
Algorithmica (2015) 73:696–729
DOI 10.1007/s00453-015-9977-x

Myhill–Nerode Methods for Hypergraphs

René van Bevern · Rodney G. Downey · Michael R. Fellows ·
Serge Gaspers · Frances A. Rosamond

Received: 30 January 2014 / Accepted: 13 February 2015 / Published online: 26 February 2015
© Springer Science+Business Media New York 2015

Abstract We give an analog of the Myhill–Nerode theorem from formal language
theory for hypergraphs and use it to derive the following results for two NP-hard
hypergraph problems. (1) We provide an algorithm for testing whether a hypergraph
has cutwidth at most k that runs in linear time for constant k. In terms of parameterized
complexity theory, the problem is fixed-parameter linear parameterized by k. (2) We
show that it is not expressible in monadic second-order logic whether a hypergraph
has bounded (fractional, generalized) hypertree width. The proof leads us to conjec-
ture that, in terms of parameterized complexity theory, these problems are W[1]-hard
parameterized by the incidence treewidth (the treewidth of the incidence graph). Thus,

A preliminary version of this article appeared in the proceedings of ISAAC 2013 [5]. This extended and
revised version contains the full proof details, more figures, and corollaries to make the application of the
Myhill–Nerode theorem for hypergraphs easier in an algorithmic setting.

R. van Bevern (B)
Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Berlin, Germany
e-mail: rene.vanbevern@tu-berlin.de

R. G. Downey
Victoria University of Wellington, Wellington, New Zealand
e-mail: rod.downey@vuw.ac.nz

M. R. Fellows · F. A. Rosamond
School of Engineering and IT, Charles Darwin University, Darwin, Australia
e-mail: michael.fellows@cdu.edu.au

F. A. Rosamond
e-mail: frances.rosamond@cdu.edu.au

S. Gaspers
The University of New South Wales and NICTA, Sydney, Australia
e-mail: sergeg@cse.unsw.edu.au

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-015-9977-x&domain=pdf

Algorithmica (2015) 73:696–729 697

in the form of the Myhill–Nerode theorem for hypergraphs, we obtain a method to
derive linear-time algorithms and to obtain indicators for intractability for hypergraph
problems parameterized by incidence treewidth.

Keywords NP-hard problems · Fixed-parameter algorithms · Automata theory ·
Cutwidth · Hypertree width

1 Introduction

There are two prevalent algorithmic techniques for solving NP-hard problems in linear
time on graphs of bounded treewidth—a measure for the “tree-likeness” of a graph:

Technique 1. Compute a tree decomposition—a tree-like representation—of the input
graph in linear time [6] and use dynamic programming from the leaves to the root
of the tree decomposition.

Technique 2. Express the graph property to be decided inmonadic second-order logic
of graphs; the expression can be turned into a linear-time algorithm deciding the
graph property [14, Theorem 6.4(1)].

For a primer on these algorithmic techniques,we refer toNiedermeier [41, Chapter 10].
In some cases, graph problems do not easily give in to these standard techniques. A

third technique helps finding linear-time algorithms on graphs of bounded treewidth
or to prove the inapplicability of the above standard techniques [2,8,26]: similarly to
how regular languages can be recognized by finite automata, some graph problems
on graphs of bounded treewidth can be solved in linear time by tree automata [17,
Section 12.7]. In fact, many of the dynamic programming algorithms on tree decom-
positions used in Technique 1 are based on a standard approach that mimics tree
automata [8].Moreover, Technique 2 is based on the fact that an expression inmonadic
second-order logic can be turned into a tree automaton [14, Chapter 6]. Disproving
the existence of a tree automaton for a problem therefore shows that it is presum-
ably not straightforward to solve the problem on graphs of bounded treewidth using
Technique 1 and even impossible using Technique 2.

A sufficient and necessary condition for the existence of a tree automaton deciding
some graph problem can be given by an adaption of the Myhill–Nerode theorem from
formal language theory to graphs [17, Section 12.7], which helped gain insight into
the following graph problems:

Cutwidth. Testing a graph for bounded cutwidth can be done in linear time [2]. Thi-
likos et al. [45] later gave a dynamic programming algorithm that is significantly
more technical, but has the advantage of constructing a solution instead of only
answering whether a solution exists.

Bandwidth. The graph property of having boundedbandwidth is not recognizable by
a tree automaton [2]. Note that this unconditional result significantly strengthens
the previously known NP-hardness of the problem on trees [25] (which of course
also excludes finite-state solvability of the problem for trees, but only under the
assumption P �= NP).

Triangulating Colored Graphs. A tree automaton cannot decidewhether a col-
ored graph can be triangulated in such a way that adjacent vertices have distinct

123

698 Algorithmica (2015) 73:696–729

colors [8]. The problem is known as Perfect Phylogeny in the context of
molecular biology and later turned out to be W[1]-hard [9,10] parameterized by
the treewidth t , that is, not solvable in O(f (t)nc) time for any constant c inde-
pendent of t under the widely accepted parameterized complexity assumption
FPT �= W[1].

Our work extends the graph-theoretic analog of the Myhill–Nerode characterization
of regular languages to hypergraphs. In this way, we provide a method to derive linear-
time algorithms (or to obtain an indication for intractability) for hypergraph problems
on hypergraphs with bounded incidence treewidth (treewidth of the incidence graph).
Thus, our work is tightly connected to the existence of fixed-parameter algorithms—
a rising technique that allows for solving NP-hard problems exactly and efficiently
when certain parameters of the input data are small [17,22,41]. From this point of
view, incidence treewidth is an interesting hypergraph parameter, since the incidence
treewidth of a hypergraph is not greater than the treewidth of its primal or dual graph
(two commonly used treewidth generalizations for hypergraphs) but can be arbitrarily
smaller [31,44].

Applying Myhill–Nerode methods to hypergraphs, we obtain results for the prob-
lems Hypergraph Cutwidth and (Generalized, Fractional) Hypertree

Width, which will be formally defined in Sects. 4 and 5, respectively.

1.1 Related Work

Generalizations of the Myhill–Nerode theorem. TheMyhill–Nerode theorem as suffi-
cient and necessary condition for a formal language being regular is due toMyhill [38]
and Nerode [40]. Since then, analogs of the Myhill–Nerode theorem were provided
for graphs of bounded treewidth [2], matroids of bounded branchwidth [30], graphs of
bounded rankwidth [24], and edge- and vertex-colored graphs of bounded treewidth
and cliquewidth [14, Sections 4.2.2 and 4.4.2].

Finite-state approaches to solving graph problems for graphs of bounded pathwidth
and treewidth. The earliest, and seminal work, applying ideas from finite automata
theory to graph problems was the 1985 paper of Bern et al. [3] based on k-terminal
recursively defined families of graphs. These ideaswere quickly taken up and extended
inmany directions bymany different groups of researchers with overlapping as well as
independent results obtained in a flurry of activity. This includes the influential 1985
work of Wimer et al. [48] (see also Wimer’s 1987 Ph.D. Thesis [47]), and Mahajan
and Peters [35]. Finite-state and Myhill–Nerode-related methods were explored in
regards of computing minor order obstruction sets by Fellows and Langston [18]
and by Lagergren and Arnborg [33]. The regularity (in the sense of Bern, Lawler,
and Wong [3]—finite-state dynamic programming multiplication tables) of bounded
treewidth and pathwidth was shown by Bodlaender and Kloks [7] and, independently,
by Lagergren and Arnborg [33].

In many cases, this early work circulated in some form (e.g., Technical Reports)
years in advance of its eventual publication, making the historical record murky—but
it was an exciting time for bounded treewidth and pathwidth algorithmics. The period

123

Algorithmica (2015) 73:696–729 699

is ably surveyed by Borie, Parker, and Tovey [12], where many more references to
early work in the area can be found.

Communication complexity and generalizations of theMyhill–Nerode theorem. Com-
munication complexity was introduced by Yao [49] and measures the amount of
information needed to be transferred between two processors for computing a func-
tion f (x, y) when one processor receives x and the other processor receives y. A pio-
neering and somewhat overlooked 1986 paper by Lakshmipathy and Winklmann [34]
investigated the communication complexity of graph problems by studying the fol-
lowing question: assume that G is a graph that can be obtained by “gluing” together
two graphs G1 and G2 along a “boundary” of t vertices, what is the minimum
amount f (t) of information needed to be exchanged between two processors for
deciding whether G has a certain property (for example, being Hamiltonian) when
one processor receives G1 and the other processor receives G2 as input?

Although the work of Lakshmipathy and Winklmann [34] is completely unrelated
to graphs of bounded treewidth, their notion is exactly what in our article is called the
large universe of t-boundaried graphs that can be glued together using an operator ⊕c
(for the precise definitions we refer to Definition 3.3 and Definition 3.6 in Sect. 3).
Therefore, the Myhill–Nerode approach yields insights into the communication com-
plexity of graph problems not only in the world of graphs of bounded treewidth. More
specifically, it allows for proving or disproving that the minimum amount of infor-
mation required to be transferred can be bounded by a function that only depends
on the boundary size t . However, the Myhill–Nerode approach is not limited to the
investigation of graph problems: in full generality, assume that one has

(1) a universeU of mathematical objects of whatever sort, on which there is a partially
defined operation μ : U × U → U (sometimes called a partial groupoid), and

(2) a property P ⊆ U of interest of these objects.

Then, one can define the canonical Myhill–Nerode equivalence relation ∼P induced
by P on U mimicking the formal language setting (there, U = Σ∗ and μ is string
concatenation): x ∼P y if and only if, for all z ∈ U, μ(x, z) ∈ P if and only
if μ(y, z) ∈ P (assuming μ is defined in both cases). The analogy to the formal
language setting naturally leads to following interesting question: for which properties
(or classes of properties) P does the canonical equivalence relation ∼P have a finite
number of equivalence classes?

This abstract perspective often turns out to have powerful and elegant algorithmic
connections, as well as being of intrinsic interest in itself. For example, it is intrinsi-
cally interesting that if U is the (large) universe of arbitrary t-boundaried graphs (of
unbounded treewidth) and μ is the ⊕c gluing operation defined in Definition 3.3, then
for any fixed t and any graph property P describable in monadic second-order logic,
the canonical equivalence relation∼P has a finite number of equivalence classes. This
statement is stronger than that of Courcelle’s theorem [14, Theorem 6.3(2)], which
proves the statement for the universe of graphs of treewidth at most t , and was first
proved in the 1989 manuscript of Abrahamson and Fellows [1].

The proof is exposed in later monographs of Downey and Fellows [16,17] and
exploits induction on the formula structure as well as the method of test sets, which

123

700 Algorithmica (2015) 73:696–729

we will in the following apply also to hypergraph problems. Note that it is not obvious
how to prove the above statement in full generality using other techniques that are
frequently applied to solve graph problems on graphs of bounded treewidth, like
dynamic programming or careful bookkeeping about partial solutions, since there is
nothing to dynamically program on in the universe of unbounded treewidth graphs.
Hence, the method of test sets seems to be essential if one is interested in results
related to communication complexity (aswe are, secondarily). Some further discussion
of these different approaches and their virtues and weaknesses can be found in the
concluding section of this article.

Hypergraph Cutwidth. Hypergraph Cutwidth is a natural generalization of the
NP-complete [27] Cutwidth problem and asks whether a hypergraph has cutwidth at
most k. For a formal definition, we refer to Sect. 4. In the context of VLSI design,Hy-
pergraph Cutwidth is known as Board Permutation [37]. Moreover, Hyper-
graph Cutwidth naturally arises in solvingCNF-Sat in the context of automatically
testing digital hardware [43,46].

For the special case of Cutwidth on graphs, several fixed-parameter algorithms are
known [2,11,19,20,45]. Cahoon and Sahni [13] showed algorithms for Hypergraph
Cutwidth with k ≤ 2 running in O(n) time for k = 1 and running in O(n3) time
for k = 2 on n-vertex hypergraphs. For arbitrary k, Miller and Sudborough [37]
designed an algorithm running in O(nk

2+3k+3) time. Moreover, Nagamochi [39] pre-
sented a framework for solving cutwidth-related graph problems in nO(k) time.

Hypertree Width. Hypertree Width, Generalized Hypertree Width, and
Fractional Hypertree Width are the problems of checking whether a hyper-
graph has (generalized, fractional) hypertree width k. All three measures are gener-
alizations of treewidth to hypergraphs and formally defined in Sect. 5. It is known
that Hypertree Width is W[2]-hard parameterized by k [28] and that General-
ized Hypertree Width remains NP-hard even for k = 3 [29]. Marx [36] expects
Fractional Hypertree Width also to be NP-hard for constant k. Hence, the
computation of these width parameters is presumably not fixed-parameter tractable
parameterized by k (that is, presumably not solvable in O(f (k)nc) time for any con-
stant c independent of k). Hence, itmakes sense to investigatewhether the problems are
fixed-parameter tractable with respect to larger parameters [21,32,42], like incidence
treewidth.

1.2 Our Results and Organization of this Paper

In Sect. 2, we introduce the necessary graph and hypergraph notation, formally define
treewidth, incidence treewidth, and tree automata.

In Sect. 3, we prove a Myhill–Nerode theorem for hypergraphs of bounded inci-
dence treewidth. Moreover, the section discusses how the Myhill–Nerode theorem for
hypergraphs yields linear-time algorithms and excludes the possibility for monadic
second-order logic expressions for hypergraph problems.

123

Algorithmica (2015) 73:696–729 701

In Sect. 4, we exploit theMyhill–Nerode theorem for hypergraphs to show thatHy-
pergraph Cutwidth can be solved in O(n + m) time for constant k, thus showing
Hypergraph Cutwidth to be fixed-parameter linear parameterized by k.

In Sect. 5, we exploit theMyhill–Nerode theorem to show thatHypertree Width,
Generalized Hypertree Width, and Fractional Hypertree Width are not
decidable by a finite tree automaton and, hence, not expressible in monadic second-
order logic. Moreover, we obtain an indication that they are not fixed-parameter
tractable parameterized by incidence treewidth.

2 Preliminaries

Graphs and hypergraphs. A hypergraph H is a pair (V, E), where V (H) := V is a
set of vertices and E(H) := E is a set of hyperedges such that e ⊆ V for each e ∈ E .
In this work, we allow E to be a multiset and there may be singleton and empty
hyperedges. If not stated otherwise,weusen := |V | andm := |E |. TwohypergraphsG
and H are isomorphic and we write G ∼= H if there is a bijection f : V (G) → V (H)

such that e is an hyperedge with multiplicity i of G if and only if { f (v) | v ∈ e}
is an hyperedge with multiplicity i of H . The bijection f is called (hypergraph)
isomorphism.

A graph is a hypergraph inwhich every hyperedge has cardinality two and is present
at most once. Two vertices v,w ∈ V are adjacent or neighbors if {v,w} ∈ E . The
(open) neighborhood NG(v) of a vertex v ∈ V in a graph G is the set of vertices that
are adjacent to v. If the graph G is clear from the context, we drop the subscript G. A
subset S ⊆ V is an independent set if no two vertices in S are adjacent in G.

The primal graph of a hypergraph H , denoted G(H), is the graph with vertex set V
that has an edge {u, v} if u and v are together in some hyperedge in H . It is sometimes
called the Gaifman graph of H . The incidence graph of a hypergraph H , denoted
I(H), is the bipartite graph (V ′, E ′) with vertex set V ′ = V ∪ E and such that, for
each v ∈ V and e ∈ E , there is an edge {v, e} ∈ E ′ if and only if v ∈ e.

Graph decompositions. A tree decomposition (T, β) for a graphG = (V, E) consists
of a rooted tree T and a mapping β : T → 2V of each node x of the tree T to a
subset Vx := β(x) ⊆ V , called bag, such that

(i) for each vertex v ∈ V , there is a node x of T with v ∈ Vx ,
(ii) for each edge {u, w} ∈ E , there is a node x of T with {u, w} ⊆ Vx ,
(iii) for each vertex v ∈ V , the nodes x of T for which v ∈ Vx induce a subtree in T .

Thewidth of a tree decomposition is the size of its largest bagminus one. The treewidth
of G is the minimum width over all tree decompositions of G. The notions of path
decomposition and pathwidth of G are defined in the same way, except that T is
restricted to be a path. The incidence treewidth of a hypergraph is the treewidth of its
incidence graph.

Graph and hypergraph representations. When speaking about linear-time solvability,
it is crucial to agree on the graph and hypergraph representations we expect as input.
We assume that graphs are represented as adjacency lists, that is, as a list of vertices,
each being associated with a list of its neighbors.

123

702 Algorithmica (2015) 73:696–729

We assumehypergraphs to be given as hyperedge lists, that is, as a list of hyperedges,
each being a list of the vertices it contains. Note that a hypergraph given as hyperedge
list is linear-time transformable into an adjacency list of its incidence graph and vice
versa.Moreover, a hyperedge list is computable in linear time from a hypergraph given
as incidence matrix.

Tree automata. A (deterministic leaf-to-root finite-state) tree automaton is a quin-
tuple (Q,Σ, δ, q0, F), where Q is a finite set of states, Σ is a finite alphabet,
q0 ∈ Q is the start state and F ⊆ Q is the set of final states, and, finally
δ : (Σ ×Q)∪(Σ ×Q×Q) → Q is the transition function. The set of all rooted binary
treeswith vertices labeled using letters fromΣ is denoted byΣ∗∗.We assume that each
child of a node of a rooted tree T ∈ Σ∗∗ is fixed to be either a “left” or a “right” child.

A tree automaton processes a tree T ∈ Σ∗∗ starting at its leaves to determine the
state at the root node of T as follows: the state at a leaf node x of T with label a ∈ Σ

is determined by δ(a, q0). The state at a node x of T with label a and a single child
node y is determined by δ(a, qy), where qy ∈ Q is the state at y. The state at a node x
of T with label a, a left child y, and a right child z is determined by δ(a, qy, qz), where
qy, qz ∈ Q are the states of y and z, respectively.

A tree automaton accepts a tree T ∈ Σ∗∗ if its state at the root node of T is in F .
A tree automaton A recognizes a tree language L ⊆ Σ∗∗ if, for every tree T ∈ Σ∗∗,
the automaton A accepts T if and only if T ∈ L .

Note that an ordinary finite automaton for words w ∈ Σ∗ over the alphabet Σ can
be understood as a tree automaton on rooted unary trees (paths).

3 Myhill–Nerode for Hypergraphs

The aim of this section is to generalize the Myhill–Nerode theorem from formal lan-
guages to hypergraphs. To this end, we first briefly recall the Myhill–Nerode theorem
for formal languages in Sect. 3.1.

Section 3.3 will prove the Myhill–Nerode theorem for hypergraphs. Before,
Sect. 3.2 will generalize the Myhill–Nerode theorem for graphs [17, Section 12.7] to
vertex-colored graphs, since the Myhill–Nerode theorem for hypergraphs will exploit
that every hypergraph can be represented as its incidence graph with two vertex types
(or “colors”): one type representing hyperedges and one type representing the vertices
of a hypergraph.

In Sect. 3.4, we finally describe how ourMyhill–Nerode theorem yields linear-time
algorithms for hypergraph problems and its relation to the expressibility of hypergraph
properties in monadic second-order logic.

3.1 Formal Languages

TheMyhill–Nerode theorem is a tool for proving or disproving that a formal language
is regular, that is, decidable by a finite automaton. The theorem states that a language
is regular if and only if its so-called canonical right congruence has a finite number
of equivalence classes.

123

Algorithmica (2015) 73:696–729 703

graph G

G= (V,E)

tree decomposition

V1

V3V2

V4

parse tree TG

e

.

γ

e
. . .

. . .

generates graph G isomorphic to

L

input to

tree automaton for
graph problem L

Fig. 1 Solving a graph problem L using a tree automaton: from a graph G with bounded treewidth, a
minimum width tree decomposition can be computed in linear time [6]. The tree decomposition can be
turned into a size-O(n) expression over a set {∅, e, u, γ, i, ⊕} of operators in linear time such that the value
of the expression is a graph G′ isomorphic to G [17, Theorem 12.7.1]. The parse tree or expression tree TG′
of the expression is fed to a tree automaton AL that accepts TG′ in O(n) time if and only if G′ ∈ L . The
existence ofAL for the problem L can be proven or disproven by the Myhill–Nerode theorem for graphs

Definition 3.1 Let L ⊆ Σ∗ be a language. The canonical right congruence ∼L is
defined as follows: for v,w ∈ Σ∗, v ∼L w : ⇐⇒ ∀x ∈ Σ∗ : vx ∈ L ⇐⇒ wx ∈
L , where vx is the concatenation of v and x .

Example 3.2 Consider the language L := {aib j | i, j ∈ N} ⊆ {a, b}∗ consisting
of words starting with an arbitrary number of a’s and ending in an arbitrary number
of b’s. Then, a ∼L aa. However, a �L ab, since, for example, aa ∈ L but aba /∈ L .

Obviously, for a language L ∈ Σ∗, the canonical right congruence ∼L is an equiv-
alence relation, that is, it is reflexive, symmetric, and transitive. The index of an
equivalence relation is the number of its equivalence classes.

Myhill–Nerode Theorem A language L ⊆ Σ∗ is recognizable by a finite automaton
if and only if the canonical right congruence ∼L has finite index.

Thus, the Myhill–Nerode theorem gives a necessary and sufficient condition for a
language being recognizable by a finite automaton.

3.2 Colored Graphs

In order to show the Myhill–Nerode theorem for hypergraphs, we first present it for
vertex-colored graphs. Downey and Fellows [17, Section 12.7] already proved the
Myhill–Nerode theorem for graphs without colors; Fig. 1 gives a rough overview of
the technique. We will see that lifting it to vertex-colored graphs is straightforward.
Indeed, Courcelle and Engelfriet [14, Section 4.2.2] provide an even more general
Myhill–Nerode theorem for graphs with vertex colors as well as edge colors. For
our purposes, however, a vertex-colored variant is sufficient and we show it here as
an introduction into the necessary concepts towards a Myhill–Nerode theorem for
hypergraphs.

In order to apply tree automata to graphs, we first show how every graph of bounded
treewidth can be represented by an expression over a constant-size set of operators,
and, consequently, as the parse tree or expression tree of that expression (Fig. 2 gives an

123

704 Algorithmica (2015) 73:696–729

Fig. 2 The expression tree or
parse tree of the arithmetic
expression

√
5 + 4 · (3 + 2)

·
+

23

√·
+

45

1 2

3

1 2

3

1 2

3

(a) (b)

(c)

Fig. 3 Two color-compatible 3-boundaried graphs G and H and their glued graph, where the boundary
vertices are marked by their label. a A 2-colored 3-boundaried graph G. b A 2-colored 3-boundaried
graph H . c The glued graph G ⊕c H

example for a parse tree). Herein, the crucial operator corresponds to the concatenation
of words in the language setting of the Myhill–Nerode theorem: like every word with
more than one letter is the concatenation of shorter words, we will see that every
graph of treewidth t − 1 with more than t vertices is isomorphic to the result of gluing
smaller graphs together at a boundary consisting of t vertices.1 This is formalized by
the definition below and illustrated in Fig. 3.

Definition 3.3 A t-boundaried graph G is a graph with t distinguished vertices that
are labeled from 1 to t . These labeled vertices are called boundary vertices. The
boundary ∂(G) is the set of boundary vertices of G.

Two colored t-boundaried graphs G1 and G2 are isomorphic and we write G1 ∼=
G2 if there is an isomorphism for the underlying (uncolored and unlabeled) graphs
mapping each vertex to a vertex with the same color (but ignoring labels).

Let G1 and G2 be t-boundaried graphs whose vertices are colored with colors
in {1, . . . , cmax}. We say that G1 and G2 are color-compatible if the vertices with the
same labels in ∂(G1) and ∂(G2) have the same color.

For two color-compatible t-boundaried graphs, we denote byG1 ⊕c G2 the colored
graph obtained by gluing G1 andG2, that is, by taking the disjoint union ofG1 andG2

1 For keeping the presentation simpler, we leave graphs with less than t vertices out of consideration: since
we only consider constant values of t throughout this work, any problem restricted to graphs with less than
t vertices is a finite problem and can therefore be trivially solved by a finite automaton.

123

Algorithmica (2015) 73:696–729 705

and identifying vertices of ∂(G1) and ∂(G2) having the same label; the vertex colors
of G1 ⊕c G2 are inherited from G1 and G2. For two color-incompatible graphs G1
and G2, we leave ⊕c undefined.

Together with⊕c, we use the following set of operators to create primitive graphs that
can be glued together to larger graphs using ⊕c, and to arbitrarily permute the labels
on the boundary vertices.

Definition 3.4 The size-t parsing operators for {1, . . ., cmax}-colored t-boundaried
graphs are defined as follows:

(i) {∅n1,...,ncmax
| ∑cmax

i=1 ni = t} is a family of nullary operators that creates a graph
consisting of isolated boundary vertices 1, . . . , t , of which the first n1 vertices get
color 1, the next n2 vertices get color 2, and so on.

(ii) e is a unary operator that adds an edge between the boundary vertices labeled 1
and 2.

(iii) {u� : 1 ≤ � ≤ cmax} is a family of unary operators that add a new boundary
vertex of color � and labels it 1, unlabeling the vertex previously labeled 1.

(iv) γ is a unary operator that cyclically shifts the boundary. That is, γ moves label j
to the vertex with label j + 1 (mod t).

(v) i is a unary operator that assigns the label 1 to the vertex currently labeled 2 and
label 2 to the vertex with label 1.

(vi) ⊕c is our gluing operator from Definition 3.3.

For a constant number of colors cmax, the set of size-t parsing operators is finite.
Moreover, for cmax = 1, the given operators coincide with those given by Downey
and Fellows [17, Section 12.7] for uncolored graphs, which allows us to show the
following theorem:

Theorem 3.5 Let G be a {1,…,cmax}-colored graph with constant treewidth t −1 and
at least t vertices.

Then, in linear time, G can be transformed into an expression over the size-t
operators in Definition 3.4 whose value is a graph H that is isomorphic to G, that is,
when ignoring the labels of H.

Proof For cmax = 1, Downey and Fellows [17, Theorem 12.7.1] provide a linear-
time procedure for converting a tree decomposition of width t − 1 of a graph G
into an expression over the size-t operators in Definition 3.4 such that the value of the
expression is a graph isomorphic toG. This procedure is easily adapted for larger cmax:
wheneverDowneyandFellows [17] introducevertices using∅1 oru1 in the case cmax =
1, we introduce them using ∅n1,...,cmax and u� with the colors they have in G. ��
We are now at a point where we can get each graph of bounded treewidth into a repre-
sentation that we can feed into a tree automaton: we use the parse tree (or expression
tree) of an expression over the operators in Definition 3.4. A central question remains:
which graph problems can be decided by a tree automaton operating on such a parse
tree? The Myhill–Nerode theorem for colored graphs will give a sufficient and nec-
essary condition. To state the theorem, we first lift the concept of a canonical right
congruence from the language setting (Definition 3.1) to graphs.

123

706 Algorithmica (2015) 73:696–729

Definition 3.6 LetUlarge
t,cmax

be the large universe of all {1, . . . , cmax}-colored t-bound-
aried graphs and Usmall

t,cmax
⊆ U

large
t,cmax

be the small universe of {1, . . . , cmax}-colored
t-boundaried graphs that can be generated by the size-t operators in Definition 3.4.

ForU ∈ {Usmall
t,cmax

,U
large
t,cmax

}, we say that F ⊆ U is a graph problem if, for all G ∈ F
and H ∈ U with G ∼= H , we also have H ∈ F . That is, we assume graph problems to
be closed under isomorphism and, in particular, that changing vertex labels does not
influence membership in F .

Finally, for a graph problem F ⊆ U , where U ∈ {Usmall
t,cmax

,U
large
t,cmax

}, we define the
canonical right congruence∼F over U for F as follows: forG1,G2 ∈ U, G1 ∼F G2
if and only if G1 and G2 are color-compatible and if for all color-compatible H ∈ U ,
we have G1 ⊕c H ∈ F ⇐⇒ G2 ⊕c H ∈ F .

Theorem 3.5might mislead to the impression thatUsmall
t,cmax

contains all treewidth-(t−1)

graphs of Ularge
t,cmax

. However, this is not the case: for example, a path of length more
than one whose first vertex has label 1 and whose last vertex has label 2 has treewidth 1
and is contained in U

large
2,1 . However, it cannot be generated by the size-2 operators in

Definition 3.4 and, hence, is not inUsmall
2,1 . We will see this detail to be important when

showing that a graph problem is not recognizable by a finite tree automaton.

Theorem 3.7 Let F ⊆ Usmall
t,cmax

be a graph problem. The following statements are
equivalent:

(i) The collection of parse trees generating the graphs in F is recognizable by a finite
tree automaton.

(ii) The canonical right congruence ∼F has finite index over Usmall
t,cmax

.

Downey and Fellows [17, Theorem 12.7.2] proved Theorem 3.7 for uncolored graphs,
that is, for cmax = 1.2 The case cmax > 1 can be proven analogously.

3.3 Hypergraphs

In this section, we show how tree automata can be used to recognize hypergraph
properties and, in the form of a Myhill–Nerode theorem for hypergraphs, a necessary
and sufficient characterization for the hypergraph properties that a tree automaton can
decide. To this end, we first define the notion of gluing for hypergraphs.

Definition 3.8 A t-boundaried hypergraph H has t distinguished vertices and hyper-
edges labeled from 1 to t called boundary objects. The boundary ∂(H) is the set of
all boundary objects.

Two t-boundaried hypergraphs are gluable if no vertex of one hypergraph has the
label of a hyperedge of the other hypergraph.

Let H1 and H2 be gluable t-boundaried hypergraphs.We denote by H1 ⊕h H2 the t-
boundaried hypergraph obtained by taking the disjoint union of H1 and H2, identifying
each labeled vertex of H1 with the vertex of H2 with the same label, and replacing the
hyperedges with the same label � by their union.

2 The proof of (ii) → (i) given by Downey and Fellows [17] is flawed but repairable [4].

123

Algorithmica (2015) 73:696–729 707

1 2

3

1 2

3

1 2

3

(a) (b)

(c)

Fig. 4 The two hypergraphs represented by the t-boundaried hypergraph generators G and H in Fig. 3
and the glued hypergraphH(G) ⊕h H(H) = H(G ⊕c H). a The 3-boundaried hypergraphH(G). b The
3-boundaried hypergraphH(H). c The glued hypergraphH(G) ⊕h H(H) = H(G ⊕c H)

In order to apply tree automata to hypergraphs, in contrast to Sect. 3.2 for colored
graphs, we will not define a set of additional operators for generating hypergraphs.
Instead, we will generate hypergraphs from two-colored incidence graphs: vertices
of one color will represent the vertices of the hypergraph, vertices of the other color
will represent the hyperedges. That is, instead of solving a hypergraph problem, we
will in fact solve a graph problem on colored incidence graphs. The goal of the next
definition is to give a representation of a hypergraph problem as a graph problem. It
is illustrated in Fig. 4.

Definition 3.9 A t -boundaried hypergraph generator is a {1, 2}-colored t-bounda-
ried graphG = (U�W, E) such that all vertices inU have color 1 and all vertices inW
have color 2, and each of U and W form an independent set.

For a t-boundaried hypergraph generatorG = (U �W, E), we denote byH(G) the
t-boundaried hypergraphwith the vertex setU and the hyperedge set {N (w) | w ∈ W }.
Moreover, each vertex ofH(G) inherits its label fromG and each hyperedge e inH(G)

inherits its label from the vertex w ∈ W of G that induced e.
For a set F ⊆ Usmall

t,2 of t-boundaried hypergraph generators, we denote H(F) :=⋃
G∈F H(G) and we call F generator-total if, for all t-boundaried hypergraph gen-

erators G ∈ Usmall
t,2 ,H(G) ∈ H(F) �⇒ G ∈ F .

We use H
large
t to denote the large universe of all t-boundaried hypergraphs and

by Hsmall
t we denote the small universe H(Usmall

t,2), that is, the t-boundaried hyper-
graphs that can be generated from t-boundaried hypergraph generators created by the
operators in Definition 3.4.

We say that F ⊆ U for U ∈ {Hlarge
t ,Hsmall

t } is a hypergraph problem if, for
all G ∈ F and H ∈ U with G ∼= H , we also have H ∈ F. That is, we assume
hypergraph problems to be closed under isomorphism and, in particular, that changing
boundary labels does not influence membership in F.

The following observation allows us, where helpful, to denote hypergraphs H
using H(G) for some graph G with H(G) = H , and to denote hypergraph prob-
lems F usingH(F) for some generator-total graph problem F .

123

708 Algorithmica (2015) 73:696–729

Observation 3.10 (i) A graph G ∈ U
large
t,2 is isomorphic to the incidence graph

of H(G) ∈ H
large
t . Therefore, the treewidth of G equals the incidence treewidth

of H(G).
(ii) For two graphs G, H ∈ U

large
t,2 , we have H(G)⊕h H(H) = H(G ⊕c H).

(iii) For a generator-total F ⊆ Usmall
t,2 and each t-boundaried hypergraph genera-

tor G ∈ Usmall
t,2 , we have G ∈ F if and only ifH(G) ∈ H(F).3

(iv) For every t-boundaried hypergraph H ∈ Hsmall
t , by definition of Hsmall

t , there
is a t-boundaried graph G ∈ Usmall

t,2 such that H(G) = H . Consequently, for

every hypergraph problem F ⊆ Hsmall
t , there is a generator-total F ⊆ Usmall

t,2 with
H(F) = F. Moreover, in terms of Definition 3.6, F is a graph problem.

In order to state the Myhill–Nerode theorem for hypergraphs, we define the canonical
right congruence for hypergraphs.

Definition 3.11 Let F ⊆ U for U ∈ {Hlarge
t ,Hsmall

t } be a hypergraph problem. We
define the canonical right congruence ∼F over U for F as follows: for G1,G2 ∈ U ,
G1 ∼F G2 if and only if G1 and G2 are gluable and for all H ∈ U that are gluable
to G1 and G2, G1 ⊕h H ∈ F ⇐⇒ G2 ⊕h H ∈ F.

We now state our Myhill–Nerode theorem for hypergraphs. As Theorem 3.7, the
following theorem only makes a statement about when a tree automaton can decide
hypergraphproblemsF ⊆ Hsmall

t .However, inSect. 3.4,wewill see that this restriction
is not important in most cases.

Theorem 3.12 LetF ⊆ Hsmall
t be a hypergraph problem, that is,F = H(F) for some

generator-total F ⊆ Usmall
t,2 . The following statements are equivalent:

(i) The collection of parse trees generating the graphs in F is recognizable by a tree
automaton.

(ii) The canonical right congruence ∼F has finite index over Hsmall
t .

(iii) The canonical right congruence ∼F has finite index over Usmall
t,2 .

Moreover, if the index p of ∼F and the index q of ∼F are finite, they bound each
other as 2t q ≥ p ≥ q/2t − 1.

Proof Since F ⊆ Usmall
t,2 , we can apply Theorem 3.7, which states that (i) and (iii) are

equivalent. It remains to show that (iii) and (ii) are equivalent. That is, we show that
∼F has finite index over Hsmall

t if and only if ∼F has finite index over Usmall
t,2 .

First, assume that ∼F has infinite index over Usmall
t,2 . We show that ∼F has

infinite index over Hsmall
t . Since ∼F has infinite index over Usmall

t,2 , there is

an infinite set {G1,G2, G3, . . .} ⊆ Usmall
t,2 of graphs that are pairwise non-

equivalent under ∼F . Since there are only 2t possibilities to assign two colors
to t boundary vertices, there is an infinite number of color-compatible graphs

3 If F is not generator-total, it might be that G /∈ F but H(G) ∈ H(F) because H ∈ F for some t-
boundaried hypergraph generator H �= G with H(G) = H(H): the graphs G and H might represent the
hyperedges ofH(G) = H(H) using different mathematical objects.

123

Algorithmica (2015) 73:696–729 709

among {G1,G2, . . .}. Moreover, notice that all graphs Gi ∈ Usmall
t,2 that are not t-

boundaried hypergraph generators are equivalent under ∼F : since F contains only
t-boundaried hypergraph generators, Gi cannot be completed into graphs in F
by gluing any graph onto Gi . Therefore, without loss of generality, we assume
that {G1,G2, . . .} are pairwise color-compatible t-boundaried hypergraph genera-
tors. Now, for each pair Gi ,G j , there is a graph Hi j ∈ Usmall

t,2 such that, with-
out loss of generality, Gi ⊕c Hi j ∈ F but G j ⊕c Hi j /∈ F . From Gi ⊕c Hi j ∈
F , it follows that Hi j is a t-boundaried hypergraph generator that is color-
compatible with Gi . Hence, H(Hi j) ∈ Hsmall

t . Now, from Gi ⊕c Hi j ∈ F , we get
H(Gi)⊕h H(Hi j) = H(Gi ⊕c Hi j) ∈ H(F) = F. Moreover, since F is generator-
total, from G j ⊕c Hi j /∈ F it follows that H(G j)⊕h H(Hi j) = H(G j ⊕c Hi j) /∈
H(F) = F. That is, H(Gi) �F H(G j) over Hsmall

t and, therefore, ∼F has infinite
index.

Now, assume that ∼F has infinite index over Hsmall
t . We show that ∼F has

infinite index over Usmall
t,2 . Since ∼F has infinite index over Hsmall

t , there is a
set {H(G1),H(G2), H(G3), . . .} ⊆ Hsmall

t of hypergraphs that are pairwise non-
equivalent under ∼F. Since there are only 2t partitions of t labels into hyperedge
labels and vertex labels, there is an infinite number of pairwise gluable hypergraphs
among {H(G1),H(G2), . . .}. Therefore, without loss of generality, assume that all
these hypergraphs are pairwise gluable. Now, for each pair H(Gi), H(G j), there
is a hypergraph H(Hi j) ∈ Hsmall

t such that, without loss of generality, we have
H(Gi)⊕h H(Hi j) ∈ H(F) = F but H(G j)⊕h H(Hi j) /∈ H(F) = F. Since
H(Gi)⊕h H(Hi j) = H(Gi ⊕c Hi j) and F is generator-total,wehaveGi ⊕c Hi j ∈ F .
Moreover, G j ⊕c Hi j /∈ F . Since Hi j ∈ Usmall

t,2 , it follows that ∼F has infinite index

over Usmall
t,2 .

Finally, observe that our proof yields evenmore information in the case that∼F , and
equivalently∼F , have finite index:we havefirst shown that, for any set ofq graphs that
are pairwise nonequivalent under ∼F , there are at least p ≥ �q/2t� − 1 hypergraphs
nonequivalent under ∼F . We have then shown that, for any set of p hypergraphs
that are pairwise nonequivalent under ∼F , there are at least q ≥ �p/2t� graphs
nonequivalent under ∼F . Hence, for the index p of ∼F and the index q of ∼F , we
have 2t q ≥ p ≥ q/2t − 1. ��

3.4 Fixed-Parameter Algorithms and Monadic Second-Order Logic

In Sect. 3.3, we have seen a tool allowing us to show when a hypergraph problem F ∈
Hsmall

t can be recognized by a finite tree automaton. The provided Theorem 3.12,
however, is strongly tied to the representation of hypergraphs as incidence graphs
inUsmall

t,2 . This section shows three corollaries to ease the application of Theorem 3.12
for classifying hypergraph problems.

Showing tractability and constructing tree automata. The following corollary will
make it easier to show that a hypergraph problem is fixed-parameter linear parame-
terized by incidence treewidth. Essentially, we do not have to care about whether the
hypergraphs we consider are contained inHsmall

t .

123

710 Algorithmica (2015) 73:696–729

Corollary 3.13 Let F ⊆ H
large
t be a decidable hypergraph problem and that is

restricted to hypergraphs of constant incidence treewidth t − 1.
Given a hypergraph H ∈ H

large
t and a constant upper bound on the index of ∼F

over Hlarge
t , we can compute in constant time a tree automaton A and in linear time

a tree T such that A processes T in linear time and accepts T if and only if H ∈ F.

Proof Let F ⊆ Usmall
t,2 be generator-total such that F ∩ Hsmall

t = H(F) and let p be
the constant given upper bound on ∼F . The proof relies on two claims:

(i) H ∈ F holds if and only if all graphs G ∈ Usmall
t,2 withH(G) ∼= H are in F .

(ii) ∼F has index q ≤ 2t (p + 1) over Usmall
t,2 .

From (i) then immediately follows that a tree automaton A deciding F decides H ∈
F correctly when fed the parse tree TG of any G ∈ Usmall

t,2 with H(G) ∼= H . By
Theorem 3.5, this G exists and we obtain the parse tree TG in linear time from the
incidence graph of H .

From (ii) and Theorem 3.12, it follows that the tree automaton A indeed exists.
It can be constructed in constant time given that we know a constant upper bound s
on the number of states of A: the crucial observation is that A reaches at least one
state twice when processing a parse tree of height greater than s. Thus, for any parse
tree T of height greater than s, there is a parse tree T ′ of height at most s such that
A accepts T if and only if it accepts T ′. It follows that we only have to construct A
so that it works correctly on all parse trees of height at most s. Since our operators
in Definition 3.4 are all nullary, unary, or binary, the parse trees of expressions over
them are binary trees. Thus, there are only a constant number of parse trees of height
at most s. Moreover, for any parse tree T of height at most s, we can decide in constant
time whether the hypergraph it generates is in F, since F is decidable. Hence, we can
construct in constant time by brute force a tree automatonA that correctly answers for
all parse trees of height at most s and, consequently, recognizes F . Moreover, since
A has a constant number of states, it takes only linear time for A to process any parse
tree.

The constant upper bound on the number of states of A we obtain as follows: the
index of ∼F is bounded by (ii), which, in turn bounds the number of states of A [17,
Theorem 12.7.2]. Thus, it only remains to prove (i) and (ii).

(i) First, assume that there is some graph G ∈ Usmall
t,2 with H(G) ∼= H in F . Then,

since G is a t-boundaried hypergraph generator in Usmall
t,2 , H(G) ∈ H(F). Since

H(F) ⊆ F and F is closed under isomorphism, we conclude H ∈ F. If, for the
opposite direction, H ∈ F, then letG ∈ Usmall

t,2 be any graph such thatH(G) ∼= H .

Since G ∈ Usmall
t,2 , we have H(G) ∈ Hsmall

t . Moreover, since F is closed under
isomorphism, H(G) ∈ F and, hence, H(G) ∈ H(F). Finally, since F is genera-
tor-total, we have G ∈ F .

(ii) We show that the index p′ of ∼H(F) over H
small
t is at most p. Then, from The-

orem 3.12, it follows that p ≥ p′ ≥ q/2t p − 1 and, hence, q ≤ 2t (p + 1).
Thus, we only have to show, for any H(G1),H(G2) ∈ Hsmall

t equivalent
under ∼F , that they are also equivalent under ∼H(F). This is trivial, since, for
i ∈ {1, 2} and any H(H) ∈ Hsmall

t , we have H(Gi)⊕h H(H) ∈ H(F) ⇐⇒

123

Algorithmica (2015) 73:696–729 711

H(Gi)⊕h H(H) ∈ F, since H(Gi)⊕h H(H) = H(Gi ⊕c H) ∈ Hsmall
t and

H(F) = F ∩ Hsmall
t . ��

From Corollary 3.13, it follows that, to obtain a fixed-parameter linear algorithm for
some hypergraph problem F parameterized by incidence treewidth, we just have to
show that ∼F has finite index over Hlarge

t .

Showing intractability. We have seen that it was enough to show that ∼F has finite
index over Hlarge

t to show that a hypergraph problem F ⊆ H
large
t of hypergraphs

with incidence treewidth t − 1 is decidable by a tree automaton. To show the oppo-
site, it is not sufficient to show that ∼F has infinite index over the hypergraphs with
treewidth t−1 inHlarge

t : assume, for example, that there are two hypergraphs Hi , Hj ∈
Hsmall

t that are non-equivalent under ∼F. Then, there is some Hi j ∈ H
large
t satisfy-

ing H(Gi)⊕h Hi j ∈ F but H(G j)⊕h Hi j /∈ F. If Hi j /∈ Hsmall
t , then this does not

necessarily mean that Hi and Hj are nonequivalent under ∼F over Hsmall
t . Thus, we

cannot conclude that∼F has infinite index overHsmall
t and Theorem 3.12 is inapplica-

ble. However, the following corollary gives a simple criterion for intractability.

Corollary 3.14 Let F ⊆ H
large
t be a hypergraph problem and Ft ⊆ F be an arbitrary

subset of hypergraphs H whose incidence graphs have tree decompositions ofwidth t−
1 such that ∂(H) is a bag.

If ∼Ft has infinite index over Hlarge
t , then ∼F has infinite index over Usmall

t,2 for

F ⊆ Usmall
t,2 being the generator-total graph problem such that H(F) = F ∩ Hsmall

t .
Consequently, there is no tree automaton that decides H ∈ F correctly when fed

the parse tree of the incidence graph of H.

Proof Any hypergraph H ∈ Ft allows for a tree decomposition T of width t −1 of its
incidence graph that has a bag ∂(H). The procedure by Downey and Fellows [17, The-
orem12.7.1] produces a parse tree for a graphG ∈ Usmall

t,2 withH(G) ∼= H . The crucial
observation is that, when choosing the bag ∂(H) as the root of the tree decomposi-
tion T , the procedure generates a parse tree for a graph G ∈ Usmall

t,2 withH(G) ∼=t H ,
where we use ∼=t to denote that there is an isomorphism between H(G) and H that
maps the t boundary objects of H(G) to boundary objects in H with the same label.

Now, let {H1, H2, . . .} ⊆ Ft be a set of hypergraphs that are pairwise non-equivalent
with respect to ∼Ft . As before, we may assume that they are pairwise gluable. Hence,

for each pair Hi , Hj , there is a hypergraph Hi j ∈ H
large
t such that Hi ⊕h Hi j ∈ Ft

but Hj ⊕h Hi j /∈ Ft . Since Hi ⊕h Hi j ∈ Ft , the hypergraph Hi ⊕h Hi j has a tree
decomposition of width t − 1 with a bag ∂(Hi ⊕h Hi j) and, hence, Hi j has such a
tree decomposition as well. It follows that there are graphs Gi ,G j ,Gi j ∈ Usmall

t,2 such
that H(Gi) ∼=t Hi , H(G j) ∼=t H j , and H(Gi j) ∼=t Hi j . Then, H(Gi ⊕c Gi j) =
H(Gi)⊕h H(Gi j) ∼=t Hi ⊕h Hi j ∈ F. Since F is closed under isomorphism, it fol-
lows that H(Gi ⊕c Gi j) ∈ F ∩ Hsmall

t . Since F is generator-total, Gi ⊕c Gi j ∈ F .
With the same argumentation, it follows that G j ⊕c Gi j /∈ F .

It follows that ∼F has infinite index over Usmall
t,2 and by Theorem 3.12, there is no

tree automaton recognizing the parse trees in F . ��

123

712 Algorithmica (2015) 73:696–729

Excluding expressibility in monadic second-order logic. A standard way of show-
ing linear-time solvability of a graph problem F on graphs of bounded treewidth is
expressing the property of being a yes-instance of F in monadic second-order logic
of graphs [41, Section 10.6].

Previously, we have seen how to show that some hypergraph problem F cannot
be solved by a finite tree automaton. An immediate consequence is that the property
of being a yes-instance for F is not expressible in monadic second-order logic for
hypergraphs; we now give a little detail about this connection.

Definition 3.15 (Monadic second-order logic for graphs and hypergraphs) A formula
in the MS1-logic for {1, . . . , cmax}-colored graphs may consist of the logic opera-
tors ∨,∧,¬, vertex variables, set variables, quantifiers ∃ and ∀ over vertices and
vertex sets, and the predicates

(i) x ∈ X for a vertex variable x and a set X ,
(ii) adj(v,w), being true if v and w are adjacent vertices,
(iii) coli (v) for 1 ≤ i ≤ cmax, being true if v is a vertex with color i ,
(iv) equality of vertex variables and set variables.

A formula of theMS2-logic for hypergraphsmay consist of the logic operators∨,∧,¬,
vertex variables, hyperedge variables, set variables, quantifiers ∃ and ∀ over vertices,
hyperedges, and sets, and the predicates

(i) x ∈ X for a vertex or hyperedge variable x and a set X ,
(ii) inc(e, v), being true if e is a hyperedge containing v,
(iii) adj(v,w), being true if v and w occur in a common hyperedge, and
(iv) equality of vertex variables, edge variables, and set variables.

We use upper-case letters for set variables and lower-case letters for vertex and hyper-
edge variables.

Corollary 3.16 Let F ⊆ Hsmall
t be a hypergraph problem such that ∼F has infinite

index over Hsmall
t . Then, there is no MS2-formula that a hypergraph H ∈ Hsmall

t
satisfies if and only if H ∈ F.

Proof Let F ⊆ Usmall
t,2 be generator-total such that H(F) = F and assume, towards

a contradiction, that there is an MS2-formula ϕ for hypergraphs such that F = {H ∈
Hsmall

t | H satisfies ϕ}. We will turn ϕ into an MS1-formula ϕ∗ for colored graphs
such that a hypergraph H ∈ Hsmall

t satisfies ϕ if and only if all graphs G ∈ Usmall
t,2

with H(G) = H satisfy ϕ∗. That is, F = {G ∈ Usmall
t,2 | G satisfies ϕ∗}. Courcelle’s

theorem [14, Theorem 6.3(2)] shows that ϕ∗ can be turned into a tree automaton Aϕ∗
such that the parse tree of a graph G ∈ Usmall

t,2 is accepted by Aϕ∗ if and only if G sat-
isfies ϕ∗. Consequently, Aϕ∗ recognizes F . This, by Theorem 3.12, contradicts ∼F

having infinite index.
It remains to describe the transformation from ϕ to ϕ∗. To this end, recall that,

by Definition 3.9 of t-boundaried hypergraph generators, the color-1 vertices in a
graph G ∈ Usmall

t,2 with H(G) = H represent vertices of H while the color-2 vertices
in G represent hyperedges of H . Hence, the vertex and hyperedge variables in ϕ

both become vertex variables in ϕ∗. Moreover, the formula ϕ∗ makes sure that the

123

Algorithmica (2015) 73:696–729 713

graphG ∈ Usmall
t,2 satisfying ϕ∗ is a t-boundaried hypergraph generator, that is, vertices

of the same color are nonadjacent in G and each vertex in G has a color. Thus, we let

ϕ∗ := all-labeled ∧ bipartite ∧ ϕ′,
all-labeled := ∀v[col1(v) ∨ col2(v)],
bipartite := ∀v∀w[(col1(v) ∧ col2(w)) ∨ (col2(v) ∧ col1(w)) ∨ ¬ adj(v,w)],

where we obtain ϕ′ by replacing terms in ϕ referring to hypergraphs by equivalent
terms referring to incidence graphs. The term replacement translates incidence and
adjacency of hypergraph objects into adjacency of the corresponding incidence graph
vertices. Specifically, we replace the following hypergraph MS2-expressions on the
left-hand side by the equivalent graph MS1-expressions on the right-hand side:

inc(e, v) ≡ col2(e) ∧ col1(v) ∧ adj(e, v), and

adj(v,w) ≡ col1(v) ∧ col1(w) ∧ ∃e[col2(e) ∧ adj(e, v) ∧ adj(e, w)].

Quantification over the vertices, hyperedges of a hypergraph H = (V, E) are realized
by the term replacements

∃v ∈ V [ψ] ≡ ∃v[col1(v) ∧ ψ], ∃S ⊆ V [ψ] ≡ ∃S[∀x[x /∈ S ∨ col1(x)] ∧ ψ],
∃e ∈ E[ψ] ≡ ∃e[col2(e) ∧ ψ], ∃S ⊆ E[ψ] ≡ ∃S[∀x[x /∈ S ∨ col2(x)] ∧ ψ],
∀v ∈ V [ψ] ≡ ∀v[¬ col1(v) ∨ ψ], ∀S ⊆ V [ψ] ≡ ∀S[∃x[x ∈ S ∧ ¬ col1(x)] ∨ ψ],
∀e ∈ E[ψ] ≡ ∀e[¬ col2(v) ∨ ψ], ∀S ⊆ E[ψ] ≡ ∀S[∃x[x ∈ S ∧ ¬ col2(x)] ∨ ψ].

��

4 Hypergraph Cutwidth is Fixed-Parameter Linear

In this section, we use the Myhill–Nerode theorem for hypergraphs to show that Hy-
pergraph Cutwidth is fixed-parameter linear. We first formally define the problem.
Let H = (V, E) be a hypergraph. A linear layout of H is an injective map l : V → R

of vertices onto the real line. The cut at position i ∈ R in H with respect to l,
denoted CutlH (i), is the set of hyperedges that contain at least two vertices v,w such
that l(v) < i < l(w). We will also say that v is to the left of i and that w is to the right
of i . The cutwidth of the layout l is

max
i∈R

|CutlH (i)|.

The cutwidth of the hypergraph H is the minimum cutwidth over all the linear
layouts of H . The hypergraph shown in Fig. 5 has cutwidth at most three. The Hy-
pergraph Cutwidth problem is defined as follows.

Hypergraph Cutwidth

Input: A hypergraph H = (V, E) and a natural number k.
Question: Does H have cutwidth at most k?

123

714 Algorithmica (2015) 73:696–729

Fig. 5 The shown hypergraph has cutwidth at most three since the black line cuts a maximum number of
hyperedges in the presented linear layout. Actually, it is possible to change the linear layout to see that the
hypergraph has cutwidth two

To solveHypergraph Cutwidth using theMyhill–Nerode theorem for hypergraphs,
in the remainder of this section we consider a constant k and the class k-HCW of all
hypergraphs with cutwidth at most k. We will solve k-HCW in linear time using
Corollary 3.13. This will immediately yield the main result of this section:

Theorem 4.1 Hypergraph Cutwidth is fixed-parameter linear. Specifically, there
is an algorithm that, when given a hypergraph H as hyperedge list and a constant k,
decides in linear time whether H has cutwidth at most k.

In order to use Corollary 3.13 to prove Theorem 4.1, we first show that the hypergraphs
in k-HCW have a constant upper bound on their incidence treewidth. Then, we show
that the canonical right congruence∼k-HCW has finite index. By Corollary 3.13, it then
follows that k-HCW is solvable in f (k) ·n time, completing the proof of Theorem 4.1.

Lemma 4.2 Let H be a hypergraph. If H has cutwidth at most k, then

(i) H has incidence treewidth at most max{k, 1}, and
(ii) the incidence graph of H has pathwidth at most k + 1.

Proof Suppose that H = (V, E) has cutwidth at most k. Let H ′ = (V, E ′) denote the
hypergraph obtained from H by removing all hyperedges of size at most one. Consider
a linear layout l of cutwidth at most k of the vertices of H ′. Without loss of generality,
assume that l maps to the natural numbers [n] and let V = {v1, . . . , vn} be such that
l(vi) = i . We construct a path decomposition for the incidence graph I(H ′) of H ′
with the bags L1, R1, L2, R2, . . . , Ln, Rn that are connected by a path in this order.
For every i ∈ [n], let Li := CutlH ′(i − 1/2) ∪ {vi } and Ri := CutlH ′(i + 1/2) ∪ {vi },
that is, Li contains vi and all hyperedges cut at i − 1/2, while Ri contains vi and
all hyperedges cut at i + 1/2. Herein, recall that the hyperedges of H ′ are vertices
in I(H ′). We now prove that this is a path decomposition for I(H ′).

First, we show that each edge of I(H ′) is contained in at least one bag. Let {vi , e}
be any edge in I(H ′) for some vertex vi ∈ V and a hyperedge e ∈ E ′. We show
that vi and e occur together in at least one bag. Since vi ∈ e and |e| ≥ 2, the
hyperedge e contains at least one vertex to the left or to the right of vi . Hence, we have
e ∈ CutlH ′(i − 1/2) or e ∈ CutlH ′(i + 1/2). Therefore, it holds that e ∈ Ri or e ∈ Li .
Since vi ∈ Ri ∩ Li , the vertices vi and e occur together in at least one bag.

Now, we show that the bags containing a vertex of I(H ′) induce a subpath
in this path decomposition. Obviously, each vertex vi ∈ V is contained in two

123

Algorithmica (2015) 73:696–729 715

bags of the path decomposition: in Li and Ri . These bags are consecutive and
thus induce a path. Finally, consider a hyperedge e ∈ E ′. It occurs in all
bags Ri , Li+1, Ri+1, . . . , L j−1, R j−1, L j , where vi is the leftmost vertex in the lay-
out l occurring in e and v j is the rightmost vertex in l occurring in e. These bags are all
consecutive on the path and, thus, induce a path. The width of this path decomposition
is max0≤i≤n |CutlH ′(i + 1/2)| ≤ k.

(i) To obtain a tree decomposition for I(H) from the path decomposition of I(H ′), we
only need to take care of hyperedges of size atmost one. For every hyperedge e ∈ E
of size one, add a new bag {e, v}, where v is the unique vertex contained in e, and
make it adjacent to an arbitrary bag containingv. For every emptyhyperedge e ∈ E ,
add a new bag {e}, and make it adjacent to an arbitrary bag. In this way, we obtain a
tree decomposition for the incidence graph I(H) of H of width at most max{k, 1}.
Thus, H has incidence treewidth at most max{k, 1}.

(ii) To obtain a path decomposition for I(H) from the path decomposition of I(H ′),
one can proceed similarly: For every hyperedge e ∈ E of size at most one, choose
some bag B of size at most k + 1 with e ⊆ B and add the bag B ∪ {e} as its
neighbor to the path decomposition. Such a bag B exists since the width of the
path decomposition of H ′ is k. The resulting path decomposition will contain bags
of size k + 2 and, thus, has width k + 1. ��

To obtain a linear-time algorithm for k-HCW using Corollary 3.13 and thus proving
Theorem 4.1, it remains to prove that the canonical right congruence ∼k-HCW of k-
HCW has finite index over Hlarge

t for all t ≤ k + 1.
To show that ∼k-HCW has finite index over H

large
t , we show that, given a t-

boundaried hypergraph G, only a finite number of bits of information about a t-
boundaried hypergraph H is needed in order to decide whether G ⊕h H ∈ k-HCW.
To this end, we employ the method of test sets [17, Section 12.7]: let T be a set of
objects called tests (we will formally define a test later). A t-boundaried graph can
pass a test. For t-boundaried hypergraphs G1 and G2, let G1 ∼T G2 if and only if G1
andG2 pass the same subset of tests inT. Obviously,∼T is an equivalence relation.Our
aim is to find a set T of tests such that ∼T refines ∼k-HCW (that is, G1 ∼T G2 implies
G1 ∼k-HCW G2). Then, if ∼T has finite index, so does ∼k-HCW. To show that ∼T has
finite index, we show that we can find a finite set T such that ∼T refines ∼k-HCW.

Intuitively, we will define, for a hypergraph H , an H -test that a hypergraph G
satisfies if G ⊕h H ∈ k-HCW. We define the test so that it contains only the necessary
information of H and so that we can later shrink all tests to equivalent tests of constant
size. We now formally define a test for k-HCW. The definition is illustrated in Fig. 6
and, after the definition, we give an intuitive description.

Definition 4.3 A size-n test T for k-HCW over Hlarge
t is a triple (π, S, k), where

– π : {1, . . . , t} → {1, . . . , n} is a map of boundary labels to integer positions, and
– S = (S0, S1, . . . , Sn) is a sequence of pairs Si = (wi , Ei) ∈ {0, . . . , k} × 2{1,...,t}
such that if � ∈ Ep and � ∈ Eq , then � ∈ Ei for all i ∈ {p, . . . , q}.

Now, let G and H be t-boundaried hypergraphs such that G ⊕h H ∈ k-HCW and
l : V → R be a linear layout for G ⊕h H with minimum cutwidth, which, without

123

716 Algorithmica (2015) 73:696–729

GVertices of Vertices of H

S0

0

S1

1

S2

1

S3

2

S4

1

S5

1

{3}

S6

0

{3}
wi

Ei

1 2

3

Fig. 6 Construction of the H -test illustrated using the glued hypergraph G ⊕h H , where G and H are the
hypergraphs shown in Fig. 4a, b, respectively. That is, G and H have only the vertices labeled 1 and 2 in
common and both have a hyperedge with label 3. The vertices of H are to be understood as lying at the
positions {1, 2, . . . , 6} and the non-boundary vertices of G lie in the open interval (0, 1)

loss of generality, maps vertices of the n-vertex hypergraph H to the integer posi-
tions {1, . . . , n} and the non-boundary vertices of G to non-integer positions.

We define an H-test T = (π, S, k) for k-HCW of size n as follows: for a vertex v ∈
∂(H) with label �, set π(�) := l(v). Finally, for i ∈ {0, . . . , n}, we define Si :=
(wi , Ei) with

– wi being the number of unlabeled hyperedges in H containing vertices v,w of H
with l(v) ≤ i < l(w), and

– Ei being the set of labels of hyperedges in H containing vertices v,w of H with
l(v) ≤ i ≤ l(w).

The goal of Definition 4.3 is that if a hypergraph G passes an H -test for k-HCW, then
G ⊕h H ∈ k-HCW. More precisely, we want that if a hypergraph G passes an H -test,
then G ⊕h H has a linear layout l of cutwidth at most k that lays out the vertices of H
in the same way as the layout used to create the H -test. Of course, the H -test does not
record the precise structure of H but only the most important information:

Assume that we want to verify that the cutwidth of the layout l of G ⊕h H is at
most k without knowing H but only knowing G and the H -test. Then, for any non-
integer position i , the value w�i� counts the unlabeled hyperedges of H cut at i . Thus,
to the size of any cut for G at position i ∈ R \ N, we have to add the value w�i�. For
labeled hyperedges of H , things are more difficult: they contain vertices of G ⊕h H
that originate from G as well as from H . Since an H -test corresponds to a fixed layout
for H , to count a hyperedge with label � of G ⊕h H that is cut at some position, it is
sufficient to know the vertices of the hyperedge with label � in G and the positions
of the leftmost and the rightmost vertex of H contained in the hyperedge with label �
in H . However, in order to easier shrink all tests to constant size later, we chose a more
convenient way to keep this information in the H -test: for any position i between the
leftmost and the rightmost vertex of a hyperedge e in H with label �, we have � ∈ Ei .
We now precisely define what it means to pass a test.

123

Algorithmica (2015) 73:696–729 717

Definition 4.4 Let G = (V, E) be a t-boundaried hypergraph and T = (π, S, k) be
a test of size n, where S = (S0, . . . , Sn) and Si = (wi , Ei).

A T -compatible layout for G is an injective function f : V → R such that each
vertex v ∈ ∂(G)with label � is mapped to π(�) and such that each vertex v ∈ V \∂(G)

is mapped into some open interval (i, i + 1) for 0 ≤ i ≤ n.
For a hyperedge e in G, we define the positions of e as

Pos(e) :=
{

{ f (v) | v ∈ e} if e is unlabeled,

{ f (v) | v ∈ e} ∪ {i | � ∈ Ei } if e has label �.

The joint cut at i in G with respect to f is the set Jcut fG(i) of hyperedges e of G for
which there are positions j, k ∈ Pos(e) with j < i < k. The joint cutwidth of f is

max
i∈R\N

(| Jcut fG(i)| + w�i�).

Finally, G passes the test T if there is a T -compatible layout f for G whose joint
cutwidth is at most k.

We can now show that, indeed, if two graphs satisfy the same tests, then they are
equivalent under ∼k-HCW. We will then show that, actually, there is only a finite set of
pairwise nonequivalent tests, thus showing that ∼k-HCW has finite index.

Lemma 4.5 For T being the set of all tests for k-HCW, the equivalence relation ∼T

refines ∼k-HCW.

To prove Lemma 4.5, we show that if two t-boundaried hypergraphs G1,G2 pass the
same subset of tests of T, then, for all t-boundaried hypergraphs H , G1 ⊕h H ∈ k-
HCW if and only if G2 ⊕h H ∈ k-HCW. The proof is based on the following two
claims.

Claim 4.6 If G1 ⊕h H ∈ k-HCW, then G1 passes some H -test.

Claim 4.7 If G2 passes any H -test, then G2 ⊕h H ∈ k-HCW.

From these two claims, Lemma 4.5 then easily follows: let H be a t-boundaried
hypergraph such that G1 ⊕h H ∈ k-HCW. By Claim 4.6, G1 passes some H -test T .
Since G1 and G2 pass the same tests, also G2 passes T . By Claim 4.7, it follows that
G2 ⊕h H ∈ k-HCW. The reverse direction is proved symmetrically. It only remains
to prove Claim 4.6 and Claim 4.7.

Proof (of Claim 4.6) Let T be the H -test obtained from an optimal layout l
of G1 ⊕h H , which, without loss of generality, maps the vertices of the n-vertex
graph H to the integer positions {1, . . . , n} and the vertices of V (G1) \ ∂(G1) to
non-integer positions in the interval (0, n + 1). Then, l obviously is a T -compatible
layout for G1. We show that the joint cutwidth maxi∈R\N(| JcutlG1

(i)| + w�i�) of l
from Definition 4.4 is at most k.

123

718 Algorithmica (2015) 73:696–729

To this end, for an i ∈ R \ N, consider the set A := CutlG1 ⊕h H
(i) of hyperedges

of G1 ⊕h H containing two vertices v,w with l(v) < i < l(w). Since G1 ⊕h H ∈ k-
HCW, we have |A| ≤ k. Thus, it is sufficient to show that | JcutlG1

(i)| + w�i� ≤ |A|.
We partition A into two sets B and C , where B are the unlabeled hyperedges in H .

Since i /∈ N, by Definition 4.3, w�i� counts exactly the hyperedges in B. It remains
to show that | JcutlG1

(i)| ≤ |C |. Recall from Definition 4.4 that JcutlG1
(i) is the set of

hyperedges e ofG1 for which Pos(e) contains two positions j, k with j < i < k. If e is
unlabeled, then, by Definition 4.4 of Pos(e), the hypergraph G1 contains vertices v,w

with l(v) = j and l(w) = k. Since e, v, and w are also in G1 ⊕ H , we have e ∈ C .
If e is labeled, then G1 ⊕h H instead of e contains a hyperedge e′ ⊇ e. Now,

since j ∈ Pos(e), the hypergraph G1 contains a vertex v with l(v) = j or � ∈ E j ,
which, by Definition 4.3, implies that there is a hyperedge with label � containing a
vertex v in H with l(v) ≤ i . Likewise, G1 contains a vertex w with l(w) = k or
� ∈ Ek , which implies that there is a hyperedge with label � containing a vertex w

in H with k ≤ l(w). In all cases, we have that l(v) < i < l(w). Since the hyperedge e′
of G1 ⊕h H contains v and w, we get e′ ∈ C . ��
Proof (of Claim 4.7) Let T be an H -test T obtained from a linear layout l of cutwidth k
for some G∗ ⊕h H and assume that G2 passes T . Then, there is a T -compatible
layout f for G2 with joint cutwidth at most k. First note that l and f agree on the
layout of vertices in ∂(G2) and ∂(H) and that, apart from these, f lays out vertices at
non-integral positions, whereas l lays out vertices of H at integral positions. Because
of this, in a layout g for G2 ⊕h H that lays out vertices v of H at position l(v) and
vertices v ofG2 at position f (v), every two vertices inG2 ⊕h H are laid out at distinct
positions by g. Hence, g is injective and, therefore, a layout.

We show that g is a layout of cutwidth at most k for G2 ⊕h H . That is, we show
maxi∈R |CutgG2 ⊕h H

(i)| ≤ k. To this end, note that

max
i∈R

|CutgG2 ⊕h H
(i)| ≤ max

i∈R\N
|CutgG2 ⊕h H

(i)|,

since for every i ∈ N, we have CutgG2 ⊕h H
(i) ⊆ CutgG2 ⊕h H

(i + ε) for 0 < ε < 1
chosen so that no vertex is mapped by g to the interval (i, i + ε]. That is, we only have
to show that, for each i ∈ R \ N, we have |CutgG2⊕H (i)| ≤ | Jcut fG2

(i)| + w�i�, since
f is a layout for G2 with joint cutwidth maxi∈R\N(| Jcut fG2

(i)| + w�i�) ≤ k.

For some position i ∈ R \ N, consider the set A := CutgG2 ⊕h H
(i) of hyperedges

of G2 ⊕h H containing vertices v,w with g(v) < i < g(w) and let it be partitioned
into two sets B and C , where B contains the unlabeled hyperedges of H . We show
that |A| ≤ w�i� + | Jcut fG2

(i)|. By Definition 4.3, we clearly have |B| ≤ w�i�. Hence,
it remains to show that |C | ≤ | Jcut fG2

(i)|.
To this end, let e ∈ C be a hyperedge. If e contains only vertices of G2, then for any

vertex v ∈ e, we have g(v) = f (v) ∈ Pos(e). Furthermore, if e contains a vertex v

of H , then e has a label � and H has a hyperedgewith label � containing v. Hence, in this
case, we have � ∈ El(v). It follows that g(v) = l(v) ∈ Pos(e′) for the hyperedge e′ ⊆ e
of G2 with label �. Hence, for any vertex v ∈ e, we have g(v) ∈ Pos(e′). Since

123

Algorithmica (2015) 73:696–729 719

e contains vertices v,w with g(v) < i < g(w), it follows that Pos(e′) contains
positions j = g(v) and k = g(w) with j < i < k and, therefore, e′ ∈ Jcut fG2

(i). ��

Towards our goal of showing that ∼k-HCW has finite index, Lemma 4.5 shows a
set of tests T such that ∼T refines ∼k-HCW, where two hypergraphs are equivalent
with respect to ∼T if and only if they pass the same subset of tests of T. How-
ever, since the set T is infinite, we cannot yet conclude that ∼T and, therefore,
∼k-HCW has finite index. The following lemma will, for every test T ∈ T, find a
test T ′ ∈ T such that a hypergraph G passes T ′ if and only if it passes T and such
that T ′ has size at most (2t + 1)(t + 1)(2k + 2). Thus, the equivalence relation ∼T′
for T′ being the set of all tests of size (2t + 1)(t + 1)(2k + 2) is the same as ∼T

and, consequently, refines ∼k-HCW. Since there is only a constant number of tests of
size (2t + 1)(t + 1)(2k + 2) for constant k and t ≤ k + 1, the size of T′ is constant.
Since ∼T′ and, therefore, ∼k-HCW has at most 2|T′| equivalence classes, it follows
that ∼k-HCW has finite index. Thus, the following lemma finishes our proof of Theo-
rem 4.1.

Lemma 4.8 Let G be a t-boundaried hypergraph. For every test T1, there is a test T2
of size (2t + 1)(t + 1)(2k + 2) such that G passes T1 if and only if G passes T2.

Proof Let the size of the test T1 = (π, S, k) be n. For E ⊆ {1, . . . , t}, we call a
maximal subsequence S j = (E j , w j), . . . , Sk = (Ek, wk) of S with E = E j =
· · · = Ek a strait. We first show that there are at most 2t + 1 straits, and then show
that we can shorten each strait to length at most (t + 1)(2k + 2) by removing some
elements from S without changing the satisfiability of the test.

For a label � ⊆ {1, . . . , t}, let I� := {i ≤ n | � ∈ Ei }. By Definition 4.3, each I� for
some label � ∈ {1, . . . , t} is an interval of the natural numberswith aminimumelement
and amaximum element, whichwe both call events. Hence, the I� for all � ∈ {1, . . . , t}
in total have at most 2t events. Since straits can only start at an event or at S0, and
since only one strait can start at a fixed event, it follows that S is partitioned into at
most 2t + 1 straits.

It remains to shorten the straits. To this end, we apply data reduction rules already
used byDowney andFellows [17, Theorem12.7.5] for the cutwidth problemongraphs.
Let S j = (E, w j), . . . , Sk = (E, wk) be a strait in T1.We call a maximal subsequence
of the wi of the strait such that π maps no boundary label to i a load pattern. Hence,
each strait decomposes into at most t + 1 load patterns, each of which we will shorten
to length at most 2k + 2.

To this end, first observe that if the test T1 passed by G contains a pair Si =
(E, wi), then G also passes the test obtained from T1 by replacing Si by S′

i = (E, w′
i)

with w′
i ≤ wi . Moreover, assume that, as illustrated in Fig. 7, T1 contains two pairs

Si = (E, wi), Si+1 = (E, wi+1)withwi = wi+1 such that π maps no boundary label
to i +1. Then G passes the test obtained from T1 by removing Si+1. Moreover, G then
also passes the test obtained from T1 by adding a copy of Si behind Si .

Based on these observations, Downey and Fellows [17, Theorem 12.7.5] give a
proof that the following three data reduction rules applied to a load pattern s of the
strait S j , . . . , Sk turn T1 into a test T2 that G passes if and only if it passes T1:

123

720 Algorithmica (2015) 73:696–729

Si

wi

Ei

Si+1

wi+1

Ei+1

Si+2

wi+2

Ei+2

1

Fig. 7 Shown are two unlabeled vertices and one labeled vertex of a graph G laid out according to a
T -compatible layout for some test T = (π, S, k). That is, the label 1 is mapped to the integer position i + 2
by π , while the others vertices are laid out at non-integer positions. Assume that Si = Si+1 and that no
label is mapped to position i + 1 by π . Then, we can assume that no vertex of G lies in [i + 1, i + 2):
moving it to (i, i + 1) would yield a T1-compatible layout with equal joint cutwidth. The joint cutwidth
will also not be altered by deleting Si+1 or adding copies of Si behind Si

(R1) If s = (. . . , wi , wi+1, wi+2, . . .) such that wi ≤ wi+1 ≤ wi+2 or wi ≥ wi+1 ≥
wi+2, then delete Si+1.

(R2) If s = (. . . , a, si , . . . , si ′ , b, . . .) such that eachof si , . . . , si ′ is at leastmax(a, b),
then replace Si , . . . , Si ′ by S∗ := (E, w), where w is the maximum of si , . . . , si ′ .

(R3) If s = (. . . , a, si , . . . , si ′ , b, . . .) such that eachof si , . . . , si ′ is atmostmin(a, b),
then replace Si , . . . , Si ′ by S∗ := (E, w), where w is the minimum of si , . . . , si ′ .

Downey and Fellows [17, Theorem 12.7.5] show that a load pattern, to which none of
the rules apply, has length at most 2k + 2. ��

Historical Remarks. The above results about reduced load patterns in the construction
of test setswere first proved byAbrahamson andFellows [1,2] in the context of proving
that, for simple graphs, the property Pk of having cutwidth bounded by k has finite
index over Ularge

t for all fixed k and t . An essentially equivalent notion, termed typical
sequences, was introduced independently by Bodlaender and Kloks [7] in the context
of linear-time dynamic programming algorithms for Pathwidth and Treewidth.
Such sequences are also implicit in early work of Lagergren and Arnborg [33].

5 Hypertree Width and Variants

In in this section, we show a negative application of our hypergraph Myhill–Nerode
analog to Generalized Hypertree Width [29]. First, we precisely define the
problem.

Let H be a hypergraph. Generalized hypertree width is defined with respect to tree
decompositions of the primal graph G(H), however, the width of the tree decomposi-
tions is measured differently. Suppose H has no isolated vertices (otherwise, remove
them). A cover of a bag is a set of hyperedges such that each vertex in the bag is con-
tained in at least one of these hyperedges. The cover width of a bag is the minimum
possible number of hyperedges covering it. The cover width of a tree decomposition is

123

Algorithmica (2015) 73:696–729 721

the maximum cover width of any bag in the decomposition. The generalized hypertree
width of H is the minimum cover width over all tree decompositions of G(H).

Generalized Hypertree Width

Input: A hypergraph G = (V, E) and a natural number k.
Question: Does G have generalized hypertree width at most k?

Since Generalized Hypertree Width is NP-hard for k = 3 [29], it is natural
to search for non-standard parameters with respect to which the problem is fixed-
parameter tractable [21,32,42]. While it is known that the generalized hypertree width
of a hypergraph is atmost the incidence treewidth plus one [23], the incidence treewidth
may be arbitrarily large even for hypergraphs with hypertree width one, since adding a
universal hyperedge to any hypergraph reduces its hypertree width to one. Therefore,
one could hope for positive results with respect to incidence treewidth. However, we
will show that Generalized Hypertree Width cannot be solved by finite tree
automata on tree decompositions of incidence graphs:

Theorem 5.1 Let k-GHTW be the set of hypergraphs with generalized hypertree
width at most k. The canonical right congruence ∼k-GHTW does not have finite index
over Hsmall

t for k = 4 and t ≥ 41.

By Corollary 3.16, it follows that k-GHTW is not expressible in monadic second-
order logic. Moreover, the construction we use in the proof leads us to conjecture
that, actually, the problem might turn out to be W[1]-hard, as did Bandwidth and
Triangulating Colored Graphs after it was shown that they do not have finite
index [9].

We will discuss this after proving Theorem 5.1. Moreover, after proving Theo-
rem 5.1, we will discuss that the theorem also holds for the problem variants Hyper-
tree Width and Fractional Hypertree Width.

To prove Theorem 5.1, we apply Corollary 3.14: for every n ≥ 1, we give a
construction of a t-boundaried hypergraph Hn whose incidence graph allows for a
tree decomposition of width t − 1, of which one bag contains ∂(Hn). Then we show
that Hn ⊕h Hm has generalized hypertree width 4 if and only if n = m. This implies
that the canonical right congruence ∼4-HTW has infinite index over Hlarge

t and, by
Corollary 3.14, it follows that it has infinite index also over Hsmall

t .

Construction 5.2 For every n ≥ 1, we construct a t-boundaried hypergraph Hn with
t = 28, generalized hypertree width 4, and incidence treewidth at most 12. The vertex
set of Hn is V := A∪ B ∪C ∪ D ∪ S ∪ T ∪ X , where A := {a, y}, B := {b, z},C :=
{c, y}, D := {d, z}, S := {s1, . . . , s8}, T := {t1, . . . , t8} and X := {x1, . . . , x6n}. The
hyperedge set of Hn is E := {A, B,C, D} ∪ BS ∪ {Sc, Sd , Sy, Sz} ∪ BT ∪ {Ta, Tb,
Ty, Tz} ∪ {E3i , E3i+1 : 1 ≤ i < 2n} ∪ {Ei,i+1 : 1 ≤ i < 6n}, where

BS is the set of all possible binary hyperedges on S,

Sc := {c, s1, s2}, Sd := {d, s3, s4},
Sy := {y, s5, s6}, Sz := {z, s7, s8},

123

722 Algorithmica (2015) 73:696–729

BT is the set of all possible binary hyperedges on T ,

Ta := {a, t1, t2}, Tb := {b, t3, t4},
Ty := {y, t5, t6}, Tz := {z, t7, t8},
E1 := {s8, x1},
E3i := {a, c, y, x3i } for 1 ≤ i < 2n,

E3i+1 := {b, d, z, x3i+1} for 1 ≤ i < 2n,

E6n := {x6n, t1},
E6i+1,6i+2 := {a, b, x6i+1, x6i+2} for 0 ≤ i < n,

E6i+4,6i+5 := {c, d, x6i+4, x6i+5} for 0 ≤ i < n, and

E3i,3i+1 := {x3i , x3i+1} for 1 ≤ i < 2n.

The set of boundary hyperedges is {A, B,C, D, Sc, Sd , Sy, Sz, Ta, Tb, Ty, Tz}. The
set of boundary vertices is S ∪ T . They are labeled from 1 to 28 in this order and by
increasing indices. See Fig. 8 for an illustration of H2 induced on V \ (S ∪ T).

We first give an outline of the remaining proof. Consider a tree decomposition
for Hn ⊕h Hm with generalized hypertree width 4. The aim is to prove n = m. The
vertex sets S and T and the hyperedges containing them make sure that some bag BS

of the decomposition contains all of S and that some bag BT contains all of T . Now,
both in G(Hn) and in G(Hm), there is a path from a vertex in S to a vertex in T pass-
ing through all vertices xi by increasing indices. The edges of this path are covered

Fig. 8 The incidence graph
of H2 induced on V \ (S ∪ T).
Boxes represent hyperedges

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

a b

c d

y z

A B

C D

123

Algorithmica (2015) 73:696–729 723

by intermediate bags lying on the path from BS to BT on the tree decomposition.
Observe that no vertex xi is contained in a boundary hyperedge. Therefore, when we
restrict the tree decomposition to the vertices in Hn , we recover a tree decomposition
for Hn where all intermediate bags are covered by at most 3 hyperedges. Moreover,
our construction makes sure that when a bag is covered by 3 hyperedges, at least 2
of them are boundary hyperedges. In every such tree decomposition for Hn , when
considering the intermediate bags starting from BS that contain either A, B or C, D
in their cover, we first encounter bags covered by C, D, then bags covered by A, B,
then bags covered by C, D, and so on, and there are exactly n alternations from C, D
to A, B in this sequence. Therefore, in order to be able to merge such decompositions
for Hn and Hm , we must have n = m.

We now give a more detailed proof of Theorem 5.1. In the construction of Hn , the
vertices in S and T and the hyperedges containing them are only used to make sure
that every tree decomposition of Hn with hypertree width 4 contains a bag B−1 with
the vertices S ∪ {c, d, y} and a bag B6n+1 with the vertices T ∪ {b, y, z}. Since the
sets S ∪ {c, d, y, z} and T ∪ {a, b, y, z} can also be covered by 4 hyperedges, all of
which are boundary hyperedges, let D = ({Vi : i ∈ I }, T) be a tree decomposition
for Hn with the bagsB−1 = S∪{c, d, y, z} andB6n+1 = T ∪{a, b, y, z}. We observe
that all other vertices of Hn occur in bags that are in the same connected component
of the forest obtained from D by removing these two bags.

Claim 5.3 The tree decomposition D contains a bag Bi , 0 ≤ i ≤ 6n, with {s8, x1,
c, d, y, z} ⊆ B0, {t1, x6n, a, b, y, z} ⊆ B6n , and {a, b, c, d, y, z, xi , xi+1} ⊆ Bi , for
every i , 1 ≤ i < 6n.

Proof The primal graph G(Hn) contains the cliques {s8, x1}, {a, b, x1, x2}, {a, b,
x2, x3}, {a, c, y, x3}, {x3, x4}, {x4, b, d, z}, {c, d, x4, x5}, {c, d, x5, x6}, {a, c, y, x6},
{x6, x7}, {b, d, z, x7}, {a, b, x7, x8}, . . . , {x6n, t1}, and every two consecutive cliques in
this list intersect in at least one vertex. In particular,weobserve the path (s8, x1, x2, . . . ,
x6n, t1) in G(Hn). Thus, D contains bags B0 ⊇ {s8, x1}, B6n ⊇ {t1, x6n}, and
Bi ⊇ {xi , xi+1}, 1 ≤ i < 6n. Moreover, each Bi , 0 ≤ i < 6n, contains c, d, y, z
since B−1 contains c, d, y, z, B6n−1 contains c, d, B6n+1 contains y, z, and without
loss of generality, we can assume the Bi , 0 ≤ i ≤ 6n, were chosen such that they are
on the path fromB−1 toB6n+1 in T . Similarly, eachBi , 1 ≤ i ≤ 6n, contains a, b. ��
A tree decomposition for Hn is a good tree decomposition if it contains the bagsB−1 =
S∪{c, d, y, z} andB6n+1 = T ∪{a, b, y, z} and every bag exceptB−1 andB6n+1 can
be covered with at most 3 hyperedges, and in case such a bag is covered with exactly
3 hyperedges, two of these hyperedges are in the boundary. A good cover for a good
tree decomposition is a cover for each bag according to the specifications of a good
tree decomposition.

Claim 5.4 IfD is a good tree decomposition for Hn , then, for every i , −1 ≤ i ≤ 6n,
there is a path from the bag Bi to the bag Bi+1 that avoids all the bags B j , j ∈
{−1, . . . , 6n + 1} \ {i, i + 1}.
Proof Suppose the path from Bi to Bi+1 passes through B j with j ∈ {−1, . . . ,
6n + 1} \ {i, i + 1}. Since every bag on the path from Bi to Bi+1 contains Bi ∩

123

724 Algorithmica (2015) 73:696–729

Bi+1, we have that xi+1 ∈ B j . But then {s8, x1, c, d, y, z, xi+1} ⊆ Bj (if j = 0) or
{t1, x6n, a, b, y, z, xi+1} ⊆ Bj (if j = 6n) or {a, b, c, d, y, z, x j , x j+1, xi+1} ⊆ B j

(otherwise), implying that Bj cannot be covered by two hyperedges and it cannot be
covered by three hyperedges of which two are in the boundary. ��
Claim 5.5 In every good cover,B0 is covered by {E1,C, D}, B6n is covered by {E6n,

A, B}, and for every i, 1 ≤ i < 6n,

Bi is covered by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{Ei,i+1,C, D} if i ≡ 1 (mod 6),

{Ei,i+1,C, D} if i ≡ 2 (mod 6),

{Ei , Ei+1} if i ≡ 3 (mod 6),

{Ei,i+1, A, B} if i ≡ 4 (mod 6),

{Ei,i+1, A, B} if i ≡ 5 (mod 6), and

{Ei , Ei+1} if i ≡ 0 (mod 6).

Proof The claim easily follows from Claim 5.3. ��
Suppose D is a good tree decomposition for Hn . The backbone of D is the path P
in T starting at the bag B−1 and ending at the bag B6n+1. By Claim 5.4, P visits
B0,B1, . . . ,B6n in this order. Let Pi, j denote the subpath of P starting at Bi and
ending at B j .

Claim 5.6 For every i ∈ {0, 6, 12, . . . , 6n − 6}, no bag on Pi,i+3 is covered by a set
of hyperedges Q with A, B ∈ Q in a good cover.

Proof Consider a bagB on Pi,i+3 and letQ ⊇ {A, B} be a cover forB. The bagB con-
tains the intersection of two bags that are consecutive in the listBi ,Bi+1,Bi+2,Bi+3.
Therefore, at least one of xi+1, xi+2, xi+3 is in B. We also have that c, d ∈ B since
c, d ∈ Bi∩Bi+3.However, no hyperedge contains xi+1, c, d or xi+2, c, d or xi+3, c, d.
Thus, |Q| ≥ 4, and therefore Q is not part of a good cover. ��
Claim 5.7 For every i ∈ {3, 9, 15, . . . , 6n − 3}, no bag on Pi,i+3 is covered by a set
of hyperedges Q with C, D ∈ Q in a good cover.

Proof The proof is symmetric to the proof of Claim 5.6. ��
Consider a good cover of D. A switch is an inclusion-wise minimal subpath
(Yi , . . . ,Y j) of the backbone of D where Yi is covered by Qi with C, D ∈ Qi and Y j

is covered by Q j with A, B ∈ Q j . The signature of a good cover of D is its number
of switches.

Claim 5.8 Each good cover of each good tree decomposition of Hn has signature n.

Proof The claim follows from Claims 5.5,5.6, and 5.7. ��
Due to Claim 5.8, we can speak of the signature of Hn and the signature of a good tree
decomposition of Hn as the signature of some good cover of such a tree decomposition.

123

Algorithmica (2015) 73:696–729 725

Let H = Hn and H ′ = Hm . Consider a tree decomposition D = ({Vi : i ∈ I }, T)

of H ⊕h H ′ with generalized hypertree width 4. Without loss of generality, suppose
the bagsB−1 = S ∪ {c, d, y, z} andB6n+1 = T ∪ {a, b, y, z} are leafs of this decom-
position and their neighboring bags contain both copies of x1 and x6n , respectively.
Let D|H denote the restriction of D to H , i.e., it has the same tree, but each bag is
restricted to the vertices of H .

Claim 5.9 D|H is a good tree decomposition for H .

Proof Consider a bag B ofD besides B−1 and B6n+1. The bag B contains a copy of
some xi from H ′. This vertex is covered by some hyperedge from H ′ that does not
belong to the boundary. Therefore, B|H is covered by at most 3 hyperedges. Suppose
B|H is covered by exactly 3 hyperedges. Then, the cover of B|H ′ contains at most
one hyperedge that does not belong to the boundary. But, since each such hyperedge
covers at most 2 vertices among {a, b, c, d}, the cover ofB contains at least 2 boundary
hyperedges. This proves the claim. ��
Symmetrically, D|H ′ is a good tree decomposition for H ′. Since D|H and D|H ′ have
the same signature, we conclude that n = m due to Claim 5.8. This proves that the
canonical right congruence ∼4-GHTW does not have finite index overHlarge

t . To prove
Theorem 5.1, it remains to prove that it also has infinite index over Hsmall

t .

(Proof of Theorem 5.1) We aim to apply Corollary 3.14. First, we show that the con-
structed graphs Hn have incidence treewidth at most 12. The graph Hn \ (S ∪ T ∪
{a, b, c, d, y, z}) is a disjoint union of trees and therefore, has tree decomposition of
width 1. From this tree decomposition, we obtain a tree decomposition of width 7
for Hn \ (S ∪ T) by adding {a, b, c, d, y, z} to each bag of the decomposition.
Finally, we obtain a tree decomposition for Hn of width at most 12 by adding the
two bags S ∪ {a, b, c, d, y, z} and T ∪ {a, b, c, d, y, z} and making them adjacent to
arbitrary bags of the tree decomposition for Hn \ (S ∪ T). To obtain a tree decompo-
sition where one bag contains ∂(Hn), we modify the tree decomposition of width 12
for the incidence graph Hn by adding the 28 boundary objects to each bag. The result
is a tree decomposition of width 40 where ∂(Hn) is contained in one bag. Then, we
obtain a hypergraph H ′

n from Hn by adding to Hn 13 additional, isolated bound-
ary vertices. Clearly, Hn and H ′

n have the same generalized hypertree width. We use
the tree decomposition of the incidence graph of Hn also for H ′

n , but we attach a
bag consisting of ∂(Hn) and the 13 additional boundary vertices of H ′

n . This bag has
width 28+12 = 40. Hence, the family H ′

n we constructed from Hn has tree decompo-
sitions of width 40 of their incidence graphs such that one bag contains all 41 boundary
objects. Thus, Corollary 3.14 applies to our family. ��

Other width measures for hypergraphs. Theorem 5.1 easily applies also to the prob-
lemsHypertree Width and Fractional Hypertree Width, which asks whether
a hypergraph has (fractional) hypertree width at most k. Hypertree Width is W[2]-
hard [28] with respect to k and Fractional Hypertree Width is expected to be
NP-hard for constant k [36]. Before discussing how Theorem 5.1 applies to these
problems, we formally define these width measures.

123

726 Algorithmica (2015) 73:696–729

The hypertreewidth of H is defined in a similarway as the generalized hypertreewidth,
except that, additionally, the tree of the decomposition is rooted and a hyperedge e
can only be used in the cover of a bag Vi if Vi contains all vertices of e that occur in
bags of the subtree rooted at the node i .

The fractional hypertree width of H is also defined similarly, except that it uses
fractional covers: in a fractional cover of a bag, each hyperedge is assigned a non-
negativeweight, and for eachvertex in the bag, the sumof theweights of the hyperedges
incident to it is at least 1. The fractional cover width of the bag is the minimum total
sum of all hyperedges of a fractional cover.
Let k-HTW be the family of hypergraphs of hypertree width at most k and k-FHTW be
the family of hypergraphs of fractional hypertree width at most k. To see that the proof
of Theorem 5.1 applies to ∼4-HTW, observe that, in our construction, every hyperedge
covering a bag is a subset of that bag. To see that it extends to ∼4-FHTW, observe that
for every bag Bi , 0 ≤ i ≤ 6n, an optimal fractional cover is integral, and 5.6 can be
extended to A, B ∈ Q with weight 1—similarly for Claim 5.7.

Corollary 5.10 Fractional Hypertree Width and Hypertree Width do not
have finite index.

Indication for intractability. Formally, Theorem 5.1 only shows that a tree automaton
cannot decide the property of having constant Hypertree Width and, by Corol-
lary 3.16, that this property is not expressible in monadic second-order logic for
hypergraphs. However, following the argumentation of Bodlaender, Fellows, and
Warnow [8] for theTriangulating Colored Graphs problem introduced in Sect. 1
leads us to the following conjecture.

Conjecture 5.11 Generalized Hypertree Width is W[1]-hard with respect to the
parameter incidence treewidth.

The reason for this conjecture lies in the number of equivalence classes observed in the
proof of Theorem 5.1, which entails a lower bound on the amount of information that
needs to bemaintained by an algorithmwhen it decideswhether a given hypergraph has
(generalized, fractional) hypertree width k using a tree decomposition of the incidence
graph. Typical such algorithms associate with each bag of the tree decomposition a
table that is computed from the tables associated with the tables of the child bags.
Observe that such an algorithm is essentially a tree automaton; its states are the tables.
Since the number of equivalence classes of the canonical right congruence gives a
lower bound on the number of states a tree automaton needs to have in order to
decideGeneralized Hypertree Width, it also gives a lower bound on the number
different tables that have to be handled by such a (simple) dynamic programming
algorithm in order not to make wrong decisions.

However, restricting the construction in the proof of Theorem 5.1 to graphs of at
most n vertices, the proof of Theorem 5.1 exhibits a class C of t-boundaried hyper-
graphs on at most n vertices with constant incidence treewidth t − 1, for which the
canonical right congruence has Ω(n) equivalence classes. Now, consider a class C′
of O(k)-boundaried hypergraphs where each hypergraph contains k copies of hyper-
graphs from C and has at most n′ vertices. Then, the number of equivalence classes

123

Algorithmica (2015) 73:696–729 727

of the canonical right congruence is Ω((n′/k)k) for C′. Hence, we conjecture that an
algorithm with running time f (k) · nc for a constant c and a computable function f
does not exist.

6 Summary, Discussion and Open Problems

We extended the Myhill–Nerode theorem to hypergraphs, making the methodology
more widely applicable. We did this in the general framework of the hypergraph
analogs of the large and small universes of t-boundaried graphs. We used the Myhill–
Nerode approach to obtain fixed-parameter linear-time algorithms for Hypergraph
Cutwidth by

(1) using the method of test sets to prove “finiteness” results in the large universe,
which is not only more convenient but also of independent interest in the context
of communication complexity, and

(2) then translating this result into an algorithm by means of a general machinery that
links large universe results to the small universe of bounded treewidth representa-
tions.

This approach has the advantage of being relatively simple and powerful in the sense
of (1) yet relatively general in the sense of (2). One of our principle objectives in
this article was to establish powerful and general methodologies to solve hypergraph
problems. If the principal objective were to have the most efficient algorithm for
Hypergraph Cutwidth, then this is not the way to go. That would probably be
to hunker down as tightly as possible into the small universe, and do some serious
dynamic programming [7,33,45]. Our machinery only shows when such seriousness
is worthwhile: for example, it is for Hypergraph Cutwidth, but probably not for
Hypertree Width and its variants.

There are many interesting open questions in this relatively under-explored area.
The general theme is (referring to the very abstract program about Myhill–Nerode
equivalence classes): how do these finiteness results relate to computational complex-
ity? How do these finiteness issues translate between different settings? Courcelle
and Lagergren [15] proved some very interesting results about translating finiteness
results between the small and large universes when the property P is restricted to
simple graphs of bounded treewidth. They showed that

(1) if P is restricted to simple graphs of treewidth at most t , then finite index of ∼P

over Usmall
t implies finite index over to Ularge

t , and also that
(2) (Rephrasing their Fact 9.4:) there is a property P (of unbounded treewidth), such

that for all t , the canonicalMyhill–Nerode equivalence relation∼P has finite index
over Usmall

t , but infinite index on U
large
t .

Do those results extend to hypergraphs in the representation framework we have
explored here?

Another question one might ask is whether there might be general methods and
meta-theorems for obtaining XP-complexity results, based on communication com-
plexity results with respect to Ularge

t .

123

728 Algorithmica (2015) 73:696–729

Acknowledgments The authors are thankful to Mahdi Parsa for fruitful discussions. René van Bevern
acknowledges support by the Deutsche Forschungsgesellschaft (DFG), Project DAPA (NI 369/12). Rod
Downey acknowleges support by a grant from the NewZealandMarsden Fund. The remaining three authors
acknowledge support by the Australian Research Council, Grants DP 1097129 (Michael R. Fellows),
DE 120101761 (Serge Gaspers), and DP 110101792 (Michael R. Fellows and Frances A. Rosamond).
NICTA is funded by the Australian Government through the Department of Communications and the
Australian Research Council through the ICT Centre of Excellence Program.

References

1. Abrahamson, K.R., Fellows, M.R.: Cutset Regularity Beats Well-Quasi-Ordering for Bounded
Treewidth. Tech. rep., Dept. Computer Science, University Victoria, Canada (1989)

2. Abrahamson, K.R., Fellows, M.R.: Finite automata, bounded treewidth, and well-quasiordering. In:
Graph Structure Theory, American Mathematical Society, Contemporary Mathematics, vol. 147, pp.
539–564 (1991)

3. Bern, M.W., Lawler, E.L., Wong, A.L.: Why certain subgraph computations require only linear time.
In: Proceedings of the 26th FOCS, IEEE Computer Society, pp. 117–125 (1985)

4. van Bevern, R., Downey, R.G., Fellows, M.R., Gaspers, S., Rosamond, F.A.: Myhill–Nerode Methods
for Hypergraphs. arXiv:1211.1299v5 [cs.DM] (2015)

5. van Bevern, R., Fellows,M.R., Gaspers, S., Rosamond, F.A.:Myhill–Nerodemethods for hypergraphs.
In: Proceedings of the 24th ISAAC, LNCS, vol. 8283, pp. 372–382. Springer, Berlin (2013)

6. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
J. Comput. 25(6), 1305–1317 (1996)

7. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of
graphs. J. Algorithms 21(2), 358–402 (1996)

8. Bodlaender, H.L., Fellows, M.R.,Warnow, T.J.: Two strikes against perfect phylogeny. In: Proceedings
of the 19th ICALP, LNCS, vol. 623, pp. 273–283. Springer, Berlin (1992)

9. Bodlaender, H.L., Fellows, M.R., Hallett, M.T.: Beyond NP-completeness for problems of bounded
width (extended abstract): hardness for the W hierarchy. In: Proceedings of the 26th STOC, pp. 449–
458. ACM (1994)

10. Bodlaender, H.L., Fellows, M.R., Hallett, M.T., Wareham, H.T., Warnow, T.J.: The hardness of perfect
phylogeny, feasible register assignment and other problems on thin colored graphs. Theor. Comput.
Sci. 244(1–2), 167–188 (2000)

11. Bodlaender, H.L., Fellows, M.R., Thilikos, D.M.: Derivation of algorithms for cutwidth and related
graph layout parameters. J. Comput. Syst. Sci. 75(4), 231–244 (2009)

12. Borie, R.B., Parker, R.G., Tovey, C.A.: Solving problems on recursively constructed graphs. ACM
Comput. Surv. 41(1) (2009). doi:10.1145/1456650.1456654

13. Cahoon, J., Sahni, S.: Exact algorithms for special cases of the board permutation problem. In: Pro-
ceedings of the 21st Annual Allerton Conference on Communication, Control, and Computing, pp.
246–255 (1983)

14. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic—A Language-
Theoretic Approach, Encyclopedia of mathematics and Its Applications, vol. 138. Cambridge Uni-
versity Press, Cambridge (2012)

15. Courcelle, B., Lagergren, J.: Equivalent definitions of recognizability for sets of graphs of bounded
tree-width. Math. Struct. Comput. Sci. 6(2), 141–165 (1996)

16. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)
17. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, Berlin (2013)
18. Fellows, M., Langston, M.: An analogue of the Myhill–Nerode theorem and its use in computing

finite-basis characterizations. In: Proceedings of the 30th FOCS, pp. 520–525. IEEEComputer Society
(1989)

19. Fellows, M.R., Langston, M.A.: On well-partial-order theory and its application to combinatorial
problems of VLSI design. SIAM J. Discrete Math. 5(1), 117–126 (1992)

20. Fellows,M.R., Langston,M.A.: On search, decision, and the efficiency of polynomial-time algorithms.
J. Comput. Syst. Sci. 49(3), 769–779 (1994)

21. Fellows, M.R., Jansen, B.M.P., Rosamond, F.: Towards fully multivariate algorithmics: parameter
ecology and the deconstruction of computational complexity. Eur. J. Combin. 34(3), 541–566 (2013)

123

http://arxiv.org/abs/1211.1299v5
http://dx.doi.org/10.1145/1456650.1456654

Algorithmica (2015) 73:696–729 729

22. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
23. Fomin, F.V., Golovach, P.A., Thilikos, D.M.: Approximating acyclicity parameters of sparse hyper-

graphs. In: Proceedings of the 26th STACS, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, LIPIcs,
vol. 3, pp. 445–456 (2009)

24. Ganian, R., Hliněný, P.: On parse trees and Myhill–Nerode-type tools for handling graphs of bounded
rank-width. Discrete Appl. Math. 158(7), 851–867 (2010)

25. Garey, M.R., Graham, R.L., Johnson, D.S., Knuth, D.E.: Complexity results for bandwidth minimiza-
tion. SIAM J. Appl. Math. 34(3), 477–495 (1978)

26. Gaspers, S., Naroditskiy, V., Narodytska, N., Walsh, T.: Possible and necessary winner problem in
social polls. In: Proceedings of the AAMAS’13, IFAAMAS, pp. 1131–1132 (2013)

27. Gavril, F.: Some NP-complete problems on graphs. In: Proceedings of the 1977 Conference on Infor-
mation Science and Systems, Johns Hopkins University, pp. 91–95 (1977)

28. Gottlob, G., Grohe, M., Musliu, N., Samer, M., Scarcello, F.: Hypertree decompositions: structure,
algorithms, and applications. In: Proceedings of the 31st WG, LNCS, vol. 3787, pp. 1–15. Springer,
Berlin (2005)

29. Gottlob, G., Miklós, Z., Schwentick, T.: Generalized hypertree decompositions: NP-hardness and
tractable variants. J. ACM 56(6) (2009). doi:10.1145/1568318.1568320

30. Hliněný, P.: Branch-width, parse trees, and monadic second-order logic for matroids. J. Comb. Theory
B 96(3), 325–351 (2006)

31. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. J. Comput. Sci.
61(2), 302–332 (2000)

32. Komusiewicz, C., Niedermeier, R.: New races in parameterized algorithmics. In: Proceedings of the
37th MFCS, LNCS, vol. 7464, pp. 19–30. Springer, Berlin (2012)

33. Lagergren, J.,Arnborg, S.: Findingminimal forbiddenminors using afinite congruence. In: Proceedings
of the 18th ICALP, LCNS, vol. 510, pp. 532–543. Springer, Berlin (1991)

34. Lakshmipathy, N., Winklmann, K.: “Global” graph problems tend to be intractable. J. Comput. Syst.
Sci. 32(3), 407–428 (1986)

35. Mahajan, S., Peters, J.G.: Regularity and locality in k-terminal graphs. Discrete Appl. Math. 54(2–3),
229–250 (1994)

36. Marx, D.: Approximating fractional hypertree width. ACM Trans Algorithms 6(2), 29 (2010)
37. Miller, Z., Sudborough, I.H.: A polynomial algorithm for recognizing bounded cutwidth in hyper-

graphs. Math. Syst. Theory 24(1), 11–40 (1991)
38. Myhill, J.: Finite Automata and Representation of Events. Tech. Rep. WADD TR-57-624, Wright-

Patterson Air Force Base, Ohio, USA (1957)
39. Nagamochi, H.: Linear layouts in submodular systems. In: Proceedings of the 23rd ISAAC, LNCS,

vol. 7676, pp. 475–484. Springer, Berlin (2012)
40. Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc. 9(4), 541–544 (1958)
41. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)
42. Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proceed-

ings of the 27th STACS, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, LIPIcs, vol. 5, pp. 17–32
(2010)

43. Prasad, M.R., Chong, P., Keutzer, K.: Why is ATPG easy? In: Proceedings of the 36th DAC, pp. 22–28.
ACM (1999)

44. Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited. J. Comput. Sci. 76(2),
103–114 (2010)

45. Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Cutwidth I: a linear time fixed parameter algorithm. J.
Algorithms 56(1), 1–24 (2005)

46. Wang, D., Clarke, E., Zhu, Y., Kukula, J.: Using cutwidth to improve symbolic simulation and Boolean
satisfiability. In: Proceedings of the 6th HLDVT, pp. 165–170. IEEE (2001)

47. Wimer, T.V.: Linear Algorithms on k-Terminal Graphs. PhD thesis, Clemson University (1987)
48. Wimer, T.V., Hedetniemi, S.T., Laskar, R.: A methodology for constructing linear graph algorithms.

Congr. Numer. 50, 43–60 (1985)
49. Yao, A.C.: Some complexity questions related to distributed computing. In: Proceedings of the 11th

STOC, pp. 209–213. ACM (1979)

123

http://dx.doi.org/10.1145/1568318.1568320

	Myhill--Nerode Methods for Hypergraphs
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Our Results and Organization of this Paper

	2 Preliminaries
	3 Myhill--Nerode for Hypergraphs
	3.1 Formal Languages
	3.2 Colored Graphs
	3.3 Hypergraphs
	3.4 Fixed-Parameter Algorithms and Monadic Second-Order Logic

	4 Hypergraph Cutwidth is Fixed-Parameter Linear
	5 Hypertree Width and Variants
	6 Summary, Discussion and Open Problems
	Acknowledgments
	References

