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Abstract We study the storage allocation problem (SAP) which is a variant of the
unsplittable flow problem on paths (UFPP). A SAP instance consists of a path P =
(V, E) and a set J of tasks. Each edge e ∈ E has a capacity ce and each task j ∈ J
is associated with a path I j in P , a demand d j and a weight w j . The goal is to find
a maximum weight subset S ⊆ J of tasks and a height function h : S → R

+ such
that (i) h( j) + d j ≤ ce, for every e ∈ I j ; and (ii) if j, i ∈ S such that I j ∩ Ii �= ∅
and h( j) ≥ h(i), then h( j) ≥ h(i) + di . SAP can be seen as a rectangle packing
problem in which rectangles can be moved vertically, but not horizontally. We present
a polynomial time (9 + ε)-approximation algorithm for SAP. Our algorithm is based
on a variation of the framework for approximating UFPP by Bonsma et al. [FOCS
2011] and on a (4+ ε)-approximation algorithm for δ-small SAP instances (in which
d j ≤ δ · ce, for every e ∈ I j , for a sufficiently small constant δ > 0). In our algorithm
for δ-small instances, tasks are packed carefully in strips in a UFPPmanner, and then
a (1 + ε) factor is incurred by a reduction from SAP to UFPP in strips. The strips
are stacked to form a SAP solution. Finally, we provide a (10 + ε)-approximation
algorithm for SAP on ring networks.
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Architectures (SPAA), 2013.
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1 Introduction

In the Unsplittable Flow Problem on Paths (UFPP) an instance consists of a
path P = (V, E) with m edges and a set J of n tasks. Each edge e ∈ E has a capacity
ce. Each task j ∈ J has a starting vertex si ∈ V , ending vertex ti ∈ V , a demand
d j and a weight w j . We denote the path from s j to t j by I j , and we say that j ∈ J
uses an edge e ∈ E if e ∈ I j . Given a set S of tasks and an edge e ∈ E , define
S(e) = { j ∈ S : e ∈ I j } to be the set of tasks in S that use e. A feasibleUFPP solution
is a set of tasks S ⊆ J such that

∑
j∈S(e) d j ≤ ce, for every e ∈ E . The goal in UFPP

is to find a feasible solution of maximum weight.
We study a variant of UFPP called the Storage Allocation Problem (SAP).

In SAP we have an additional constraint: it is also required that every task in the
solution is given the same contiguous portion of the resource in every edge along its
path. More formally, a feasible SAP solution is a subset S ⊆ J and a height function
h : S → R

+ such that

1. h( j) + d j ≤ ce, for every j ∈ S and e ∈ I j , and
2. if j, i ∈ S such that I j ∩ Ii �= ∅ and h( j) ≥ h(i), then h( j) ≥ h(i) + di .

It follows that SAP is a rectangle packing problem in which each rectangle of height
d j can be moved vertically, but not horizontally. We note that while any SAP solution
induces a UFPP solution, the converse is not always true, as shown in Fig. 1.

SAP naturally arises in scenarios where tasks require contiguous static portions of
a resource. An object may require a contiguous range of storage space (e.g., mem-
ory allocation) for a specific time interval ([s j , t j ) for task j). A task may require
bandwidth, but will only accept a contiguous set of frequencies or wavelengths. The
resource may be a banner, where each task is an advertisement that requires a con-
tiguous portion of the banner.

e1 e2 e3

d1 = 1
2

d2 = 1
2

(a)

e1 e2 e3 e4 e5 e6

(b)

Fig. 1 The dotted line represents the capacity of the edges, and the strips correspond to tasks. Thick strips
have demand 1

2 , while thin strips have demand 1
4 . The task sets in both instances form UFPP solutions.

However, in both instances there is no SAP solution that contains all tasks (the instance on the right was
given in [18]). a ce1 = ce3 = 0.5 and ce2 = 1. b ce = 1 for every e
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Fig. 2 Example of δ-small tasks. a Uniform capacities. b Non uniform capacities

Given a SAP or a UFPP instance, an edge e ∈ E is called a bottleneck edge of a
task j , if ce = min f ∈I j c f . Define b( j) � min f ∈I j c f , namely b( j) is the capacity
of a bottleneck edge of j . Given δ > 0, a task j is called δ-small if d j ≤ δb( j),
otherwise it is called δ-large. A SAP or a UFPP instance is called δ-small (δ-large)
if d j ≤ δb( j) (d j > δb( j)), for every j ∈ J (see example in Fig. 2). In the special
case of SAP with uniform capacities (SAP- U), all edges in I j are bottleneck edges,
for every task j . The same goes for UFPP with uniform capacities (UFPP- U). An
instance in which the maximum demand is bounded by the minimum edge capacity,
i.e., max j d j ≤ mine ce, is said to satisfy the no-bottleneck assumption (NBA).

SAP- U is strongly related to the Dynamic Storage Allocation problem
(DSA), where one is given a path and a set of tasks, and the goal is to find theminimum
uniform capacity for all edges together with a SAP solution that contains all tasks.

1.1 Related Work

The special case of SAP- U (or UFPP- U) with unit capacities and demands is the
Maximum Independent Set problem in interval graphswhich is solvable in polyno-
mial time (see, e.g., [25]). Both SAP- U and UFPP- U are NP-hard, since they contain
Knapsack as the special case in which the paths of all requests share an edge. When
the number of edges in P is constant,UFPP is a special case of Mutli- Dimensional
Knapsack and hence admits a PTAS [21].

Bar-Noy et al. [5] designed local ratio algorithms for UFPP- U and SAP- U with
ratio 3 and 7, respectively. The latter was obtained using a reduction from SAP- U to
UFPP- U that was based on an algorithm for the Dynamic Storage Allocation
Problem (DSA) by Gergov [24]. An extension of SAP- U in which each task j has
a time window was studied in [5,26]. Calinescu et al. [13] developed a randomized
approximation algorithm for UFPP- U with expected performance ratio of 2 + ε, for
every ε > 0. They obtained this result by dividing the given instance into an instance
with large tasks and an instance with small tasks. They use dynamic programming
to compute an optimal solution for the large instance, and a randomized LP-based
algorithm to obtain a (1 + ε)-approximate solution for the small instance. They also
present a 3-approximation algorithm for UFPP- U that is different from the one given
in [5].
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Chen et al. [18] studied the special case of SAP- U where the capacity is K , where
K is an integer, and all demands are integers in the range {1, . . . , K }. They developed
an O(n(nK )K ) time dynamic programming algorithm to solve this special case of
SAP- U, and also gave an approximation algorithm with ratio e

e−1 + ε, for any ε > 0,
assuming that d j = O(1), for every j . Bar-Yehuda et al. [6] presented approximation
algorithms for SAP- U that is based on a reduction from SAP- U to UFPP- U that
works on very small instances, namely on instances in which d j ≤ δ, for a constant
δ > 0. (Here we assume that the uniform capacity is 1). The reduction is based on
an algorithm for DSA by Buchsbaum et al. [12]. Bar-Yehuda et al. also presented a
dynamic programming algorithm for large instances of SAP- U, and this led to two
approximation algorithms for SAP- U; a randomized algorithm with ratio 2+ ε and a
deterministic algorithm with ratio 2e−1

e−1 + ε < 2.582.
Bansal et al. [3] gave a deterministic quasi-polynomial time approximation scheme

for instances of UFPP assuming that all capacities and demands are quasi-polynomial,
thereby ruling out an APX-hardness result for such instances of UFPP, unless
NP ⊆ DTIME(2polylog(n)). Batra et al. [9] improved the above result by removing
the assumption. They also present two PTASs, one for the case where weight by
demand ratios lie in a constant range, and another for the case where one is allowed
to shorten paths by an ε-fraction.

Chakrabarti et al. [14] presented a constant factor approximation algorithm for
UFPP under the NBA and an O(log(dmax/dmin))-approximation algorithm for UFPP
by extending the approach of [13]. Chekuri et al. [17] used an LP-based deterministic
algorithm to obtain a (2 + ε)-approximation algorithm for UFPP under the NBA.
Bansal et al. [4] developed an O(log n)-approximation algorithm for UFPP, beating
the integrality gap of the natural LP-relaxation, which was shown to be �(n) [14].
Chekuri et al. [16] considered Unsplittable Flow on trees. They generalized the
above result by providing an O(logm)-approximation algorithm for uniform weights
and an O(logm ·min {logm, log n})-approximation algorithm for the weighted case,
wherem is the number of edges in the tree. They also developed an LP formulation for
UFPP that has an O(log n ·min {logm, log n}) integrality gap and admits a polynomial
time O(1)-approximation algorithm. (In a more recent version of their paper [15] they
provide a polynomial-size LP with an integrality gap of O(logm).) A linear program
for UFPP whose gap is 7+ ε was given by Anagnostopoulos et al. [1]. Friggstad and
Gao [22] present a polynomial-size linear program for Unsplittable Flow on trees
whose integrality gap is O(log n · min {logm, log n}).

Bonsma et al. [10] developed a (7 + ε) approximation algorithm for UFPP and
showed that UFPP is strongly NP-hard even for instances with demands in {1, 2, 3}.
Chrobak et al. [19] showed that UFPP- U is strongly NP-hard even for the case of uni-
form weights. Recently, Anagnostopoulos et al. [2] presented a (2+ε)-approximation
algorithm for UFPP.

Gergov [24] presented an O(n log n) time algorithm for DSA that computes a
solution of cost atmost 3load(J ), where load(J ) is themaximumsumof demands on
an edge. Buchsbaum et al. [12] presented a polynomial time algorithm that computes a
solution of cost atmost (1+O((D/load(J ))1/7)))·load(J ), where D is themaximal
demand of a task. Garey and Johnson [23, Problem SR2] stated that Larry Stockmeyer
showed that DSA is strongly NP-hard using a reduction from 3- Partition. The
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reduction is given in [11]. In fact, in the above reduction only two demand types are
used. This hardness results implies that SAP- U is also strongly NP-hard.

Finally, we note that it can be shown that SAP- U is strongly NP-hard using a differ-
ent reduction from 3- Partition that was used to show that Call Scheduling with
unit bandwidth and arbitrary duration is strongly NP-hard [20]. (The time dimension
in call scheduling corresponds to the storage dimension in the storage allocation prob-
lem.) In the conference version of this paper [7] we used a relatively simple reduction
from Bin Packing, to show that SAP is strongly NP-hard, even with uniformweights
and even under the NBA.

1.2 Our Contribution

We present a polynomial time (9 + ε)-approximation algorithm for SAP, for every
constant ε > 0. Our algorithm is based on the recent constant factor approximation
algorithm for UFPP by Bonsma et al. [10]. As done in [10] we partition the task set
into three sets: small tasks, medium tasks, and large tasks. 1 Small tasks are δ-small
for some δ > 0, large tasks are δ′-large for some δ′ > δ, and medium tasks are δ-large
and δ′-small.

The algorithms for small and medium tasks by Bonsma et al. [10] are based on an
approximation framework that provides (1 + ε)α-approximate solutions given a cer-
tain type of α-approximation algorithm for UFPP with “almost uniform” capacities
(ce ∈ [2k, 2k+�), for some k and a constant �). Our algorithm for medium tasks
uses a variation of this framework for SAP. The main difference is that in SAP
we also need to worry about the height assignments. Additionally, we provide a 2-
approximation algorithm for “almost uniform” instances. We do this by extending the
dynamic programming algorithm for SAPwith uniform capacities from [6] to “almost
uniform” capacities. A factor 2 is lost due to the framework’s requirement from the
α-approximation algorithm for “almost uniform” instances. Hence, combined with
the above framework we obtain a (2+ ε)-approximation algorithm for medium tasks.

Our (4 + ε)-approximation algorithm for small tasks is based on partitioning the
instance into instances in which bottlenecks are within factor 2 of each other. We
show how to compute an approximate solution for each instance and then explain how
to adjust the heights in order to combine them. This can be seen as a variant of the
framework for medium tasks, in which the α-approximation algorithm should satisfy
an additional requirement: the tasks must be packed in a strip. We use an LP-rounding
(4 + ε)-approximation algorithm for the UFPP version of each such instance that
computes approximate solutions in which tasks are packed in strips. (We also provide
an alternative local ratio (5+ε)-approximation algorithm.) A (1+ε) factor is incurred
by a reduction from SAP to UFPP in strips [6]. Finally a SAP solution is obtained by
stacking the strips.

As for large tasks, Bonsma et al. [10] presented an approximation algorithm for
large instances of UFPP that is based on (i) a reduction from UFPP to a special

1 Bonsma et al. [10] use tiny, medium, and large, since they consider both medium and tiny tasks as small
tasks.
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case of the Rectangle Packing problem, and (ii) an algorithm that solves this
special case that correspond to instances that are obtained by the reduction. Their
algorithm provides a schedule that is induced by a subset of pairwise non-intersecting
rectangles, and therefore it is also a SAP schedule. It follows that this algorithm is
also an approximation algorithm for large instances of SAP. In this paper, we give a
tighter analysis and provide a better upper bound on the approximation ratio for large
instances of SAP.

Finally, using a reduction from rings to paths we provide a (10+ ε)-approximation
algorithm for SAP on ring networks, where each task has two possible paths.

1.3 Paper Organization

The remainder of the paper is organized as follows. Section 2 contains definitions and
a few preliminary observations. A formal description of our results is given in Sect. 3.
Our algorithms for medium, small, and large SAP instances are given in Sects. 5, 4,
and 6, respectively. We consider ring networks in Sect. 7. We conclude in Sect. 8.

2 Preliminaries

Given a task set S ⊆ J , the demand of S is denoted by d(S), namely d(S) �
∑

j∈S d j .
The load of S on an edge e is defined as d(S(e)) = ∑

j∈S(e) d j . A feasible UFPP
solution is a set of tasks S ⊆ J such that d(S(e)) ≤ ce, for every e ∈ E . A UFPP
solution S is called B-packable if d(S(e)) ≤ B, for every e ∈ E . Given a SAP solution
(S, h), the makespan of an edge e is defined as μh(S(e)) � max j∈S(e)(h( j) + d j ).
Observe that d(S(e)) ≤ μh(S(e)), for every e ∈ E . A SAP solution (S, h) is called
B-packable if μh(S(e)) ≤ B, for every e ∈ E .

Given two disjoint subsets S1, S2 ⊆ J and two height functions h1 : S1 → R
+ and

h2 : S2 → R, let h1 ∪ h2 : S1 ∪ S2 → R be the following function:

(h1 ∪ h2)( j) =
{
h1( j) j ∈ S1,

h2( j) j ∈ S2.

The following observation bounds the load of a UFPP solution on the edges in
terms of the maximum bottleneck. A similar observation was made in [10].

Observation 1 Let S be a feasible UFPP solution. Then d(S(e)) ≤ 2max j∈S b( j),
for every e ∈ E.

Proof Let e be an edge. Any task j ∈ S(e) must use an edge with capacity at most
B = max j∈S b( j). Let eL and eR be the closest such edges to the left and to the right,
respectively. (It may be that eL = eR = e.) Hence, d(S(e)) ≤ d(S(eL))+d(S(eR)) ≤
2B. �


The next observation is the analogous observation for SAP.
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Observation 2 Let (S, h) be a feasible SAP solution. Thenμh(S(e)) ≤ max j∈S b( j),
for every e ∈ E.

Proof Let e ∈ E be an edge and let S(e) = { j1, . . . , jp} such that h( ji ) + d ji ≤
h( ji+1), for every i . The observation follows, since μh(S(e)) = h( jp) + d jp ≤
b( jp) ≤ max j∈S b( j). �


Finally, we need the following standard result that is used when one partitions the
input into small and large instances. Given a SAP instance, let JS and JL be the subset
of δ-small tasks and the subset of δ-large tasks, respectively. (The proof is given for
completeness.)

Lemma 3 Let S1 and S2 be an r1-approximate solution with respect to JS and an
r2-approximate solution with respect to JL , respectively. Then, the solution of greater
weight is an (r1 + r2)-approximation for the original instance.

Proof Let S∗ be an optimal solution for the original instance. Either w(S∗ ∩ JS) ≥
r1

r1+r2
w(S∗) orw(S∗∩ JL) ≥ r2

r1+r2
·w(S∗). Hence, eitherw(S1) ≥ 1

r1
· r1
r1+r2

·w(S∗) =
1

r1+r2
· w(S∗) or w(S2) ≥ 1

r2
· r2
r1+r2

· w(S∗) = 1
r1+r2

· w(S∗). The lemma follows. �


3 Statement of Results

In this section we provide a formal statement of our results. We start with our results
regarding small, medium, and large instances.

Theorem 1 There exists a polynomial time algorithm such that for every constant
ε > 0, there exists a constant δ > 0, such that the algorithm computes (4 + ε)-
approximate solutions for δ-small SAP instances.

Theorem 2 There exists a polynomial time (2 + ε)-approximation algorithm for δ-
large and (1 − 2β)-small SAP instances for every constants ε > 0, β ∈ (0, 1

2 ), and
δ ∈ (0, 1 − 2β).

Theorem 3 There exists a polynomial time (2k − 1)-approximation algorithm for
1
k -large SAP instances for every integer k ≥ 1.

The proofs of Theorems 1, 2, and 3 are given in Sects. 4, 5, and 6, respectively. Our
result for general SAP instances follows.

Theorem 4 There exists a polynomial time (9+ε)-approximation algorithm for SAP,
for any constant ε > 0.

Proof Set k = 2 and β = 1
4 . By Theorem 1 there exists a constant δ > 0 for which

there is a polynomial time (4+ε)-approximation algorithm for δ-small SAP instances.
By Theorem 2 there is a (2+ε)-approximation algorithm for δ-large and 1

2 -small SAP
instances. Also, there a polynomial time 3-approximation algorithm for 1

2 -large SAP
instances by Theorem 3. The theorem follows from Lemma 3. �


In Sect. 7 we consider SAP on ring networks.

Theorem 5 There exists a polynomial time (10 + ε)-approximation algorithm for
SAP on ring networks, for any constant ε > 0.
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4 Small Tasks

In this section we prove Theorem 1, namely we present a polynomial time algorithm
that, for every ε > 0, computes (4+ ε)-approximate solutions for δ-small instance of
SAP, for some constant δ > 0 (depending on ε).

We first present an LP-rounding algorithm forUFPP instances in which bottlenecks
are within factor 2 of each other. A (1+ ε) factor is incurred by a reduction from SAP
toUFPP in strips [6]. Then, we show how to use this algorithm to design an algorithm
for small instances.We partition the instance into instances in which tasks have similar
bottlenecks, and then use the above algorithm to compute an approximate solution that
resides in a strip. A SAP solution is obtained by stacking the strips.

4.1 Packing Small Tasks in Strips

Asafirst stepweconsider the following special case of SAP. Let B > 0, and assumewe
are given a δ-small SAP instance in which b( j) ∈ [B, 2B), for every j ∈ J . Note that
due toObservation 2, without loss of generality wemay assume that all edge capacities
are between B and 2B (see example in Fig. 3). We present a LP-rounding algorithm
that computes a 1

2 B-packable (4+ ε)-approximate SAP solution. An alternative local
ratio (5 + ε)-approximation algorithm is also provided in an appendix.

The first step is an LP-rounding algorithm that computes 1
2 B-packable UFPP solu-

tions. The algorithm is based on the following integer linear formulation of UFPP:

max
∑

j∈J

w j · x j

s.t.
∑

j∈S(e)

d j x j ≤ ce ∀e ∈ E

x j ∈ {0, 1} ∀ j ∈ J

(1)

where x j = 1 represents that j is in the solution. An LP-relaxation is obtained by
replacing the integrality constraints with x j ∈ [0, 1], for every j ∈ J .

Let x∗ be an optimal fractional solution of (1) and define x ′ = 1
4 x

∗. The solution
x ′ satisfies

∑
j∈S(e) d j x j ≤ 1

2 B, and therefore it is feasible with respect to (1) with

Fig. 3 Example of a
1
2 B-packable solution for a
δ-small SAP instance in which
b( j) ∈ [B, 2B), for every j ∈ J

2B

B

B
2
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ce = 1
2 B, for every e. Since this is a uniform capacity instance we may use the

following result of Chekuri et al. [17] to obtain an integral solution.

Theorem 6 ([17]). For every constant ε > 0, there exists a constant δ > 0, such that
given a δ-small instance of UFPP- U, an integral solution x such that

∑
j w j x j ≥

1
1+ε

∑
j w j x∗

j can be found in polynomial time, where x∗ is an optimal fractional
solution of (1) .

We now transform our UFPP- U solution into a SAP solution using the following
result:

Lemma 4 ([6]). There exists a constant δ0 > 0, such that if S is a B-packable UFPP
solution to some δ-small instance, where δ ∈ (0, δ0), then S can be transformed into
a B-packable SAP solution (S′, h′) such that w(S′) ≥ (1 − 4δ)w(S) in polynomial
time.

Using Lemma 4 we obtain an approximate SAP solution.

Lemma 5 For every constant ε > 0, there exists a constant δ > 0 and a polynomial
time algorithm that computes 1

2 B-packable (4+ ε)-approximate solutions for δ-small
SAP instances in which b( j) ∈ [B, 2B), for every j ∈ J .

Proof Given ε > 0, set δ such that (i) δ ≤ δ1, where δ1 is the constant that is required
by Theorem 6 for ε/5, (ii) δ < δ0, and (iii) 1−4δ > (4+ 4

5ε)/(4+ε) (e.g., δ ≤ ε/100
would suffice). Apply the algorithm from [17] to compute a 1

2 B-packable 4 · (1+ ε
5 )-

approximateUFPP solution S. By Lemma 4, S can be transformed into a 1
2 B-packable

SAP solution (S′, h′) such that w(S′) ≥ (1− 4δ)w(S) in polynomial time. It follows
that

w(S′) ≥ 1 − 4δ

4 · (1 + ε/5)
· optUFPP(J ) ≥ 1

4 + ε
· optSAP(J ) ,

as required. �


4.2 Stacking Strips

The next step is to partition the instance. Let Jt = {
j ∈ J : 2t ≤ b( j) < 2t+1

}
, for

every t . Algorithm Strip-Pack computes an approximate solution for Jt , for each t ,
and then combines the solutions. An example of a solution produced by Algorithm
Strip-Pack is shown in Fig. 4.

We conclude the section by showing that Algorithm Strip-Pack computes (4+ ε)-
approximate solutions, provided that it uses the algorithm whose existence is shown
in Lemma 5 to compute the 2t−1-packable solutions (Line 2).

Proof of Theorem 1 First, the running time of Algorithm Strip-Pack is polynomial,
since there are at most O(n) nonempty subsets Jt , and for each such subset we call
the algorithm from Lemma 5 which runs in polynomial time.
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Algorithm 1 : Strip-Pack (J, w)

1: for each t do
2: Compute a 2t−1-packable SAP solution (St , ht ) for Jt
3: h′

t ( j) = ht ( j) + 2t−1, for every j ∈ Jt
4: end for
5: S ← ⋃

t St , h ← ⋃
t h

′
t

6: Return (S, h)

2t+1

2t

2t−1

2t+1

2t

2t−1

2t+1

2t

2t−1

2t−2

2t+1

2t

2t−1

2t−2

(a) (b)

(c) (d)

Fig. 4 An example of a solution produced by Algorithm Strip-Pack. a Computing solution for Jt . b
Lifting solution for Jt . c Computing solution for Jt−1. d Lifting solution for Jt−1

ByLemma5we have thatAlgorithm Strip-Pack computes a 2t−1-packable (4+ε)-
approximate solution (St , ht ) for Jt , for every t . By lifting the solution (St , ht ) by
2t−1, Algorithm Strip-Pack ensures that a feasible SAP solution is obtained. Also,
let (S∗, h∗) be an optimal solution for J . Then,

w(S)=
∑

t

w(St )≥ 1

4 + ε

∑

t

optSAP(Jt )≥ 1

4 + ε

∑

t

w(S∗ ∩ Jt )= 1

4 + ε
· w(S∗) ,

as required. �


5 Medium Tasks

In this section we prove Theorem 2. We present a polynomial time algorithm that
computes (2 + ε)-approximate solutions for instances of SAP that are both δ-large
and (1 − 2β)-small, for any constants ε > 0, β ∈ (0, 1

2 ), and δ ∈ (0, 1 − 2β).
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5.1 Approximation Framework for SAP

Following [10], we present a framework that acts as a reduction from a SAP instance
to multiple “almost uniform” SAP instances. Given an α-approximation algorithm for
almost uniform instances, the frameworkprovides a (1+ε)α-approximation algorithm.
As opposed to the framework from [10] that was designed for UFPP, our framework
has an additional difficulty which is taking care of height assignments.

Let k ∈ Z and� ∈ N.Given a SAP instance, let J k,� = {
j ∈ J : 2k ≤ b( j) < 2k+�

}

and let Ek,� = ∪ j∈J k,� I j . We observe that without loss of generality, we may assume
that for each J k,�, edge capacities are between 2k and 2k+�.

Observation 6 Given a SAP instance, k ∈ Z, and � ∈ N, we have that ce ≥ 2k , for
every e ∈ Ek,�.

Proof If j ∈ J k,�, then ce ≥ b( j) ≥ 2k , for every e ∈ I j . �

Observation 7 Let (S, h) be a feasible SAP solution such that S ⊆ J k,�. Then
μh(S(e)) ≤ min(ce, 2k+�), for every edge e ∈ E.

Proof Observation2 implies that any feasibleSAP solution S ⊆ J k,� is 2k+�-packable.
�


Thus, from the view point of tasks in J k,�, the capacity of e ∈ Ek,� is min(ce, 2k+�).
Define q = ⌈

log2(1/β)
⌉
, and let � ∈ N be a constant that will be determined later.

Algorithm AlmostUniform is our framework for computing SAP solutions, and it is
based on the framework for UFPP that was given in [10]. The main difference is that
with SAP one cannot simply combine sub-solutions. A height function for the tasks
should also be computed. This motivates the following definition.

Definition 1 Fix k and � and letβ > 0.A feasible SAP solution (S, h)where S ⊆ J k,�

is called β-elevated (with respect to k) if h( j) ≥ β2k , for every j ∈ S.

Note that it may be the case that S ⊆ J k1,�1, J k2,�2 , where k1 < k2. Moreover, it
may be that a feasible solution (S, h) is β-elevated with respect to k1, but not with
respect to k2.

Algorithm AlmostUniform uses an algorithm called Elevator that computes an
α-approximate SAP solution for J k,� which is also β-elevated (with respect to k).
Notice that a necessary condition for the existence of such a nonempty SAP solution
is that there are (1 − β)-small tasks in J k,�.

Since � is a constant, the number of subsets J k,� is linear. Hence, if the running time
of Algorithm Elevator is polynomial, then the running time of Algorithm AlmostU-
niform is also polynomial. It remains to show that the computed solution is indeed
(1 + ε)α-approximate, for an appropriate choice of �.

Lemma 8 Let J be a set of δ-large and (1−2β)-small tasks, where ε > 0, β ∈ (0, 1
2 ),

and δ ∈ (0, 1 − 2β) are constants. The solution (Sr , hr ) computed by Algorithm
AlmostUniform is a feasible SAP solution, for every r ∈ {0, . . . , � + q − 1}, where
q = ⌈

log2(1/β)
⌉
.
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Algorithm 2 : AlmostUniform (J, �)

1: K ←
{
k ∈ Z : Jk,� �= ∅

}

2: for each k ∈ K do
3: (Sk,�, hk,�) ← Elevator(Jk,�, β)

4: end for
5: for each r ∈ {0, . . . , � + q − 1} do
6: Let K(r) = K ∩ {r + i · (� + q) : i ∈ Z}
7: Sr ← ⋃

k∈K(r) S
k,�, hr ← ⋃

k∈K(r) h
k,�

8: end for
9: r∗ ← argmaxr∈{0,...,�+q−1} w(Sr )
10: Return (Sr∗ , hr∗ )

Proof Given r , let k0 = minK(r). Also given i ∈ K(r), let i+ = min{k ∈ K(r) :
k > i}. For i ∈ K(r), let Si = ⋃

k∈K(r),k≤i S
k,� and let hi = ⋃

k∈K(r),k≤i h
k,�. We

prove that (Si , hi ) is feasible by induction on i . In the base case we have i = k0, and
we have that (Si , hi ) = (Sk0,�, hk0,�) is feasible due to our assumption on Algorithm
Elevator. For the inductive step, we assume that the claim holds for i and prove that
it holds for i+. We know that (Si , hi ) is feasible due to the inductive hypothesis, and
by Observation 7 we know that μhi (Si (e)) ≤ min(ce, 2i+�), for every edge e ∈ E .
Since Elevator computes a β-elevated SAP solution for J i

+,�, it follows that

hi+( j) ≥ β · 2i+ ≥ 2−q · 2i+ ≥ 2−q · 2i+�+q ≥ 2i+� ,

for every j ∈ Si+ . Hence (Si+ , hi+) is a feasible SAP schedule. �

The UFPP version of the following lemma appeared in [10] and applies here as

well. We provide a proof for completeness.

Lemma 9 Let J be a set of δ-large and (1−2β)-small tasks, where ε > 0, β ∈ (0, 1
2 ),

and δ ∈ (0, 1 − 2β) are constants. If Algorithm Elevator computes α-approximate
solutions, then w(Sr∗) ≥ �

�+q · 1
α
optSAP(J ), where q = ⌈

log2(1/β)
⌉
.

Proof Let (S, h) be an optimal SAP solution for J . Since each Sk,� is a β-elevated
α-approximation for J k,� and every task j ∈ J belongs to exactly � sets J k,�, it follows
that

�+q−1∑

r=0

w(Sr ) =
�+q−1∑

r=0

∑

k∈K(r)

w(Sk,�)

≥
�+q−1∑

r=0

∑

k∈K(r)

1

α
· optSAP(J k,�)

= 1

α
·
∑

k∈K
optSAP(J

k,�)

≥ 1

α
·
∑

k∈K
w(S ∩ J k,�)
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= �

α
· optSAP(J ) .

Therefore, w(Sr∗) ≥ 1
α

· �
�+q · optSAP(J ). �


By choosing the right value of � we obtain a (1 + ε)α-approximation algorithm.

Lemma 10 Let J be a set of δ-large and (1−2β)-small tasks, where ε > 0,β ∈ (0, 1
2 ),

and δ ∈ (0, 1−2β) are constants. Suppose we are given a polynomial time algorithm
that computes a β-elevated α-approximate SAP solution for J k,�, for every k and
�. Then, if � = 1

ε

⌈
log2(1/β)

⌉
, Algorithm AlmostUniform computes a (1 + ε)α-

approximate solution in polynomial time.

Proof We know that the computed solution is feasible due to Lemma 8, and by
Lemma 9 we have that

w(Sr∗) ≥ 1

α
· �

� + ⌈
log2(1/β)

⌉ · optSAP(J ) = 1

α
· 1

1 + ε
· optSAP(J ) ,

as required. �


5.2 Computing 2-Approximations that are β-Elevated

In this section we present an algorithm that computes a 2-approximation solution for
J k,� which is also β-elevated, for any k and �. Throughout the section we consider
medium tasks, namely we assume that every task j ∈ J k,� is δ-large and (1 − 2β)-
small, for constants ε > 0, β ∈ (0, 1

2 ), and δ ∈ (0, 1 − 2β).
Our algorithm is based on the following simple observation that was given in [6]

for SAP- U.

Observation 11 Given a SAP instance, there exists an optimal solution (S, h) such
that, for every task j , either h( j) = 0 or there exists a task j ′ �= j such that I j∩ I j ′ �= ∅
and h( j) = h( j ′) + d j ′ .

The proof of the observation uses a “gravity” argument, namely as long as there is
a task whose height can be decreased, pick one such task and decrease its height as
much as possible. (Alternatively, one could consider a height functionh′ thatminimizes∑

j∈S h( j).) See example in Fig. 5.
Using Observation 11 we are able to consider a specific type of optimal solutions.

Lemma 12 Suppose we are given a δ-large SAP instance, where ce ∈ [B, B2�), for
every e ∈ E, for some B. Then there exists an optimal solution (S∗, h∗) such that:

(i) |S∗(e)| < 2�/δ, for every e, and
(ii) there exists a subset Hj ⊆ S∗ \ { j} of size at most 2�/δ such that h∗( j) = d(Hj ),

for every task j ∈ S∗.
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(a) (b)

Fig. 5 Solution (b) is obtained by applying gravity on Solution (a). a Original solution. b Solution after
application of gravity

Proof Let (S∗, h∗) be an optimal SAP solution whose existence is implied in Obser-
vation 11. To prove (i) observe that d j ≥ δb( j) ≥ δB, for every j ∈ S∗ and that
ce < B2�, for every e ∈ E . Thus from the feasibility of S∗, it follows that each edge
e ∈ E is used by less than B2�/(δB) = 2�/δ tasks. (ii) follows from Observation 11
and (i), by induction over the height. �


Lemma 12 implies an upper bound on the number of possibilities for the height of
a task j ∈ J , given a δ-large SAP instance, where ce ∈ [B, B2�), for every e ∈ E , for
some B. Since the maximal number of tasks assigned to an edge is at most L = 2�/δ,
the number of possible heights is bounded by

∑L
i=0

(n
i

) = O(nL). It follows that

there are at most O(nO(L2)) possibilities for assigning a task set and its corresponding
heights to a given edge e ∈ E . Therefore, an optimal SAP solution for J can be
computed using a dynamic programming algorithm similar to the one described in
[6].

Lemma 13 There is a polynomial time algorithm that computes an optimal solution
for a δ-large SAP instance, where ce ∈ [B, B2�), for every e ∈ E, for some B.

Proof Let V = {v0, . . . , vm} and E = {e1, . . . , em}. Given a vertex vi ∈ V , let Pi
be the path that is induced by Vi = {vi , . . . , vm}. Let Ji be the tasks that are fully
contained in Pi . A feasible solution (Si , hi ) is called properwith respect to ei if ei ∈ I j ,
for every j ∈ Si . Recall that there are O(nL) possibilities for choosing Si , and that
given Si there are O(nL

2
) possibilities for choosing hi . A solution (Si+1, hi+1) is

compatible with the proper pair (Si , hi ) if (i) it is proper with respect to ei+1, (ii)
Either j ∈ Si ∩ Si+1 or j /∈ Si ∩ Si+1 for every j such that ei , ei+1 ∈ I j , and (iii)
hi ( j) = hi+1( j) for every j ∈ Si ∩ Si+1.

We define a dynamic programming table of size O(nL+L2
) as follows. For an edge

ei and a pair (Si , hi ) that is proper with respect to ei the state 	(ei , Si , hi ) stands for
the maximum weight of a pair (S′, h′) such that S′ ⊆ Ji+1 and (Si ∪ S′, hi ∪ h′) is
feasible. We initialize the table 	 by setting 	(em, Sm, hm) = 0 for every proper pair
(Sm, hm) with respect to em . We compute the rest of the entries by using:

	(ei , Si , hi ) = max
(Si+1,hi+1)

is compatible with
(Si ,hi )

{w(Si+1 \ Si ) + 	(ei+1, Si+1, hi+1)}

The weight of an optimal solution is 	(e0,∅, h∅), where e0 is a dummy edge and h∅
is a function whose domain is the empty set.
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2k

2k

4

Fig. 6 An example of partition of optimal solution into two 1
4 -elevated solutions. The light tasks belong

to S1, while the dark tasks belong to S2

To compute each entry 	(ei , Si , hi ) we need to go through all the possibilities
for a solution (Si+1, hi+1) that is compatible with (Si , hi ). There are no more than
O(nL+L2

) such possibilities. Hence, the total running time is O(m ·nL+L2 ·n(L+L2)) =
O(m · nO(L2)). In order to compute a corresponding solution, one needs to keep track
of which option was taken in the recursive computation. An optimal solution can be
reconstructed in a top down manner. �


Lemma 13 implies that solving SAP on J k,� can be done in polynomial time. It
remains to obtain a β-elevated solution.

Lemma 14 Suppose we are given a (1 − 2β)-small SAP instance. A SAP solution
(S, h) for J k,� can be partitioned into two β-elevated SAP solutions (S1, h1) and
(S2, h2) in linear time.

Proof Consider a task j ∈ S such that h( j) < β2k . Since j is (1 − 2β)-small and
ce ≥ 2k , for every e ∈ Ek,�, due to Observation 6, we have that

h( j) + d( j) < β2k + (1 − 2β)b( j)

≤ β2k + (1 − 2β)ce
= ce + β2k − 2βce
≤ ce − β2k , (2)

for every e ∈ I j . Define S1 = {
j ∈ S : h( j) < β2k

}
and S2 = S \ S1. Also, define

h1( j) = h( j) + β2k , for all j ∈ S1, and h2( j) = h( j), for all j ∈ S2 (see example in
Fig. 6) (S1, h1) and (S2, h2) are both β-elevated by definition, and (S1, h1) is feasible
due to (2). Finally, it is not hard to verify that the described partition can be done in
linear time. �


The 2-approximation algorithm follows due to Lemmas 13 and 14.
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Lemma 15 There is a polynomial time algorithm that computes β-elevated 2-
approximations for J k,�, given a δ-large and (1 − 2β)-small SAP instance.

Proof An optimal solution (S∗, h∗) for J k,� can be computed in polynomial time due
to Lemma 13. (S∗, h∗) can be partitioned into two β-elevated solutions (S1, h1) and
(S2, h2) due to Lemma 14. Since w(S∗) = w(S1) + w(S2), one of the two solutions
is 2-approximate. �


We note that it is also possible to use dynamic programming to find the optimal
β-elevated solution for J k,� directly. Such a solution would be 2-approximate due to
Lemma 14.

We conclude this section with the proof of Theorem 2.

Proof of Theorem 2 By Lemma 15 there exists a polynomial time algorithm that com-
putes β-elevated 2-approximate solutions for J k,�, for every k and �. Therefore, by
Lemma 10, Algorithm AlmostUniform is a (2 + ε)-approximation algorithm for
δ-large and (1 − 2β)-small SAP instances. �


6 Large Tasks

In this section we consider 1
k -large instances of SAP, for an integer k ≥ 1. Recall

that in such instances d j > 1
k b( j), for every j . We present a (2k − 1)-approximation

algorithm for 1
k -large instances of SAP.

Bonsma et al. [10] presented a 2k-approximation algorithm for 1
k -large UFPP

instances, for any k ≥ 2, that is based on a reduction from UFPP to a special case of
Rectangle Packing (or Maximum Independent Set in rectangle intersection
graphs). The reduction is as follows. Let j ∈ J be a task. The residual capac-
ity of j is defined as �( j) � b( j) − d j . Task j is associated with the rectangle
R( j) = [s j , t j ) × [�( j), b( j)). In SAP terms, it is the rectangle that is induced by
assigning height �( j) to j . See example in Fig. 7.

LetR(S) = {R( j) : j ∈ S} be the family of rectangles that is obtained froma subset
S ⊆ J . Bonsma et al. [10] showed that the set of rectanglesR(S) that correspond to a
feasible UFPP solution S, can be colored using 2k colors such that any color induces

Fig. 7 An example of four tasks
that are placed at height
�( j) = b( j) − d j , for every j

e1 e2 e3 e4 e5 e6 e7

1
(1)

2

(2)

4

(4)

3

(3)
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a pairwise non-intersecting subset of rectangles. Hence there exists at least one subset
for which the total weight of the tasks is at least 1

2kw(S). Bonsma et al. also presented
a polynomial time algorithm that solves the special case of Rectangle Packing that
correspond to instances that are obtained by the above reduction.

Theorem 7 ([10]). There is an O(n4) algorithm that computes an optimal rectangle
packing of R(J ), for every UFPP instance J .

We note that the algorithm from [10] provides a UFPP solution which is induced
by a subset of pairwise non-intersecting rectangles, and therefore it is also a SAP
solution. It follows that this algorithm is also a 2k-approximation algorithm for 1

k -
large instances of SAP. In what follows we use the geometric properties of SAP to
show thatR(S) can be colored using only 2k − 1 colors for any 1

k -large SAP solution
(S, h). This implies a (2k−1)-approximation algorithm for 1

k -large instances of SAP,
for any integer k ≥ 1.

Given a feasible SAP solution (S, h) and a task j ∈ S, let

NS( j) = {
j ′ ∈ S : R( j ′) ∩ R( j) �= ∅}

.

Notice that j ∈ NS( j). Let degS(R( j)) be the number of rectangles in R(S) that
intersect R( j) (not including R( j)), namely degS(R( j)) = |NS( j)| − 1. We show
that there exists a rectangle R( j) whose degree is at most 2k − 2. This implies that a
(2k − 1)-coloring can be obtained in a greedy manner.

In the next lemma we show that there may be at most k 1
k -large tasks that share the

same an edge. Notice that it relies on Observation 2 that does not apply to UFPP.

Lemma 16 Let (Q, h) be a 1
k -large SAP solution that contains a task j ′ such that

�( j ′) < b( j) ≤ b( j ′), for every j ∈ Q. If there exists an edge e such that e ∈ I j , for
every j ∈ Q, then |Q| ≤ k.

Proof Suppose that |Q| > k. Since �( j ′) < b( j) ≤ b( j ′), for every j ∈ Q we have
that

∑

j∈Q\{ j ′}
d j >

1

k

∑

j∈Q\{ j ′}
b( j) >

1

k

∑

j∈Q\{ j ′}
�( j ′) = 1

k
(|Q| − 1) · �( j ′) ≥ �( j ′) .

Therefore,

μh(Q(e)) =
∑

j∈Q
d j =

∑

j∈Q\{ j ′}
d j + d j ′ > �( j ′) + d j ′ = b( j ′) .

Since b( j ′) ≥ b( j), for every j ∈ Q, we get a contradiction to Observation 2. �

We are now ready to show that there exists a task whose rectangle has at most 2k−2

neighbors.

Lemma 17 Let (S, h) be a 1
k -large SAP solution. Then there exists a task j ∈ S such

that degS(R( j)) ≤ 2k − 2.
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(b)(a)

Fig. 8 An example of a SAP solution with five tasks whose corresponding rectangles form a cycle.
a 1

2 -large SAP solution. b Corresponding Rectangle Packing instance

Proof Let j0 be the task with minimal right endpoint, and let e0 be the right most edge
in I j0 . Define

Q− = { j ∈ S : b( j) ≤ b( j0)} ∩ NS( j0),

Q+ = { j ∈ S : b( j) ≥ b( j0)} ∩ NS( j0) .

Observe that j0 ∈ Q− ∩ Q+. Consider j ∈ Q−. Since R( j) ∩ R( j0) �= ∅, it follows
that b( j) > �( j0). Hence Q− satisfies the conditions of Lemma 16 with j ′ = j0 and
e = e0, and we have that |Q−| ≤ k. Furthermore, observe that �( j) < b( j0), for every
j ∈ Q+, and thus ∩ j∈Q+ R( j) �= ∅. It follows that �( j ′) < b( j0) ≤ b( j) ≤ b( j ′),
for every j ∈ Q+, for a task j ′ such that b( j ′) = maxi∈Q+ b(i). Hence Q+ satisfies
the conditions of Lemma 16 with e = e0. The lemma follows since degS(R( j)) ≤
|Q−| + |Q+| − 2 = 2k − 2. �


We are now ready to prove Theorem 3.

Proof of Theorem 3 Given a SAP solution S, let G(S) = (S, E) be the intersection
graph ofR(S), where E = {

( j, j ′) : R( j) ∩ R( j ′) �= ∅}
. Lemma 17 shows thatG(S)

is (2k−2)-degenerate, for any optimal SAP solution S. ThereforeG(S) can be colored
using 2k − 1 colors by removing a vertex with minimum degree, recursively coloring
the remaining graph, and then coloring the vertex with an available color [27]. The
theorem follows due to Theorem 7. �


We note that Lemma 17 is tight for the case of k = 2. Figure 8 shows a 1
2 -large

SAP solution and the resulting Rectangle Packing instance. Since the instance is
a 5-cycle, it is not 2-colorable.
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7 SAP on Ring Networks

In this section we present a constant factor approximation algorithm for SAP on
ring networks. Our algorithm is based on a simple reduction to the line network that
was used by Chakrabarti et al. [14] (and later in [10]) for the Unsplittable Flow
Problem on rings.

SAP on rings is defined similarly to SAP (on paths). The main difference is that in
the former we are given a cycle C = (V, E) and not a path. In this case there are two
possible paths from s j to t j for each task j , a clockwise path and a counter-clockwise
path. A feasible solution for SAP on rings is a triple (S, h, I )where S and h are defined
as in SAP, and I ( j) is the path chosen for j , for any j ∈ S.

In the next lemma we show that an approximation algorithm for SAP may be used
to approximate SAP on rings.

Lemma 18 A polynomial time α-approximation algorithm for SAP implies a poly-
nomial time (1 + α + ε)-approximation algorithm on rings, for any ε > 0.

Proof The algorithm first chooses any minimum capacity edge e, namely c(e) =
min f c f . Then, it removes e from the ring and finds a SAP solution (S1, h1) on the
resulting line network. Observe that the tasks in S1 are not routed through e. I1 is
defined accordingly. The next step is to compute a solution S2 by calling an FPTAS
for Knapsack. Observe that all tasks may be routed through e, either the clockwise
path or the counter clockwise path contain e, so all tasks should be considered by the
FPTAS. Hence, the input is the (d, w), namely the j th item has size d j and weightw j .
A height function h2 is defined as follows: h2( j) = ∑

�∈S2:�< j d�, for every j ∈ S2.
We assume that all tasks in S2 are routed through e, and I2 is defined accordingly.
Finally the algorithm returns the solution with maximum weight.

Clearly, (S1, h1, I1) is feasible. Since e is a minimum capacity edge, (S2, h2, I2)
does not violate the capacity of any edge, and therefore it is feasible. It remains to prove
that the computed solution is (1+α + ε)-approximate. We use an argument similar to
the one used to prove Lemma 3. Let S∗ be the set of tasks in an optimal solution for the
original instance. Also, let S∗

2 be the tasks in S∗ that are routed through e, and let S∗
1 =

S∗\S∗
2 . Eitherw(S∗

1 ) ≥ α
α+1+ε

·w(S∗) andw(S1) ≥ 1
α
· α
α+1+ε

·w(S∗) = 1
α+1+ε

·w(S∗)
or w(S∗

2 ) ≥ 1+ε
α+1+ε

· w(S∗) and w(S2) ≥ 1
1+ε

· 1+ε
α+1+ε

· w(S∗) = 1
α+1+ε

· w(S∗). The
lemma follows. �


Theorem 5 follows from Theorem 4 and Lemma 18.

8 Conclusion

We presented a (9 + ε)-approximation algorithm for SAP. Our approximation ratios
for medium and large instances match the ratios for UFPP from [10]. In fact our ratio
for large tasks is even better (3 instead of 4). However, our approximation ratio for
small instances is larger (4 + ε vs. 1 + ε). This larger ratio stem from our need to
pack small tasks in strips in order to use the transformation from a UFPP solution to
a SAP solution. The ratio for small instances may have been smaller, if we had such a
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transformation that works on non-uniform instances. It would be interesting to come
up with an algorithm for an extended version of DSA in which one is given a path
P = (V, E) with a non-uniform capacity vector c ∈ R

|E |
+ and a set of (small) tasks,

and the goal is to find the minimum coefficient ρ such that all tasks can be packed
within the capacity vector ρ · c.

Finally, we note that recently Mömke and Wiese [28] improved our main result by
presenting a (2 + ε)-approximation algorithm for SAP.

Acknowledgements We thank an anonymous referee for pointing out that we can use LP-rounding instead
of local ratio for computing a 1

2 B-packable SAP solution in Sect. 4.1.

Appendix: A Local Ratio Algorithm for Packing Small Tasks in a Strip

In this section we provide a local ratio algorithm that computes 1
2 B-packable (5+ ε)-

approximate solutions for δ-small SAP instances in which edge capacities are between
B and 2B, for some constant δ > 0 (depending on ε).

The local ratio technique [5,8] is based on the Local Ratio Lemma. We use the
maximization version of the lemma which applies to optimization problems in which
the input is a profit vector w ∈ (Q+)n and a set of feasibility constraints F . The
problem is to find a solution vector x ∈ Q

n that maximizes the inner product p · x
subject to the constraints F .

Lemma 19 (Local Ratio [5]). Let F be a set of constraints and let w,w1, and w2 be
profit functions such that w = w1 + w2. Then, if x is r-approximate both with respect
to (F , w1) and with respect to (F , w2), for some r, then x is also an r-approximate
solution with respect to (F , w).

We are now ready to present our local ratio algorithm.

Algorithm 3 : Strip(J, w)

1: if J = ∅ then return ∅
2: Let j∗ ∈ J be a task such that t∗ = min j∈J t j

3: Define w1( j) = w( j∗) ·

⎧
⎪⎨

⎪⎩

1 j = j∗,
2d j
B j �= j∗, I j ∩ I j∗ �= ∅

0 otherwise,
and w2 = w − w1

4: Let J+ be the set of positive weighted tasks
5: S′ ← Strip(J+, w2)

6: Let e∗ be the right-most edge of j∗
7: if d(S′(e∗)) ≤ 1

2 B − d j∗ then S ← S′ ∪ { j∗}
else S ← S′

8: Return S

Sorting the tasks according to their right end-point can be done in O(n log n).
There are O(n) recursive calls, each requiring linear time. Hence the running time of
Algorithm Strip is O(n2).
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We show that Algorithm Strip computes approximate solutions whose load on any
edge is at most 1

2 B.

Lemma 20 Given a δ-small SAP instance in which b( j) ∈ [B, 2B), for every j ∈ J ,
Algorithm Strip computes a 1

2 B-packable UFPP solution S. Furthermore, w(S) ≥
5

1−4δ · optSAP(J ).

Proof We first prove that S is 1
2 B-packable, for every e, by induction on the number

of recursive calls. In the base case S = ∅ and we are done. For the inductive step,
assume that d(S′(e)) ≤ 1

2 B, for every e ∈ E . First, d(S(e)) = d(S′(e)) ≤ 1
2 B, for

every e /∈ I j∗ . For e ∈ I j∗ , observe that d(S(e)) ≤ d(S(e∗)) ≤ 1
2 B.

We prove that S is 5
1−4δ -approximate also by induction on the number of recursive

calls. In the base case S = ∅ is optimal. For the inductive step, assume that S′ is
5

1−4δ -approximate with respect to J+ and w2. Since w2( j∗) = 0, S is also 5
1−4δ -

approximate with respect to J and w2, We show that S is also 5
1−4δ -approximate with

respect to J and w1. This completes the proof, since by the Local Ratio Lemma we
get that S is 5

1−4δ -approximate with respect to J and w as well.

It remains to show that S is 5
1−4δ -approximate with respect to J andw1. Notice that

either j∗ ∈ S or d(S(e∗)) + d j∗ > 1
2 B. If j

∗ ∈ S, then w1(S) ≥ w( j∗). Otherwise,

w1(S) > w( j∗) · 2 · B/2 − d j∗

B
≥ w( j∗) · 2 · B/2 − 2δB

B
= w( j∗) · (1 − 4δ) .

On the other hand, for a feasible SAP solution T we have that

w1(T ) = w1(T (e∗)) ≤ w( j∗) + w( j∗) · 2 · 2B/B = 5w( j∗),

due to Observation 1. Therefore w(S) is 5
1−4δ -approximate with respect to J and w1.

�

The following lemma replaces Lemma 5.

Lemma 21 There exists a polynomial time algorithm such that for every constant
ε > 0, there exists a constant δ > 0, such that the algorithm computes 1

2 B-packable
(5 + ε)-approximate solutions for δ-small SAP instances in which b( j) ∈ [B, 2B),
for every j ∈ J .

Proof First, execute Algorithm Strip to compute a 1
2 B-packable

5
1−4δ -approximate

UFPP solution S. By Lemma 4, S can be transformed into a 1
2 B-packable SAP solution

(S′, h′) such that w(S′) ≥ (1 − 4δ)w(S) in polynomial time. It follows that

w(S′) ≥ (1 − 4δ)2

5
· optSAP(J ) ≥ 1 − 8δ

5
· optSAP(J ) .

The lemma follows by setting δ such that δ < δ0 and 5
1−8δ ≤ 5 + ε. �
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