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Abstract We solve an open problem by constructing quantum walks that not only
detect but also find marked vertices in a graph. In the case when the marked set M
consists of a single vertex, the number of steps of the quantum walk is quadratically
smaller than the classical hitting time HT(P, M) of any reversible random walk P
on the graph. In the case of multiple marked elements, the number of steps is given
in terms of a related quantity HT+(P, M) which we call extended hitting time. Our
approach is new, simpler and more general than previous ones. We introduce a notion
of interpolation between the randomwalk P and the absorbingwalk P ′, whosemarked
states are absorbing. Then our quantum walk is simply the quantum analogue of this
interpolation. Contrary to previous approaches, our results remain valid when the
random walk P is not state-transitive. We also provide algorithms in the cases when
only approximations or bounds on parameters pM (the probability of picking amarked
vertex from the stationary distribution) and HT+(P, M) are known.
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1 Introduction

Many randomized classical algorithms rely heavily on random walks or Markov
chains. This technique has been extended to the quantum case and is called a quantum
walk. Ambainis [1] was the first to solve a natural problem—the element distinctness
problem—using a quantumwalk. Following this,manyother quantumwalk algorithms
were discovered (see, for example, [2–4]).

A common class of problems that are typically solved using a random walk are
the so-called spatial search problems. In such problems, the displacement constraints
are modelled by edges of an undirected graph G, which has some desired subset of
vertices M that are marked. The goal of a spatial search problem is to find one of the
marked vertices by traversing the graph along its edges. Classically, a simple strategy
for finding a marked vertex is to perform a random walk on G, by repeatedly applying
some stochastic matrix P until one of the marked vertices is reached (see Sect. 2.5 for
more details). The expected running time of this algorithm is called the hitting time
of P and is denoted by HT(P, M).

Quantum walk algorithms for the spatial search problem were studied in [5]. This
problem has also been considered for several specific graphs, such as the hypercube [6]
and the grid [7,8]. The notion of the hitting time has been carried over to the quantum
case in [8–14] by generalizing the classical notion in different ways. Usually, the
quantum hitting time has a quadratic improvement over the classical one. However,
several serious restrictions were imposed for this to be the case. A quantum algorithm
could only solve the detection problem of deciding whether there are marked vertices
or not [10], but for being able to find them, theMarkov chain had to be reversible, state-
transitive, and with a unique marked vertex [13,15]. Recall that a Markov chain P is
called state-transitive if, given any two states x and y, there exists an automorphism1

of P that takes x to y. This is analogous to the definition of vertex-transitive graphs
and imposes a high degree of symmetry on the Markov chain (intuitively, each state
of P locally looks the same). While the detection algorithm [10] is quite intuitive
and well understood, the finding algorithm [13,15] requires an elaborate proof whose
intuition is not clear. This is due in part to a modification of the quantum walk, so that
the resulting walk is not a quantum analogue of a Markov chain anymore.

Whether this quadratic speed-up for finding a marked element also holds for all
reversibleMarkov chains (and not merely state-transitive ones) was an open question.
In the case of a single marked element, we give a positive answer to this question
by providing a quantum algorithm, which finds the marked element in time that is
quadratically smaller than the classical hitting time for all reversible Markov chains,
thus removing the extraneous condition of state-transitivity. While our algorithm also
extends to the case of multiple marked elements, the possibility of a general quadratic
speed-up still remains open in that case, because of a possible gap between the so-

1 An automorphism of P is a permutation matrix Q such that QPQT = P .
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called extended hitting time HT+(P, M), which characterizes the cost of our quantum
algorithm, and the standard hitting time HT(P, M) (see Sect. 2.7 and Appendix C for
more details2).

1.1 Related Work

Inspired by Ambainis’ quantum walk algorithm for solving the element distinctness
problem [1], Szegedy [10] has introduced a powerful way of constructing quan-
tum analogues of Markov chains which led to new quantum walk algorithms. He
showed that for any symmetric Markov chain a quantum walk could detect the pres-
ence of marked vertices in at most the square root of the classical hitting time.
However, showing that a marked vertex could also be found in the same time (as
is the case for the classical algorithm) proved to be a very difficult task. Mag-
niez et al. [12] extended Szegedy’s approach to the larger class of ergodic Markov
chains, and proposed a quantum walk algorithm to find a marked vertex, but its
complexity may be larger than the square root of the classical hitting time. A typ-
ical example where their approach fails to provide a quadratic speed-up is the 2D
grid, where their algorithm has complexity Θ(n), whereas the classical hitting time
is Θ(n log n). Ambainis et al. [8] and Szegedy’s [10] approaches yield a complexity
of Θ(

√
n log n) in this special case, for a unique marked vertex. This result was, in

fact, first obtained by Childs and Goldstone [7,17] using a continuous-time quantum
walk.

However, whether a full quadratic speed-up was possible in the 2D grid case
remained an open question, until Tulsi [15] proposed a solution involving a new
technique. Magniez et al. [13] extended Tulsi’s technique to any reversible state-
transitive Markov chain, showing that for such chains, it is possible to find a unique
marked vertex with a full quadratic speed-up over the classical hitting time. However,
as explained earlier, state-transitivity is a strong symmetry condition, and further-
more their technique cannot deal with multiple marked vertices. Recently, [18] have
suggested a modification of the original [8] algorithm in the case of the 2D grid
with a single marked element by replacing amplitude amplification with a classical
search in a neighbourhood of the final vertex. This results in a

√
log n speed-up over

the original algorithm from [8] and yields complexity O(
√
n log n) as in the case of

[13,15].
It seems implausible that one has to rely on involved techniques to solve the finding

problem under such restricted conditions in the quantum case, while the classical
randomwalk algorithm (see Sect. 2.5) is conceptually simple and works under general
conditions. The classical algorithm simply applies an absorbingwalk P ′ obtained from
P by turning all outgoing transitions frommarked states into self-loops (see Appendix
A). Each application of P ′ results in more probability being absorbed inmarked states.

Previous attempts at providing a quantum speed-up over this classical algorithm
have followed one of these two approaches:

2 Note that in the preliminary version of this work [16], a subtle error led to the wrong conclusion that
HT+(P, M) = HT(P, M) for all M and reversible P . In general this only holds when |M | = 1.
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– Combining a quantum version of P with a reflection through marked vertices to
mimic a Grover operation [1,8,12].

– Directly applying a quantum version of P ′ [10,13].
The problem with these approaches is that they would only be able to find marked
vertices in very restricted cases. We explain this by the different nature of random and
quantum walks: while both have a stable state, i.e., the stationary distribution for the
random walk and the eigenstate with eigenvalue 1 for the quantum walk, the way both
walks act on other states is dramatically different.

Indeed, an ergodic random walk will converge to its stationary distribution from
any initial distribution. This apparent robustness may be attributed to the inherent
randomness of the walk, which will smooth out any initial perturbation. After many
iterations of the walk, non-stationary contributions of the initial distribution will be
damped and only the stationary distribution will survive (this can be attributed to the
thermodynamical irreversibility3 of ergodic random walks).

On the other hand, this is not true for quantum walks, because in the absence of
measurements a unitary evolution is deterministic (and in particular thermodynami-
cally reversible): the contributions of the other eigenstates will not be damped but just
oscillate with different frequencies, so that the overall evolution is quasi-periodic. As a
consequence, while iterations of P ′ always lead to a marked vertex, it may happen that
iterations of the quantum analogue of P ′ will never lead to a state with a large overlap
over marked vertices, unless the walk exhibits a strong symmetry (as is the case for
a state-transitive walk with only one marked element, which could be addressed by
previous approaches).

1.2 Our Approach and Contributions

Ourmain result is that a quadratic speed-up for finding amarked element via a quantum
walk holds for any reversible Markov chain with a single marked element. We provide
several algorithms for different versions of the problem. Compared to previous results,
our algorithms are more general and conceptually clean. The intuition behind our
main algorithm is based on the adiabatic algorithm from [19]. However, all algorithms
presented here are circuit-based and thus do not suffer from the drawbacks of the
adiabatic algorithm in [19].

We choose an approach that is different from the ones described above: first, we
directly modify the original random walk P , and then construct a quantum analogue
of the modified walk. We choose the modified walk to be the interpolated Markov
chain P(s) = (1− s)P + sP ′ that interpolates between P and the absorbing walk P ′
whose outgoing transitions from marked vertices have been replaced by self-loops.
Thus, we can still use our intuition from the classical case, but at the same time also
get simpler proofs and more general results in the quantum case.

All of our quantum walk algorithms are based on eigenvalue estimation performed
on the operator W (s), a quantum analogue of the Markov chain P(s). We consider

3 Reversibility of Markov chains (see Appendix A.1.2) is not related to thermodynamical reversibility.
Actually, even a “reversible” Markov chain is thermodynamically irreversible.
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the (+1)-eigenstate |Ψn(s)〉 of W (s), which plays the role of the stationary distrib-
ution in the quantum case. We use the interpolation parameter s to tune the length
of projections of |Ψn(s)〉 onto marked and unmarked vertices. If both projections
are large, our algorithm succeeds with large probability in O

(√
HT+(P, M)

)
steps

(Theorem 6), where HT+(P, M) is a quantity we call the extended hitting time (see
Definition 9 and Prop. 3 for precise statements). In particular, we find that when
|M | = 1, HT+(P, M) = HT(P, M) and when |M | > 1, there exists P such that
HT+(P, M) > HT(P, M).

We also provide several modifications of the main algorithm. In particular, we show
how to make a suitable choice of s to balance the overlap of |Ψn(s)〉 on marked and
unmarked vertices even if some of the parameters required by the main algorithm are
unknown and the rest are either approximately known (Theorems 7, 8) or bounded
(Theorems 9, 10). In all cases a marked vertex is found in Õ

(√
HT+(P, M)

)
steps.

In Sect. 2 we introduce several variations of the spatial search problem and provide
preliminaries on random and quantum walks and their hitting times. Sect. 3 describes
our quantum algorithms and contains themain results. Themain algorithm is presented
in Sect. 3.1 and is followed by several modifications that execute the main algorithm
many times with different parameters.

Technical and background material is provided in several appendices. In Appendix
Awe describe basic properties of the interpolatedMarkov chain P(s) and the extended
hitting time HT+(P, M), which is crucial for the analysis of the algorithms in Sect. 3.
In Appendix B we compute the spectrum of the walk operator W (s) and show how it
can be implemented for any s. In Appendix C we discuss limitations of our results for
the case of multiple marked elements.

2 Preliminaries

2.1 Classical Random Walks

AMarkov chain4 on a discrete state space X of size n := |X | is described by an n× n
row-stochastic matrix P where Pxy ∈ [0, 1] is the transition probability from state x
to state y and

∀x ∈ X :
∑

y∈X
Pxy = 1. (1)

Such a Markov chain has a corresponding underlying directed graph with n vertices
labelled by elements of X , and directed arcs labelled by non-zero probabilities Pxy
(see Fig. 1).

We represent probability distributions by row vectors whose entries are real, non-
negative, and sum to one. When one step of the Markov chain P is applied to a
given distribution p, the resulting distribution is pP . A probability distribution π that
satisfies π P = π is called a stationary distribution of P . For more background on
Markov chains see, e.g., [20–23].

4 We will use terms “random walk”, “Markov chain”, and “stochastic matrix” interchangeably. The same
holds for “state”, “vertex”, and “element”.
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Fig. 1 Markov chain P and the corresponding graph with transition probabilities

Fig. 2 The order in which
Markov chain properties
from Definition 1 are typically
imposed (starting from the
bottom). Reversibility is
discussed in more detail in
Appendix A.1.2

stochastic
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2.1.1 Ergodicity

Let us consider Markov chains with some extra structure.

Definition 1 A Markov chain P is called

– irreducible, if any state in the underlying directed graph can be reached from any
other by a finite number of steps (i.e., the graph is strongly connected);

– aperiodic, if there is no integer k > 1 that divides the length of every directed
cycle of the underlying directed graph;

– ergodic, if it is both irreducible and aperiodic.
– reversible, if it is ergodic and satisfies the so called detailed balance equation i.e.,
the stationary distribution π satisfies πx Pxy = πy Pyx .

Equivalently, a Markov chain P is ergodic if there exists some integer k0 ≥ 1 such
that all entries of Pk0 (and, in fact, of Pk for any k ≥ k0) are strictly positive (see
[23, Prop. 1.7, p. 8] for a proof of this equivalence). Some authors call such chains
regular and use the term “ergodic” already for irreducible chains [20,21]. From now
on, we will exclusively consider Markov chains that are ergodic and reversible (but
not necessarily state-transitive).

Even though some of the Markov chain properties in Definition 1 are independent
from each other (such as irreducibility and aperiodicity), usually they are imposed in
a specific order which is summarized in Fig. 2. As we impose more conditions, more
can be said about the spectrum of P as discussed in the next section.
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2.1.2 Perron–Frobenius Theorem

The following theorem will be very useful for us. It is essentially the standard Perron–
Frobenius theorem [24, Theorem 8.4.4, p. 508], but adapted for Markov chains. (This
theorem is also known as the “Ergodic Theorem forMarkov chains” [22, Theorem 5.9,
p. 72].) The version presented here is based on the extensive overview of Perron–
Frobenius theory in [25, Chapter 8].

Theorem 1 (Perron–Frobenius) Let P be a stochastic matrix. Then

– all eigenvalues of P are at most 1 in absolute value and 1 is an eigenvalue of P;
– if P is irreducible, then the 1-eigenvector is unique and strictly positive (i.e., it is
of the form cπ , where c > 0 and π is a probability distribution that is non-zero
everywhere);

– if in addition to being irreducible, P is also aperiodic (i.e., P is ergodic), then the
remaining eigenvalues of P are strictly smaller than 1 in absolute value.

If P is irreducible but not aperiodic, it has some complex eigenvalues on the unit
circle (which can be shown to be roots of unity) [25, Chapter 8]. However, when in
addition we also impose aperiodicity (and hence ergodicity), we are guaranteed that
there is a unique eigenvalue of absolute value 1 and, in fact, it is equal to 1.

2.2 Spatial Search on Graphs

We fix an undirected graph G = (X, E) with n := |X | vertices and a set of edges E .
Let M ⊆ X be a set of marked vertices of size m := |M |. We insist that during the
traversing of the graph the current vertex is stored in a distinguished vertex register.
Our goal is to find any of the marked vertices in M using only evolutions that preserve
the locality of G on the vertex register, i.e., to perform a spatial search on G [5]
(here we use a notion of locality that is a special case of the one defined in [5] and it
is powerful enough for our purpose). Note that algorithms for spatial search cannot
simply ignore the vertex register as only the vertex encoded in this register can be
checked to be marked or not.

We allow two types of operations on the vertex register:

– static transformations, that can be conditioned on the state of the vertex register,
but do not modify it;

– Shift, that exchanges the value of the vertex register and another register.

To impose locality, we want to restrict the execution of Shift only to the edges of G.

Definition 2 (Shift operation) Let

Shift: (x, y) 	→
{

(y, x), if (x, y) ∈ E,

(x, y), otherwise.
(2)

In the first case we say that Shift succeeds, but in the second case it fails (we assume
that Shift always succeeds if x = y).
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Definition 3 (Search problems) Under the restriction that only static transformations
and Shift are allowed, consider the following problems:

– Detect(G): Detect if there is a marked vertex in G;
– Find(G): Find any marked vertex in G, with the promise that M �= ∅.

We also define the following variations of the above problems:

– Detect(k)
(G): problemDetect(G)with the promise that eitherm = 0 orm = k;

– Find(k)
(G): problem Find(G) with the promise that m = k.

Similarly, let Detect(≥k)
(G) and Find(≥k)

(G) denote the corresponding problems
with equality m = k replaced by inequality m ≥ k.

Note that an algorithm for Find (or its variations) should output a marked element
and there are no additional constraints on its output. Our quantum algorithms will
solve a slightly stronger version of Find, which we call Sample- marked, where it
is necessary to sample marked elements from a specific distribution (see Sect. 2.7).

2.3 Search Via Random Walk

A natural approach to searching on a graph involves using a random walk. Intuitively,
a randomwalk is an alternation of coin flips and shifts.More precisely, a coin is flipped
according to the current state x ∈ X of the vertex register, its value describes the target
vertex y, and Shift performs a move from x to y. Let Pxy be the probability that x is
shifted to y. Then Shift always succeeds if Pxy = 0 whenever (x, y) /∈ E . In such
case, we say that P = (Pxy)x,y∈X is aMarkov chain on graph G.

From now on, we assume that P is an ergodic Markov chain (see Definition 1).
Therefore, by the Perron–Frobenius Theorem, P has a unique stationary distribution
π . We also assume that P is reversible: πx Pxy = πy Pyx , for all x, y ∈ X .

To measure the complexity of implementing a random walk corresponding to P ,
we introduce the following black-box operations:

– Check(M): check if a given vertex is marked;
– Setup(P): draw a sample from the stationary distribution π of P;
– Update(P): perform one step of P .

Each of these black-box operations have the corresponding associated implementation
cost, which we denote by C, S, and U, respectively.

2.4 Search Via Quantum Walk

The setup in the quantum case is as follows. As in [19], the evolution takes place in
spaceH⊗H whereH := span{|x〉: x ∈ X} is the n-dimensional complex Euclidean
space spanned by elements of set X . The first register stores the current vertex of
the walk and is called vertex register. We call a unitary transformation static if it is
controlled by this register, i.e., it is of the form

∑
x∈X |x〉〈x |⊗Ux for someunitariesUx .

The quantum version of the Shift operation is obtained by extending the expression
in Eq. (2) by linearity.
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A quantum walk on G is a composition of static unitary transformations and Shift.
In addition, we require that it respects the local structure of G, i.e., whenever Shift is
applied to a state, the state must completely lie within the subspace of H⊗H where
Shift is guaranteed to succeed.

We will only consider quantum walks built from quantum analogues of reversible
Markov chains, so we extend the operations Check, Setup, and Update to the
quantum setting as follows (we implicitly also allow controlled versions of these
operations):

– Check(M): map |x〉|b〉 to |x〉|b〉 if x /∈ M and |x〉|b ⊕ 1〉 if x ∈ M , where |x〉 is
the vertex register and b ∈ {0, 1};

– Setup(P): construct the superposition |π〉 :=∑x∈X
√

πx |x〉;
– Update(P): apply any of V (P), V (P)†, or Shift, where V (P) is a unitary
operation that satisfies

V (P)|x〉|0̄〉 := |x〉|px 〉 := |x〉
∑

y∈X

√
Pxy |y〉 (3)

for all x ∈ X and some fixed reference state |0̄〉 ∈ H.

Implicitly, we allow controlled versions of the black-box operations Check(M),
Setup(P), and Update(P).

In terms of the number of applications of Shift, Update has complexity 1 while
Setup has complexity at least one-half times the diameter of the graph G (this is a
lower bound on the mixing time of ergodicMarkov chains [23]). Nonetheless, in many
algorithmic applications, the situation is more complex and the number of applications
of Shift is not the only relevant cost; see for instance [1,2].

To define a quantum analogue of a reversible Markov chain P , we follow the
construction of Szegedy [10]. Let X := H⊗ span{|0̄〉} = span{|x〉|0̄〉 : x ∈ X} and

refX := 2
∑

x∈X
|x〉〈x | ⊗ |0̄〉〈0̄| − I ⊗ I = I ⊗ (2|0̄〉〈0̄| − I ) (4)

be the reflection inH⊗Hwith respect to the subspaceX . The quantum walk operator
corresponding to Markov chain P is5

W (P) := V (P)† · Shift · V (P) · refX . (5)

Notice that W (P) requires 3 calls to Update(P).
Since we always choose an initial state that lies in the subspace X , we can simplify

the analysis by restricting the action of W (P) to the smallest subspace that contains
X and is invariant under W (P). We call this subspace the walk space of W (P). We
show in Appendix B that this subspace is spanned by X and W (P)X , and that Shift
is guaranteed to succeed when W (P) is applied to a state in the walk space.

5 Note that Szegedy [10] uses a different convention and defines the quantum walk operator corresponding

to P as
(
V (P)W (P) V (P)†

)2 where W (P) is given in Eq. (5).
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2.5 Classical Hitting Time

We define the hitting time of P based on a simple classical random walk algorithm
for finding a marked element in the state space X .

Definition 4 Let P be an ergodic Markov chain, and M be a set of marked states. The
hitting time of P with respect to M , denoted by HT(P, M), is the expected number
of executions of the last step of the Random Walk Algorithm, conditioned on the
initial vertex being unmarked.

Random Walk Algorithm

1. Generate x ∈ X according to the stationary distribution π of P using
Setup(P).

2. Check if x is marked using Check(M). If x is marked, output x and exit.
3. Otherwise, update x according to P using Update(P) and go back to

step 2.

It is straightforward to bound the classical complexity of the Detect and Find
problems in terms of the hitting time.

Proposition 1 Let k ≥ 1. Detect(≥k)
(G) can be solved with high probability and

classical complexity of order

S+ T · (U+ C), where T = max
|M ′|=k

HT(P, M ′). (6)

Find(G) can be solved with high probability and expected classical complexity of
order

S+ T · (U+ C), where T = HT(P, M). (7)

Note that since the Random Walk Algorithm consists in applying the random
walk P until hitting a marked vertex, it may be seen as repeated applications of the
absorbing walk P ′.

Definition 5 Let P be an ergodic Markov chain, and M be a set of marked states. The
absorbing walk P ′ is the walk obtained from P by replacing all outgoing transitions
from marked vertices by self-loops, that is P ′xy = Pxy for all x /∈ M , and P ′xy = δxy
for all x ∈ M (δxy being the Kronecker delta).

The hitting time HT(P, M) may be obtained from the spectral properties of the
discriminant matrix of P ′, which was introduced by Szegedy in [10].

Definition 6 The discriminant matrix D(P) of a Markov chain P is

D(P) :=
√
P ◦ PT, (8)

where the Hadamard product “◦” and the square root are computed entry-wise.
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Proposition 2 The hitting time of Markov chain P with respect to marked set M is
given by

HT(P, M) =
n−|M|∑

k=1

|〈v′k |U 〉|2
1− λ′k

, (9)

where λ′k are the eigenvalues of the discriminant matrix D′ = D(P ′) in nondecreasing
order, |v′k〉 are the corresponding eigenvectors, and |U 〉 is the unit vector

|U 〉 := 1√
1− pM

∑

x /∈M

√
πx |x〉, (10)

pM being the probability to draw a marked vertex from the stationary distribution π

of P.

This proposition is proved in Appendix A.3.

2.6 Quantum Hitting Time

Quantum walks have been successfully used for detecting the presence of marked
vertices quadratically faster than randomwalks [10]. Nonetheless, very little is known
about the problem of finding a marked vertex. Below, we describe the understanding
of this problem prior to our work.

Theorem 2 ([10]) Let k ≥ 1.Detect(≥k)
(G) can be solved with high probability and

quantum complexity of order

S+ T · (U+ C), where T = max
|M ′|=k

√
HT(P, M ′). (11)

When P is state-transitive and there is a unique marked vertex z (i.e., m = 1),
HT(P, {z}) is independent of z and one can also find z:

Theorem 3 ([13,15]) Assume that P is state-transitive. Find(1)
(G) can be solved

with high probability and quantum complexity of order

S+ T · (U+ C), where T = √HT(P, {z}). (12)

Using standard techniques, such as in [5], Theorem 3 can be generalized to any
number of marked vertices, with an extra logarithmic multiplicative factor. Nonethe-
less, the complexities of the corresponding algorithms do not decrease when the size of
M increases, contrary to the random walk search algorithm (Prop. 1) and the quantum
walk detecting algorithm (Theorem 2).

Corollary 1 Assume that P is state-transitive. Find(G) can be solved with high prob-
ability and quantum complexity of order

log(n) · (S+ T · (U+ C)
)
, where T = √HT(P, {z}), for any z. (13)
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2.7 Extended Hitting Time

The quantum algorithms leading to the results in the previous subsection are based on
quantum analogues of either theMarkov chain P or the corresponding absorbing walk
P ′. However, the algorithms proposed in the present article are based on a quantum
analogue of the following interpolated Markov chain.

Definition 7 Let P be a Markov chain, M be a set of marked elements and P ′ be the
corresponding absorbing walk. We define the interpolated Markov chain P(s) as

P(s) := (1− s)P + sP ′, 0 ≤ s ≤ 1. (14)

We also denote by D(s) the discriminant matrix D(P(s)), by λk(s) its eigenvalues
(in nondecreasing order) and by |vk(s)〉 its corresponding eigenvectors where k =
1, . . . , n.

Some properties of P(s) are proven inAppendixA.1, in particular, we note that P(s) is
ergodic for any 0 ≤ s < 1 as soon as P is (Prop. 7).Moreover, just as P(s) interpolates
between P and P ′, the stationary distribution π(s) of P(s) interpolates between the
stationary distribution π of P and its restriction to the set of marked vertices, i.e. a
stationary distribution for P ′ (Prop. 11).

This implies that P(s) may be used to solve the following strong version of the
Find problem.

Definition 8 (Sampling problem) Let P be an ergodic Markov chain on graph G.
Under the restriction that only static transformations and Shift are allowed, consider
the following problems:

– Sample- marked(P): Sample marked vertices in G according to the restriction
to set M of the stationary distribution of P , with the promise that M �= ∅.

– Sample- marked(k)
(P): problem Sample- marked(P) with the promise that

m = k.

Indeed, since the stationary distribution of P(s) precisely interpolates between π

and its restriction to M , we can solve the Sample- marked problem by applying
Markov chain P(s) for a sufficient number of steps t to approach its stationary distri-
bution, then outputting the current vertex if it is marked, otherwise starting over.

Our new quantum algorithms can be seen as quantum analogues of this classical
algorithm, and their cost will be expressed in terms of a quantity which we call the
extended hitting time.

Definition 9 The extended hitting time of P with respect to M is

HT+(P, M) := lim
s→1

HT(s), (15)

123



Algorithmica (2016) 74:851–907 863

where the interpolated hitting time HT(s) is defined for any s ∈ [0, 1)6 as

HT(s) :=
n−1∑

k=1

|〈vk(s)|U 〉|2
1− λk(s)

. (16)

The name extended hitting time is justified by comparing Eqs. (16) to (9), and noting
that 〈v′k |U 〉 = 0 for k > n − |M |. In general, the extended hitting time HT+(P, M)

can be larger than the hitting time HT(P, M), but they happen to be equal in the
case of a single marked element. This implies that when |M | = 1, the cost of our
quantum algorithms can be expressed in terms of the usual hitting time, which might
be attributed to the fact that the Sample- marked problem is equivalent to the usual
Find problem in that case.

Proposition 3 If |M | = 1 then HT+(P, M) = HT(P, M). However, there exists P
and |M | > 1 such that HT+(P, M) > HT(P, M).

This proposition is proved in Appendix A.3.1. An alternative expression for
HT+(P, M) is provided in Appendix C; it allows for an easier comparison with
HT(P, M). The following theorem holds for any number of marked elements and
it relates HT(s) to HT+(P, M).

Theorem 4 For s < 1, the interpolated hitting time HT(s) is related to HT+(P, M)

from Eq. (15) as follows:

HT(s) = p2M
(1− s(1− pM ))2

HT+(P, M) (17)

where pM is the probability to pick a marked state from the stationary distribution π

of P. When |M | = 1, HT+(P, M) in Eq. (17) can be replaced by HT(P, M).

The proof is provided in Appendix A.3.3.

3 Quantum Search Algorithms

In this section we provide several quantum search algorithms. They are all based on a
procedure known as eigenvalue estimation and essentially run it different numbers of
times with different values of parameters. Below is a formal statement of what eigen-
value estimation does. Itwas discovered byAlexeiKitaev and described in unpublished
work (arXiv:quant-ph/9511026, see also [26]).

Theorem 5 (Eigenvalue estimation)For any unitary operator W and precision t ∈ N,
there exists a quantum circuit Eigenvalue Estimation(W, t) that uses 2t calls to the

6 Note that in the case of multiple marked elements this expression cannot be used for s = 1, since the
numerator and denominator vanish for terms with k > n−|M |. We analyze the s → 1 limit in Appendix C.
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Table 1 Summary of results on
quantum search algorithms

Assumptions on pM and
HT+(P, M) are listed in the last
two columns

Result pM HT+(P, M)

Theorem 6 Known Known

Theorem 7 Approximation known Known

Theorem 8 Approximation known Not known

Theorem 9 Bound known Bound known

Theorem 10 Not known Bound known

controlled-W operator and O(t2) additional gates, and acts on eigenstates |Ψk〉 of W
as

|Ψk〉 	→ |Ψk〉 1
2t

2t−1∑

l,m=0
e−

2π ilm
2t eiϕkl |m〉, (18)

where eiϕk is the eigenvalue of W corresponding to |Ψk〉.
By linearity, Eigenvalue Estimation(W, t) resolves any state as a linear com-

bination of the eigenstates of W and attaches to each term a second register hold-
ing an approximation of the first t bits of the binary decomposition of 1

2π ϕk ,
where ϕk is the phase of the corresponding eigenvalue. We will mostly be inter-
ested in the component along the eigenvector |Ψn〉 which corresponds to the phase
ϕn = 0. In that case, the second register is in the state |0t 〉 and the estimation is
exact.

Our search algorithms will be based on Eigenvalue Estimation(W (s), t) for some
values of parameters s and t . Here, W (s) := W (P(s)) is the quantum analogue of
the interpolated Markov chain P(s), following Szegedy’s construction as described
in Sect. 2.4 (a quantum circuit implementing W (s) is also provided by Lemma 3 in
Appendix B.2). The value of the interpolation parameter s ∈ [0, 1] will be related
to pM , the probability to pick a marked vertex from the stationary distribution π of
P . Precision t ∈ N, or the number of binary digits in eigenvalue estimation, will be
related to HT+(P, M), the extended hitting time of P .

We consider several scenarios where different knowledge of the values of parame-
ters pM and HT+(P, M) is available, and for each case we provide an algorithm. The
list of all results and the corresponding assumptions is given in Table 1.

Throughout the rest of this section we assume that all eigenvalues of P are
between 0 and 1. If this is not the case, we can guarantee it by replacing P with
(P+ I )/2, which makes P “lazy” and affects the hitting time only by a factor of 2 (see
Prop. 20).

3.1 Algorithm with Known Values of pM and HT+(P, M)

For simplicity, let us first assume that the values of pM and HT+(P, M) are known. In
this case we provide a quantum algorithm that solves Find(G) (i.e., outputs a marked
vertex if there is any) with success probability and running time that depends on two
parameters ε1 and ε2.
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Fig. 3 Vectors |U 〉, |M〉, and
|vn(s)〉 = cos θ(s)|U 〉 +
sin θ(s)|M〉. We want to choose
s so that 〈U |vn(s)〉 =
cos θ(s) ≥ √ε1 and
〈M |vn(s)〉 = sin θ(s) ≥ √ε1

θ(s)
|U

|M

|vn(s)

cos θ(s) ≥ √
ε1

sin θ(s) ≥ √
ε1

Let us first recall how the classicalRandom Walk Algorithm fromSect. 2.5works.
It starts with the stationary distribution π of P and applies the absorbing walk P ′ until
most of the probability is absorbed in marked vertices and thus the state is close to a
stationary distribution of P ′.

In the quantum case a natural starting state is |π〉|0̄〉 = |vn(0)〉|0̄〉, which is a
stationary state of W (P) (see Eq. (26) below). By analogy, we would like to end up
in its projection onto marked vertices, namely |M〉|0̄〉, where

|M〉 := 1√
pM

∑

x∈M
|x〉, (19)

which is also a stationary state of W (P ′). However, at this point the analogy breaks
down, since we do not want to apply W (P ′) to reach the final state. The reason is
that in many cases, including the 2D grid, every iteration of W (P ′) on |π〉|0̄〉 may
remain far from |M〉|0̄〉. Instead, our approach consists of quantizing a new random
walk, namely an interpolation P(s) between P and P ′. This technique is drastically
different from the approach of [13,15] and, to our knowledge, new.

Intuitively, our quantum algorithm works as follows. We first prepare the initial
state |π〉 and check whether the vertex register corresponds to a marked vertex. If
so, we are done. If not, we have projected the initial state onto the state |U 〉 from
Prop. 2:

|U 〉 := 1√
1− pM

∑

x /∈M

√
πx |x〉. (20)

Now, we fix some value of s ∈ [0, 1] and map |U 〉 to |vn(s)〉 using a quantum walk
based on P(s), and then measure |vn(s)〉 in the standard basis to get a marked vertex.
For this to work with a good probability of success, we have to choose the interpo-
lation parameter s so that |vn(s)〉 has a large overlap with both |U 〉 and |M〉 (see
Fig. 3). In that context, the following proposition, proved in Appendix A.2.2, will be
useful.
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Proposition 4 |vn(s)〉 = cos θ(s)|U 〉 + sin θ(s)|M〉 where

cos θ(s) =
√

(1− s)(1− pM )

1− s(1− pM )
, sin θ(s) =

√
pM

1− s(1− pM )
. (21)

Therefore, for |vn(s)〉 to have a large overlap on both |U 〉 and |M〉, we will demand
that cos θ(s) sin θ(s) ≥ ε1 for some parameter ε1. A second parameter ε2 controls the
precision of phase estimation.

Theorem 6 Assume that the values of pM and HT+(P, M) are known, and let s ∈
[0, 1), T ≥ 1, and 1

2 ≥ ε1 ≥ ε2 ≥ 0 be some parameters. If

cos θ(s) sin θ(s) ≥ ε1 and T ≥ π√
2ε2

√
HT(s) (22)

where cos θ(s) and sin θ(s) are defined in Eq. (21) and HT(s) is the interpolated
hitting time (see Definition 9), then Search(P, M, s, �log T �) (defined below in the
proof) solves Find(G) with success probability at least

pM + (1− pM )(ε1 − ε2)
2 (23)

and complexity of order S+ T · (U+ C).

The proof of this theorem relies on the following result, originally due to
Szegedy [10], which provides the spectral decomposition of the quantum walk opera-
torW (s) in terms of that of the discriminant matrix D(s). Recall fromDefinition 7 that
D(s) = ∑n

k=1 λk(s)|vk(s)〉〈vk(s)| is the spectral decomposition of D(s), and define
phases ϕk(s) ∈ [0, π ] such that

λk(s) = cosϕk(s). (24)

Then the walk space of W (s) has the following eigenvalues and eigenvectors:

e±iϕk (s), |Ψ±
k (s)〉 := |vk(s), 0̄〉 ± i |vk(s), 0̄〉⊥√

2
(k = 1, . . . , n − 1), (25)

1, |Ψn(s)〉 := |vn(s), 0̄〉, (26)

where the precise definition of vectors |vk(s), 0̄〉⊥ is not important (see Appendix B.1
for precise definitions and Lemma 2 for a precise statement and a full proof). We can
now prove Theorem 6.

Proof (of Theorem 6) Let t = �log T � be the precision in the eigenvalue estimation.
Our algorithm uses two registers: R1 and R2 with underlying state space H each.
Occasionally we will attach the third register R3 initialized in |0〉 ∈ C

2 to check if the
current vertex is marked.
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Search(P, M, s, t)

1. Use Setup(P) to prepare the state |π〉|0̄〉.
2. Attach R3, apply Check(M) to R1R3, and measure R3.
3. If R3 = 1, measure R1 (in the vertex basis) and output the outcome.
4. Otherwise, discard R3 and:

(a) Apply Eigenvalue Estimation(W (s), t) on R1R2.
(b) Attach R3, apply Check(M) to R1R3, and measure R3.
(c) If R3 = 1, measure R1 (in the vertex basis) and output the outcome.

Otherwise, output: No marked vertex.

Notice that step 1 has complexity S, but Eigenvalue Estimation(W (s), t) in step
4a has complexity of the order 2t · (U + C) according to Theorem 5 and Lemma 3.
Thus, the total complexity is of the order S + T · (U + C), and it only remains to
bound the success probability.

Observe that the overall success probability is of the form pM + (1− pM )q where
q is the probability to find a marked vertex in step 4. Thus, it remains to show that
q ≥ (ε1 − ε2)

2.
We assume that Search(P, M, s, t) reaches step 4a, otherwise a marked vertex is

already found. At this point the state is |U 〉|0̄〉. Let us expand the first register of this
state in the eigenbasis of the discriminant matrix D(s). From now on we will omit the
explicit dependence on s when there is no ambiguity. Let

αk := 〈vk |U 〉 (27)

and observe from Eq. (25) that |vk〉|0̄〉 = 1√
2
(|Ψ+

k 〉 + |Ψ−
k 〉). Then

|U 〉|0̄〉 = αn|vn〉|0̄〉 +
n−1∑

k=1
αk |vk〉|0̄〉 = αn|Ψn〉 + 1√

2

n−1∑

k=1
αk
(|Ψ+

k 〉 + |Ψ−
k 〉
)
. (28)

According to Eqs. (26) and (25), the eigenvalues corresponding to |Ψn〉 and |Ψ±
k 〉 are

1 and e±iϕk , respectively. From Eq. (18) we see that Eigenvalue Estimation(W (s), t)
in step 4a acts as follows:

|Ψn〉 	→ |Ψn〉|0t 〉, (29)

|Ψ±
k 〉 	→ |Ψ±

k 〉|ξ±k 〉, (30)

where |ξ±k 〉 is a t-qubit state that satisfies

〈0t |ξ±k 〉 =
1

2t

2t−1∑

l=0
e±iϕkl =: δ±k . (31)
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Thus, the state after eigenvalue estimation lies in H⊗H⊗ C
2t and is equal to

|Φ〉 := αn|Ψn〉|0t 〉 + 1√
2

n−1∑

k=1
αk
(|Ψ+

k 〉|ξ+k 〉 + |Ψ−
k 〉|ξ−k 〉

)
. (32)

Recall that q denotes the probability to obtain a marked vertex by measuring the
first register of |Φ〉 in step 4c. To lower bound q, we require that the last register of
|Φ〉 is in the state |0t 〉 (i.e., the phase is estimated to be 0). Then

√
q = ‖(ΠM ⊗ I ⊗ I )|Φ〉‖ (33)

≥ ‖(ΠM ⊗ I ⊗ |0t 〉〈0t |)|Φ〉‖ (34)

≥ ‖αn(ΠM ⊗ I )|Ψn〉‖ − 1√
2

∥∥∥∥∥
(ΠM ⊗ I )

n−1∑

k=1
αk
(
δ+k |Ψ+

k 〉 + δ−k |Ψ−
k 〉
)
∥∥∥∥∥

(35)

≥ ‖αn(ΠM ⊗ I )|Ψn〉‖ − 1√
2

∥
∥∥∥∥

n−1∑

k=1
αk
(
δ+k |Ψ+

k 〉 + δ−k |Ψ−
k 〉
)
∥
∥∥∥∥

. (36)

From Eq. (26) and Prop. 4 we know that |Ψn〉 = |vn〉|0̄〉 = (cos θ |U 〉 + sin θ |M〉)|0̄〉.
Hence, we find that

αn = 〈vn|U 〉 = cos θ (37)

and ‖(ΠM ⊗ I )|Ψn〉‖ = sin θ . Moreover, from Eq. (25) we know that vectors
|Ψ±

1 〉, . . . , |Ψ±
k 〉 are mutually orthogonal. We use this to simplify Eq. (36):

√
q ≥ cos θ sin θ −

√√√√
n−1∑

k=1
|αk |2δ2k (38)

where δk := |δ+k | = |δ−k | (note from Eq. (31) that δ+k and δ−k are complex conjugates).
Now we will bound the second term in Eq. (38).

Let us compute the sum of the geometric series in Eq. (31):

δ2k =
∣∣∣∣∣
∣

1

2t

2t−1∑

l=0
eiϕkl

∣∣∣∣∣
∣

2

= 1

22t

∣∣∣∣
∣
1− eiϕk2

t

1− eiϕk

∣∣∣∣
∣

2

= 1

22t

∣∣∣∣
∣
e−i

ϕk
2 2t − ei

ϕk
2 2t

e−i
ϕk
2 − ei

ϕk
2

∣∣∣∣
∣

2

. (39)

The imaginary parts cancel out and we get

δ2k =
sin2
(

ϕk
2 2

t
)

22t sin2
(

ϕk
2

) . (40)

We can upper bound the numerator in this expression by one. To bound the denomi-
nator, we use sin x

2 ≥ x
π
for x ∈ [0, π ]. Hence, we get
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δ2k ≤
π2

22tϕ2
k

≤ π2

T 2ϕ2
k

(41)

since we chose t = �log T �.
The interpolated hitting time is given by Definition 9:

HT(s) =
n−1∑

k=1

|〈vk(s)|U 〉|2
1− λk(s)

. (42)

If we substitute 〈vk(s)|U 〉 = αk(s) and λk(s) = cosϕk(s) from Eqs. (31) and (24),
and omit the dependence on s, we get

HT(s) =
n−1∑

k=1

|αk |2
1− cosϕk

=
n−1∑

k=1

|αk |2
2 sin2( ϕk

2 )
≥ 2

n−1∑

k=1

|αk |2
ϕ2
k

(43)

since x ≥ sin x for x ∈ [0, π ].
By combining Eqs. (41) and (43) we get

n−1∑

k=1
|αk |2δ2k ≤

n−1∑

k=1
|αk |2 π2

T 2ϕ2
k

= π2

T 2

n−1∑

k=1

|αk |2
ϕ2
k

≤ π2

2

HT(s)

T 2 . (44)

Thus, Eq. (38) becomes

√
q ≥ cos θ(s) sin θ(s)− π√

2

√
HT(s)

T
≥ ε1 − ε2, (45)

where the last inequality follows from our assumptions. Thus q ≥ (ε1 − ε2)
2, which

was required to complete the proof. ��

3.2 Algorithms with Approximately Known pM

In this section we show that a good approximation p∗ of pM suffices to guarantee that
the constraint cos θ(s) sin θ(s) ≥ ε1 in Theorem 6 is satisfied. Our strategy is to make
a specific choice of the interpolation parameter s, based on p∗.

Intuitively, wewant to choose s so that cos θ(s) sin θ(s) is large (recall Fig. 3), since
this will increase the success probability according to Eq. (45), and make it easier to
satisfy the constraint on ε1 in Theorem 6. The maximal value of cos θ(s) sin θ(s) is
achieved when sin θ(s) = cos θ(s) = 1/

√
2, and from Eq. (21) we get that the optimal

value of s as a function of pM is

s(pM ) := 1− pM
1− pM

. (46)
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Thus,when only an approximation p∗ of pM is known,wewill choose the interpolation
parameter to be

s∗ := s(p∗) = 1− p∗

1− p∗
. (47)

If we substitute this in Eq. (21), we get the following expressions for cos θ(s∗) and
sin θ(s∗) in terms of pM and p∗:

cos θ(s∗) =
√

(1− pM )p∗
pM + p∗ − 2pM p∗

, sin θ(s∗) =
√

pM (1− p∗)
pM + p∗ − 2pM p∗

. (48)

Since we want s∗ ≥ 0, we have to always make sure that p∗ ≤ 1/2. In fact, from
now we will also assume that pM ≤ 1/2. This is without loss of generality, since one
can always prepare the initial state |π〉 at cost S and measure it in the standard basis.
If pM ≥ 1/2, this yields a marked vertex with probability at least 1/2.

Proposition 5 If pM , ε1 ∈ [0, 1
2 ] and p∗ satisfy

2ε1 pM ≤ p∗ ≤ 2(1− ε1)pM , (49)

then cos θ(s∗) sin θ(s∗) ≥ ε1 where s∗ := 1− p∗
1−p∗ .

Proof To get the desired result, we will show that the two inequalities in Eq. (49)
imply that cos2 θ(s∗) ≥ ε1 and sin2 θ(s∗) ≥ ε1, respectively.

From Eq. (48), we have sin2 θ(s∗) ≥ ε1 if and only if

p∗ ≤ (1− ε1)pM
ε1 + pM − 2ε1 pM

. (50)

Since pM , ε1 ≤ 1/2, the denominator is upper bounded as

ε1 + (1− 2ε1)pM ≤ ε1 + 1− 2ε1
2

= 1

2
. (51)

Therefore, p∗ ≤ 2(1 − ε1)pM implies Eq. (50), which in turn is equivalent to
sin2 θ(s∗) ≥ ε1.

Similarly from Eq. (48) we have cos2 θ(s∗) ≥ ε1 if and only if

p∗ ≥ ε1 pM
1− ε1 − pM + 2ε1 pM

, (52)

where the denominator is lower bounded as

1− ε1 − (1− 2ε1)pM ≥ 1− ε1 − 1− 2ε1
2

= 1

2
. (53)

Therefore, p∗ ≥ 2ε1 pM implies Eq. (52), which in turn is equivalent to the second
desired inequality, namely cos2 θ(s∗) ≥ ε1. ��

123



Algorithmica (2016) 74:851–907 871

3.2.1 Known HT+(P, M)

Nowwewill use Prop. 5 to show how an approximation p∗ of pM can be used to make
a specific choice of the parameters ε1, ε2, s, and T in Theorem 6, so that our quantum
search algorithm succeeds with constant probability.

To be more specific, we assume that we have an approximation p∗ of pM such that

|p∗ − pM | ≤ 1

3
pM , (54)

where the constant 1/3 is an arbitrary choice. Notice that

1

3
pM ≥ p∗ − pM ⇐⇒ 4

3
pM ≥ p∗, (55)

1

3
pM ≥ pM − p∗ ⇐⇒ p∗ ≥ 2

3
pM , (56)

so Eq. (54) is equivalent to
2

3
pM ≤ p∗ ≤ 4

3
pM . (57)

If we are given such p∗ and we choose s∗ according to Eq. (47), then our algorithm
succeeds with constant probability if T is sufficiently large.

Theorem 7 Assume that we know the value of HT+(P, M) and an approxima-
tion p∗ of pM such that |p∗ − pM | ≤ pM/3. If T ≥ 14

√
HT+(P, M) then

Search(P, M, s∗, �log T �) solves Find(G) with probability at least 1/36 and com-
plexity of order S+ T · (U+ C).

Proof We are given p∗ that satisfies Eq. (57). This is equivalent to Eq. (49) if we
choose ε1 := 1/3. Without loss of generality pM ≤ 1/2, so from Prop. 5 we get that
cos θ(s∗) sin θ(s∗) ≥ ε1. Thus, the first condition in Eq. (22) of Theorem 6 is satisfied.

Next, we choose ε2 := 1/6 somewhat arbitrarily. According to Theorem 4,
HT(s∗) ≤ HT+(P, M). Thus

π√
2

1

ε2

√
HT(s∗) ≤ π 3

√
2
√
HT+(P, M) ≤ 14

√
HT+(P, M) ≤ T, (58)

so the second condition in Eq. (22) is also satisfied.
Hence, according to Theorem 6, Search(P, M, s∗, �log T �) solves Find(G) with

success probability at least

pM + (1− pM )(ε1 − ε2)
2 ≥ (ε1 − ε2)

2 =
(
1

3
− 1

6

)2
= 1

36
(59)

and complexity of order S+ T · (U+ C). ��
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3.2.2 Unknown HT+(P, M)

Recall from Theorem 7 in previous section that a marked vertex can be found if p∗,
an approximation of pM , and HT+(P, M) are known. In this section we show that
a marked vertex can still be found (with essentially the same expected complexity),
even if the requirement that HT+(P, M) be known is relaxed.

Theorem 8 Assume that we are given p∗ such that |p∗ − pM | ≤ pM/3, then Incre-
mental Search(P, M, s∗, 50) solves Find(G) with expected quantum complexity of
order

log(T ) · S+ T · (U+ C), where T =
√
HT+(P, M). (60)

Proof The idea is to repeatedly use Search(P, M, s∗, t) with increasing accuracy of
the eigenvalue estimation.We start with t = 1 and in every iteration increase it by one.
Once t is above some threshold t0, any subsequent iteration outputs a marked element
with probability that is at least a certain constant. To boost the success probability of
the Search(P, M, s∗, t) subroutine, for each value of t we call it k = 50 times.

Incremental Search(P, M, s∗, k)

1. Let t = 1.
2. Call k times Search(P, M, s∗, t).
3. If no marked vertex is found, set t ← t + 1 and go back to step

2.

Let t0 be the smallest integer that satisfies

14
√
HT+(P, M) ≤ 2t0 . (61)

Assume that variable t has reached value t ≥ t0, but the execution of Incremen-
tal Search(P, M, s∗, 50) has not terminated yet. By Theorem 7, each execution of
Search(P, M, s∗, t) outputs a marked vertex with probability at least 1/36. Let pfail
be the probability that none of the k = 50 executions in step 2 succeeds. Notice that

pfail ≤ (1− 1/36)50 ≤ 1/4. (62)

Let us assume that Incremental Search(P, M, s∗, 50) terminates with the final
value of t equal to t f . Recall from Theorem 6 that Search(P, M, s∗, t) has com-
plexity of order S + 2t · (U + C), so the expected complexity of Incremental
Search(P, M, s∗, 50) is of order

N1 · S+ N2 · (U+ C), (63)

where N1 is the expectation of t f , and N2 is the expectation of 2+ 4+ · · · + 2t f .
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To upper bound N1, we assume that the first t0− 1 iterations fail. Since each of the
remaining iterations fails with probability at most pfail, we get

N1 ≤ (t0 − 1)+
∞∑

t=t0
p1+(t−t0)
fail (64)

= (t0 − 1)+ pfail
1− pfail

(65)

≤ (t0 − 1)+ 1/4

3/4
(66)

≤ t0. (67)

We use the same strategy to upper bound N2:

N2 ≤
t0−1∑

t=1
2t +

∞∑

t=t0
p1+(t−t0)
fail 2t (68)

= (2t0 − 2)+ pfail ·
∞∑

t=0
ptfail2

t+t0 (69)

≤ (2t0 − 2)+ 1

4
·
∞∑

t=0

(1
4
· 2
)t · 2t0 (70)

= (2t0 − 2)+ 1

4
· 2 · 2t0 (71)

≤ 2 · 2t0 . (72)

We plug the bounds on N1 and N2 in Eq. (63) and get that the expected complexity is
of order t0 ·S+ 2t0+1 · (U+C). Since t0 satisfies Eq. (61), this concludes the proof. ��

3.3 Algorithms with a Given Bound on pM or HT+(P, M)

In previous section, we considered the case when we know a relative approximation of
pM , i.e., a value p∗ such that |p∗− pM | ≤ pM/3. In this section, we consider the case
when we are given an absolute lower bound pmin such that pmin ≤ pM , or an absolute
upper bound HTmax ≥ HT+(P, M), or both. In particular, for problem Find(G)(≥k)
we can set pmin := minM ′:|M ′|=k pM ′ and HTmax := maxM ′:|M ′|≥k HT+(P, M ′).

3.3.1 Assuming a Bound on pM

Theorem 9 Given pmin such that pmin ≤ pM, Find(G) can be solved with expected
quantum complexity of order

√
log(1/pmin) ·

[
log(T ) · S+ T · (U+ C)

]
, where T =

√
HT+(P, M). (73)
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Moreover, given HTmax such that HTmax ≥ HT+(P, M), we can solve Find(G) with
quantum complexity of order

√
log(1/pmin) ·

[
S+ T · (U+ C)

]
, where T = √HTmax. (74)

Proof We prove only the first part; the second part is similar except one has to use
Search(P, M, s∗, T ) instead of Incremental Search(P, M, s∗, 50).

To apply Theorem 8, it is enough to obtain an approximation p∗ of pM such that
|p∗ − pM | ≤ pM/3. Recall from Eq. (57) that this is equivalent to finding p∗ such
that

2

3
pM ≤ p∗ ≤ 4

3
pM . (75)

Let l be the largest integer such that pM ≤ 2−l . Then

1

2
· 2−l ≤ pM ≤ 2−l (76)

and hence
2

3
pM ≤ 2

3
· 2−l = 4

3
·
(
1

2
· 2−l
)
≤ 4

3
pM . (77)

We can make sure that Eq. (75) is satisfied by choosing p∗ := 2
3 · 2−l . Unfortunately,

we do not know the value of l. However, we know that pmin ≤ pM and without loss
of generality we can assume that pM ≤ 1/2. Thus, it only suffices to check all values
of l from 1 to �log(1/pmin)�.

To find a marked vertex, we replace step 2 in the Incremental Search algorithm
by a loop over the �log(1/pmin)� possible values of p∗:

For l = 1 to �log(1/pmin)� do:
– Let p∗ := 2

3 · 2−l .
– Call k times Search(P, M, s(p∗), t).

Recall from Theorem 6 that the complexity of Search(P, M, s∗, t) depends only on
t . Hence, the analysis of the modified algorithm is the same, except that now the
complexity of step 2 is multiplied by a factor of order log(1/pmin). In fact, this is the
only non-trivial step of the Incremental Search algorithm, so the overall complexity
increases by this multiplicative factor. Finally, note that instead of trying all possible
values of p∗, we can search for the right value using Grover’s algorithm, following
the approach of [27], therefore reducing the multiplicative factor to

√
log(1/pmin). ��

3.3.2 Assuming a Bound on HT+(P, M)

Theorem 10 Given HTmax such that HTmax ≥ HT+(P, M), Find(G) can be solved
with expected quantum complexity of order

log(1/pM ) · [S+ T · (U+ C)
]
, where T = √HTmax. (78)
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The proof of this theorem relies on the following procedure, which tests a candidate
value p∗ for pM and, in case it fails, concludes that this candidate value was either
too high or too low.

Test(P, M, p∗, t)

1. Call 300 times Search(P, M, s(p∗), t);
if a marked vertex is found, output it and stop.

2. Measure the last register of all 300 output states produced
by Eigenvalue Estimation(W (s(p∗)), t) within the Search
subroutine above;
if a minority of 0t s is found, then output “p∗ ≤ 2pM/3”,
else output “p∗ ≥ 4pM/3”.

The above procedure will be used to “query” the value of pM . However, rather than
finding the precise value of pM , we only care about establishing that 2pM/3 ≤ p∗ ≤
4pM/3. Whenever p∗ is in this range, the first step of Test(P, M, s(p∗), t) will suc-
ceed with probability at least 99/100 for appropriately chosen value of t . If it fails,
then with high probability it is because p∗ is not within 2pM/3 and 4pM/3. One can
decide which of the two cases it is by measuring the last register of the output state of
Search(P, M, s(p∗), t), which stores the value of the phase computed by the phase
estimation subroutine. Indeed, if it turns out that p∗ ≥ 4pM/3, then this register will
be in the state |0t 〉 with high probability. On the other hand, if p∗ ≤ 2pM/3, then it
will be in the state |0t 〉 with low probability.

Proposition 6 For t := ⌈log(14√HTmax)
⌉
, the procedure Test(P, M, p∗, t) runs in

time of order S+√HTmax · (U+ C) and produces the following output:

– If 2pM/3 ≤ p∗ ≤ 4pM/3, then with probability at least 99/100 the output is a
marked element.

– If p∗ ≤ 2pM/3, then with probability at least 2/3 the output is either a marked
element or “p∗ ≤ 2pM/3”.

– If p∗ ≥ 4pM/3, then with probability at least 2/3 the output is either a marked
element or “p∗ ≥ 4pM/3”.

Proof From Theorem 7, the procedure Search(P, M, s(p∗), t) has a cost of order
S+√HTmax · (U+C), hence repeating it 300 times yields an overall cost of the same
order.

When 2pM/3 ≤ p∗ ≤ 4pM/3, Theorem 7 also implies that the procedure
Search(P, M, s(p∗), t) outputs amarked elementwith probability at least 1/36. Since
this is repeated 300 times, we conclude that the test procedure outputs a marked ele-
ment with probability at least 1− (1− 1/36)300 ≥ 99/100.

For the two other cases, let us first recall the main steps of the procedure
Search(P, M, s(p∗), t). We prepare the initial state |π〉, and then check wether the
vertex register is marked. This either yields a marked vertex with probability pM , or
projects onto the state |U 〉. We then apply Eigenvalue Estimation(W (s(p∗)), t) on
this state, which prepares the state |Φ〉 given by Eq. (32). We finally check whether
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the first register of this output state is marked, which happens with probability

p1 :=
∥∥(ΠM ⊗ I ⊗ I

)|Φ〉∥∥2 . (79)

Overall, the probability to obtain a marked vertex from one execution of Search
(P, M, s(p∗), t) is then given by

p′1 := pM + (1− pM ) · p1 ≥ p1 (80)

Let us note that p1 depends on p∗. We first consider the case where p1 >

0.004. In that case, the 300 repetitions of Search(P, M, s(p∗), t) in the procedure
Test(P, M, p∗, t) will output at least one marked vertex with probability

1− (1− p′1)300 ≥ 1− (1− p1)
300 ≥ 2/3, (81)

which is sufficient for the last two cases of the proposition.
It then remains to analyze the case where p1 ≤ 0.004. We show that if none of the

300 repetitions of Search(P, M, s(p∗), t) find a marked vertex, measuring the last
register of the output states yields with probability at least 2/3 either a minority of
0t ’s (when p∗ ≤ 2pM/3) or a majority of 0t ’s (when p∗ ≥ 4pM/3).

When the procedure Search(P, M, s(p∗), t) does not find a marked vertex, its
output state is (

(I −ΠM )⊗ I ⊗ I
)|Φ〉√

1− p1
. (82)

Therefore, the probability that the last register of this state is found in state 0t is

q1 :=
∥∥((I −ΠM )⊗ I ⊗ |0t 〉〈0t |)|Φ〉∥∥2

1− p1
. (83)

Defining
q ′1 :=

∥∥(I ⊗ I ⊗ |0t 〉〈0t |)|Φ〉∥∥2 , (84)

we can bound the numerator in Eq. (83) as

q ′1 − p1 ≤
∥∥((I −ΠM )⊗ I ⊗ |0t 〉〈0t |)|Φ〉∥∥2 ≤ q ′1 (85)

and in turn q1 itself as

q ′1 − p1 ≤ q1 ≤ q ′1
1− p1

. (86)
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Recall that we have assumed that p1 ≤ 0.004. It remains to compute q ′1. FromEq. (32),
we have

q ′1 = ‖(I ⊗ I ⊗ |0t 〉〈0t |)|Φ〉‖2 (87)

=
∥∥
∥∥∥
αn|Ψn〉 + 1√

2

n−1∑

k=1
αk
(
δ+k |Ψ+

k 〉 + δ−k |Ψ−
k 〉
)
∥∥
∥∥∥

2

(88)

= α2
n +

n−1∑

k=1
|αk |2δ2k . (89)

Recall fromEq. (37) that αn = 〈vn(s∗)|U 〉 = cos θ(s∗). Using Eq. (44) and our choice
of t = �log T �where T := 14

√
HTmax, we can bound the remaining terms in Eq. (87)

as follows:

n−1∑

k=1
|αk |2δ2k ≤

π2

2

HT(s∗)
T 2 ≤ π2

2

HT(s∗)
(14
√
HTmax)2

≤ π2

2 · 142 ≤
1

36
, (90)

where we relied on HTmax ≥ HT+(P, M) ≥ HT(s∗) (see Theorem 4). This and
Eq. (87) gives the following bounds on q ′1:

cos2 θ(s∗) ≤ q ′1 ≤ cos2 θ(s∗)+ 1

36
. (91)

Recall from Eq. (48) that

cos2 θ(s∗) = 1− pM
pM
p∗ + 1− 2pM

. (92)

Let us now consider the case p∗ ≤ 2pM/3. Plugging pM
p∗ ≥ 3

2 into the last equation,
we find the bound

cos2 θ(s∗) ≤ 1− pM
5
2 − 2pM

≤ 2

5
. (93)

Combining this bound with Eqs. (91) and (86), we obtain that the probability of
observing the last register of the output state of an unsuccessful application of
Search(P, M, s(p∗), t) in the state 0t is bounded as

q1 ≤ cos2 θ(s∗)+ 1
36

1− p1
≤

2
5 + 1

36

1− 0.004
≤ 0.4295. (94)

It remains to bound the probability to obtain a minority of 0t ’s for 300 repetitions of
this measurement.

According to the Chernoff bound, if an experiment produces a desirable outcome
with probability at least q > 1/2, then for k independent repetitions of the experiment
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a majority of outcomes are desirable with probability at least 1− e−
k
2q (q− 1

2 )2 . In this
case, the desirable outcome is to not obtain 0t , hence we have q := 1− q1 ≥ 0.570,
and for k = 300, the expression is indeed larger than 2/3.

For the final case p∗ ≥ 4pM/3, we obtain from Eq. (92) that

cos2 θ(s∗) ≥ 1− pM
7
4 − 2pM

≥ 4

7
(95)

(recall thatwe can always assume pM ≤ 1/2 as explained in the beginningof Sect. 3.2).
Together with Eqs. (91) and (86), we obtain the bound

q1 ≥ cos2 θ(s∗)− p1 ≥ 4

7
− 0.004 ≥ 0.567. (96)

In this case the desirable outcome for theChernoff bound is precisely 0t ,which happens
with probability q := q1, so after 300 repetitions we obtain a majority of 0t ’s with
probability at least 2/3. ��

We are now ready to prove Theorem 10.

Proof (of Theorem 10) The general idea is to use Search(P, M, s(p∗), t) with
t := ⌈log(14√HTmax)

⌉
and perform a dichotomic search for an appropriately cho-

sen value of p∗, using the procedure Test(P, M, p∗, t). This dichotomic search uses
backtracking, since the branching in the dichotomy is with bounded error, similar to
the situation in [28].

Let us first describe the robust binary search of [28]. Let x �= 0n be an n-bit string
of 0’s followed by some 1’s. An algorithm can only access x by querying its bits as
follows: the answer to a query i ∈ {1, . . . , n} is a random and independent bit which
takes value xi with probability at least 2/3.

When there is no error, finding the largest i such that xi = 0 can be done using
the usual binary search. Start with a = 1 and b = n. At each step, query xi with
i = �(a + b)/2�. Then set a = i if xi = 0, and b = i otherwise. The procedure stops
when a + 1 = b, which happens after Θ(log n) steps.

In our error model, the above algorithm can be made robust by adding a sanity
check. Before querying xi , bits xa and xb are also queried. If one of the two answers is
inconsistent (i.e., xa = 1 or xb = 0), the algorithm backtracks to the previous values of
a and b. It is proven in [28] that this procedure converges with expected timeΘ(log n)

and outputs a correct value with high probability, say at least 2/3.
For our problem, we conduct a search similar to the one in [28], starting with a = 0

and b = 1. The only difference is that the search stops when a marked element is
found. At each step, we check the consistency of a and b by running Test(P, M, a, t)
and Test(P, M, b, t). If there is a contradiction, we backtrack to the previous values
of a and b. Otherwise we conduct the dichotomy search by running Test(P, M, p∗, t)
with p∗ = (a+b)/2 (in order to set either a = p∗ or b = p∗). The search stops when
a marked element is found.

Our procedure behaves similar to the one in [28]. Indeed, it follows fromProp. 6 that
our algorithm converges even faster since it stopswith probability at least 99/100when
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p∗ ∈ [2pM/3, 4pM/3]. Therefore it ends after O(log(1/pM )) expected iterations of
Test. Taking into account the cost of Test(P, M, p∗, t), we see that the total number
of steps is as stated in the theorem. ��
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Appendix A: Semi-Absorbing Markov Chains

In this appendixwe study a special type ofMarkov chains described by a one-parameter
family P(s) corresponding to convex combinations of P and the associated absorbing
chain P ′. Intuitively, some states of P(s) are hard to escape and the interpolation
parameter s controls how absorbing they are. For this reason we call such chains semi-
absorbing. In this appendix we consider various properties of semi-absorbingMarkov
chains as a function of the interpolation parameter s. The main result of this appendix
is Theorem 4 which is of central importance in Sect. 3.

Wediscussed some preliminaries onMarkov chains and defined basic concepts such
as ergodicity in Sect. 2.1. Here we begin by defining the interpolated Markov chain
P(s) and considering its properties, such as the stationary distribution and reversibility
(Appendix A.1). We proceed by applying these concepts to define and study the dis-
criminant matrix of P(s)which encodes all relevant properties of P(s), such as eigen-
values and the principal eigenvector, but has a much more convenient form (Appen-
dix A.2). Finally, we define the hitting time HT and the interpolated hitting time HT(s)
and relate the two in the case of a single marked element via Theorem 4, which is our
main result regarding semi-absorbing Markov chains (Appendix A.3).

Results from this appendix are used in Sect. 3 to construct quantum search algo-
rithms based on discrete-time quantum walks.

Appendix A.1: Basic Properties of Semi-Absorbing Markov Chains

Assume that a subset M ⊂ X of size m := |M | of the states are marked (we assume
that M is not empty). (see [21, Chapter III] and [20, Sect. 11.2]). Note that P ′ differs
from P only in the rows corresponding to the marked states (where it contains all
zeros on non-diagonal elements, and ones on the diagonal). If we arrange the states
of X so that the unmarked states U := X \ M come first, matrices P and P ′ have the
following block structure:

P :=
(
PUU PUM

PMU PMM

)
, P ′ :=

(
PUU PUM

0 I

)
, (97)
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U

M

U

M

Fig. 4 Directed graphs underlyingMarkov chain P (left) and the corresponding absorbing chain P ′ (right).
Outgoing arcs from vertices in the marked set M have been turned into self-loops in P ′

where PUU and PMM are square matrices of size (n − m) × (n − m) and m × m,
respectively, while PUM and PMU are matrices of size (n−m)×m andm× (n−m),
respectively (Fig. 4).

Recall that we have defined an interpolatedMarkov chain that interpolates between
P and P ′:

P(s) := (1− s)P + sP ′, 0 ≤ s ≤ 1. (98)

This expression has some resemblance with adiabatic quantum computation where
similar interpolations are usually defined for quantum Hamiltonians [29]. Indeed, the
interpolated Markov chain P(s) was used in [19] to construct an adiabatic quantum
search algorithm. Note that P(0) = P , P(1) = P ′, and P(s) has the following block
structure:

P(s) =
(

PUU PUM

(1− s)PMU (1− s)PMM + s I

)
. (99)

Proposition 7 If P is ergodic then so is P(s) for s ∈ [0, 1). P(1) is not ergodic.

Proof Recall from Definition 1 that ergodicity of a Markov chain can be established
just by looking at its underlying graph. A non-zero transition probability in P remains
non-zero also in P(s) for s ∈ [0, 1). Thus the ergodicity of P implies that P(s) is
also ergodic for s ∈ [0, 1). However, P(1) is not irreducible, since states in U are not
reachable from M . Thus P(1) is not ergodic. ��
Proposition 8 (P ′ t )UU = Pt

UU .

Proof Let us derive an expression for P ′ t , the matrix of transition probabilities corre-
sponding to t applications of P ′. Notice that

(
a b
0 1

)(
c d
0 1

) = ( ac ad+b0 1

)
. By induction,

P ′ t =
(
Pt
UU

∑t−1
k=0 Pk

UU PUM

0 I

)
. (100)

When restricted to U , it acts as Pt
UU . ��

Proposition 9 ([20, Theorem11.3, p. 417]) If P is irreducible then limk→∞ Pk
UU = 0.

Intuitively this means that the sub-stochastic process defined by PUU eventually
dies out or, equivalently, that the unmarked states of P ′ eventually get absorbed (by
Prop. 8).
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Proof Let us fix an unmarked initial state x . Since P is irreducible, we can reach a
marked state from x in a finite number of steps. Note that this also holds true for P ′.
Let us denote the smallest number of steps by lx and the corresponding probability by
px > 0. Thus in l := maxx lx steps of P ′ we are guaranteed to reach a marked state
with probability at least p := minx px > 0, independently of the initial state x ∈ U .
Notice that the probability to still be in an unmarked state after kl steps is at most
(1− p)k which approaches zero as we increase k. ��
Proposition 10 ([21, Theorem 3.2.1,p. 46]) If P is irreducible then I− PUU is invert-
ible.

Proof Notice that

(I − PUU ) · (I + PUU + P2
UU + · · · + Pk−1

UU ) = I − Pk
UU (101)

and take the determinant of both sides. From Prop. 9 we see that limk→∞ det(I −
Pk
UU ) = 1. By continuity, there exists k0 such that det(I − Pk0

UU ) > 0, so the determi-
nant of the left-hand side is non-zero as well. Usingmultiplicativity of the determinant,
we conclude that det(I − PUU ) �= 0 and thus I − PUU is invertible. ��
In the Markov chain literature (I − PUU )−1 is called the fundamental matrix of P .

Appendix A.1.1: Stationary Distribution

From now on let us demand that P is ergodic. Then according to the Perron–Frobenius
Theorem it has a unique stationary distribution π that is non-zero everywhere. Let πU

and πM be row vectors of length n − m and m that are obtained by restricting π to
sets U and M , respectively. Then

π = (πU πM
)
, π ′ := (0U πM

)
(102)

where 0U is the all-zeroes row vector indexed by elements of U and π ′ satisfies
π ′P ′ = π ′.

Let pM :=∑x∈M πx be the probability to pick a marked element from the station-
ary distribution. In analogy to the definition of P(s) in Eq. (98), let π(s) be a convex
combination of π and π ′, appropriately normalized:

π(s) := (1− s)π + sπ ′

(1− s)+ spM
= 1

1− s(1− pM )

(
(1− s)πU πM

)
. (103)

Proposition 11 π(s) is the unique stationary distribution of P(s) for s ∈ [0, 1). At
s = 1 any distribution with support only on marked states is stationary, including
π(1).

Proof Notice that

(π − π ′)(P − P ′) = (πU 0
) ( 0 0

PMU PMM − I

)
= 0 (104)
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which is equivalent to
π P ′ + π ′P = π P + π ′P ′. (105)

Using this equation we can check that π(s)P(s) = π(s) for any s ∈ [0, 1]:
(
(1− s)π + sπ ′

)(
(1− s)P + sP ′

)
(106)

= (1− s)2π P + (1− s)s(π P ′ + π ′P)+ s2π ′P ′ (107)

= (1− s)2π + (1− s)s(π + π ′)+ s2π ′ (108)

= ((1− s)π + sπ ′
)(

(1− s)+ s
)

(109)

= (1− s)π + sπ ′. (110)

Recall from Prop. 7 that P(s) is ergodic for s ∈ [0, 1) so π(s) is the unique stationary
distribution by Perron–Frobenius Theorem. Since P ′ acts trivially on marked states,
any distribution with support only on marked states is stationary for P(1). ��

Appendix A.1.2: Reversibility

Definition 10 Markov chain P is called reversible if it is ergodic and satisfies the
so-called detailed balance condition

∀x, y ∈ X :πx Pxy = πy Pyx (111)

where π is the unique stationary distribution of P .

Intuitively this means that the net flow of probability in the stationary distribution
between every pair of states is zero. Note that Eq. (111) is equivalent to

diag(π) P = PT diag(π) = (diag(π)P
)T (112)

where diag(π) is a diagonalmatrixwhose diagonal is given by vectorπ . ThusEq. (111)
is equivalent to saying that matrix diag(π)P is symmetric.

Proposition 12 If P is reversible then so is P(s) for any s ∈ [0, 1]. Hence, P(s)
satisfies the interpolated detailed balance equation

∀s ∈ [0, 1], ∀x, y ∈ X :πx (s)Pxy(s) = πy(s)Pyx (s). (113)

Proof First, notice that the absorbing walk P ′ is reversible7 since diag(π ′)P ′ is a
symmetric matrix:

diag(π ′)P ′ =
(
0 0
0 diag(πM )

)(
PUU PUM

0 I

)
=
(
0 0
0 diag(πM )

)
= diag(π ′). (114)

7 Strictly speaking, the definition of reversibility also includes ergodicity for the stationary distribution to
be uniquely defined. However, we will relax this requirement for P ′ since, by continuity, π ′ is the natural
choice of the “unique” stationary distribution.
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Next, notice that

diag(π − π ′)(P − P ′) =
(
diag(πU ) 0

0 0

)(
0 0

PMU PMM − I

)
= 0 (115)

which gives us an analogue of Eq. (105):

diag(π ′)P + diag(π)P ′ = diag(π)P + diag(π ′)P ′. (116)

Here the right-hand side is symmetric due to reversibility of P and P ′, thus so is the
left-hand side. Using this we can check that P(s) is reversible:

diag
(
(1− s)π + sπ ′

)(
(1− s)P + sP ′

)
(117)

= (1− s)2 diag(π)P + (1− s)s
(
diag(π)P ′ + diag(π ′)P

)+ s2 diag(π ′)P ′ (118)

where the first and last terms are symmetric since P and P ′ are reversible, but the
middle term is symmetric due to Eq. (116). ��

Appendix A.2: Discriminant Matrix

Recall from Definition 6 that the discriminant matrix of a Markov chain P(s) is

D(s) :=
√
P(s) ◦ P(s)T, (119)

where the Hadamard product “◦” and the square root are computed entry-wise. This
matrix was introduced by Szegedy in [10]. We prefer to work with D(s) rather than
P(s) since the matrix of transition probabilities is not necessarily symmetric while its
discriminant matrix is.

Proposition 13 If P is reversible then

D(s) = diag
(√

π(s)
)
P(s) diag

(√
π(s)
)−1

, ∀s ∈ [0, 1); (120)

D(1) =
(
diag
(√

πU
)
PUU diag

(√
πU
)−1 0

0 I

)
. (121)

Here the square roots are also computed entry-wise and M−1 denotes the matrix
inverse ofM . Notice that for s ∈ [0, 1) the right-hand side of Eq. (120) is well-defined,
since P(s) is ergodic by Prop. 7 and thus according to the Perron–Frobenius Theorem
has a unique and non-vanishing stationary distribution. However, recall from Prop. 11
that π(1) vanishes onU , so the right-hand side of Eq. (120) is no longer well-defined
at s = 1. For this reason we have an alternative expression for D(1).

Proof (of Prop. 13) For a reversible Markov chain P the interpolated detailed balance
condition inEq. (113) implies thatDxy(s) =

√
Pxy(s)Pyx (s) = Pxy(s)

√
πx (s)/πy(s).

This is equivalent to Eq. (120).

123



884 Algorithmica (2016) 74:851–907

At s = 1 from Eq. (119) we have:

D(1) =
√
P(1) ◦ P(1)T =

√(
PUU ◦ PT

UU 0
0 I

)
=
(√

PUU ◦ PT
UU 0

0 I

)

. (122)

It remains to verify that the upper left block of D(1) agrees with Eq. (121). Using
Eq. (119) we compute that

DUU (s) =
√
PUU ◦ PT

UU = DUU (0) = diag
(√

πU
)
PUU diag

(√
πU
)−1 (123)

where the last equality follows from Eq. (120) at s = 0. Together with Eq. (122) this
gives us the desired expression in Eq. (121). ��

Appendix A.2.1: Spectral Decomposition

Recall from Eq. (119) that D(s) is real and symmetric. Therefore, its eigenvalues are
real and it has an orthonormal set of real eigenvectors. Let

D(s) =
n∑

i=1
λi (s)|vi (s)〉〈vi (s)| (124)

be the spectral decomposition of D(s) with eigenvalues λi (s) and eigenvectors8

|vi (s)〉. Moreover, let us arrange the eigenvalues so that

λ1(s) ≤ λ2(s) ≤ · · · ≤ λn(s). (125)

From now on we will assume that P is reversible (and hence ergodic) without
explicitly mentioning it. Under this assumption thematrices P(s) and D(s) are similar
(see Prop. 14 below). Thismeans that D(s) essentially has the same properties as P(s),
but in addition it also admits a spectral decomposition with orthogonal eigenvectors.
This will be very useful in Appendix B.1, where we find the spectral decomposition of
the quantumwalk operatorW (s) in terms of that of D(s), and use it to relate properties
of W (s) and P(s).

Proposition 14 Assume P is reversible. The matrices P(s) and D(s) are similar for
any s ∈ [0, 1] and therefore have the same eigenvalues. In particular, the eigenvalues
of P(s) are real.

Proof From Eq. (120) we see that the matrices D(s) and P(s) are similar for s ∈
[0, 1). From Eq. (121) we see that D(1) is similar to P̃ := ( PUU 0

0 I

)
. To verify that

P̃ and P(1) = ( PUU PUM
0 I

)
are similar, let M := ( PUU−I PUM

0 I

)
. One can check that

8 There is no need to use bra-ket notation at this point; nevertheless we adopt it since vectors |vi (s)〉 later
will be used as quantum states.
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MP(1)M−1 = P̃ where M−1 = ( (PUU−I )−1 −(PUU−I )−1PUM
0 I

)
exists, since PUU − I

is invertible according to Prop. 10. By transitivity, D(1) is also similar to P(1). ��
Proposition 15 The largest eigenvalue of D(s) is 1. It has multiplicity 1 when s ∈
[0, 1) and multiplicity m when s = 1. In other words,

λn−1(s) < λn(s) = 1, ∀s ∈ [0, 1), (126)

λn−m(1) < λn−m+1(1) = · · · = λn(1) = 1. (127)

Proof Let us argue about P(s), since it has the same eigenvalues as D(s) by Prop. 14.
From the Perron–Frobenius Theorem we have that ∀i : λi (s) ≤ 1 and λn(s) = 1.
In addition, by Prop. 7 the Markov chain P(s) is ergodic for any s ∈ [0, 1), so
∀i �= n: λi (s) < 1. Finally, note by Eq. (121) that for s = 1 eigenvalue 1 has
multiplicity at leastm. Recall from Eq. (123) that DUU (1) and PUU are similar. From
Prop. 10 we conclude that all eigenvalues of PUU are strictly less than 1. Thus the
multiplicity of eigenvalue 1 of D(1) is exactly m. ��

Appendix A.2.2: Principal Eigenvector

Let us prove an analogue of Prop. 11 for the matrix D(s).

Proposition 16
√

π(s)T is the unique (+1)-eigenvector of D(s) for s ∈ [0, 1). At
s = 1 any vector with support only on marked states is a (+1)-eigenvector, including√

π(1)T.

Proof Since P(s) is row-stochastic, P(s) 1TX = 1TX where 1X is the all-ones row
vector. Thus we can check that for s ∈ [0, 1),

D(s)
√

π(s)T = diag
(√

π(s)
)
P(s) diag

(√
π(s)
)−1√

π(s)T (128)

= diag
(√

π(s)
)
P(s) 1TX (129)

= diag
(√

π(s)
)
1TX (130)

=
√

π(s)T. (131)

Uniqueness for s ∈ [0, 1) follows by the uniqueness of π(s) and Prop. 14. For the
s = 1 case, notice from Eq. (121) that D(1) acts trivially on marked elements and
recall from Eq. (103) that π(1) = (0U πM )/pM . ��

According to the above Proposition, for any s ∈ [0, 1] we can choose the principal
eigenvector |vn(s)〉 in the spectral decomposition of D(s) in Eq. (124) to be

|vn(s)〉 :=
√

π(s)T. (132)

We would like to have an intuitive understanding of how |vn(s)〉 evolves as a function
of s. Let us introduce some useful notation that we will also need later.
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Fig. 5 As s changes from zero
to one, the evolution of the
principal eigenvector |vn(s)〉
corresponds to a rotation in the
two-dimensional subspace
span{|U 〉, |M〉}

|U

|M = |vn(1)

|vn(0)

Let 0U and 1U (respectively, 0M and 1M ) be the all-zeros and all-ones row vectors
of dimension n − m (respectively, m) whose entries are indexed by elements of U
(respectively, M). Furthermore, let

π̃U := πU/(1− pM ), π̃M := πM/pM (133)

be the normalized row vectors describing the stationary distribution π restricted to
unmarked and marked states. Let us also define the following unit vectors in R

n :

|U 〉 :=
√

(π̃U 0M )T = 1√
1− pM

∑

x∈U

√
πx |x〉, (134)

|M〉 :=
√

(0U π̃M )T = 1√
pM

∑

x∈M

√
πx |x〉. (135)

Then we can express |vn(s)〉 as a linear combination of |U 〉 and |M〉.
Now we prove Prop. 4.

Proof By substituting π(s) from Eq. (103) into Eq. (132) we get

|vn(s)〉 =
√

π(s)T =
√(

(1− s)πU πM
)T

1− s(1− pM )
=
√(

(1− s)(1− pM )π̃U pM π̃M
)T

1− s(1− pM )
(136)

which is the desired expression. ��
Thus |vn(s)〉 lies in the two-dimensional subspace span{|U 〉, |M〉} and is subject

to a rotation as we change the parameter s (see Fig. 5). In particular,

|vn(0)〉 =
√
1− pM |U 〉 + √pM |M〉, |vn(1)〉 = |M〉. (137)
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Proposition 17 θ(s) and its derivative θ̇ (s) := d
ds θ(s) are related as follows:

2θ̇ (s) = sin θ(s) cos θ(s)

1− s
. (138)

Proof Notice that
d

ds

(
sin2 θ(s)

) = 2θ̇ (s) sin θ(s) cos θ(s). (139)

On the other hand, according to Eq. (21) we have

d

ds

(
sin2 θ(s)

) = d

ds

(
pM

1− s(1− pM )

)
= pM (1− pM )

(1− s(1− pM ))2
= sin2 θ(s) cos2 θ(s)

1− s
.

(140)
By comparing both equations we get the desired result. ��

Appendix A.2.3: Derivative

Proposition 18 D(s) and its derivative Ḋ(s) := d
ds D(s) are related as follows:

Ḋ(s) = 1

2(1− s)

{
ΠM , I − D(s)

}
(141)

where {X,Y } := XY + Y X is the anticommutator of X and Y , and ΠM :=∑
x∈M |x〉〈x | is the projector onto the m-dimensional subspace spanned by marked

states M.

Proof Recall from Eq. (119) that D(s) =
√
P(s) ◦ P(s)T. The block structure of

P(s) is given in Eq. (99). First, let us derive an expression for DMM (s), the lower
right block of D(s):

DMM (s) =
√
PMM (s) ◦ PMM (s)T (142)

=
√(

(1− s)PMM + s I
) ◦ ((1− s)PT

MM + s I
)
. (143)

Let us separately consider the diagonal and off-diagonal entries of DMM (s). For
x, y ∈ M we have

Dxy(s) =
{

(1− s)
√
Pxy Pyx if x �= y,

(1− s)Pxx + s if x = y.
(144)

Thus we can write DMM (s) as

DMM (s) = (1− s)
√
PMM ◦ PT

MM + s I. (145)
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Expressions for the remaining blocks of D(s) can be derived in a straightforward
way. By putting all blocks together we get

D(s) =
⎛

⎝

√
PUU ◦ PT

UU

√
(1− s)(PUM ◦ PT

MU )
√

(1− s)(PMU ◦ PT
UM ) (1− s)

√
PMM ◦ PT

MM + s I

⎞

⎠ . (146)

When we take the derivative with respect to s we find

Ḋ(s) =
⎛

⎝
0 − 1

2
√
1−s
√
PUM ◦ PT

MU

− 1
2
√
1−s
√
PMU ◦ PT

UM I −
√
PMM ◦ PT

MM

⎞

⎠ . (147)

To relate Ḋ(s) and the original matrix D(s), observe that

ΠMD(s)+ D(s)ΠM =
⎛

⎝
0

√
(1− s)(PUM ◦ PT

MU )
√

(1− s)(PMU ◦ PT
UM ) 2(1− s)

√
PMM ◦ PT

MM + 2s I

⎞

⎠

(148)

which can be seen by overlaying the second column and rowof D(s) given inEq. (146).
When we rescale this by an appropriate constant, we get

− 1

2(1− s)
{ΠM , D(s)} =

⎛

⎝
0 − 1

2
√
1−s
√
PUM ◦ PT

MU

− 1
2
√
1−s
√
PMU ◦ PT

UM −
√
PMM ◦ PT

MM − s
1−s I

⎞

⎠ .

(149)

This is very similar to the expression for Ḋ(s) in Eq. (147), except for a slightly
different coefficient for the identitymatrix in the lower right corner.We can correct this
by adding ΠM with an appropriate constant:− 1

2(1−s) {ΠM , D(s)}+ 1
1−sΠM = Ḋ(s).

��

Appendix A.3: Hitting Time

From now onwe assume that P is ergodic and reversible. Recall fromDefinition 4 that
HT(P, M) is the expected number of steps it takes for the Random Walk Algorithm
to find a marked vertex, starting from the stationary distribution of P restricted to
unmarked vertices. We now prove Prop. 2 which expresses the hitting time of P in
terms of the spectral properties of the discriminant matrix of the absorbing walk P ′.

Proposition 2 The hitting time of Markov chain P with respect to marked set M is
given by

HT(P, M) =
n−|M|∑

k=1

|〈v′k |U 〉|2
1− λ′k

, (9)
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where λ′k are the eigenvalues of the discriminant matrix D′ = D(P ′) in nondecreasing
order, |v′k〉 are the corresponding eigenvectors, and |U 〉 is the unit vector

|U 〉 := 1√
1− pM

∑

x /∈M

√
πx |x〉, (10)

pM being the probability to draw a marked vertex from the stationary distribution π

of P.

Proposition 19 The hitting time of Markov chain P with respect to marked set M is
given by

HT(P, M) =
n−|M|∑

k=1

|〈v′k |U 〉|2
1− λ′k

, (150)

where λ′k are the eigenvalues of the discriminant matrix D′ = D(P ′) in nondecreasing
order, |v′k〉 are the corresponding eigenvectors, and |U 〉 is the unit vector

|U 〉 := 1√
1− pM

∑

x /∈M

√
πx |x〉, (151)

pM being the probability to draw a marked vertex from the stationary distribution π

of P.

Proof The expected number of iterations in the Random Walk Algorithm is

HT(P, M) :=
∞∑

l=1
l · Pr[need exactly l steps] (152)

=
∞∑

l=1

l∑

t=1
Pr[need exactly l steps] (153)

=
∞∑

t=1

∞∑

l=t
Pr[need exactly l steps] (154)

=
∞∑

t=1
Pr[need at least t steps] (155)

=
∞∑

t=0
Pr[need more than t steps]. (156)

The region corresponding to the double sums in Eqs. (153) and (154) is shown in
Fig. 6.

It remains to determine the probability that no marked vertex is found after t steps,
starting from an unmarked vertex distributed according to π̃U = πU/(1 − pM ). The
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Fig. 6 Range of variables l and
t in the double sums of
Eqs. (153) and (154)

l

t

1 2 3 4 . . .

1

2

3

4

...

distribution of vertices at the first execution of step 3 of the Random Walk Algorithm
is (π̃U 0M ), hence

Pr[need more than t steps] = (π̃U 0M )P ′ t (1U 0M )T. (157)

Recall from Prop. 8 that (P ′ t )UU = Pt
UU so we can simplify Eq. (157) as follows:

Pr[need more than t steps] = (π̃U 0M )P ′ t (1U 0M )T (158)

= πU

1− pM
Pt
UU1

T
U (159)

=
√

πU
1−pM

diag
(√

πU
)
Pt
UU diag

(√
πU
)−1
√

πT
U

1−pM

(160)

= 〈U |D′t |U 〉, (161)

where the last equality follows from the expression for the discriminant matrix D′ =
D(1) in Eq. (121). By plugging this back in Eq. (156) we get

HT(P, M) =
∞∑

t=0
〈U |D′t |U 〉. (162)

From the spectral decomposition D′ =∑n
k=1 λ′k |v′k〉, this may be rewritten as

HT(P, M) =
∞∑

t=0

n∑

k=1
λ′tk |〈v′k |U 〉|2. (163)

Let m := |M | be the number of marked elements. Recall from Eq. (121) that
D′ = D(1) is block-diagonal and acts as identity matrix in them-dimensional marked
subspace. Furthermore, all 1-eigenvectors of D′ lie in the marked subspace, since
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eigenvalue 1 has multiplicity m (recall from Prop. 15 that λ′k = 1 when k > n − m).
Therefore, the terms in Eq. (163) with k > n − m disappear since 〈v′k |U 〉 = 0, and
we get the desired expression by exchanging the two sums in Eq. (163) and using the
expansion (1− x)−1 =∑∞

t=0 xt where |x | < 1. ��
Note that the two sums inEq. (163)maynot be exchangedbefore removing the terms

with k > n−m: they do not commute in the presence of these extra terms since λ′k = 1
for k > n−m and therefore

∑∞
t=0|λ′k |t diverges. This subtlety had unfortunately been

overlooked in [16,19], and is at the source of the distinction between the hitting time
HT(P, M) and the extended hitting time HT+(P, M) (see Appendix C).

Appendix A.3.1: Extended Hitting Time

We now prove Prop. 3, which states that the extended hitting time reduces to the usual
hitting time in the case of a single marked element, even though they may differ in
general.

Proof The fact that HT+(P, M) = HT(P, M) when |M | = 1 follows immediately
from the expression for HT(P, M) in Prop. 2 and Definition 9.

For the second part, choose

P = 1

4

⎛

⎝
3 1 0
1 2 1
0 1 3

⎞

⎠ (164)

and let the last two elements be marked. If we explicitly compute the eigenvalues and
eigenvectors of D(s), then fromDefinition 9 we get that HT(s) = 20

(3−s)2 for s ∈ [0, 1)
and thus HT+(P, M) = 5. However, HT(P, M) = 4. One can also use the formulas
from Lemma 4 in Appendix C to verify this. ��

This proposition implies that in the case of a single marked element, the quantum
search algorithms in Sect. 3 provide a quadratic speedup over the classical hitting time.
In the general case of multiple marked elements, these quantum algorithms still solve
the search problems but their cost is given in terms of the extended hitting time rather
than the standard one.

Appendix A.3.2: Lazy Walk

For technical reasons, in Sect. 3 it is important that all eigenvalues of P(s) are non-
negative. We can guarantee this using a standard trick—replacing the original Markov
chain P with a “lazy” walk (P + I )/2 where I is the n × n identity matrix. In fact,
we can assume without loss of generality that the original Markov chain already is
“lazy”, since this affects the hitting time only by a constant factor, as shown below.

Proposition 20 Let P be an ergodic and reversible Markov chain. Then for any s ∈
[0, 1] the eigenvalues of (P(s)+I )/2 are between0 and1.Moreover, if the interpolated
hitting time of P is HT(s), then the interpolated hitting time of (P + I )/2 is 2HT(s).
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Proof Since P is reversible, so is P(s) by Prop. 12. Thus the eigenvalues of P(s) are
real by Prop. 14. If λk(s) is an eigenvalue of P(s) then λk(s) ∈ [−1, 1] according to
Perron–Frobenius Theorem. Thus, the eigenvalues of (P(s) + I )/2 satisfy (λk(s) +
1)/2 ∈ [0, 1].

Recall from Prop. 14 that P(s) and D(s) are similar. Thus, the discriminant matrix
of (P(s) + I )/2 is (D(s) + I )/2, which has the same eigenvectors as D(s). By
Definition 9, the interpolated hitting time of (P(s)+ I )/2 is

n−1∑

k=1

|〈vk(s)|U 〉|2
1− λk (s)+1

2

. (165)

Since 1− λk (s)+1
2 = 1−λk (s)

2 , the above expression is equal to 2HT(s) as claimed. ��

Appendix A.3.3: Relationship Between HT(s) and HT+(P, M)

In this section we express HT(s) as a function of s and HT+(P, M), which is the main
result of this appendix. The main idea is to relate d

ds HT(s) to HT(s). When we solve
the resulting differential equation, the boundary condition at s = 1 gives the desired
result.

First, note that by Definition 9, HT(s) may be written as HT(s) = 〈U |A(s)|U 〉,
where

A(s) :=
n−1∑

k=1

|vk(s)〉〈vk(s)|
1− λk(s)

. (166)

The following property of A(s) will be useful on several occasions.

Proposition 21 A(s)|M〉 = − cos θ(s)
sin θ(s) A(s)|U 〉.

Proof Recall from Prop. 15 that |vn(s)〉 is orthogonal to |vk(s)〉 for all k �= n. So,
we have A(s)|vn(s)〉 = 0 by the definition of A(s). If we substitute |vn(s)〉 =
cos θ(s)|U 〉 + sin θ(s)|M〉 from Prop. 4 in this equation, we get the desired formula.

��
Lemma 1 For s < 1, the derivative of HT(s) is related to HT(s) as

d

ds
HT(s) = 2(1− pM )

1− s(1− pM )
HT(s) (167)

where pM is the probability to pick a marked state from the stationary distribution π

of P.

Proof Recall that HT(s) = 〈U |A(s)|U 〉 where A(s) may be written as

A(s) = B(s)−1−Πn(s) where B(s) := I −D(s)+Πn(s), Πn(s) := |vn(s)〉〈vn(s)|.
(168)

Recall from Appendix A.2.1 that |vn(s)〉 is the unique (+1)-eigenvector of D(s) for
s ∈ [0, 1), thus B(s) is indeed invertible when s is in this range.
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From now on we will not write the dependence on s explicitly. We will also often
use ḟ (s) as a shorthand form of d

ds f (s). Let us start with

d

ds
HT = 〈U | Ȧ|U 〉 (169)

and expand Ȧ using Eq. (168). To find d
ds (B

−1), take the derivative of both sides of
B−1B = I and get d

ds (B
−1) · B+ B−1 · d

ds B = 0. Thus d
ds (B

−1) = −B−1 Ḃ B−1 and

Ȧ = −B−1 Ḃ B−1 − Π̇n . (170)

Notice from Eq. (168) that Ḃ = −Ḋ + Π̇n , thus Ȧ = −B−1(−Ḋ + Π̇n)B−1 − Π̇n

and d
ds HT = h1 + h2 + h3 where

h1 := 〈U |B−1 ḊB−1|U 〉, (171)

h2 := −〈U |B−1Π̇n B
−1|U 〉, (172)

h3 := −〈U |Π̇n|U 〉. (173)

Let us evaluate each of these terms separately.
To evaluate the first term h1, we substitute Ḋ = 1

2(1−s)
{
ΠM , I −D

}
from Prop. 18

and replace I − D by B −Πn according to Eq. (168):

2(1− s)h1 = 〈U |B−1{ΠM , B −Πn}B−1|U 〉 (174)

= 〈U |B−1({ΠM , B} − {ΠM ,Πn}
)
B−1|U 〉 (175)

= 〈U |{B−1,ΠM }|U 〉 − 〈U |B−1{ΠM ,Πn}B−1|U 〉. (176)

Recall that ΠM = ∑x∈M |x〉〈x | is the projector onto the marked states. Thus
ΠM |U 〉 = 0 and the first term vanishes. Note that B has the same eigenvectors
as D. In particular, B−1|vn〉 = |vn〉 and thus B−1Πn = Πn = Πn B−1. Using
this we can expand the anti-commutator in the second term: B−1{ΠM ,Πn}B−1 =
B−1ΠMΠn + ΠnΠM B−1. Since all three matrices in this expression are real and
symmetric and |U 〉 is also real, both terms of the anti-commutator have the same
contribution, so we get

2(1− s)h1 = −2〈U |B−1ΠMΠn|U 〉. (177)

Recall from Prop. 4 that |vn〉 = cos θ |U 〉 + sin θ |M〉, so we see that ΠMΠn|U 〉 =
ΠM |vn〉·〈vn|U 〉 = sin θ |M〉·cos θ . Moreover, B−1 = A+Πn according to Eq. (168),
so

2(1− s)h1 = −2 sin θ cos θ〈U |(A +Πn)|M〉. (178)

Recall from Prop. 21 that sin θ〈U |A|M〉 = cos θ〈U |A|U 〉. To simplify the second
term, notice that 〈U |Πn|M〉 = 〈U |vn〉 · 〈vn|M〉 = cos θ · sin θ . When we put this
together, we get
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2(1− s)h1 = 2 cos2 θ〈U |A|U 〉 − 2 sin2 θ cos2 θ (179)

or simply

h1 = cos2 θ

1− s

(〈U |A|U 〉 − sin2 θ
)
. (180)

Let us now consider the second term h2 = −〈U |B−1Π̇n B−1|U 〉. First, we compute
Π̇n = |v̇n〉〈vn|+|vn〉〈v̇n|. Using B−1|vn〉 = |vn〉weget B−1Π̇n B−1 = B−1|v̇n〉〈vn|+
|vn〉〈v̇n|B−1. Since 〈vn|U 〉 = cos θ we have

h2 = −2〈U |B−1|v̇n〉 cos θ (181)

where the factor two comes from the fact that all vectors involved are real and matrix
B−1 is real and symmetric. Let us compute

|v̇n〉 = θ̇
(− sin θ |U 〉 + cos θ |M〉). (182)

Notice that 〈vn|v̇n〉 = 0 and thus Πn|v̇n〉 = 0. By substituting B−1 = A +Πn from
Eq. (168) we get

h2 = −2〈U |A|v̇n〉 cos θ. (183)

Next, we substitute |v̇n〉 and get

h2 = −2θ̇
(− sin θ〈U |A|U 〉 + cos θ〈U |A|M〉) cos θ. (184)

Now we use Prop. 21 to substitute A|M〉 by A|U 〉:

h2 = −2θ̇
(
− sin θ − cos2 θ

sin θ

)
〈U |A|U 〉 cos θ = 2θ̇

cos θ

sin θ
〈U |A|U 〉. (185)

Finally, we substitute 2θ̇ = sin θ cos θ
1−s from Eq. (138) and get

h2 = cos2 θ

1− s
〈U |A|U 〉. (186)

For the last term h3 = −〈U |Π̇n|U 〉weobserve that 〈U |v̇n〉〈vn|U 〉 = −θ̇ sin θ ·cos θ

thus h3 = 2θ̇ sin θ cos θ where the factor two comes from symmetry. After substituting
2θ̇ from Eq. (138) we get

h3 = cos2 θ

1− s
sin2 θ. (187)

When we compare Eqs. (180), (186), and (187) we notice that h2 = h1 + h3.
Thus the derivative of the hitting time is d

ds HT = h1 + h2 + h3 = 2h2. Recall from
Definition 9 that HT = 〈U |A|U 〉. Thus
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d

ds
HT(s) = 2

cos2 θ(s)

1− s
HT(s). (188)

By substituting cos θ(s) from Eq. (21) we get the desired result. ��
We now prove Theorem 4, which relates HT(s) to HT+(P, M).

Proof When the marked element is unique, HT+(P, M) = HT(P, M) by Prop. 3.
This gives the second part.

Wewill prove the first part by solving the differential equation obtained in Lemma1.
Consider Eq. (188) and recall from Eq. (138) that 2θ̇ = sin θ cos θ

1−s . We can rewrite the
coefficient in Eq. (188) as

2
cos2 θ

1− s
= 2 · sin θ cos θ

1− s
· cos θ

sin θ
= 4θ̇

cos θ

sin θ
= 4

d
ds (sin θ)

sin θ
. (189)

Then the differential equation becomes

d
ds HT(s)

HT(s)
= 4

d
ds (sin θ(s))

sin θ(s)
. (190)

By integrating both sides we get

ln |HT(s)| = 4 ln |sin θ(s)| + C (191)

for some constantC . Recall fromEq. (21) that sin θ(1) = 1, so the boundary condition
at s = 1 gives us C = ln |HT+(P, M)|. Since all quantities are non-negative, we can
omit the absolute value signs. After exponentiating both sides we get

HT(s) = sin4 θ(s) · HT+(P, M). (192)

We get the desired expression when we substitute sin θ(s) from Eq. (21). ��
In Sect. 3 we consider several quantum search algorithms whose running time

depends on HT(s) for some values of s. Theorem 4 is a crucial ingredient in analysis
of these algorithms: when the marked element is unique, it expresses HT(s) as a
function of s and the usual hitting time HT(P, M). In particular, we see that HT(s) is
monotonically increasing as a function of s and it reaches maximum value at s = 1
(some example plots of HT(s) are shown in Fig. 7). This observation is crucial, for
example, in the proof of Theorem 7.

Appendix B: Spectrum and Implementation of W(s)

Szegedy [10] proposed a general method to map a random walk to a unitary operator
that defines a quantumwalk. The first step of Szegedy’s construction is tomap the rows
of P(s) to quantum states. Let X be the state space of P(s) andH := span{|x〉: x ∈ X}

123



896 Algorithmica (2016) 74:851–907

s

HT(s)

pM = 1.0

pM = 0.2

pM = 0.4

pM = 0.6

pM = 0.8

0 1
0

HT+(P ,M )

Fig. 7 The interpolated hitting time HT(s) as a function of s for several values of pM according to
Theorem 4

be a complex Euclidean space of dimension n := |X | with basis states labelled by
elements of X . For every x ∈ X we define the following state inH:

|px (s)〉 :=
∑

y∈X

√
Pxy(s)|y〉. (193)

Notice that these states are correctly normalized, since P(s) is row-stochastic. Fol-
lowing the approach of Szegedy [10], we define a unitary operator V (s) acting on
H⊗H as

V (s)|x, 0̄〉 := |x〉|px (s)〉 =
∑

y∈X

√
Pxy(s)|x, y〉, (194)

when the second register is in some reference state |0̄〉 ∈ H, and arbitrarily otherwise.
It will not be relevant to us how V (s) is extended from H⊗ |0̄〉 to H⊗H. The only
constraint we impose is that V (s) is continuous as a function of s, which is a reasonable
assumption from a physical point of view.

Let Shift be the operation defined in Eq. (2). Let Π0 := I ⊗ |0̄〉〈0̄| be the pro-
jector that keeps only the component containing the reference state |0̄〉 in the second
register and let refX := 2Π0 − I ⊗ I . The goal of this section is to find the spectral
decomposition of the quantum walk operator corresponding to P(s):

W (s) := V (s)† · Shift · V (s) · refX (195)

where V (s) := V (P(s)). Recall from Appendix A.2.1 that λk(s) and |vk(s)〉 are the
eigenvalues and eigenvectors of the discriminant matrix D(s) of P(s).
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Appendix B.1: Spectral Decomposition of W (s)

In this section we determine the invariant subspaces ofW (s) and find its eigenvectors
and eigenvalues. First, observe that on certain states Shift acts as the swap gate.

Proposition 22 If P is a Markov chain on graph G then Shift |x, px (s)〉 =
|px (s), x〉, i.e., Shift always succeeds on states of the form |x, px (s)〉 for any x ∈ X.

Proof From Eq. (194) we get

Shift |x, px (s)〉 = Shift
∑

y∈X

√
Pxy(s)|x, y〉 (196)

=
∑

y∈X

√
Pxy(s)|y, x〉 (197)

= |px (s), x〉, (198)

where the second equality holds since P(s) is aMarkov chain onG and thus Pxy(s) = 0
when xy is not an edge of G. ��

It follows from Prop. 22 that Shift always succeeds when V †(s)Shift V (s) acts
on any state that has |0̄〉 in the second register. In fact, we can say even more.

Proposition 23 If P is aMarkov chainongraphG then theoperator V †(s)Shift V (s)
acts as the discriminant matrix D(s) (see Appendix A.2) when restricted to |0̄〉 in the
second register, i.e.,

Π0V
†(s)Shift V (s)Π0 = D(s)⊗ |0̄〉〈0̄|. (199)

Proof From Eq. (194) and Prop. 22 we get

〈x, 0̄|V †(s)Shift V (s)|y, 0̄〉 = 〈x, px (s)|Shift |y, py(s)〉 (200)

= 〈x, px (s)|py(s), y〉 (201)

= 〈px (s)|y〉〈x |py(s)〉 (202)

=
√
Pxy(s)Pyx (s) (203)

= Dxy(s) (204)

where last equality follows from Eq. (119). ��
This suggests a close relationshipbetween theoperatorsD(s) andV †(s)Shift V (s).

We want to extend this and relate the spectral decompositions of D(s) and
W (s) from Eq. (195). Recall from Eq. (124) the spectral decomposition D(s) =∑n

k=1 λk(s)|vk(s)〉〈vk(s)|.
Definition 11 Wedefine the following subspaces ofH⊗H in terms of the eigenvectors
of D(s) and the operator V †(s)Shift V (s):
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Bk(s) := span{|vk(s), 0̄〉, V †(s)Shift V (s)|vk(s), 0̄〉}, k ∈ {1, . . . , n − 1},
(205)

Bn(s) := span{|vn(s), 0̄〉}, (206)

B⊥(s) := (⊕n
k=1 Bk(s)

)⊥
. (207)

Let us first understand how V †(s)Shift V (s) acts on vectors defining the subspaces
in Definition 11. Let us consider s < 1 and k < n. Then λk(s) �= 1 by Prop. 15. By
unitarity of V †(s)Shift V (s) and Prop. 23,

V †(s)Shift V (s)|vk(s), 0̄〉 = λk(s)|vk(s), 0̄〉 +
√
1− λk(s)2|vk(s), 0̄〉⊥ (208)

for some unit vector |vk(s), 0̄〉⊥ orthogonal to |vk(s), 0̄〉 and lying in the subspace
Bk(s). In particular, Bk(s) is two-dimensional. Note that |vk(s), 0̄〉⊥ depends on how
the operator V (s), defined in Eq. (194), is extended to the rest of the space H⊗H.

Let us also find how V †(s)Shift V (s) acts on |vk(s), 0̄〉⊥. If we apply V †(s)
Shift V (s) to both sides of Eq. (208), we get

|vk(s), 0̄〉 = λk(s)V
†(s)Shift V (s)|vk(s), 0̄〉

+
√
1− λk(s)2V

†(s)Shift V (s)|vk(s), 0̄〉⊥. (209)

We regroup the terms and substitute Eq. (208):

√
1− λk(s)2V

†(s)Shift V (s)|vk(s), 0̄〉⊥ (210)

= |vk(s), 0̄〉 − λk(s)V
†(s)Shift V (s)|vk(s), 0̄〉 (211)

= |vk(s), 0̄〉 − λk(s)
(
λk(s)|vk(s), 0̄〉 +

√
1− λk(s)2|vk(s), 0̄〉⊥

)
. (212)

After cancellation we get

V †(s)Shift V (s)|vk(s), 0̄〉⊥ =
√
1− λk(s)2|vk(s), 0̄〉 − λk(s)|vk(s), 0̄〉⊥. (213)

Proposition 24 SubspacesB1(s), . . . ,Bn(s), andB⊥(s) aremutually orthogonal and
invariant under W (s) for all s ∈ [0, 1].
Proof Clearly, B⊥(s) is orthogonal to the other subspaces. Vectors |vk(s), 0̄〉 are also
mutually orthogonal for k ∈ {1, . . . , n}, since they form an orthonormal basis of
H⊗ |0̄〉. Finally, note from Prop. 23 that

〈v j (s), 0̄| · V †(s)Shift V (s)|vk(s), 0̄〉 = 〈v j (s)|D(s)|vk(s)〉 = δ jkλk(s), (214)

so V †(s)Shift V (s)|vk(s), 0̄〉 is orthogonal to |v j (s), 0̄〉 for any j �= k. Thus all of
the above subspaces are mutually orthogonal.

Let us show that these subspaces are invariant under W (s). From the definition of
W (s) in Eq. (195) we see that it suffices to check the invariance of each subspace
under V †(s)Shift V (s) and Π0 separately.
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First, let us argue the invariance under V †(s)Shift V (s). Since Shift2 acts as
identity according to Eq. (2), then so does V †(s)Shift V (s) and hence Bk(s) is
invariant under V †(s)Shift V (s) for any k < n. Next, Bn(s) is invariant, since
V †(s)Shift V (s) acts trivially on |vn(s), 0̄〉 by Prop. 23. Finally, B⊥(s) is invariant,
since it is the orthogonal complement of invariant subspaces.

Let us now show the invariance under Π0. First, let us argue that

〈v j (s), 0̄|vk(s), 0̄〉⊥ = 0, ∀ j ∈ {1, . . . , n}. (215)

These vectors lie in subspaces B j (s) and Bk(s) that are mutually orthogonal when
j �= k. For j = k this holds by definition of |vk(s), 0̄〉⊥. Since span{|vk(s), 0̄〉}nk=1 =
H⊗ |0̄〉, we conclude that

Π0|vk(s), 0̄〉⊥ = 0. (216)

From Eq. (208) we get

Π0V
†(s)Shift V (s)|vk(s), 0̄〉 = λk(s)|vk(s), 0̄〉, (217)

hence Bk(s) is invariant under Π0 for k < n. Next, Bn(s) is invariant since
Π0|vn(s), 0̄〉 = |vn(s), 0̄〉. Finally, B⊥(s) is invariant by being the orthogonal com-
plement of invariant subspaces. ��

We now prove Lemma 2 by Szegedy [10], which provides the spectral decomposi-
tion of W (s) in terms of that of D(s). Note that we can guarantee that all eigenvalues
of D(s) are in [0, 1] via Prop. 20.
Lemma 2 (Szegedy [10]) Let Bk(s) for k = 1, . . . , n be the subspaces from Defi-
nition 11. Assume that all eigenvalues λk(s) of D(s) are between 0 and 1, and let
ϕk(s) ∈ [0, π ] be such that

λk(s) = cosϕk(s). (218)

Then W (s) has the following eigenvalues and eigenvectors.

On Bk(s) : e±iϕk (s), |Ψ±
k (s)〉 := |vk(s), 0̄〉 ± i |vk(s), 0̄〉⊥√

2
. (219)

On Bn(s) : 1, |Ψn(s)〉 := |vn(s), 0̄〉. (220)

In particular,
⋃n

k=1 Bk(s) is the walk space of W (s) and the remaining eigenvectors
of W (s) lie in the orthogonal complement B⊥(s).

Proof Recall Eqs. (208) and (213):

V †(s)Shift V (s) · |vk(s), 0̄〉 = λk(s)|vk(s), 0̄〉 +
√
1− λk(s)2|vk(s), 0̄〉⊥, (221)

V †(s)Shift V (s) · |vk(s), 0̄〉⊥ =
√
1− λk(s)2|vk(s), 0̄〉 − λk(s)|vk(s), 0̄〉⊥. (222)

Clearly, refX |vk(s), 0̄〉 = |vk(s), 0̄〉 from Eq. (4). Recall from Eq. (216) that
Π0|vk(s), 0̄〉⊥ = 0, so refX |vk(s), 0̄〉⊥ = −|vk(s), 0̄〉⊥. Thus, Eqs. (221) and (222)
give us
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W (s) · |vk(s), 0̄〉 = λk(s)|vk(s), 0̄〉 +
√
1− λk(s)2|vk(s), 0̄〉⊥, (223)

W (s) · |vk(s), 0̄〉⊥ = −
√
1− λk(s)2|vk(s), 0̄〉 + λk(s)|vk(s), 0̄〉⊥. (224)

Recall from Prop. 24 that subspacesBk(s) aremutually orthogonal and invariant under
W (s). In fact, W (s) acts in the basis {|vk(s), 0̄〉, |vk(s), 0̄〉⊥} of Bk(s) as

(
λk(s) −√1− λk(s)2√

1− λk(s)2 λk(s)

)

= λk(s)I + i
√
1− λk(s)2 σy (225)

where σy :=
(
0 −i
i 0

)
is the Pauli y matrix. The matrix in Eq. (225) has the same

eigenvectors as σy and its eigenvalues are given by

λk(s)± i
√
1− λk(s)2 = e±iϕk (s). (226)

This shows Eq. (219). To obtain Eq. (220), we use Prop. 23:

〈vn(s), 0̄| · V †(s)Shift V (s) · |vn(s), 0̄〉 = 1, (227)

so |vn(s), 0̄〉 is an eigenvector of W (s) with eigenvalue 1. ��

Appendix B.2: Quantum Circuit for W (s)

Recall that Update(P) can be used to implement the quantum walk operator W (P).
However, we would also like to be able to implement the quantum analogue of P(s)
for any s ∈ [0, 1]. Recall from Eq. (195) that it is given by

W (s) = V (s)† Shift V (s) · refX . (228)

We know how to implement Shift and refX , so we only need to understand how to
implement V (s) using V (P). Recall from Eq. (3) that

V (s)|x〉|0̄〉 = |x〉|px (s)〉 = |x〉
∑

y∈X

√
Pxy(s)|y〉. (229)

In the following lemma,we assume that we know pxx for every x . This is reasonable
since in practice the probability of self-loops is known. In many cases, it is even
independent of x . For the rest of this chapter, we assume that this is not an obstacle
(we can assume that one call to Update(P) allows to learn pxx for any x).

Lemma 3 Assuming that pxx is known for every x, Interpolation(P, M, s) imple-
ments V (s) with quantum complexity 2C + U. Thus, Update(P(s)) has quantum
complexity of order C+ U.

Proof We explain only how to implement V (s) using one call to V (P) and two calls
to Check(M). The algorithm for V (s)† is obtained from the reverse algorithm.
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Our algorithm uses four registers: R1, R2, R3, R4. The first two registers have
underlying state spaceH each, but the last two store a qubit inC2 each. RegisterR3 is
used to store if the current vertex x is marked, butR4 is used for performing rotations.
Let

Rα :=
(
cosα − sin α

sin α cosα

)
(230)

denote the rotation by angle α. An algorithm for implementing the transformation
|x〉|0̄〉 	→ |x〉|px (s)〉 is given below.

Interpolation(P, M, s)

1. Let the initial state be |x〉|0̄〉|0〉|0〉.
2. Apply Check(M) to R1R3 (then R3 = 1 if and only if x ∈ M).
3. If R3 = 0, apply V (P) to R1R2 and get |x〉|px 〉|0〉|0〉.
4. Otherwise:

(a) The state is |x〉|0̄〉|1〉|0〉 where x ∈ M .
(b) Apply Rα with α = arcsin

√
s on R4: |x〉|0̄〉|1〉(

√
1− s|0〉 +√s|1〉).

(c) If R4 = 0, apply V (P) on R1R2. Otherwise, use CNOT to copy R1
to R2 in the standard basis: |x〉(√1− s|px 〉|1〉|0〉 + √s|x〉|1〉|1〉).

(d) IfR1 = R2, apply Rα with α = − arcsin
√
s/((1− s)Pxx + s) toR4.

Otherwise, do nothing: |x〉|px (s)〉|1〉|0〉.
5. Apply Check(M) to R1R3 to uncompute R3 and get |x〉|px (s)〉|0〉|0〉.

Recall from Eq. (98) that P(s) has the following block structure:

P(s) =
(

PUU PUM

(1− s)PMU (1− s)PMM + s I

)
. (231)

We will analyze the cases x ∈ M and x ∈ U separately. Then the general case will
hold by linearity.

If x ∈ U then the corresponding row of P(s) does not depend on s, so |px (s)〉 =
|px 〉. In this case step 4 of the above algorithm is never executed and the remaining
steps effectively apply V (P) to produce the correct state.

When x ∈ M the algorithm is more involved. Let us analyze only step 4 where
most of the work is done. During this step the state gets transformed as follows:

|x〉|0̄〉|1〉|0〉 	→ |x〉|0̄〉|1〉(√1− s|0〉 + √s|1〉) (232)

	→ |x〉(√1− s|px 〉|1〉|0〉 + √s|x〉|1〉|1〉) (233)

	→ |x〉|px (s)〉|1〉|0〉. (234)
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The first two transformations are straightforward, so let us focus only on the last one
which corresponds to step 4d. The state at the beginning of this step is

|x〉(√1− s|px 〉|1〉|0〉 + √s|x〉|1〉|1〉) (235)

= |x〉
[√

1− s
∑

y∈X\{x}

√
Pxy |y〉|1〉|0〉 + |x〉|1〉

(√
(1− s)Pxx |0〉 + √s|1〉

)]
.

(236)

Note from the second row of matrix P(s) in Eq. (231) that all its elements have
acquired a factor of 1 − s, except the diagonal ones. Thus in step 4d we perform a
rotation only when R1 = R2. This rotation affects only the second half of the state in
Eq. (236) and transfers all amplitude to |0〉 in the last register:

|x〉
[√

1− s
∑

y∈X\{x}

√
Pxy |y〉 +

√
(1− s)Pxx + s|x〉

]
|1〉|0〉 = |x〉|px (s)〉|1〉|0〉.

(237)
Finally, step 5 uncomputes R3 to |0〉 and the final state is |x〉|px (s)〉|0〉|0〉 as desired.

��

Appendix C: An Explicit Formula for HT+(P,M)

Recall from Definition 9 that HT+(P, M) is defined as the s → 1 limit of HT(s).
In this appendix we derive an alternative expression for HT+(P, M). This formula
explicitly expresses HT+(P, M) in terms of the Markov chain P and its stationary
distribution π , and makes it easier to evaluate this quantity and compare it to the
regular hitting time HT(P, M).

Let us define unit vectors |Ũ 〉 ∈ R
|U | and |M̃〉 ∈ R

|M| as follows:

|Ũ 〉 :=
√

π̃T
U , |M̃〉 :=

√
π̃T
M , (238)

where π̃U and π̃M are defined in Eq. (133) in terms of the stationary distribution
π = (πU πM ) of P . Note from Eq. (134) that |Ũ 〉 and |M̃〉 are the restrictions of |U 〉
and |M〉 to the unmarked and marked subspaces. Furthermore, let

(
DUU DUM

DMU DMM

)
:=
⎛

⎝

√
PUU ◦ PT

UU

√
PUM ◦ PT

MU√
PMU ◦ PT

UM

√
PMM ◦ PT

MM

⎞

⎠ (239)

be the blocks of the discriminant matrix D(P) of P (see Definition 6).

Lemma 4 If HT(P, M) is the hitting time of P (see Definition 4) and HT+(P, M) is
the extended hitting time (see Definition 9) then
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HT(P, M) = 〈Ũ |(I − DUU )−1|Ũ 〉, (240)

HT+(P, M) = 〈Ũ |(I − DUU − S)−1|Ũ 〉, (241)

where

S :=DUM

[
(I − DMM )−1 − (I−DMM )−1|M̃〉〈M̃ |(I − DMM )−1

〈M̃ |(I−DMM )−1|M̃〉
]
DMU . (242)

Vectors |Ũ 〉 and |M̃〉 are defined in Eq. (238) and matrices DUU , DUM , DMU , DMM

in Eq. (239).

Proof Let us first derive Eq. (240). Recall from Eq. (243) that HT(P, M) can be
written as

HT(P, M) =
∞∑

t=0
〈U |D(1)t |U 〉, (243)

where D(1) is the discriminant matrix of P(1) = P ′. Recall from Eq. (122) that

D(1) =
(√

PUU ◦ PT
UU 0

0 I

)

. (244)

Since D(1) is block diagonal and |U 〉 acts only on the unmarked states U , we can
restrict each term in Eq. (245) to the unmarked subspace and bring the summation
inside:

HT(P, M) = 〈Ũ |
∞∑

t=0
D(1)tUU |Ũ 〉. (245)

Recall fromEq. (146) that theUU block of D(s) is independent of s, hence D(1)UU =
DUU , the UU block of D(0) given in Eq. (239). Recall from Prop. 10 that I − PUU

is invertible. Furthermore, due to Prop. 9 we can write (I − PUU )−1 = ∑∞
t=0 Pt

UU .
As DUU and PUU are similar according to Eq. (123), I − DUU is also invertible and
(I − DUU )−1 =∑∞

t=0 Dt
UU . If we substitute this in Eq. (245), we get Eq. (240) and

thus prove the first half of the lemma.
For the second half, recall from Eq. (16) that for s ∈ [0, 1),

HT(s) =
n−1∑

k=1

|〈vk(s)|U 〉|2
1− λk(s)

, (246)

whereλk(s) and |vk(s)〉 are the eigenvalues and eigenvectors of the discriminantmatrix
D(s). By Prop. 15, for any s ∈ [0, 1), λn(s) = 1 and λk(s) < 1 for all k �= n. Let
Πn(s) := |vn(s)〉〈vn(s)|, where |vn(s)〉 is given by Prop. 4:

|vn(s)〉 = cos θ(s)|U 〉 + sin θ(s)|M〉. (247)
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With this in mind, we can rewrite Eq. (246) as follows:

HT(s) = 〈U |
[n−1∑

k=1

∞∑

t=0
λtk(s)|vk(s)〉〈vk(s)|

]
|U 〉 (248)

= 〈U |
∞∑

t=0

(
Dt (s)−Πn(s)

)|U 〉 (249)

= 〈U |
[
I +

∞∑

t=1

(
D(s)−Πn(s)

)t −Πn(s)

]
|U 〉 (250)

= 〈U |
[(
I − D(s)+Πn(s)

)−1 −Πn(s)
]
|U 〉 (251)

= 〈U |(I − D(s)+Πn(s)
)−1|U 〉 − cos2 θ(s), (252)

where the last equality follows from Eq. (247).
Our goal is to compute lims→1 HT(s). Recall from Prop. 15 that D(1) has eigen-

value 1 with multiplicity |M |. Thus, if |M | > 1, the matrix I − D(s) + Πn(s) in
Eq. (252) is not invertible at s = 1, hence we cannot compute the limit by simply
substituting s = 1. Let us rewrite this expression before we take the limit.

Note that the discriminant matrix D(s) at s = 0 agrees with D(P). Using Eq. (146)
that relates D(s) and D(P), we can write

I − D(s) =
(

I − DUU −√1− sDUM

−√1− sDMU (1− s)(I − DMM )

)
, (253)

where
( DUU DUM
DMU DMM

)
are the blocks of D(P) given in Eq. (239). Next, note that

|vn(s)〉 =
(
cos θ(s)|Ũ 〉
sin θ(s)|M̃〉

)
, (254)

so we can write

Πn(s) =
(

cos2 θ(s)|Ũ 〉〈Ũ | cos θ(s) sin θ(s)|Ũ 〉〈M̃ |
cos θ(s) sin θ(s)|M̃〉〈Ũ | sin2 θ(s)|M̃〉〈M̃ |

)
. (255)

Putting the two equations together, we can write I − D(s)+Πn(s) as

(
I−DUU + cos2 θ(s)|Ũ 〉〈Ũ | −√1−sDUM + cos θ(s) sin θ(s)|Ũ 〉〈M̃ |

−√1−sDMU + cos θ(s) sin θ(s)|M̃〉〈Ũ | (1−s)(I−DMM )+ sin2 θ(s)|M̃〉〈M̃ |
)

.

(256)
In Eq. (252) we need only the upper left block of the inverse of the above matrix, since
|U 〉 is non-zero only on the U block. According to the block-wise inversion formula,

(
A B
BT C

)−1
=
(

(A − BC−1BT)−1 . . .

. . . . . .

)
. (257)
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Thus, Eq. (252) becomes

HT(s) = 〈Ũ |(A(s)− B(s)C(s)−1B(s)T
)−1|Ũ 〉 − cos2 θ(s), (258)

where A(s), B(s), and C(s) are the blocks in Eq. (256). We can further rewrite this as
follows:

HT(s) = 〈Ũ |
[
A(s)− B(s)√

1− s

(
C(s)

1− s

)−1 B(s)T√
1− s

]−1
|Ũ 〉 − cos2 θ(s), (259)

where the extra factors will allows us to deal with the fact that C(1) is singular.
Now we can compute lims→1 HT(s) for each piece of Eq. (259) separately. Note

from Eq. (21) that cos2 θ(s) vanishes as s → 1. Similarly, we also get that

A′ := lim
s→1

A(s) = I − DUU , (260)

B ′ := lim
s→1

B(s)√
1− s

= −DUM +
√
1− pM
pM

|Ũ 〉〈M̃ |. (261)

Finally, notice that lims→1 C(s)/(1− s) does not exist. Nevertheless, the limit of the
inverse exists (in particular, it is a singular matrix) and we can compute it using the
Sherman–Morrison formula:

(
X + |ψ〉〈ψ |)−1 = X−1 − X−1|ψ〉〈ψ |X−1

1+ 〈ψ |X−1|ψ〉 . (262)

For s < 1, we get

(
C(s)

1− s

)−1
=
(
I − DMM + sin2 θ(s)

1− s
|M̃〉〈M̃ |

)−1
(263)

= (I − DMM )−1 − (I − DMM )−1|M̃〉〈M̃ |(I − DMM )−1
1−s

sin2 θ(s)
+ 〈M̃|(I − DMM )−1|M̃〉 , (264)

so the limit is

C ′ := lim
s→1

(
C(s)

1− s

)−1
= (I − DMM )−1 − (I − DMM )−1|M̃〉〈M̃|(I − DMM )−1

〈M̃|(I − DMM )−1|M̃〉 .

(265)
Let S(s) := B(s)C(s)−1B(s)T be the matrix that appears in Eq. (258). Since it also

appears in Eq. (259), we find that

S′ := lim
s→1

S(s) = B ′C ′B ′T (266)
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by substituting B ′ andC ′ from Eqs. (261) and (265), respectively. Note from Eq. (265)
that C ′|M̃〉 = 0, so Eq. (266) simplifies to

S′ = DUMC ′DMU (267)

after we substitute B ′ from Eq. (261). Note that S′ agrees with Eq. (242) and that

HT+(P, M) = lim
s→1

HT(s) = 〈Ũ |(A′ − S′)−1|Ũ 〉, (268)

where A′ and S′ are given in Eqs. (260) and (267), respectively. ��
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