divisible
by L:

FL = {P(x[i . . . j]) : 1 ≤ i ≤ j ≤ n, L divides j + 1 − i} ∪ {
0̄σ

}
. (6)

Elements ofFL are called L-factors. The followingobservation gives a simple property
of the set of L-factors.

Fact 3.2
∑

p∈FL
|Occ(p)| ≤ n2

L + n + 1.
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2 2 2 1 1 1 2 1 2 1 1 2 1 2 2 1 1 2 1 2 1
(2,1)

(3,1)

(3,2)

(2,2) (2,3)

Fig. 3 Occurrences of a heavy 3-factor (2, 1) in x = 2 2 2 1 1 1 2 1 2 1 1 2 1 2 2 1 1 2 1 2 1. We have
D3((2, 1)) = {(2, 1), (3, 1), (3, 2), (2, 2), (2, 3)} (underlined with dashed lines)

Proof The following sequence of inequalities:

∑
p∈FL

|Occ(p)| ≤ n + 1 +
�n/L�∑
k=1

∑
p∈FL ,|p|=kL

|Occ(p)| ≤ n+1+ n
L · n = n2

L +n+1

proves the claimed result. 
�
We divide the L-factors into two sets: the set LL of light L-factors (with few

occurrences):

LL = {
p ∈ FL : |Occ(p)| ≤ Lσ

}
(7)

and the set of the remaining, heavy L-factors denoted by HL .

Example 3.3 Let x=2 2 2 1 1 1 2 1 2 1 1 2 1 2 2 1 1 2 1 2 1 and L = 3. For
this text HL = {(0, 0), (2, 1), (3, 3)}, since each of these L-factors has more than
Lσ = 32 = 9 occurrences in x . For example, there are eleven occurrences of the heavy
L-factor (2, 1); see Fig. 3. All the remaining L-factors in this example are light, i.e.,

LL = {(0, 3), (1, 2), (3, 0), (4, 2), (4, 5), (5, 4), (6, 3), (6, 6), . . .}.

For a Parikh vector p ∈ FL and its extension q ∈ Ext+<L(p), let us define the
set of common occurrences Occp(q) = Occ(p) ∩ Occ(q) and its leftmost element
Posp(q) = minOccp(q) (where min ∅ = ∞). For p ∈ HL we define DL(p) as the
set of all Parikh vectors q ∈ Ext+<L(p) which have a common occurrence with p:

DL(p) = {
q ∈ Ext+<L(p) : Occp(q) �= ∅}

. (8)

Finally, we define the sum over all heavy Parikh vectors p ∈ HL :

DL =
⋃
p∈HL

DL(p) (9)

and for each q ∈ DL

PosHL (q) = min
p∈HL

Posp(q). (10)
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In other words, to determine PosHL (q), we consider all p ∈ HL such that q ∈ DL(p)
and take the minimum i ∈ Occp(q).

Example 3.4 For the text x= 2 2 2 1 1 1 2 1 2 1 1 2 1 2 2 1 1 2 1 2 1 from
Example 3.3 (L = 3) we have DL((2, 1)) = {(2, 1), (3, 1), (3, 2), (2, 2), (2, 3)}
and the corresponding positions Pos(2,1)(q) are: Pos(2,1)((2, 1)) = Pos(2,1)((3, 1)) =
Pos(2,1)((3, 2)) = 3, Pos(2,1)((2, 2)) = 6, and Pos(2,1)((2, 3)) = 11; see Fig. 3.

3.3 Data Structure and Queries

Our indexing data structure, denoted as INDEXL(x), consists of three parts:

(a) a dictionary with keys p ∈ LL and values Occ(p),
(b) a dictionary with keys q ∈ DL and values PosHL (q),
(c) the data structure of Lemma 2.5 to retrieve the Parikh vectors of factors.

The dictionaries are implemented using perfect hashing [14] to obtain O(1)-time
access and construction working in linear time with high probability.

Lemma 3.5 The size of INDEXL(x) is O( n2
L

)
.

Proof The size of part (a) of the index is
∑

p∈LL
|Occ(p)|. By Fact 3.2, this is at most

n2
L + n + 1 = O

(
n2
L

)
.

The size of part (b) is |DL |. To bound the size of this set we use the following claim.

Claim For every p ∈ HL , |DL(p)| < |Occ(p)|.
Proof Each Parikh vector in DL(p) is an extension of the heavy L-factor p. More
precisely: DL(p) ⊆ Ext+<L(p). Therefore for p ∈ HL we have:

|DL(p)| ≤ |Ext+<L(p)| ≤ Lσ < |Occ(p)|,

where the second inequality is due to Lemma 2.4(b). 
�
Immediately from the claim we obtain:

|DL | ≤
∑
p∈HL

|DL(p)| ≤
∑
p∈HL

|Occ(p)| ≤ n2
L + n + 1.

Note that in the last inequality we again used Fact 3.2.
Finally, the size of part (c) of the index isO(n) due to Lemma 2.5. Hence, the whole

index uses O(n2/L) space. 
�
The query is realized by the following algorithmQuery(q). It uses the precomputed

position PosHL (q) if q turns out to be generated by a heavy L-factor and applies
Observation 3.1 to account for the possibility that the leftmost occurrence of q is
generated by a light L-factor.

123



Algorithmica (2017) 77:1194–1215 1203

Algorithm Query(q)

first_pos := ∞;

if q ∈ DL then first_pos := PosHL
(q);

r := |q| mod L;

foreach p ∈ Ext−=r (q) do

if p ∈ LL then

foreach i ∈ Occ(p) do

if P(x[i . . . i + |q| − 1]) = q then
first_pos := min(i, first_pos);

if first_pos = ∞ then return “no occurrence”;

else return first_pos;

Lemma 3.6 The query time in INDEXL(x) is O(L2σ−1).

Proof The query algorithmworks as presented in the pseudocode above. Let us bound
its running time. By Lemma 2.4(a), |Ext−=r (q)| = O(rσ−1) = O(Lσ−1). All elements
p ∈ Ext−=r (q) can be listed in O(Lσ−1) time. For each p ∈ LL , by definition,
|Occ(p)| ≤ Lσ . Thus, with constant-time equivalence queries of Lemma 2.5, we
obtain the desired O(L2σ−1) query time. 
�

3.4 Simple Construction of the Index

The main part of the construction of INDEXL(x) is the computation of the set DL

together with the leftmost occurrences PosHL (q). A simple quadratic-time implemen-
tation is provided in the pseudocode below. We define pref L(v) as the longest prefix
of a word v whose length is divisible by L .

Algorithm Compute-DL (x, n)

DL := ∅;
computeHL ;

for i := n downto 1 do

for j := i to n do

� process factors of x starting with rightmost occurrences

q := P(x[i . . . j]);
p := P(pref L (x[i . . . j]));
if p ∈ HL then

insert q into DL ;

PosHL
(q) := i ;

Lemma 3.7 INDEXL(x) can be constructed in O(n2) time w.h.p.
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Proof As the first step we construct FL together with Occ(p) for each p ∈ FL . We
store FL as a dictionary (hash table with perfect hashing). This component can be

constructed inO
(
n2
L

)
time using Lemma 2.5. Moreover, it allows to compute LL and

HL in the same time.
We construct DL using the algorithm from the pseudocode. With the aid of

Lemma 2.5 it runs inO(n2) time. Randomization of the construction is due to perfect
hashing used to implement the dictionaries in the index. 
�

3.5 Complexity of the Index

The following theorem summarizes the results of the previous subsection.

Theorem 3.8 For any text of length n and any integer 1 ≤ L ≤ n there exists an

index for jumbled pattern matching of size O
(
n2
L

)
and with O(L2σ−1) query time.

The index can be constructed in O(n2) time w.h.p.

For some particular values of the trade-off parameter L weobtain particularly useful
indexes.

Corollary 3.9 For any text of length n one can construct in O(n2) time an index

for jumbled pattern matching of size O
(
n2(log log n)2

log n

)
which answers queries in

O
((

log n
(log log n)2

)2σ−1
)
time.

Proof We take L =
⌈

log n
(log log n)2

⌉
and apply Theorem 3.8. 
�

Corollary 3.10 For any text of length n and any 0 < δ < 1 one can construct in
O(n2) time an index for jumbled pattern matching of size O(n2−δ) which answers
queries in O(n(2σ−1)δ) time.

Proof We take L = �nδ� and apply Theorem 3.8. 
�
In Sect. 6 we show that the data structure from Theorem 3.8 can be constructed

inO
(
max

(
n2
L ,

n2(log log n)2

log n

))
time. This yieldsO

(
n2(log log n)2

log n

)
-time construction in

the special cases of both corollaries. However, first we improve the query time.

4 Faster Queries for Small Patterns

WhileO(n(2σ−1)δ) is sublinear in n for small δ, it is still rather large, and, especially for
very small patterns, might be considered unsatisfactory. We modify the data structure
to handle such patterns much more efficiently, in O(m(2σ−1)δ) time for patterns of
norm m. We start with an auxiliary data structure.

Lemma 4.1 For any text of length n and any integers L , k such that 1 ≤ L ≤ k ≤ n,
there exists an index for jumbled pattern matching of sizeO ( nk

L

)
and withO(L2σ−1)

query time for patterns of norm at most k. The index can be constructed inO(nk) time
w.h.p.
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Proof We repeat the proof of Theorem 3.8 but we restrict to L-factors of norm at most
k. Let FL ,k denote the set of these factors. Similarly as in the case of FL , we obtain
|FL ,k | ≤ n·k

L . The rest of the construction is the same as before. 
�
Theorem 4.2 For any text of length n and any 0 < δ < 1 there exists an index for
jumbled pattern matching of size O(n2−δ) and with O(m(2σ−1)δ) query time, where
m is the norm of the pattern. The index can be constructed in O(n2) time w.h.p.

Proof Let

K =
{
2i : 0 ≤ i ≤ �log n�

}
∪ {n}.

We build the data structures from Lemma 4.1 for each k ∈ K with Lk = �kδ�. The
size of a single data structure is O

(
n·k
Lk

)
, which is O(n · k1−δ).

The total size is of order:

n2−δ +
�log n�∑
i=0

n · 2i(1−δ) = n2−δ + n
�log n�∑
i=0

(
21−δ

)i

= n2−δ + n

(
21−δ

)�log n�+1 − 1

21−δ − 1

= n2−δ + n · O
(
2(1−δ) log n

)
= O

(
n2−δ

)
.

To answer a query about a pattern p of size m we take

k = min{ j ∈ K : j ≥ m}.

Then we apply the query algorithm from Lemma 4.1 (using only the part of the data
structure relevant to k). The query works in O(m(2σ−1)δ) time, since k ≤ 2m and
(2σ − 1)δ is a constant. The total construction time sums up to O(n2). 
�

A similar argument gives an improvement of Corollary 3.9.

Theorem 4.3 For any text of size n there exists an index for jumbled pattern matching

of O
(
n2(log log n)2

log n

)
size and with O

((
logm

(log logm)2

)2σ−1
)
query time, where m is the

norm of the pattern. The index can be constructed in O(n2) time w.h.p.

Proof We proceed as in the proof of Theorem 4.2. We take

K =
{
22

i : 0 ≤ i ≤ �log log n�
}

∪ {n}.

Define f (x) = log x
(log log x)2

. We combine the instances of the data structure for
Lemma 4.1 with Lk = � f (k)� for each k ∈ K .

To answer a query for a pattern of norm m, we pick k = min{ j ∈ K : j ≥ m}.
Then the query takes O( f (k)2σ−1) time. Note that

f (k) ≤ f (m2) = logm2

(log logm2)
2 = 2 logm

(log logm2)
2 ≤ 2 logm

(log logm)2
= 2 f (m),
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so the query time is indeed O( f (m)2σ−1). Moreover, we have

∑
k∈K\{n}

nk
f (k) =

�log log n�∑
i=0

n22
i

f (22i )
= n

�log log n�∑
i=0

i222
i

2i
.

Note that the i th summand in the above sum is at least two times greater than the
(i − 1)th one, so the whole expression is bounded from above by

2n · (log log n)222
log log n

2log log n
= O

(
n2
f (n)

)
.

The index size and the construction time are as stated. 
�
In Sect. 6 we show that the data structures of Theorems 4.2 and 4.3 can actually be

constructed in O
(
n2(log log n)2

log n

)
time.

5 Efficient Element Location in Packed Lists

In this section we consider an auxiliary problem of finding the first occurrence for
each distinct value occurring in a given list. We focus on lists of length greater than
the size of the universe of values and we aim at sublinear time in the length of the
lists, which requires a suitable compact representation of these lists. The algorithm
developed in this section is later used to obtain a subquadratic-time construction of
our index for jumbled pattern matching.

Let w be a lower bound on the machine word size of the word-RAM machine and
letU = {0, . . . , N −1} for N ≤ 2w be the universe. Each element of the universe can
be stored in binary using B = �log N� bits, and therefore a single machine word can
fit up to M = �w

B � elements one after the other. Such a sequence of up to M elements
stored in a single word is called a short list, often denoted as � in this section. If the
universe U is binary, i.e., if U = {0, 1}, we refer to short lists as short bitmasks.

Note that the short list does not store its length and thus in general we cannot, for
example, tell the difference between a given list of length m < M and one of the
valid lists of length M . Consequently, we need to know the length m to interpret the
encoding. The following fact describes how short lists can be used to store lists of
larger length m in roughly m

M machine words. The resulting data structure is called
here a packed list.

Fact 5.1 (Packed List) One can store a list L that consists of m elements of an

N -element universe U using O
(
1 + m log N

w

)
machine words, so that the following

operations can be performed in constant time:

Push append a given short list at the end of L,
Pop return a short list of m′, m′ ≤ min(m, M), first elements of L and remove

those elements from L,
Length return the length m of L.
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w w

B

w w

Fig. 4 A schematic view of an example packed list with m = 11 elements. Here M = 4, mb = 2 and
me = 1

Proof First, observe that bit-wise operations let us implement two basic operations
on short lists in constant time:

– concatenate two short lists of lengths m and m′ (with m + m′ ≤ M),
– retrieve a short list ofm′ heading or trailing elements of a given short list of length
m (m′ ≤ m ≤ M).

Our implementation of a packed list consists of a queue of short lists. We also store
the length m of the whole list L, as well the as the lengths mb and me of the short
lists �b and �e at the beginning and at the end of the queue, respectively. We maintain
as an invariant that the remaining short lists in the queue have exactly M elements
each; see Fig. 4. Consequently, the size of the queue is m

M + O(1) and thus the space

consumption of the packed list is O
(
1 + m log N

w

)
as desired.

The implementation of the Length query is trivial and so is updating the length m
under Push and Pop operations.

To append a short list � of m′ elements, we extract the first min(M − me,m′)
elements of � and concatenate the resulting short list with the tail �e of the queue. If
m′ > M − me, we also extract the remaining elements of � and append the resulting
short list as the new tail of the queue. The length me needs to be updated accordingly
(so needs mb if the queue had length at most one).

The implementation of the operation Pop is similar. First, we extract the first
min(m′,mb) elements from the head �b and then replace �b with its remaining ele-
ments. If m′ < mb, we are done and we return the extracted short list. Otherwise, �b
becomes empty, so we drop it from the queue and removem′ −mb first elements from
the new head. The resulting list is formed by concatenation of the two extracted short
lists. 
�

For a packed list L we define a bitmask FirstOccL of first occurrences. Its length
is the same as the length of L and the i th bit of FirstOccL is set if the value at the i th
position in L has no earlier occurrence in L. The bitmask is stored as a packed list
over the universe U = {0, 1}.
Example 5.2 If the packed list L over U = {0, 1, 2, 3} contains the following ele-
ments:

1, 0, 0, 3, 0, 1, 1, 1, 3, 2, 3, 2

then the corresponding bitmask FirstOccL is

1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0
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The following lemma is the main result of this section.

Lemma 5.3 After O(22ww)-time preprocessing, for any packed list L, the bitmask

FirstOccL can be computed in O
(
1 + m(log N )2

w

)
time, where m = Length(L).

Proof We apply a divide-and-conquer algorithm to solve the problem. We partition
L into sublists of elements not exceeding p (L≤p) and larger than p (L>p) for some
pivot value p, recurse on L≤p and L>p, and retrieve FirstOccL from FirstOccL≤p

and FirstOccL>p . This approach is similar to efficient wavelet tree construction for
sequences over a small universe; see [3,22].

For a short list � and an integer p ∈ U we define an operation of partitioning � with
p as a pivot. We denote Partition(�, p) = (�≤p, �>p, b�,p), where �≤p and �>p are
both short lists, �≤p is a sublist of � consisting of elements not exceeding p, while �>p

is the complement sublist of �, and b�,p is a short bitmask of the same length as � in
which zeroes correspond to elements of � not exceeding p and ones to the remaining
elements. For the Partition(�, p) queries we additionally assume that length of � is
given in the input, and lengths of �≤p and �>p are returned as a part of the output. The
answer to a single query can be naively computed in linear time with respect to the
length of the list, i.e., inO(M) = O(w) time. Since the number of distinct pairs (�, p)
does not exceed O(2w · 2w) = O(22w), the answers to all Partition(�, p) queries can
be precomputed in O(22ww) time.

Our next goal is to implement LargePartition, that is, the extension of Partition
to packed lists of arbitrary length. We scan the input list L and at each step we pop
a short list consisting of the first M = �w

B � elements of L, partition it with respect
to p, and append (push) two resulting short lists to the output packed lists L≤p and
L>p. Additionally, we concatenate the bitmasks obtained from Partition operations
to obtain the resulting bitmask for LargePartition. See the pseudocode below for
details.

Algorithm LargePartition(L, p)

Initialize L≤p and L>p as empty packed lists;

Initialize B as an empty bitmask;

while Length(L) > 0 do
� := Pop(L,min(M, Length(L)));
(�≤p, �>p, b) := Partition(�, p);

Push(L≤p, �≤p);

Push(L>p, �>p);

Push(B, b);

return (L≤p, L>p,B);

Observation 5.4 LargePartition(L, p) works in O
(
1 + |L| log N

w

)
time.

Next, we show how to retrieve the desired FirstOccL from FirstOccL≤p and
FirstOccL>p . Conceptually, FirstOccL can be easily obtained using the auxiliary bit-
mask B: it suffices to transform B so that the i th 0 in B is replaced by the i th bit from
FirstOccL≤p , while the i th 1 in B is replaced by the i th bit from FirstOccL>p .
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For an efficient implementation we use the following auxiliary operation
Merge(b, f0, f1): given a short bitmask b (of length m ≤ w), with m1 set bits, and a
pair of bitmasks: f0 of length m − m1 and f1 of length m1, replace zeroes in b with
consecutive bits of f0, and ones in b with consecutive bits of f1. Note that there are
O(22w) possible inputs, so the answers can be precomputed inO(22ww) time.We also
precompute for each short bitmask b the number of set bits [denoted as PopCount(b)].

In order to extend Merge to bitmasks of arbitrary length, i.e., to compute
LargeMerge(B,F0,F1), we scan B in chunks of at most w bits, obtained using
pop operation. For such a chunk b we compute the numbers of zeroes m0 and ones
m1. We pop mi bits from each Fi to obtain fi , compute f = Merge(b, f0, f1) and
append it at the end of the output.

Algorithm LargeMerge(B,F0,F1)
Initialize F as an empty bitmask;
while Length(B) > 0 do

m := min(w, Length(B)); � number of bits

b := Pop(B,m); � a chunk of B

m1 := PopCount(b); � number of ones in b

f0 := Pop(F0,m − m1); � first m0 elements of F0
f1 := Pop(F1,m1); � first m1 elements of F1
f := Merge(b, f0, f1); � small merge

Push(F, f ); � appending the result

return F;

Observation 5.5 LargeMerge(L, p) works in O
(
1 + |B|

w

)
time.

Finally, we note that it is straightforward to precompute in O(2ww2) = o(22ww)

time all answers to the SmallFirstOcc(�) queries asking for FirstOcc� for short lists
�. Combined with the LargePartition and LargeMerge developed above, this lets
us design a recursive procedure computing FirstOccL for arbitrary packed lists. We
extend the input with a range {rb, . . . , re} ⊆ U guaranteed to contain all members of
L; in the initial call we have rb = 0, re = N − 1.

Algorithm LargeFirstOcc(L, rb, re)

if Length(L) ≤ M then
return SmallFirstOcc(L);

if rb = re then
return a bitmask with 1 one followed by Length(L) − 1 zeroes;

p := � rb+re
2 �;

(L≤p,L>p,B) := LargePartition(L, p);

F0 := LargeFirstOcc(L≤p, rb, p);

F1 := LargeFirstOcc(L>p, p + 1, re);

return LargeMerge(B,F0,F1);
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We conclude the proof with the analysis of the running time. The preprocessing
time is O(22ww) as required. If the initial list is short, the procedure clearly runs in
O(1) time. In the discussion below we ignore this special case and assume the initial
length m is greater than M.

A single call to the LargeFirstOcc procedure, excluding the recursive calls it

makes, takes O
(
1 + |L| log N

w

)
time. The O(1) term may dominate only in the leaves

of the recursion tree. Therefore, unless the root of the tree is a leaf, we account theO(1)
time in the amortized running time of the parent call. The procedure makes at most

two recursive calls, so the amortized running time becomes O
( |L| log N

w

)
. The depth

of the recursion is bounded by �log N� since the interval {rb, . . . , re} is halved at each
step. Moreover, the lists in a single level of recursion tree are of total length m. This

givesO
(
m log N

w

)
amortized time per level andO

(
m(log N )2

w

)
time in total. Accounting

for the O(1)-time in the border case, we get the announced O
(
1 + m(log N )2

w

)
time

complexity. 
�
Corollary 5.6 After O(22ww)-time preprocessing, given a packed list L of length m
we can compute, for each value j ∈ U, the position of the first occurrence of j in L

(or ∞ if no such position exists) in O
(
N + m(log N )2

w

)
time.

Proof We apply Lemma 5.3 to obtainF = FirstOccL inO
(
1 + m(log N )2

w

)
time. Next,

we initialize the output array in O(N ) time to ∞’s, and iterate through the set bits
of F in O (

N + m
w

)
time. Whenever we encounter a set bit at position j , we retrieve

i = L[ j] and set the i th position of the output array to j . 
�

6 Reducing Preprocessing Time

In Sect. 3 we presented an index of subquadratic size allowing for sublinear-time
queries. However, the construction time was quadratic. Here, we slightly improve this
parameter.

Recall that the only bottleneck of the simple construction algorithm, developed in
Sect. 3.4, is computing the set DL (of Abelian factors generated by heavy L-factors)
and the witness positions PosHL (q). Our improved solutions process each p ∈ HL

separately, determining DL(p) and Posp(q) for all q ∈ DL(p).
First, in Theorem 6.1, we actually deal with small values of L using bit-parallelism

of the word-RAM model. Our approach is as follows: We assign each q ∈ Ext+<L(p)
a short integer identifier of O(σ log L) bits and for each i ∈ Occ(p) we compute a
short list representing those extensions q ∈ Ext+<L(p) for which i ∈ Occp(q). Then,
we concatenate these short lists into a single packed list, apply Corollary 5.6, and
translate the first occurrences of each identifier in the packed list into the leftmost

occurrences Posp(q) of each q ∈ Ext+<L(p). Provided that L = O
(

log n
(log log n)2

)
, this

gives a factor-L speed-up.
For larger L , in Theorem 6.3, we use a two-level procedure, which introduces an

auxiliary parameter � ≈ log n
(log log n)2

and generates DL(p) in L
�
phases, using the same

techniques as before to obtain a factor-� speedup.
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Theorem 6.1 The index of Theorem 3.8 admits a construction algorithm running in

O
(
n2
L + n2(log L)2

log n

)
time w.h.p.

Proof First, observe that if log L ≥ √
log n the claimed construction time is quadratic

since n2(log L)2

log n = �(n2). Thus, in the following we assume log L <
√
log n, which

in particular implies log L = o(log n).
We apply the results of Sect. 5 with w = α log n for some constant α < 1

2 , so that
the preprocessing time is O(22ww) = O(n2α log n) = o(n).

As described in the proof of Lemma 3.7, all parts of the preprocessing excluding

the computation of DL work in O
(
n2
L

)
time. The missing component is constructed

using Corollary 5.6.
Let us consider Ext+<L(0̄σ ), the set of Parikh vectors e satisfying |e| < L . These

Parikh vectors can be interpreted as lists of length σ over {0, . . . , L − 1}, and thus
they can be represented as integers within U = {0, . . . , N − 1} for N = Lσ , which
shall be the universe for the packed lists. Here, entries of the Parikh vector correspond
to digits in the base-L representation of its identifier.

Note that these integer identifiers fit into a machine word since Lσ = 2σ log L =
2o(log n) while w = �(log n). For each position i , 1 ≤ i ≤ n, we construct a packed
list Li of length min(L , n + 2 − i) whose j th element (0-based) is the identifier of
P(x[i . . . i+ j−1]). A single list can be constructed inO(L) time, which givesO(nL)

time in total. Each Li is stored in O
(
1 + L log N

w

)
space.

Now sets DL(p) are computed separately for each p ∈ HL . Note that along with
any q ∈ DL(p) we need to find the leftmost occurrence Posp(q). Observe that for any
i ∈ Occp(q)we have P(x[i +|p| . . . i +|p|+r −1]) = q − p where r = |q|− |p| ∈
{0, . . . , L − 1}.

We consider all positions i ∈ Occ(p), and for each such position i we take the list
Li+|p|. To compute DL(p), it suffices to find all the distinct elements in these lists
Li+|p| and add p to each of the corresponding Parikh vectors. For this, we concatenate
the corresponding lists Li+|p| into a single packed list L of length not exceeding
|Occ(p)| · L , and run the algorithm of Corollary 5.6. For each identifier occurring in
L, we retrieve its first position in L which can be translated into the position Posp(q)

of the corresponding occurrence of q ∈ DL(p). The latter is easy if we store Occ(p)
as a sorted array and concatenate Li+|p| in this order.

Consequently, for fixed p the set DL(p) together with the witness occurrences
Posp(q) can be computed in

O
(
N + |Occ(p)| ·

(
1 + L(log N )2

w

))
= O

(
Lσ + |Occ(p)| ·

(
1 + L(log L)2

log n

))

time. By the definition of a heavy L-factor, |Occ(p)| > Lσ , so the above running time

can be bounded by O
(
|Occ(p)| ·

(
1 + L(log L)2

log n

))
. By Fact 3.2, across all p ∈ HL

this sums up to O
(
n2
L + n2(log L)2

log n

)
. 
�

For small L we obtain a corollary which basically states that we have an opti-
mal construction time of our data structure, since its running time matches the space
complexity of the index.
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Corollary 6.2 If L = O
(

log n
(log log n)2

)
, then the index of Theorem 3.8 can be con-

structed in O
(
n2
L

)
time w.h.p. In particular, the index of Corollary 3.9 can be

constructed in O
(
n2(log log n)2

log n

)
time w.h.p.

Next, we generalize the algorithm to extend the scope of its usefulness for larger L .

Theorem 6.3 If L = �
(

log n
(log log n)2

)
, then the index of Theorem 3.8 can be con-

structed inO
(
n2(log log n)2

log n

)
time w.h.p. In particular, the index of Corollary 3.10 can

be constructed in O
(
n2(log log n)2

log n

)
time w.h.p.

Proof Let � = � log n
(log log n)2

�. If L < �σ+1, then already Theorem 6.1 gives the desired

complexity bound. Thus, in the following we assume that L ≥ �σ+1.
Again, we shall concentrate on computing sets DL(p) for each p ∈ HL and the

witness occurrences Posp(q) for each q ∈ DL(p). As in the proof of Theorem 6.1,
we assign integer identifiers to short Abelian factors, and precompute lists Li for
each position i . This time, however, we perform these operations for � instead of L .
Consequently, we set N = �σ and the lists Li take O(n�) time to construct.

We constructDL(p) inO ( L
�

)
phases. During the kth phase, we consider extensions

of p by a length within {(k−1)�+1, . . . , k�}. We begin each phase with constructing
for all q ∈ Ext+=(k−1)�(p) listsOccp(q). For this, we scanOcc(p) and for each position
i we append i to the appropriate list Occp(q) (for q = P(x[i . . . i + |q| − 1])). Using
Lemma 2.5 and a dictionary (hash table) to map Parikh vectors into lists, this can be
achieved inO(|Ext+=(k−1)�(p)|+|Occ(p)|) time, which reduces toO(|Occ(p)|) since

∣∣∣Ext+=(k−1)�(p)
∣∣∣ = O

(
((k − 1)�)σ−1

)
= O

(
Lσ−1

)

by Lemma 2.4(a), and p ∈ HL . Next, we process each occurrence list Occp(q).
For each such list of length at most �σ we naively scan the occurrences and the

respective extensions. This takes |Occp(q)|� = O(�σ+1) time per list, which is at
most O(|Ext+=(k−1)�(p)|�σ+1) = O(Lσ−1�σ+1) for the whole phase.

The remaining listsOccp(q) are processed similarly as in the proof of Theorem 6.1:
we concatenate Li+|q| for i ∈ Occp(q) to obtain L, retrieve the first occurrences of
elements in L using Corollary 5.6, add q to the Parikh vectors represented by the
identifiers obtained, and translate positions in L into positions in the text. For a single
list Occp(q) this takes

O
(
N + |Occp(q)| ·

(
1 + �(log N )2

w

))
= O

(
�σ + |Occp(q)| ·

(
1 + �(log �)2

w

))

time, which by the lower bound on |Occp(q)| is of order

O
(
|Occp(q)| ·

(
1 + �(log �)2

w

))
.
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Each i ∈ Occ(p) occurs in at most one Occp(q), so for the whole kth phase, this is

O
(
|Occ(p)| ·

(
1 + �(log �)2

w

))
.

Combining both parts and summing up over phases, we conclude that a single
DL(p) can be computed in time

O
(
Lσ �σ + |Occ(p)| ·

(
L
�

+ L(log �)2

w

))
.

By definition of a heavy L-factor, we can bound Lσ by |Occ(p)|, and, by the assumed
lower bound on L , we can bound �σ ≤ L

�
. Consequently, the time required to compute

DL(p) reduces to

O
(
|Occ(p)| · L ·

(
1
�

+ (log �)2

w

))
= O

(
|Occ(p)| · L · (log log n)2

log n

)
.

By Fact 3.2, across all p ∈ HL this sums up to the desired upper bound of

O
(
n2(log log n)2

log n

)
. 
�

Finally, we observe that the construction of the index of Lemma 4.1 can also be
improved. We only need to make sure that theO(nL) term (hidden in the construction
of Theorem 6.1) or theO(n�) term (in the proof of Theorem 6.3) do not dominate the
running time. For this, it suffices to allow for additional O(n logO(1) n) term in the
running time, since we use the approach of Theorem 6.1 only for L < logσ+1 n, and
in Theorem 6.3 we have l < logσ+1 n.

Lemma 6.4 The index of Lemma 4.1 can be constructed in O (
n logσ+1 n+

max
(
nk
L ,

nk(log log n)2

log n

))
time w.h.p.

Corollary 6.5 The indexes of Theorems 4.2 and 4.3 can be constructed in

O
(
n2(log log n)2

log n

)
time w.h.p.

Proof In the proofs of Theorems 4.2 and 4.3, we use only O(log n) instances of the
data structure of Lemma 4.1, so the additional O(n logO(1) n) term is dominated by
the claimed construction time. The O ( nk

L

)
term sums up to the data structure size,

which is also dominated. Finally, it suffices to note that
∑

k∈K k = O(n), so the

O
(
nk(log log n)2

log n

)
terms sum up to O

(
n2(log log n)2

log n

)
, as desired. 
�

7 Conclusions

We presented several versions of an index for jumbled pattern matching in a text over a
constant-sized alphabet. The index admits a size versus query time trade-off, which in

particular gives a data structure of size O
(
n2(log log n)2

log n

)
with O

((
logm

(log logm)2

)2σ−1
)
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query time, and a solution of size O(n2−δ) with O(m(2σ−1)δ) query time for any 0 <

δ < 1. Thus the index is able to provide polylogarithmic query time and subquadratic
space, or strongly sublinear query time along with strongly subquadratic space. Both

versions of the index can be constructed inO
(
n2(log log n)2

log n

)
time with high probability

under the word-RAM model. Moreover, the query algorithm computes the leftmost
occurrence of the query pattern if it exists.

Recall that for a constant alphabet of size σ ≥ 3, in [2] it is shown that, under strong
3SUM-hardness assumption, jumbled indexing requires�(n2−εσ ) preprocessing time
or�(n1−δσ ) query time, where εσ , δσ < 1 are computable constants. This leaves room
for improvement of the construction time of an index, and also does not apply to the
space versus query time trade-off of an index.
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