
Algorithmica (2017) 77:995–1021
DOI 10.1007/s00453-016-0123-1

Improved Pseudo-polynomial Bound for the Value
Problem and Optimal Strategy Synthesis in Mean
Payoff Games

Carlo Comin1,2 · Romeo Rizzi3

Received: 14 April 2015 / Accepted: 13 January 2016 / Published online: 2 February 2016
© Springer Science+Business Media New York 2016

Abstract In this work we offer an O(|V |2|E | W) pseudo-polynomial time deter-
ministic algorithm for solving the Value Problem and Optimal Strategy Synthesis in
Mean Payoff Games. This improves by a factor log(|V | W) the best previously known
pseudo-polynomial time upper bound due to Brim et al. The improvement hinges on a
suitable characterization of values, and a description of optimal positional strategies,
in terms of reweighted Energy Games and Small Energy-Progress Measures.

Keywords Mean Payoff Games · Value Problem · Optimal Strategy Synthesis ·
Pseudo-polynomial time · Energy Games · Small Energy-Progress Measures

1 Introduction

A Mean Payoff Game (MPG) is a two-player infinite game Γ := (V, E, w, 〈V0, V1〉),
which is played on a finite weighted directed graph, denoted GΓ := (V, E, w), the
vertices of which are partitioned into two classes, V0 and V1, according to the player
to which they belong. It is assumed that GΓ has no sink vertex and that the weights
of the arcs are integers, i.e., w : E → {−W, . . . , 0, . . . , W } for some W ∈ N.

B Carlo Comin
carlo.comin@unitn.it

Romeo Rizzi
romeo.rizzi@univr.it

1 Department of Mathematics, University of Trento, Trento, Italy

2 LIGM, Université Paris-Est, Marne-la-Vallée, Paris, France

3 Department of Computer Science, University of Verona, Verona, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-016-0123-1&domain=pdf

996 Algorithmica (2017) 77:995–1021

At the beginning of the game a pebble is placed on some vertex vs ∈ V , and then
the two players, named Player 0 and Player 1, move the pebble ad infinitum along the
arcs. Assuming the pebble is currently on Player 0’s vertex v, then he chooses an arc
(v, v′) ∈ E going out of v and moves the pebble to the destination vertex v′. Similarly,
assuming the pebble is currently on Player 1’s vertex, then it is her turn to choose an
outgoing arc. The infinite sequence vs , v, v′ . . . of all the encountered vertices is a play.
In order to playwell, Player 0wants tomaximize the limit inferior of the long-run aver-
age weight of the traversed arcs, i.e., to maximize lim infn→∞ 1

n

∑n−1
i=0 w(vi , vi+1),

whereas Player 1 wants to minimize the lim supn→∞ 1
n

∑n−1
i=0 w(vi , vi+1). Ehren-

feucht and Mycielski [5] proved that each vertex v admits a value, denoted valΓ (v),
which each player can secure by means of a memoryless (or positional) strategy, i.e.,
a strategy that depends only on the current vertex position and not on the previous
choices.

Solving an MPG consists in computing the values of all vertices (Value Problem)
and, for each player, a positional strategy that secures such values to that player (Opti-
mal Strategy Synthesis). The corresponding decision problem lies in NP∩ coNP [11]
and it was later shown by Jurdziński [8] to be recognizable with unambiguous poly-
nomial time non-deterministic Turing Machines, thus falling within the UP ∩ coUP
complexity class.

The problem of devising efficient algorithms for solving MPGs has been studied
extensively in the literature. The first milestone was that of Gurvich, Karzanov and
Khachiyan [7], in which they offered an exponential time algorithm for solving a
slightly wider class of MPGs called Cyclic Games. Afterwards, Zwick and Pater-
son [11] devised the first deterministic procedure for computing values in MPGs,
and optimal strategies securing them, within a pseudo-polynomial time and polyno-
mial space. In particular, Zwick and Paterson established an O(|V |3|E | W) upper
bound for the time complexity of the Value Problem, as well as an upper bound of
O(|V |4|E | W log(|E |/|V |)) for that of Optimal Strategy Synthesis [11].

Recently, several research efforts have been spent in studying quantitative exten-
sions of infinite games for modeling quantitative aspects of reactive systems [2–4]. In
this context quantities may represent, for example, the power usage of an embedded
component, or the buffer size of a networking element. These studies have brought
to light interesting connections with MPGs. Remarkably, they have recently led to
the design of faster procedures for solving them. In particular, Brim et al. [3] devised
faster deterministic algorithms for solving the Value Problem and Optimal Strategy
Synthesis in MPGs within O(|V |2|E | W log(|V | W)) pseudo-polynomial time and
polynomial space.

To the best of our knowledge, this is the tightest pseudo-polynomial upper bound
on the time complexity of MPGs which is currently known.

Indeed, a wide spectrum of different approaches have been investigated in the
literature. For instance, Andersson and Vorobyov [1] provided a fast sub-exponential
time randomized algorithm for solvingMPGs, whose time complexity can be bounded
as O(|V |2|E | exp(2√|V | ln(|E |/√|V |)+O(

√|V |+ln |E |))). Furthermore, Lifshits
andPavlov [9] devised an O(2|V | |V | |E | log W) singly-exponential timedeterministic
procedure by considering the potential theory of MPGs.

123

Algorithmica (2017) 77:995–1021 997

Table 1 Complexity of the main Algorithms for solving MPGs

Algorithm Value Problem Optimal Strategy Synthesis Note

This work O(|V |2|E | W) O(|V |2|E | W) Determ.

[3] O(|V |2|E | W log(|V | W)) O(|V |2|E | W log(|V | W)) Determ.

[11] Θ(|V |3|E | W) Θ(|V |4|E | W log |E |
|V |) Determ.

[9] O(2|V | |V | |E | log W) n/a Determ.

[1] O

⎛

⎝|V |2|E | e
2

√

|V | ln
(|E |√|V |

)
+O(

√|V |+ln |E |)
⎞

⎠ Same complexity Random.

These results are summarized in Table 1.
Contribution The main contribution of this work is that to provide an O(|V |2|E | W)

pseudo-polynomial time and O(|V |) space deterministic algorithm for solving the
Value Problem and Optimal Strategy Synthesis in MPGs. As already mentioned in
the introduction, the best previously known procedure has a deterministic time com-
plexity of O(|V |2|E | W log(|V | W)), which is due to Brim et al. [3]. In this way we
improve the best previously known pseudo-polynomial time upper bound by a factor
log(|V | W). This result is summarized in the following theorem.

Theorem 1 There exists a deterministic algorithm for solving the Value Problem and
Optimal Strategy Synthesis of MPGs within O(|V |2|E | W) time and O(|V |) space,
on any input MPG Γ = (V, E, w, 〈V0, V1〉). Here, W = maxe∈E |we|.

In order to prove Theorem 1, this work points out a novel and suitable characteri-
zation of values, and a description of optimal positional strategies, in terms of certain
reweighting operations that we will introduce later on in Sect. 2.

In particular, we will show that the optimal value valΓ (v) of any vertex v is the
unique rational number ν for which v “transits” from the winning region of Player 0
to that of Player 1, with respect to reweightings of the form w − ν. This intuition will
be clarified later on in Sect. 3, where Theorem 3 is formally proved.

Concerning strategies, we will show that an optimal positional strategy for each
vertex v ∈ V0 is given by any arc (v, v′) ∈ E which is compatible with certain Small
Energy-Progress Measures (SEPMs) of the above mentioned reweighted arenas. This
fact is formally proved in Theorem 4 of Sect. 3.

These novel observations are smooth, simple, and their proofs rely on elementary
arguments. We believe that they contribute to clarifying the interesting relationship
between values, optimal strategies and reweighting operations (with respect to some
previous literature, see e.g. [3,9]). Indeed, they will allow us to prove Theorem 1.
Organization This manuscript is organized as follows. In Sect. 2, we introduce some
notation and provide the required background on infinite two-player games and related
algorithmic results. In Sect. 3, a suitable relation between values, optimal strate-
gies, and certain reweighting operations is investigated. In Sect. 4, an O(|V |2|E | W)

pseudo-polynomial time and O(|V |) space algorithm, for solving the Value Problem
and Optimal Strategies Synthesis in MPGs, is designed and analyzed by relying on

123

998 Algorithmica (2017) 77:995–1021

the results presented in Sect. 3. In this manner, Sect. 4 actually provides a proof of
Theorem 1 which is our main result in this work.

2 Notation and Preliminaries

We denote by N, Z, Q the set of natural, integer, and rational numbers (respectively).
It will be sufficient to consider integral intervals, e.g., [a, b] := {z ∈ Z | a ≤ z ≤ b}
and [a, b) := {z ∈ Z | a ≤ z < b} for any a, b ∈ Z.
Weighted Graphs Our graphs are directed and weighted on the arcs. Thus, if G =
(V, E, w) is a graph, then every arc e ∈ E is a triplet e = (u, v, we), where we =
w(u, v) ∈ Z is the weight of e. The maximum absolute weight is W := maxe∈E |we|.
Given a vertex u ∈ V , the set of its successors is post(u) = {v ∈ V | (u, v) ∈ E},
whereas the set of its predecessors is pre(u) = {v ∈ V | (v, u) ∈ E}. A path is a
sequence of vertices v0v1 . . . vn . . . such that (vi , vi+1) ∈ E for every i . We denote by
V ∗ the set of all (possibly empty) finite paths. A simple path is a finite path v0v1 . . . vn

having no repetitions, i.e., for any i, j ∈ [0, n] it holds vi �= v j whenever i �= j . The
length of a simple path ρ = v0v1 . . . vn equals n and it is denoted by |ρ|. A cycle is
a path v0v1 . . . vn−1vn such that v0 . . . vn−1 is simple and vn = v0. The length of a
cycle C = v0v1 . . . vn equals n and it is denoted by |C |. The average weight of a cycle
v0 . . . vn is 1

n

∑n−1
i=0 w(vi , vi+1). A cycle C = v0v1 . . . vn is reachable from v in G if

there exists a simple path p = vu1 . . . um in G such that p ∩ C �= ∅.
Arenas An arena is a tuple Γ = (V, E, w, 〈V0, V1〉) where GΓ := (V, E, w) is a
finite weighted directed graph and (V0, V1) is a partition of V into the set V0 of vertices
owned by Player 0, and the set V1 of vertices owned by Player 1. It is assumed that
GΓ has no sink, i.e., post(v) �= ∅ for every v ∈ V ; still, we remark that GΓ is
not required to be a bipartite graph on colour classes V0 and V1. Figure 1 depicts an
example.

A game on Γ is played for infinitely many rounds by two players moving a pebble
along the arcs of GΓ . At the beginning of the game we find the pebble on some vertex
vs ∈ V , which is called the starting position of the game. At each turn, assuming
the pebble is currently on a vertex v ∈ Vi (for i = 0, 1), Player i chooses an arc
(v, v′) ∈ E and then the next turn starts with the pebble on v′.

A play is any infinite path v0v1 . . . vn . . . ∈ V ∗ in Γ . For any i ∈ {0, 1}, a strategy
of Player i is any function σi : V ∗ × Vi → V such that for every finite path p′v in
GΓ , where p′ ∈ V ∗ and v ∈ Vi , it holds that (v, σi (p′, v)) ∈ E . A strategy σi of
Player i is positional (or memoryless) if σi (p, vn) = σi (p′, v′

m) for every finite paths

Fig. 1 An arena Γ

123

Algorithmica (2017) 77:995–1021 999

pvn = v0 . . . vn−1vn and p′v′
m = v′

0 . . . v′
m−1v

′
m in GΓ such that vn = v′

m ∈ Vi . The
set of all the positional strategies of Player i is denoted by Σ M

i . A play v0v1 . . . vn . . .

is consistent with a strategy σ ∈ Σi if v j+1 = σ(v0v1 . . . v j) whenever v j ∈ Vi .
Given a starting position vs ∈ V , the outcome of strategies σ0 ∈ Σ0 and σ1 ∈ Σ1,

denoted outcomeΓ (vs, σ0, σ1), is the unique play that starts at vs and is consistent
with both σ0 and σ1.

Given a memoryless strategy σi ∈ Σ M
i of Player i in Γ , then GΓ

σi
= (V, Eσi , w)

is the graph obtained from GΓ by removing all the arcs (v, v′) ∈ E such that v ∈ Vi

and v′ �= σi (v); we say that GΓ
σi
is obtained from GΓ by projection w.r.t. σi .

Concluding this subsection, the notion of reweighting is recalled. For any weight
function w,w′ : E → Z, the reweighting of Γ = (V, E, w, 〈V0, V1〉) w.r.t. w′ is the
arena Γ w′ = (V, E, w′, 〈V0, V1〉). Also, for w : E → Z and any ν ∈ Z, we denote
by w + ν the weight function w′ defined as w′

e := we + ν for every e ∈ E . Indeed,
we shall consider reweighted games of the form Γ w−q , for some q ∈ Q. Notice that
the corresponding weight function w′ : E → Q : e �→ we − q is rational, while
we required the weights of the arcs to be always integers. To overcome this issue,
it is sufficient to re-define Γ w−q by scaling all the weights by a factor equal to the
denominator of q ∈ Q, namely, to re-define: Γ w−q := Γ D·w−N , where N , D ∈ N are
such that q = N/D and gcd(N , D) = 1. This re-scaling will not change the winning
regions of the corresponding games, and it has the significant advantage of allowing
for a discussion (and an algorithmics) which is strictly based on integer weights.
Mean Payoff Games A Mean Payoff Game (MPG) [3,5,11] is a game played on some
arena Γ for infinitely many rounds by two opponents, Player 0 gains a payoff defined
as the long-run average weight of the play, whereas Player 1 loses that value. Formally,
the Player 0’s payoff of a play v0v1 . . . vn . . . in Γ is defined as follows:

MP0(v0v1 . . . vn . . .) := lim inf
n→∞

1

n

n−1∑

i=0

w(vi , vi+1).

The value secured by a strategy σ0 ∈ Σ0 in a vertex v is defined as:

valσ0(v) := inf
σ1∈Σ1

MP0
(
outcomeΓ (v, σ0, σ1)

)
,

Notice that payoffs and secured values can be defined symmetrically for the Player 1
(i.e., by interchanging the symbol 0 with 1 and inf with sup).

Ehrenfeucht and Mycielski [5] proved that each vertex v ∈ V admits a unique
value, denoted valΓ (v), which each player can secure by means of a memoryless (or
positional) strategy. Moreover, uniform positional optimal strategies do exist for both
players, in the sense that for each player there exist at least one positional strategy
which can be used to secure all the optimal values, independently with respect to the
starting position vs . Thus, for every MPG Γ , there exists a strategy σ0 ∈ Σ M

0 such
that valσ0(v) ≥ valΓ (v) for every v ∈ V , and there exists a strategy σ1 ∈ Σ M

1 such
that valσ1(v) ≤ valΓ (v) for every v ∈ V . Indeed, the (optimal) value of a vertex
v ∈ V in the MPG Γ is given by:

123

1000 Algorithmica (2017) 77:995–1021

Fig. 2 An MPG on Γ , played from left to right, whose payoff equals −1+1
2 = 0

valΓ (v) = sup
σ0∈Σ0

valσ0(v) = inf
σ1∈Σ1

valσ1(v).

Thus, a strategy σ0 ∈ Σ0 is optimal if valσ0(v) = valΓ (v) for all v ∈ V . A strategy
σ0 ∈ Σ0 is said to be winning for Player 0 if valσ0(v) ≥ 0, and σ1 ∈ Σ1 is winning
for Player 1 if valσ1(v) < 0. Correspondingly, a vertex v ∈ V is a winning starting
position for Player 0 if valΓ (v) ≥ 0, otherwise it is winning for Player 1. The set of
all winning starting positions of Player i is denoted by Wi for i ∈ {0, 1}. An example
is shown in Fig. 2.

A finite variant of MPGs is well-known in the literature [3,5,11]. Here, the game
stops as soon as a cyclic sequence of vertices is traversed (i.e., as soon as one of the
two players moves the pebble into a previously visited vertex). It turns out that this
finite variant is equivalent to the infinite one [5]. Specifically, the values of an MPG
are in relationship with the average weights of its cycles, as stated in the next lemma.

Lemma 1 (Brim et al. [3]) Let Γ = (V, E, w, 〈V0, V1〉) be an MPG. For all ν ∈ Q,
for all positional strategies σ0 ∈ Σ M

0 of Player 0, and for all vertices v ∈ V , the
value valσ0(v) is greater than ν if and only if all cycles C reachable from v in the
projection graph GΓ

σ0
have an average weight w(C)/|C | greater than ν.

The proof of Lemma1 follows from thememoryless determinacy ofMPGs.We remark
that a proposition which is symmetric to Lemma 1 holds for Player 1 as well: for all
ν ∈ Q, for all positional strategies σ1 ∈ Σ M

1 of Player 1, and for all vertices v ∈ V ,
the value valσ1(v) is less than ν if and only if all cycles reachable from v in the
projection graph GΓ

σ1
have an average weight less than ν.

Also, it is well-known [3,5] that each value valΓ (v) is contained within the fol-
lowing set of rational numbers:

SΓ =
{

N

D

∣
∣
∣
∣ D ∈ [1, |V |], N ∈ [−D W, D W]

}

.

Notice that |SΓ | ≤ |V |2W .
The present work tackles on the algorithmics of the following two classical prob-

lems:

– Value Problem. Compute for each vertex v ∈ V the (rational) optimal value
valΓ (v).

– Optimal Strategy Synthesis. Compute an optimal positional strategy σ0 ∈ Σ M
0 .

123

Algorithmica (2017) 77:995–1021 1001

Currently, the asymptotically fastest pseudo-polynomial time algorithm for solving
both problems is a deterministic procedure whose time complexity has been bounded
as O(|V |2|E | W log(|V | W)) [3]. This result has been achieved by devising a binary-
search procedure that ultimately reduces the Value Problem and Optimal Strategy
Synthesis to the resolution of yet another family of games known as theEnergy Games.
Even though we do not rely on binary-search in the present work, and thus we will
introduce some truly novel ideas that diverge from the previous solutions, still, we will
reduce to solving multiple instances of Energy Games. For this reason, the Energy
Games are recalled in the next paragraph.
Energy Games and Small Energy-Progress MeasuresAnEnergy Game (EG) is a game
that is played on an arena Γ for infinitely many rounds by two opponents, where the
goal of Player 0 is to construct an infinite play v0v1 . . . vn . . . such that for some initial
credit c ∈ N the following holds:

c +
j∑

i=0

w(vi , vi+1) ≥ 0, , for all j ≥ 0. (1)

Given a credit c ∈ N, a play v0v1 . . . vn . . . is winning for Player 0 if it satisfies (1),
otherwise it is winning for Player 1. A vertex v ∈ V is a winning starting position for
Player 0 if there exists an initial credit c ∈ N and a strategy σ0 ∈ Σ0 such that, for every
strategy σ1 ∈ Σ1, the play outcomeΓ (v, σ0, σ1) is winning for Player 0. As in the
case of MPGs, the EGs are memoryless determined [3], i.e., for every v ∈ V , either
v is winning for Player 0 or v is winning for Player 1, and (uniform) memoryless
strategies are sufficient to win the game. In fact, as shown in the next lemma, the
decision problems of MPGs and EGs are intimately related.

Lemma 2 (Brim et al. [3])Let Γ = (V, E, w, 〈V0, V1〉) be an arena. For all threshold
ν ∈ Q, for all vertices v ∈ V , Player 0 has a strategy in the MPG Γ that secures value
at least ν from v if and only if, for some initial credit c ∈ N, Player 0 has a winning
strategy from v in the reweighted EG Γ w−ν .

In this work we are especially interested in the Minimum Credit Problem (MCP)
for EGs: for each winning starting position v, compute the minimum initial credit
c∗ = c∗(v) such that there exists a winning strategy σ0 ∈ Σ M

0 for Player 0 starting
from v. A fast pseudo-polynomial time deterministic procedure for solving MCPs
comes from [3].

Theorem 2 (Brim et al. [3]) There exists a deterministic algorithm for solv-
ing the MCP within O(|V | |E | W) pseudo-polynomial time, on any input EG
(V, E, w, 〈V0, V1〉).
The algorithm mentioned in Theorem 2 is the Value-Iteration algorithm analyzed by
Brim et al. [3]. Its rationale relies on the notion of Small Energy-Progress Measures
(SEPMs). These are bounded, non-negative and integer-valued functions that impose
local conditions to ensure global properties on the arena, in particular, witnessing
that Player 0 has a way to enforce conservativity (i.e., non-negativity of cycles) in

123

1002 Algorithmica (2017) 77:995–1021

the resulting game’s graph. Recovering standard notation, see e.g. [3], let us denote
CΓ = {n ∈ N | n ≤ |V | W }∪ {�} and let � be the total order on CΓ defined as x � y
if and only if either y = � or x, y ∈ N and x ≤ y.

In order to cast the minus operation to range over CΓ , let us consider an operator
� : CΓ × Z → CΓ defined as follows:

a � b :=
{
max(0, a − b), if a �= � and a − b ≤ |V | W ;
a � b = �, otherwise.

Given an EG Γ on vertex set V = V0 ∪ V1, a function f : V → CΓ is a Small
Energy-Progress Measure (SEPM) for Γ if and only if the following two conditions
are met:

1. if v ∈ V0, then f (v) � f (v′) � w(v, v′) for some (v, v′) ∈ E ;
2. if v ∈ V1, then f (v) � f (v′) � w(v, v′) for all (v, v′) ∈ E .

The values of a SEPM, i.e., the elements of the image f (V), are called the energy
levels of f . It isworth to denote byV f = {v ∈ V | f (v) �= �} the set of vertices having
finite energy. Given a SEPM f and a vertex v ∈ V0, an arc (v, v′) ∈ E is said to be
compatible with f whenever f (v) � f (v′)�w(v, v′); moreover, a positional strategy
σ

f
0 ∈ Σ M

0 is said to be compatible with f whenever for all v ∈ V0, if σ
f
0 (v) = v′

then (v, v′) ∈ E is compatible with f . Notice that, as mentioned in [3], if f and g
are SEPMs, then so is the minimum function defined as: h(v) = min{ f (v), g(v)} for
every v ∈ V . This fact allows one to consider the least SEPM, namely, the unique
SEPM f ∗ : V → CΓ such that, for any other SEPM g : V → CΓ , the following
holds: f ∗(v) � g(v) for every v ∈ V . Also concerning SEPMs, we shall rely on the
following lemmata. The first one relates SEPMs to the winning regionW0 of Player 0
in EGs.

Lemma 3 (Brim et al. [3]) Let Γ = (V, E, w, 〈V0, V1〉) be an EG.

1. If f is any SEPM of the EG Γ and v ∈ V f , then v is a winning starting position
for Player 0 in the EG Γ . Stated otherwise, V f ⊆ W0;

2. If f ∗ is the least SEPM of the EG Γ , and v is a winning starting position for Player
0 in the EG Γ , then v ∈ V f ∗ . Thus, V f ∗ = W0.

Also notice that the following bound holds on the energy levels of any SEPM (actually
by definition of CΓ).

Lemma 4 Let Γ = (V, E, w, 〈V0, V1〉) be an EG. Let f be any SEPM of Γ . Then,
for every v ∈ V either f (v) = � or 0 ≤ f (v) ≤ |V | W .

Value-Iteration AlgorithmThe algorithm devised byBrim et al. for solving theMCP in
EGs is known as Value-Iteration [3]. Given an EG Γ as input, the Value-Iteration aims
to compute the least SEPM f ∗ of Γ . This simple procedure basically relies on a lifting
operator δ. Given v ∈ V , the lifting operator δ(·, v) : [V → CΓ] → [V → CΓ] is
defined by δ(f, v) = g, where:

g(u) =
⎧
⎨

⎩

f (u) if u �= v

min{ f (v′) � w(v, v′) | v′ ∈ post(v)} if u = v ∈ V0
max{ f (v′) � w(v, v′) | v′ ∈ post(v)} if u = v ∈ V1

123

Algorithmica (2017) 77:995–1021 1003

We also need the following definition. Given a function f : V → CΓ , we say that
f is inconsistent in v whenever one of the following two holds:

1. v ∈ V0 and for all v′ ∈ post(v) it holds f (v) ≺ f (v′) � w(v, v′);
2. v ∈ V1 and there exists v′ ∈ post(v) such that f (v) ≺ f (v′) � w(v, v′).
To start with, the Value-Iteration algorithm initializes f to the constant zero func-

tion, i.e., f (v) = 0 for every v ∈ V . Furthermore, the procedure maintains a list L of
vertices in order to witness the inconsistencies of f . Initially, v ∈ V0 ∩L if and only if
all arcs going out of v are negative, while v ∈ V1 ∩L if and only if v is the source of at
least one negative arc. Notice that checking the above conditions takes time O(|E |).

As long as the list L is nonempty, the algorithm picks a vertex v from L and performs
the following:

1. Apply the lifting operator δ(f, v) to f in order to resolve the inconsistency of f
in v;

2. Insert into L all vertices u ∈ pre(v)\L witnessing a new inconsistency due to the
increase of f (v).

(The same vertex can’t occur twice in L, i.e., there are no duplicate vertices in L.)

The algorithm terminates when L is empty. This concludes the description of the
Value-Iteration algorithm.

As shown in [3], the update of L following an application of the lifting operator
δ(f, v) requires O(|pre(v)|) time. Moreover, a single application of the lifting oper-
ator δ(·, v) takes O(|post(v)|) time at most. This implies that the algorithm can be
implemented so that it will always haltwithin O(|V | |E | W) time (the reader is referred
to [3] in order to grasp all the details of the proof of correctness and complexity).
Remark The Value-Iteration procedure lends itself to the following basic generaliza-
tion, which turns out to be of a pivotal importance in order to best suit our technical
needs. Let f ∗ be the least SEPM of the EG Γ . Recall that, as a first step, the Value-
Iteration algorithm initializes f to be the constant zero function. Here, we remark that
it is not necessary to do that really. Indeed, it is sufficient to initialize f to be any func-
tion f0 which bounds f ∗ from below, that is to say, to initialize f to any f0 : V → CΓ

such that f0(v) � f ∗(v) for every v ∈ V . Soon after, L can be initialized in a natural
way: just insert v into L if and only if f0 is inconsistent at v. This initialization still
requires O(|E |) time and it doesn’t affect the correctness of the procedure.

So, in the rest of thisworkwe shall assume to have at our disposal a procedure named
Value-Iteration(), which takes as input an EG Γ = (V, E, w, 〈V0, V1〉) and
an initial function f0 that bounds from below the least SEPM f ∗ of the EG Γ (i.e.,
such that f0(v) � f ∗(v) for every v ∈ V). Then, Value-Iteration() outputs
the least SEPM f ∗ of the EG Γ within O(|V | |E | W) time and working with O(|V |)
space.

3 Values and Optimal Positional Strategies from Reweightings

This section aims to show that values and optimal positional strategies of MPGs admit
a suitable description in terms of reweighted arenas. This fact will be the crux for
solving the Value Problem and Optimal Strategy Synthesis in O(|V |2|E | W) time.

123

1004 Algorithmica (2017) 77:995–1021

3.1 On Optimal Values

A simple representation of values in terms of Farey sequences is now observed, then,
a characterization of values in terms of reweighted arenas is provided.
Optimal values and Farey sequences. Recall that each value valΓ (v) is contained
within the following set of rational numbers:

SΓ =
{

N

D

∣
∣
∣
∣ D ∈ [1, |V |], N ∈ [−DW, DW]

}

.

Let us introduce some notation in order to handle SΓ in a way that is suitable for our
purposes. Firstly, we write every ν ∈ SΓ as ν = i + F , where i = iν = �ν� is the
integral and F = Fν = {ν} = ν − i is the fractional part. Notice that i ∈ [−W, W]
and that F is a non-negative rational number having denominator at most |V |.

As a consequence, it is worthwhile to consider the Farey sequence Fn of order
n = |V |. This is the increasing sequence of all irreducible fractions from the (rational)
interval [0, 1] with denominators less than or equal to n. In the rest of this paper, Fn

denotes the following sorted set:

Fn =
{

N

D

∣
∣
∣
∣ 0 ≤ N ≤ D ≤ n, gcd(N , D) = 1

}

.

Farey sequences have numerous and interesting properties, in particular, many
algorithms for generating the entire sequence Fn in time O(n2) are known in the
literature [6], and these rely on Stern-Brocot trees and mediant properties. Notice that
the above mentioned quadratic running time is optimal, as it is well-known that the
sequence Fn has s(n) = 3 n2

π2 + O(n ln n) = Θ(n2) terms.
Throughout the article, we shall assume that F0, . . . , Fs−1 is an increasing ordering

of Fn , so that Fn = {Fj }s−1
j=0 and Fj < Fj+1 for every j .

Also notice that F0 = 0 and Fs−1 = 1.
For example, F5 = {0, 1

5 ,
1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 , 1}.

At this point, SΓ can be represented as follows:

SΓ = [−W, W) + F|V | = {
i + Fj

∣
∣ i ∈ [−W, W), j ∈ [0, s − 1]}.

The above representation of SΓ will be convenient in a while.
Optimal values and reweightings. Two introductory lemmata are shown below, then,
a characterization of optimal values in terms of reweightings is provided.

Lemma 5 Let Γ = (V, E, w, 〈V0, V1〉) be an MPG and let q ∈ Q be a rational
number having denominator D ∈ N. Then, valΓ (v) = 1

DvalΓ w+q
(v) − q holds for

every v ∈ V .

Proof Let us consider the play outcomeΓ w+q
(v, σ0, σ1) = v0v1 . . . vn . . . By the

definition of valΓ (v), and by that of reweighting Γ w+q (= Γ D·w+N), the following
holds:

123

Algorithmica (2017) 77:995–1021 1005

valΓ w+q
(v) = supσ0∈Σ0

infσ1∈Σ1 MP0(outcomeΓ w+q
(v, σ0, σ1))

= supσ0∈Σ0
infσ1∈Σ1 lim infn→∞ 1

n

∑n−1
i=0 (D · w(vi , vi+1) + N) (if q = N/D)

= D · supσ0∈Σ0
infσ1∈Σ1 MP0(outcomeΓ (v, σ0, σ1)) + N

= D · valΓ (v) + N .

Then, valΓ (v) = 1
DvalΓ w+q

(v) − N
D = 1

DvalΓ w+q
(v) − q holds for every v ∈ V .

��
Lemma 6 Given an MPG Γ = (V, E, w, 〈V0, V1〉), let us consider the reweightings:

Γi, j = Γ w−i−Fj , for any i ∈ [−W, W] and j ∈ [0, s − 1],

where s = |F|V || and Fj is the j th term of the Farey sequence F|V |.
Then, the following propositions hold:

1. For any i ∈ [−W, W] and j ∈ [0, s − 1], we have:

v ∈ W0(Γi, j) if and only if valΓ (v) ≥ i + Fj ;

2. For any i ∈ [−W, W] and j ∈ [1, s − 1], we have:

v ∈ W1(Γi, j) if and only if valΓ (v) ≤ i + Fj−1.

Proof 1. Let us fix arbitrarily some i ∈ [−W, W] and j ∈ [0, s − 1].
Assume that Fj = N j/D j for some N j , D j ∈ N.
Since

Γi, j = (V, E, D j (w − i) − N j , 〈V0, V1〉),

then by Lemma 5 (applyed to q = −i − Fj) we have:

valΓ (v) = 1

D j
valΓi, j (v) + i + Fj .

Recall that v ∈ W0(Γi, j) if and only if valΓi, j (v) ≥ 0.
Hence, we have v ∈ W0(Γi, j) if and only if the following inequality holds:

valΓ (v) = 1

D j
valΓi, j (v) + i + Fj

≥ i + Fj .

This proves Item 1.

123

1006 Algorithmica (2017) 77:995–1021

2. The argument is symmetric to that of Item 1, but with some further observations.
Let us fix arbitrarily some i ∈ [−W, W] and j ∈ [1, s − 1]. Assume that Fj =
N j/D j for some N j , D j ∈ N. Since Γi, j = (V, E, D j (w − i) − N j , 〈V0, V1〉),
then by Lemma 5 we have valΓ (v) = 1

D j
valΓi, j (v) + i + Fj . Recall that

v ∈ W1(Γi, j) if and only if valΓi, j (v) < 0.
Hence, we have v ∈ W1(Γi, j) if and only if the following inequality holds:

valΓ (v) = 1

D j
valΓi, j (v) + i + Fj

< i + Fj .

Now, recall from Sect. 2 that valΓ (v) ∈ SΓ , where

SΓ = {
i + Fj

∣
∣ i ∈ [−W, W), j ∈ [0, s − 1]} .

By hypothesis we have:

j ≥ 1 and 0 ≤ Fj−1 < Fj ,

thus, at this point, v ∈ W1(Γi, j) if and only if valΓ (v) ≤ i + Fj−1.
This proves Item 2.

��
We are now in the position to provide a simple characterization of values in terms

of reweightings.

Theorem 3 Given an MPG Γ = (V, E, w, 〈V0, V1〉), let us consider the reweight-
ings:

Γi, j = Γ w−i−Fj , for any i ∈ [−W, W] and j ∈ [1, s − 1],

where s = |F|V || and Fj is the j th term of the Farey sequence F|V |.
Then, the following holds:

valΓ (v) = i + Fj−1 if and only if v ∈ W0(Γi, j−1) ∩ W1(Γi, j).

Proof Let us fix arbitrarily some i ∈ [−W, W] and j ∈ [1, s − 1].
By Item 1 of Lemma 6, we have v ∈ W0(Γi, j−1) if and only if valΓ (v) ≥

i + Fj−1. Symmetrically, by Item 2 of Lemma 6, we have v ∈ W1(Γi, j) if and only
if valΓ (v) ≤ i + Fj−1. Whence, by composition, v ∈ W0(Γi, j−1) ∩W1(Γi, j) if and
only if valΓ (v) = i + Fj−1. ��

3.2 On Optimal Positional Strategies

The present subsections aims to provide a suitable description of optimal positional
strategies in terms of reweighted arenas. An introductory lemma is shown next.

123

Algorithmica (2017) 77:995–1021 1007

Lemma 7 Let Γ = (V, E, w, 〈V0, V1〉) be an MPG, the following hold:

1. If v ∈ V0, let v′ ∈ post(v). Then valΓ (v′) ≤ valΓ (v) holds.
2. If v ∈ V1, let v′ ∈ post(v). Then valΓ (v′) ≥ valΓ (v) holds.
3. Given any v ∈ V0, consider the reweighted EG Γv = Γ w−valΓ (v).

Let fv : V → CΓv be any SEPM of the EG Γv such that v ∈ V fv (i.e., fv(v) �= �).
Let v′

fv
∈ V be any vertex out of v such that (v, v′

fv
) ∈ E is compatible with fv in

Γv .
Then, valΓ (v′

fv
) = valΓ (v).

Proof 1. It is sufficient to construct a strategy σv
0 ∈ Σ M

0 securing to Player 0 a payoff
at least valΓ (v′) from v in the MPG Γ . Let σv′

0 ∈ Σ M
0 be a strategy securing

payoff at least valΓ (v′) from v′ in Γ . Then, let σv
0 be defined as follows:

σv
0 (u) =

⎧
⎪⎪⎨

⎪⎪⎩

σv′
0 (u), if u ∈ V0\{v};

σv′
0 (v), if u = v and v is reachable from v′ in GΓ

σv′
0

;
v′, if u = v and v is not reachable from v′ in GΓ

σv′
0

.

We argue that σv
0 secures payoff at least valΓ (v′) from v in Γ . First notice that,

by Lemma 1 (applied to v′), all cycles C that are reachable from v′ in Γ satisfy:

w(C)

|C | ≥ valΓ (v′).

The fact is that any cycle reachable from v in GΓ
σv
0
is also reachable from v′ in GΓ

σv′
0

(by definition of σv
0), therefore, the same inequality holds for all cycles reachable

from v. At this point, the thesis follows again by Lemma 1 (applied to v, in the
inverse direction). This proves Item 1.

2. The proof of Item 2 is symmetric to that of Item 1.
3. Firstly, notice that valΓ (v′

fv
) ≤ valΓ (v) holds by Item 1. To conclude the

proof it is sufficient to show valΓ (v′
fv
) ≥ valΓ (v). Recall that (v, v′

fv
) ∈ E is

compatible with fv in Γv by hypothesis, that is:

fv(v) � fv(v
′
fv) � (

w(v, v′
fv) − valΓ (v)

)
.

This, together with the fact that v ∈ V fv (i.e., fv(v) �= �) also holds by hypothesis,
implies that v′

fv
∈ V f (i.e., fv(v′

fv
) �= �). Thus, by Item 1 of Lemma 3, v′

fv
is a

winning starting position of Player 0 in the EG Γv . Whence, by Lemma 2, it holds
that valΓ (v′

fv
) ≥ valΓ (v). This proves Item 3.

��

We are now in position to provide a sufficient condition, for a positional strategy
to be optimal, which is expressed in terms of reweighted EGs and their SEPMs.

123

1008 Algorithmica (2017) 77:995–1021

Fig. 3 A cycle C that is reachable from v through v1 . . . vk in GΓ
σ∗
0

Theorem 4 Let Γ = (V, E, w, 〈V0, V1〉) be an MPG. For each v ∈ V , consider the
reweighted EG Γv = Γ w−valΓ (v). Let fv : V → CΓv be any SEPM of Γv such that
v ∈ V fv (i.e., fv(v) �= �). Moreover, assume: fv1 = fv2 whenever valΓ (v1) =
valΓ (v2).

When v ∈ V0, let v′
f ∈ V be any vertex out of v such that (v, v′

f) ∈ E is compatible

with fv in the EG Γv , and consider the positional strategy σ ∗
0 ∈ Σ M

0 defined as follows:

σ ∗
0 (v) = v′

fv , for every v ∈ V0.

Then, σ ∗
0 is an optimal positional strategy for Player 0 in the MPG Γ .

Proof Let us consider the projection graph GΓ
σ ∗
0

= (V, Eσ ∗
0
, w). Let v ∈ V be any

vertex. In order to prove that σ ∗
0 is optimal, it is sufficient (by Lemma 1) to show that

every cycle C that is reachable from v in GΓ
σ ∗
0
satisfies w(C)

|C| ≥ valΓ (v).

– Preliminaries. Let v ∈ V and let C be any cycle of length |C | ≥ 1 that is reachable
from v in GΓ

σ ∗
0
. Then, there exists a path ρ of length |ρ| ≥ 1 in GΓ

σ ∗
0
and such that:

if |ρ| = 1, then ρ = ρ0ρ1 = vv; otherwise, if |ρ| > 1, then:

ρ = ρ0 . . . ρ|ρ| = vv1v2 . . . vku1u2 . . . u|C|u1,

where vv1 . . . vk is a simple path, for some k ≥ 0 and u1 . . . u|C|u1 = C (Fig. 3).
– Fact 1. It holds valΓ (ρi) ≤ valΓ (ρi+1) for every i ∈ [0, |ρ|).

Proof (of Fact 1) If ρi ∈ V0 then valΓ (ρi) = valΓ (ρi+1) by Item 3 of Lemma 7;
otherwise, if ρi ∈ V1, then valΓ (ρi) ≤ valΓ (ρi+1) by Item 2 of Lemma 7. This
proves Fact 1. In particular, notice that valΓ (v) ≤ valΓ (u1) when |ρ| > 1. ��

– Fact 2. Assume C = u1 . . . u|C|u1, then valΓ (ui) = valΓ (u1) for every i ∈
[0, |C |].
Proof (of Fact 2) By Fact 1, valΓ (ui−1) ≤ valΓ (ui) for every i ∈ [2, |C |], as
well as valΓ (u|C|) ≤ valΓ (u1). Then, the following chain of inequalities holds:

valΓ (u1) ≤ valΓ (u2) ≤ . . . ≤ valΓ (u|C|) ≤ valΓ (u1).

123

Algorithmica (2017) 77:995–1021 1009

Since the first and the last value of the chain are actually the same, i.e., valΓ (u1),
then, all these inequalities are indeed equalities. This proves Fact 2. ��

– Fact 3. The following holds for every i ∈ [0, |ρ|):

fρi (ρi), fρi (ρi+1) �= � and fρi (ρi) ≥ fρi (ρi+1) − w(ρi , ρi+1) + valΓ (ρi).

Proof (of Fact 3) Firstly, we argue that any arc (ρi , ρi+1) ∈ E is compatible with
fρi inΓρi . Indeed, if ρi ∈ V0, then (ρi , ρi+1) is compatible with fρi inΓρi because
ρi+1 = σ ∗

0 (ρi) by hypothesis; otherwise, if ρi ∈ V1, then (ρi , x) is compatible
with fρi in Γρi for every x ∈ post(ρi), in particular for x = ρi+1, by definition
of SEPM.
At this point, since (ρi , ρi+1) is compatible with fρi in Γρi , then:

fρi (ρi) � fρi (ρi+1) � (
w(ρi , ρi+1) − valΓ (ρi)

)
.

Now, recall that ρi ∈ V fρi
(i.e., fρi (ρi) �= �) holds for every ρi by hypothesis.

Since fρi (ρi) �= � and the above inequality holds, then we have fρi (ρi+1) �= �.
Thus, we can safely write:

fρi (ρi) ≥ fρi (ρi+1) − w(ρi , ρi+1) + valΓ (ρi).

This proves Fact 3. ��
– Fact 4. Assume that the cycle C = u1 . . . u|C|u1 is such that:

valΓ (ui) = valΓ (u1) ≥ valΓ (v), for every i ∈ [1, |C |].

Then, provided that u|C|+1 = u1, the following holds for every i ∈ [1, |C |]:

fu1(u1), fui+1(ui+1) �= � and fu1(u1) ≥ fui+1(ui+1) −
i∑

j=1

w(u j , u j+1)

+ i · valΓ (v).

Proof (of Fact 4)Firstly, notice that fu1(u1), fui+1(ui+1) �= � holds by hypothesis.
The proof proceeds by induction on i ∈ [1, |C |].
– Base Case.Assume that |C | = 1, so thatC = u1u1. Then fu1(u1) ≥ fu1(u1)−

w(u1, u1) + valΓ (u1) follows by Fact 3. Since valΓ (u1) ≥ valΓ (v) by
hypothesis, then the thesis follows.

– Inductive Step. Assume by induction hypothesis that the following holds:

fu1(u1) ≥ fui (ui) −
i−1∑

j=1

w(u j , u j+1) + (i − 1) · valΓ (v).

By Fact 3, we have:

123

1010 Algorithmica (2017) 77:995–1021

fui (ui) ≥ fui (ui+1) − w(ui , ui+1) + valΓ (ui).

Since valΓ (ui+1) = valΓ (ui) holds by hypothesis, then we have fui+1 =
fui . Recall that val

Γ (ui) ≥ valΓ (v) also holds by hypothesis.
Thus, we obtain the following:

fu1(u1) ≥ fui+1(ui+1) −
i∑

j=1

w(u j , u j+1) + i · valΓ (v).

This proves Fact 4.
– We are now in position to show that every cycle C that is reachable from v in

GΓ
σ ∗
0
satisfies w(C)/|C | ≥ valΓ (v). By Fact 1 and Fact 2, we have valΓ (v) ≤

valΓ (u1) = valΓ (ui) for every i ∈ [1, |C |]. At this point, we apply Fact 4.
Consider the specialization of Fact 4when i = |C | and also recall that u|C|+1 = u1.
Then, we have the following:

fu1(u1) ≥ fu1(u1) −
|C|∑

j=1

w(u j , u j+1) + |C | · valΓ (v).

As a consequence, the following lower bound holds on the average weight of C :

w(C)

|C | = 1

|C |
|C|∑

j=1

w(u j , u j+1) ≥ valΓ (v),

which concludes the proof.

��
Remark 1 Notice that Theorem 4 holds, in particular, when f is the least SEPM f ∗
of the reweighted EG Γv . This follows because v ∈ V f ∗ always holds for the least
SEPM f ∗ of the EG Γv , as shown next: by Lemma 2 and by definition of Γv , then v

is a winning starting position for Player 0 in the EG Γv (for some initial credit); now,
since f ∗

v is the least SEPM of the EG Γv , then v ∈ V f ∗ follows by Item 2 of Lemma 3.

4 An O(|V |2|E|W) Time Algorithm for Solving the Value Problem and
Optimal Strategy Synthesis in MPGs

This section offers a deterministic algorithm for solving the Value Problem and Opti-
mal Strategy Synthesis of MPGs within O(|V |2|E | W) time and O(|V |) space, on
any input MPG Γ = (V, E, w, 〈V0, V1〉).

Let us now recall some notation in order describe the algorithm in a suitable way.
Given an MPG Γ = (V, E, w, 〈V0, V1〉), consider again the following reweight-

ings:

123

Algorithmica (2017) 77:995–1021 1011

Γi, j = Γ w−i−Fj , for any i ∈ [−W, W] and j ∈ [0, s − 1],

where s = |F|V || and Fj is the j th term ofF|V |.
Assuming Fj = N j/D j for some N j , D j ∈ N, we focus on the following weights:

wi, j =w − i − Fj = w − i − N j

D j
;

w′
i, j =D j wi, j = D j (w − i) − N j .

Recall that Γi, j is defined as Γi, j := Γ
w′

i, j , which is an arena having integer weights.
Also notice that, since F0 < · · · < Fs−1 is monotone increasing, then the cor-
responding weight functions wi, j can be ordered in a natural way, i.e., w−W,1 >

w−W,2 > · · · > wW−1,s−1 > · · · > wW,s−1. In the rest of this section, we denote by
f ∗
w′

i, j
: V → CΓi, j the least SEPM of the reweighted EG Γi, j . Moreover, the function

f ∗
i, j : V → Q, defined as f ∗

i, j (v) := 1
D j

f ∗
w′

i, j
(v) for every v ∈ V , is called the rational

scaling of f ∗
w′

i, j
.

4.1 Description of the Algorithm

In this section we shall describe a procedure whose pseudo-code is given below in
Algorithm 1. It takes as input an arena Γ = (V, E, w, 〈V0, V1〉), and it aims to return
a tuple (W0,W1, ν, σ ∗

0) such that:W0 andW1 are the winning regions of Player 0 and
Player 1 in the MPG Γ (respectively), ν : V → SΓ is a map sending each starting
position v ∈ V to its optimal value, i.e., ν(v) = valΓ (v), and finally, σ ∗

0 : V0 → V
is an optimal positional strategy for Player 0 in the MPG Γ .

The intuition underlying Algorithm 1 is that of considering the following sequence
of weights:

w−W,1 > w−W,2 > · · · > w−W,s−1 > w−W+1,1 > w−W+1,2 > · · · > wW−1,s−1

> · · · > wW,s−1

where the key idea is that to rely on Theorem 3 at each one of these steps, testing
whether a transition of winning regions has occurred.

Stated otherwise, the idea is to check, for each vertex v ∈ V , whether v is winning
for Player 1with respect to the current weightwi, j , meanwhile recallingwhether v was
winning for Player 0 with respect to the immediately preceding element wprev(i, j) in
the weight sequence above.

If such a transition occurs, say for some v̂ ∈ W0(Γprev(i, j)) ∩ W1(Γi, j), then one
can easily compute valΓ (v̂) by relying on Theorem 3; Also, at that point, it is easy to
compute an optimal positional strategy, provided that v̂ ∈ V0, by relying on Theorem 4
and Remark 1 in that case.

Each one of these phases, in which one looks at transitions of winning regions, is
named Scan Phase. A graphical intuition of Algorithm 1 is given in Fig. 4.

123

1012 Algorithmica (2017) 77:995–1021

An in-depth description of the algorithm and of its pseudo-code now follows.

Algorithm 1: Solving the Value Problem and Strategy Synthesis in MPGs.

Procedure solve_MPG(Γ)
input : an MPG Γ = (V, E, w, 〈V0, V1〉).
output: a tuple (W0,W1, ν, σ ∗

0) such that:W0 andW1 are the winning regions
of Player 0 and Player 1 (respectively) in the MPG Γ ; ν : V → SΓ

is a map sending each starting position v ∈ V to its corresponding
optimal value, i.e., ν(v) = valΓ (v); and σ ∗

0 : V0 → V is an optimal
positional strategy for Player 0 in the MPG Γ .

// Init Phase
1 W0 ← ∅; W1 ← ∅;
2 f (v) ← 0, ∀ v ∈ V ;
3 W ← maxe∈E |we|; w′ ← w + W ; D ← 1;
4 s ← compute the size |F|V || of F|V |; // with the algorithm

of [10]
// Scan Phases

5 for i = −W to W do
6 F ← 0;
7 for j = 1 to s − 1 do
8 prev_ f ← f ;
9 prev_w ← 1

D w′;
10 prev_F ← F ;
11 F ← generate the j-th term of F|V |; // with the algorithm

of [10]
12 N ← numerator of F ;
13 D ← denominator of F ;
14 w′ ← D (w − i) − N ;

15 f ← 1
D Value-Iteration(Γ w′

, �D prev_ f �);
16 for v ∈ V do
17 if prev_ f (v) �= � and f (v) = � then
18 ν(v) ← i + prev_F ; // set optimal value ν

19 if ν(v) ≥ 0 then
20 W0 ← W0 ∪ {v}; // v is winning for Player 0

21 else
22 W1 ← W1 ∪ {v}; // v is winning for Player 1

23 if v ∈ V0 then
24 for u ∈ post(v) do
25 if prev_ f (v) � prev_ f (u) � prev_w(v, u) then
26 σ ∗

0 (v) ← u; break;

27 return (W0,W1, ν, σ ∗
0)

123

Algorithmica (2017) 77:995–1021 1013

Fig. 4 An illustration of Algorithm 1

– Initialization Phase To start with, the algorithm performs an initialization phase.
At line 1, Algorithm 1 initializes the output variablesW0 andW1 to be empty sets.
Notice that, within the pseudo-code, the variablesW0 andW1 represent thewinning
regions of Player 0 and Player 1, respectively; also, the variable ν represents the
optimal values of the input MPG Γ , and σ ∗

0 represents an optimal positional
strategy for Player 0 in the input MPG Γ . Secondly, at line 2, an array variable f :
V → CΓ is initialized to f (v) = 0 for every v ∈ V ; throughout the computation,
the variable f represents a SEPM. Next, at line 3, the greatest absolute weight W
is assigned as W = maxe∈E |we|, an auxiliary weight function w′ is initialized as
w′ = w + W , and a “denominator” variable is initialized as D = 1. Concluding
the initialization phase, at line 4 the size (i.e., the total number of terms) ofF|V | is
computed and assigned to the variable s. This size can be computed very efficiently
with the algorithm devised by Pawlewicz and Pătraşcu [10].

– Scan Phases After initialization, the procedure performs multiple Scan Phases.
Each one of these is indexed by a pair of integers (i, j), where i ∈ [−W, W] (at
line 5) and j ∈ [1, s − 1] (at line 7). Thus, the index i goes from −W to W , and
for each i , the index j goes from 1 to s − 1.
At each step, we say that the algorithm goes through the (i, j)th scan phase. For
each scan phase, we also need to consider the previous scan phase, so that the
previous index prev(i, j) shall be defined as follows: the predecessor of the first
index is prev(−W, 1) := (−W, 0); if j > 1, then prev(i, j) := (i, j − 1);
finally, if j = 1 and i > −W , then prev(i, j) := (i − 1, s − 1).
At the (i, j)th scan phase, the algorithm considers the rational number zi, j ∈ SΓ

defined as:

zi, j := i + F[j],

where F[j] = N j/D j is the j th term ofF|V |. For each j , F[j] can be computed
very efficiently, on the fly, with the algorithm of Pawlewicz and Pătraşcu [10].
Notice that, since F[0] < · · · < F[s − 1] is monotonically increasing, then the
values zi, j are scanned in increasing order as well. At this point, the procedure
aims to compute the rational scaling f ∗

i, j of the least SEPM f ∗
w′

i, j
, i.e.,

f := f ∗
i, j = 1

D j
f ∗
w′

i, j
.

This computation is really at the heart of the algorithm and it goes from line 8 to
line 15. To start with, at line 8 and line 9, the previous rational scaling f ∗

prev(i, j) and

123

1014 Algorithmica (2017) 77:995–1021

the previous weight function wprev(i, j) (i.e., those considered during the previous
scan phase) are saved into the auxiliary variables prev_ f and prev_w.
Remark. Since the values zi, j are scanned in increasing order of magnitude, then
prev_ f = f ∗

prev(i, j) bounds from below f ∗
i, j . That is, it holds for every v ∈ V

that:

prev_ f (v) = f ∗
prev(i, j)(v) � f ∗

i, j .

The underlying intuition, at this point, is that of computing the energy levels of
f = f ∗

i, j firstly by initializing them to the energy levels of the previous scan phase,
i.e., to prev_ f = f ∗

prev(i, j), and then to update them monotonically upwards by
executing the Value-Iteration algorithm for EGs.
Further details of this pivotal step now follow. Firstly, since the Value-Iteration has
been designed to work with integer numerical weights only [3], then the weights
wi, j = w − zi, j have to be scaled from Q to Z: this is performed in the standard
way, from lines 12 to 15, by considering the numerator N j and the denominator
D j of F[j], and then by setting:

w′
i, j (e) := D j

(
w(e) − i

) − N j , for every e ∈ E .

The initial energy levels are also scaled up fromQ to Z by considering the values:

�D j prev_ f (v)�, for every v ∈ V (line 15). At this point the least SEPM ofΓ w′
i, j

is computed, at line 15, by invokingValue-Iteration(Γ
w′

i, j , �D j prev_ f �),
that is, by executing on input Γ

w′
i, j the Value-Iteration with initial energy levels

given by: �D j prev_ f (v)� for every v ∈ V . Soon after that, the energy levels
have to be scaled back from Z toQ, so that, in summary, at line 15 they becomes:

f = f ∗
i, j = 1

D j
Value-Iteration

(
Γ

w′
i, j , �D j prev_ f �

)
.

The correctness of lines 14–15 will be proved in Lemma 8.
Here, let us provide a sketch of the argument:
1. Since F0 < · · · < Fs−1 ismonotone increasing, then the sequence {w′

i, j }(i, j) is
monotone decreasing, i.e., for every i, j and e ∈ E , w′

prev(i, j)(e) > w′
i, j (e).

Whence, the sequence of rational scalings { f ∗
i, j }i, j is monotone increasing,

i.e., f ∗
i, j � f ∗

prev(i, j) holds at the (i, j)th step. The proof is in Lemma 8.
2. At the (i, j)th iteration of line 8, it holds that prev_ f = f ∗

prev(i, j).
This invariant property is also proved as part of Lemma 8.

3. Since prev_ f = f ∗
prev(i, j), then prev_ f � f ∗

i, j .
Thus, one can prove that D j prev_f � f ∗

w′
i, j
.

4. Since w′
i, j (e) ∈ Z for every e ∈ E , then f ∗

w′
i, j

(v) ∈ Z for every v ∈ V , so that

�D j prev_f(v)� � f ∗
w′

i, j
(v) holds for every v ∈ V as well.

123

Algorithmica (2017) 77:995–1021 1015

5. This implies that it is correct to execute the Value-Iteration, on input Γ
w′

i, j ,
with initial energy levels given by: �D j prev_ f (v)� for every v ∈ V .

Back to us, once f = f ∗
i, j has been determined, then for each v ∈ V the condition:

v
?∈ W0(Γprev(i, j)) ∩ W1(Γi, j),

is checked at line 17: it is not difficult to show that, for this, it is sufficient to test
whether both prev_f(v) �= � and f (v) = � hold on v (it follows by Lemma 8).
If v ∈ W0(Γprev(i, j)) ∩ W1(Γi, j) holds, then the algorithm relies on Theorem 3
in order to assign the optimal value as follows: ν(v) := valΓ (v) = zprev(i, j)

(line 18). If ν(v) ≥ 0, then v is added to the winning region W0 at line 20.
Otherwise, ν(v) < 0 and v is added to W1 at line 22.
To conclude, from lines 23 to 27, the algorithm proceeds as follows: if v ∈ V0,
then it computes an optimal positional strategy σ ∗

0 (v) for Player 0 in Γ : this is
done by testing for each u ∈ post(v) whether (v, u) ∈ E is an arc compatible
with prev_ f in Γprev(i, j); namely, whether the following holds for some u ∈
post(v):

prev_ f (v)
?� prev_ f (u) � prev_w(v, u).

If (v, u) ∈ E is found to be compatiblewithprev_ f at that point, thenσ ∗
0 (v) := u

gets assigned and the arc (v, u) becomes part of the optimal positional strategy
returned to output. Indeed, the correctness of such an assignment relies on Theo-
rem 4 and Remark 1.
This concludes the description of the scan phases and also that of Algorithm 1.

4.2 Proof of Correctness

Now we formally prove the correctness of Algorithm 1. The following lemma shows
some basic invariants that are maintained throughout the computation.

Lemma 8 Algorithm 1 keeps the following invariants throughout the computation:

1. For every i ∈ [−W, W] and every j ∈ [1, s − 1], it holds that:

f ∗
prev(i, j)(v) � f ∗

i, j (v), for every v ∈ V ;

2. At the (i, j)th iteration of line 8, it holds that: prev_ f = f ∗
prev(i, j);

3. At the (i, j)th iteration of line 8, it holds that: �D jprev_ f � � f ∗
w′

i, j
;

4. At the (i, j)th iteration of line 15, it holds that:

1

D j
Value-Iteration

(
Γ

w′
i, j , �D jprev_ f �

)
= f ∗

i, j .

123

1016 Algorithmica (2017) 77:995–1021

Proof – Proof (of Item 1). Recall that wi, j := w − i − Fj . Since F0 < · · · < Fs−1
is monotone increasing, then: wi, j (e) < wprev(i, j)(e) holds for every e ∈ E .
In order to prove the thesis, consider the following function:

g : V → Q ∪ {�} : v �→ min
(

f ∗
prev(i, j)(v), f ∗

i, j (v)
)
.

We show that Dprev(i, j) g is a SEPMofΓ w′
prev(i, j) . There are four cases, according

to whether v ∈ V0 or v ∈ V1, and g(v) = f ∗
prev(i, j)(v) or g(v) = f ∗

i, j (v).
– Case: v ∈ V0. Then, the following holds for some u ∈ post(v):

• Case: g(v) = f ∗
prev(i, j)(v):

• Case: g(v) = f ∗
i, j (v):

This means that (v, u) is an arc compatible with Dprev(i, j)g in Γ
w′
prev(i, j) .

– Case: v ∈ V1. The same argument shows that (v, u) ∈ E is compatible with

Dprev(i, j)g in Γ
w′
prev(i, j) , but it holds for all u ∈ post(v) in this case.

This proves that Dprev(i, j) g is a SEPM of Γ
w′
prev(i, j) .

Since f ∗
w′
prev(i, j)

is the least SEPM of Γ
w′
prev(i, j) , then:

f ∗
w′
prev(i, j)

(v) � Dprev(i, j) g(v), for every v ∈ V .

Since f ∗
w′
prev(i, j)

= Dprev(i, j) f ∗
prev(i, j) and g = min(f ∗

prev(i, j), f ∗
i, j), then:

Dprev(i, j) f ∗
prev(i, j) � Dprev(i, j) min(f ∗

prev(i, j), f ∗
i, j).

123

Algorithmica (2017) 77:995–1021 1017

Whence f ∗
prev(i, j) = min(f ∗

prev(i, j), f ∗
i, j).

This proves that f ∗
prev(i, j)(v) � f ∗

i, j (v) holds for every v ∈ V .
– Fact 1. Next, we prove that if Item 2 holds at the (i, j)th scan phase, then both
Item 3 and Item 4 hold at the (i, j)th scan phase as well.
Proof (of Fact 1) Assume that Item 2 holds. Let us prove Item 3 first. Since
f ∗
prev(i, j) � f ∗

i, j holds by Item 1, and since prev_ f = f ∗
prev(i, j) holds by

hypothesis, then prev_ f (v) � f ∗
i, j (v) holds for every v ∈ V . Since w′

i, j =
D j wi, j and f ∗

w′
i, j

= D j f ∗
i, j , then D j prev_f(v) � f ∗

w′
i, j

(v) holds for every

v ∈ V . Since w′
i, j (e) ∈ Z for every e ∈ E , then f ∗

w′
i, j

(v) ∈ Z for every v ∈ V ,

so that �D j prev_f(v)� � f ∗
w′

i, j
(v) holds for every v ∈ V as well. This proves

Item 3.
We show Item 4 now. Since Item 3 holds, at line 15 it is correct to initialize the
starting energy levels of Value-Iteration() to �D j prev_ f (v)� for every
v ∈ V , in order to execute the Value-Iteration on input Γ w′

i, j .
This implies the following:

Value-Iteration(Γ
w′

i, j , �D j prev_ f �) = f ∗
w′

i, j
.

We know that 1
D j

f ∗
w′

i, j
= f ∗

i, j .

This proves that Item 4 holds and concludes the proof of Fact 1. ��
– Fact 2. We now prove that Item 2 holds at each iteration of line 8.

Proof (of Fact 2) The proof proceeds by induction on (i, j).
Base Case. Let us consider the first iteration of line 8; i.e., the iteration indexed
by i = −W and j = 1. Recall that, at line 2 of Algorithm 1, the function f is
initialized as f (v) = 0 for every v ∈ V . Notice that f is really the least SEPM
f ∗−W,0 of Γ−W,0 = Γ w+W , because every arc e ∈ E has a non-negative weight in

Γ w+W , i.e., we + W ≥ 0 for every e ∈ E .
Hence, at the first iteration of line 8, the following holds:

prev_ f = 0 = f ∗−W,0 = f ∗
prev(−W,1).

Inductive Step. Let us assume that Item 2 holds for the prev(i, j)th iteration, and
let us prove it for the (i, j)th one. Hereafter, let us denote (i p, jp) = prev(i, j) for
convenience. Since Item2holds for the (i p, jp)th iteration by inductionhypothesis,
then, by Fact 1, the following holds at the (i p, jp)th iteration of line 15:

1

D jp

Value-Iteration
(
Γ

w′
i p , jp , �D jp prev_ f �

)
= f = f ∗

i p, jp
.

Thus, at the (i, j)th iteration of line 8:

prev_ f = f = f ∗
i p, jp

= f ∗
prev(i, j).

123

1018 Algorithmica (2017) 77:995–1021

This concludes the proof of Fact 2. ��
At this point, by Fact 1 and Fact 2, Lemma 8 follows. ��
We are now in the position to show that Algorithm 1 is correct.

Proposition 1 Assume that Algorithm 1 is invoked on input Γ = (V, E, w, 〈V0, V1〉)
and, whence, that it returns (W0,W1, ν, σ0) as output.

Then, W0 and W1 are the winning sets of Player 0 and Player 1 in Γ (respectively),
ν : V → S is such that ν(v) = valΓ (v) for every v ∈ V , and σ0 : V0 → V is an
optimal positional strategy for Player 0 in the MPG Γ .

Proof At the (i, j)th iteration of line 17, the following holds by Lemma 8:

prev_ f = f ∗
prev(i, j) and f = f ∗

i, j .

Our aim now is that to apply Theorem 3. For this, firstly observe that one can safely
write prev_ f = f ∗

i, j−1. In fact, since F0 = 0 and Fs−1 = 1, then:

wprev(i,1) = wi−1,s−1 = w − i = wi,0, for every i ∈ [−W, W].

This implies that wprev(i, j) = wi, j−1 for every i ∈ [−W, W] and j ∈ [1, s − 1].
Whence, prev_f = f ∗

prev(i, j) = f ∗
i, j−1.

So, at the (i, j)th iteration of line 17, the following holds for every v ∈ V :

prev_ f (v) �= � and f (v)

= � iff f ∗
i, j−1(v) �= � and f ∗

i, j (v) = � [by Lemma 8]

iff v ∈ W0(Γi, j−1) ∩ W1(Γi, j) [by Item 1–2 of Lemma 3]

iff valΓ (v) = i + Fj−1 [by Theorem 3]

This implies that, at the (i, j)th iteration of line 18, Algorithm 1 correctly assigns the
value ν(v) = i + F[j − 1] = i + Fj−1 to the vertex v.

Since for every vertex v ∈ V we have valΓ (v) ∈ SΓ (recall that SΓ admits
the following representation SΓ = {

i + Fj
∣
∣ i ∈ [−W, W), j ∈ [0, s − 1]}), then, as

soon as Algorithm 1 halts, ν(v) = valΓ (v) correctly holds for every v ∈ V . In turn,
at line 20 and at line 22, the winning sets W0 and W1 are correctly assigned as well.

Now, let us assume that ν(v) = i + Fj−1 holds at the (i, j)th iteration of line 18,
for some v ∈ V . Then, the following holds on prev_w at line 9:

prev_w = wprev(i, j) = wi, j−1 = w − i − Fj−1 = w − ν(v) = w − valΓ (v).

Thus, at the (i, j)th iteration of line 25, for every v ∈ V0 and u ∈ post(v):

prev_ f (v) � prev_ f (u)

� prev_w(v, u)iff f ∗
prev(i, j)(v) � f ∗

prev(i, j)(u) � (
w − valΓ (v)

)

iff (v, u) is compatible with f ∗
prev(i, j) in Γ w−valΓ (v)

123

Algorithmica (2017) 77:995–1021 1019

Recall that f ∗
prev(i, j) is the least SEPM of Γ w−valΓ (v), thus by Theorem 4 the fol-

lowing implication holds: if (v, u) is compatible with f ∗
prev(i, j) in Γ w−valΓ (v), then

σ0(v) = u is an optimal positional strategy for Player 0, at v, in the MPG Γ .
This implies that line 26 of Algorithm 1 is correct and concludes the proof. ��

4.3 Complexity Analysis

The present section aims to show that Algorithm 1 always halts in O(|V |2|E | W) time.
This upper bound is established in the next proposition.

Proposition 2 Algorithm 1 always halts within O(|V |2|E | W) time and it works with
O(|V |) space, on any input MPG Γ = (V, E, w, 〈V0, V1〉). Here, W = maxe∈E |we|.
Proof (Time Complexity of the Init Phase)The initialization ofW0,W1, ν, σ0 (at line 1)
and that of f (at line 2) takes time O(|V |). The initialization of W at line 3 takes
O(|E |) time. To conclude, the size s = |F|V || of the Farey sequence (i.e., its total
number of terms) can be computed in O(n2/3 log1/3 n) time as shown by Pawlewicz
and Pătraşcu in [10].Whence, the Init phase of Algorithm 1 takes O(|E |) time overall.

(Time Complexity of the Scan Phases) To begin, notice that there are O(|V |2W)

scan phases overall. In fact, at line 5 the index i goes from −W to W , while at line 7
the index j goes from 0 to s − 1 where s = |F|V || = Θ(|V |2). Observe that, at each
iteration, it takes O(|E |) time to go from line 8 to line 14 and then from line 16 to
line 27. In particular, at line 11, the j th term Fj of the Farey sequence F|V | can be
computed in O(n2/3 log4/3 n) time as shown by Pawlewicz and Pătraşcu in [10].

Now, let us denote by T 15
i, j the time taken by the (i, j)th iteration of line 15, that is

the time it takes to execute the Value-Iteration algorithm on input Γ
w′

i, j with initial
energy levels: �D j f ∗

prev(i, j)�. Then, the (i, j)th scan phase always completes within

the following time bound: O(|E |) + T 15
i, j .

We now focus on T 15
i, j and argue that the (aggregate) total cost

∑
i, j T 15

i, j of executing
the Value-Iteration algorithm for EGs at line 15 (throughout all scan phases) is only
O(|V |2|E | W). Stated otherwise, we aim to show that the amortized cost of executing
the (i, j)th scan phase is only O(|E |).

Recall that the Value-Iteration algorithm for EGs consists, as a first step, into an
initialization (which takes O(|E |) time) and, then, in the continuous iteration of the
following two operations: (1) the application of the lifting operator δ(f, v) (which
takes O(|post(v)|) time) in order to resolve the inconsistency of f in v, where f (v)

represents the current energy level and v ∈ V is any vertex at which f is inconsistent;
and (2) the update of the list L (which takes O(|pre(v)|) time), in order to keep track
of all the vertices that witness an inconsistency. Recall that L contains no duplicates.

At this point, since at the (i, j)th iteration of line 15 the Value-Iteration is executed

on input Γ
w′

i, j , then a scaling factor on the maximum absolute weight W must be
taken into account. Indeed, it holds that:

W ′ := max
{
|w′

i, j (e)|
∣
∣
∣ e ∈ E, i ∈ [−W, W], j ∈ [0, s − 1]

}
= O(|V | W).

123

1020 Algorithmica (2017) 77:995–1021

Remark Actually, since w′
i, j := D j (w − i) − N j (where N j/D j = Fj ∈ F|V |), then

the scaling factor D j changes from iteration to iteration. Still, D j ≤ |V | holds for
every j .

At each application of the lifting operator δ(f, v) the energy level f (v) increases
by at least one unit with respect to the scaled-up maximum absolute weight W ′. Stated
otherwise, at each application of δ(f, v), the energy level f (v) increases by at least
1/|V | units with respect to the original weight W .

Throughout the whole computation, the rational scalings of the energy levels never
decrease by Lemma 8: in fact, at the (i, j)th scan phase, Algorithm 1 executes the
Value-Iteration with initial energy levels: �D j f ∗

prev(i, j)�. Whence, at line 15, the
(i, j)th execution of the Value-Iteration starts from the (carefully scaled-up) energy
levels of theprev(i, j)th execution; roughly speaking, no energy gets ever lost during
this process. Then, by Lemma 4, each energy level f (v) can be lifted-up at most
|V | W ′ = O(|V |2 W) times.

The above observations imply that the (aggregate) total cost of executing the Value-
Iteration at line 15 (throughout all scan phases) can be bounded as follows:

∑

−W≤i≤W
1≤ j≤s−1

T 15
i, j =

⎛

⎜
⎜
⎝

∑

−W≤i≤W
1≤ j≤s−1

O(|E |)
︸ ︷︷ ︸
init cost

⎞

⎟
⎟
⎠ +

⎛

⎜
⎝

∑

v∈V

O
(|post(v)|
︸ ︷︷ ︸

lifting δ

+ |pre(v)|
︸ ︷︷ ︸

update L

)
O(|V | W ′)
︸ ︷︷ ︸

Lemma 4

⎞

⎟
⎠

= O
(
|V |2|E | W

)
+ O

(
|V |2W

) ∑

v∈V

O
(|post(v)| + |pre(v)|)

= O
(
|V |2|E | W

)

Whence, Algorithm 1 always halts within the following time bound:

Time
(
solve_MPG

(
Γ

)) =
∑

−W≤i≤W
1≤ j≤s−1

(
O(E) + T 15

i, j

)
= O(|V |2|E | W).

This concludes the proof of the time complexity bound.
We now turn our attention to the space complexity.
(Space Complexity) First of all, although the Farey sequence F|V | has |F|V || =

Θ(|V |2) many elements, still, Algorithm 1 works fine assuming that every next ele-
ment of the sequence is generated on the fly at line 11. This computation can be
computed in O(|V |2/3 log4/3 |V |) sub-linear time and space as shown by Pawlewicz
and Pătraşcu [10]. Secondly, given i and j , it is not necessary to actually store all
weights w′

i, j (e) := D j (w(e) − i) − N j for every e ∈ E , as one can compute them on
the fly provided that N j , D j , w and e are given. Finally, Algorithm 1 needs to store in
memory the two SEPMs f and old_ f , but this requires only O(|V |) space. Finally,
at line 15, the Value-Iteration algorithm employs only O(|V |) space. In fact the list L,
which it maintains in order to keep track of inconsistencies, doesn’t contain duplicate
vertices and, therefore, its length is at most |L| ≤ |V |. These facts imply altogether
that Algorithm 1 works with O(|V |) space. ��

123

Algorithmica (2017) 77:995–1021 1021

5 Conclusions

In this work we proved an O(|V |2|E | W) pseudo-polynomial time upper bound for
the Value Problem and Optimal Strategy Synthesis in Mean Payoff Games. The result
was achieved by providing a suitable description of values and positional strategies in
terms of reweighted Energy Games and Small Energy-Progress Measures.

On this way we ask whether further improvements are not too far away.

Acknowledgments This work was supported by Department of Computer Science, University of Verona,
Verona, Italy, under Ph.D. Grant “Computational Mathematics and Biology”, on a co-tutelle agreement
with LIGM, Université Paris-Est in Marne-la-Vallée, Paris, France.

References

1. Andersson, D., Vorobyov, S.: Fast algorithms for monotonic discounted linear programs with two
variables per inequality. Tech. rep., Preprint NI06019-LAA, Isaac Netwon Institute for Mathematical
Sciences, Cambridge, UK (2006)

2. Bouyer, P., Fahrenberg, U., Larsen, K., Markey, N., Srba, J.: Infinite runs in weighted timed automata
with energy constraints. In: Cassez, F., Jard, C. (eds.) FormalModeling andAnalysis of Timed Systems,
Lecture Notes in Computer Science, vol. 5215, pp. 33–47. Springer, Berlin (2008)

3. Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.: Faster algorithms for mean-payoff games.
Form. Methods Syst. Des. 38(2), 97–118 (2011)

4. Chakrabarti, A., de Alfaro, L., Henzinger, T., Stoelinga, M.: Resource interfaces. In: Alur, R., Lee,
I. (eds.) Embedded Software, Lecture Notes in Computer Science, vol. 2855, pp. 117–133. Springer,
Berlin (2003)

5. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J. Game Theory 8(2),
109–113 (1979)

6. Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science,
2nd edn. Addison-Wesley Longman Publishing Co., Inc, Boston (1994)

7. Gurvich, V., Karzanov, A., Khachiyan, L.: Cyclic games and an algorithm to findminimax cycle means
in directed graphs. USSR Comput. Math. Math. Phys. 28(5), 85–91 (1988)

8. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process. Lett. 68(3),
119–124 (1998)

9. Lifshits, Y., Pavlov, D.: Potential theory for mean payoff games. J. Math. Sci. 145(3), 4967–4974
(2007)

10. Pawlewicz, J., Pătraşcu, M.: Order statistics in the farey sequences in sublinear time and counting
primitive lattice points in polygons. Algorithmica 55(2), 271–282 (2009)

11. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158,
343–359 (1996)

123

	Improved Pseudo-polynomial Bound for the Value Problem and Optimal Strategy Synthesis in Mean Payoff Games
	Abstract
	1 Introduction
	2 Notation and Preliminaries
	3 Values and Optimal Positional Strategies from Reweightings
	3.1 On Optimal Values
	3.2 On Optimal Positional Strategies

	4 An O(|V|2 |E| W) Time Algorithm for Solving the Value Problem and Optimal Strategy Synthesis in MPGs
	4.1 Description of the Algorithm
	4.2 Proof of Correctness
	4.3 Complexity Analysis

	5 Conclusions
	Acknowledgments
	References

