
Algorithmica (2016) 75:554–576
DOI 10.1007/s00453-015-9975-z

MMAS Versus Population-Based EA on a Family
of Dynamic Fitness Functions

Andrei Lissovoi · Carsten Witt

Received: 17 October 2014 / Accepted: 27 January 2015 / Published online: 10 February 2015
© Springer Science+Business Media New York 2015

Abstract We study the behavior of a population-based EA and the Max–Min Ant
System (MMAS) on a family of deterministically-changing fitness functions, where,
in order to find the global optimum, the algorithms have to find specific local optima
within each of a series of phases. In particular, we prove that a (2+1) EA with geno-
type diversity is able to find the global optimum of the Maze function, previously
considered by Kötzing and Molter [9], in polynomial time. This is then generalized to
a hierarchy result stating that for every μ, a (μ+1) EA with genotype diversity is able
to track aMaze function extended over a finite alphabet of μ symbols, whereas popu-
lation size μ− 1 is not sufficient. Furthermore, we show that MMAS does not require
additional modifications to track the optimum of the finite-alphabet Maze functions,
and, using a novel drift statement to simplify the analysis, reduce the required phase
length of the Maze function.

Keywords Evolutionary algorithms · Ant colony optimization · Dynamic problems ·
Populations · Runtime analysis

1 Introduction

Evolutionary algorithms (EAs) are a class of nature-inspired algorithms that can be
applied to solve a wide variety of optimization problems. Runtime analysis of nature-

A preliminary version of this work previously appeared in the Proceedings of the 2014 Conference on
Genetic and Evolutionary Computation [11]; this version extends the presented proofs, in particular in
Sect. 5.

A. Lissovoi · C. Witt (B)
DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
e-mail: cawi@imm.dtu.dk

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-015-9975-z&domain=pdf

Algorithmica (2016) 75:554–576 555

inspired algorithms has advanced considerably in recent years [2,12], though most
focus on static optimization problems, where the objective is simply to find the global
optimumwithin the least amount of steps. Many real-world optimization problems are
dynamic in nature, meaning that the optimal solution to a given problem may change
as the problem conditions change over time, and the algorithms therefore need to be
able to not only find the optimum at some point of time, but also to track the optimal
solution over time as the problem changes.

Application of EAs to Dynamic Optimization Problems is the subject of study
in the Evolutionary Dynamic Optimization field, which in recent years has attracted
much activity. Many applications of evolutionary algorithms on dynamic problems are
considered in literature [1,13], and there are runtime analyses building on theoretical
studies of evolutionary algorithms for dynamic problems [4,7,15]. The utility of a
population for tracking problems was studied in evolutionary computation by Jansen
and Schellbach [7], while different mechanisms for ensuring population diversity have
been considered byOliveto andZarges [14]. In particular, amechanismcalledgenotype
diversity was proved to be inefficient on a particular dynamic problem. Recently,
Jansen andZarges [8] compared evolutionary algorithms and artificial immune systems
on a bi-stable dynamic optimization problem.

In [9], Kötzing and Molter introduced a dynamic pseudo-boolean function called
Maze, the optimumofwhich slowlymoves from the all-ones to the all-zeroes bit string
in n phases, in each of which the optimum oscillates between two solutions that differ
in the value of a single bit. The paper shows that while theMax–MinAnt System is able
to track the changes occurring in this fitness function and find the optimum all-zeroes
string within polynomial time, a (1+1) EA loses track of the optimum and requires an
exponential amount of time to find the all-zeroes optimum with high probability.

In this paper, we consider the impact of introducing a population and a simple
diversitymechanism to the (1+1) EA, showing that a (2+1) EAwith genotype diversity
is able to track the optimum of the Maze function. We then generalize the Maze to
a function over a finite alphabet, and prove a hierarchy result with respect to the
population size. More precisely, for any μ and any c > 0, there is a variant of the
Maze such that a (μ+1) EA with genotype diversity will with probability 1−O(n−c)

succeed in tracking the optimum, whereas an EA with population size μ− 1 will with
probability 1 − O(n−c) lose track of the optimum. Finally, we return to consider the
performance of the MMAS∗ Max–Min Ant System Ant colony optimization (ACO)
algorithm, and conclude that MMAS∗, due to its pheromone memory model, is able
to successfully track the optimum of the finite-alphabet version of Maze, even with
shorter phase lengths than considered in [9] (if the alphabet is not too big). Our proofs
are based on mixing time arguments, fitness levels with tail bounds, and a new variant
of a variable drift theorem, which allows for a tail bound on the probability distribution
of the pheromone value in MMAS∗.

The paper is structured as follows. Section 2 defines the dynamic fitness function
Maze, and the (μ+1) EAwith genotype diversity andMMAS∗ algorithms generalized
to larger alphabets. Section 3 proves the positive result for the simple (2+1) EA w. r. t.
the classical Maze function on bit strings. The hierarchy result for larger alphabets
is proven in Sect. 4. Finally, Sect. 5 shows that MMAS∗ is efficient in tracking the
optimum for every polynomial alphabet size. We finish with some conclusions.

123

556 Algorithmica (2016) 75:554–576

2 Preliminaries

The Maze dynamic fitness function defined in [9] consists of n + 1 phases of t0 =
kn3 log n iterations each, where k is a sufficiently large constant. During the first phase,
which we will for convenience refer to as phase 0, Maze is equivalent to OneMax,
a fitness function that simply counts the number of 1-bits in an n-bit string. In each
subsequent phase i , the function assigns fitness values n + 2 and n + 1 to bit strings
0i−101n−i and 0i−111n−i , oscillating between assigning the higher fitness value to
these individuals in a 0-0-1 pattern, with 0i1n−i being favored, i.e. having the higher
fitness value, every two iterations out of three.

The version shown below has been extended to assign fitness values to n-character
strings over a finite alphabet; for r = 1, i. e., bit strings, it is exactly equivalent to the
original Maze. In this context, OneMax counts the number of literal 1 characters in
the string, and the sets OPTp and ALTp generalize the 0-0-1 oscillation pattern.

Maze(x, t) =
⎧
⎨

⎩

n + 2 if t > t0 ∧ x ∈ OPT(t)
n + 1 if t > t0 ∧ x ∈ ALT(t)
OneMax(x) otherwise

OPT(t) =
{
OPT�t/t0� if t �= 0 mod 3
ALT�t/t0� otherwise

ALT(t) =
{
ALT�t/t0� if t �= 0 mod 3
OPT�t/t0� otherwise

ALLp =
{
0p−1x1n−p | x ∈ {0, 1, . . . , r}

}

OPTp = {
0p1n−p}

ALTp = ALLp \ OPTp

In this paper, wewill examine how a (2+1)Evolutionary Algorithm (EA) performs
on the originalMaze function, and how the (μ+1) EA andMMAS algorithms perform
on our finite-alphabet version. Rather than only focusing on expected optimization
times (i.e. the expected iteration during which OPTn is first constructed following the
start of the final phase of the Maze), we consider the probability that OPTn will be
constructed by the algorithms by the end of phase n of the Maze, as well as what is
likely to happen if it is is not.

The (μ+1)EAwith genotype diversity [14,16] is shown asAlgorithm1.Definition 1
extends the mutation operator mutr to support a finite alphabet as in [3,5]; for r = 1,
it is equivalent to the standard mutation operator of the (1+1) EA.

Several lemmas throughout this paper state that “a specific event occurs with high
probability.” Definition 2 provides a more formal definition of this concept.

Definition 1 Let Σ = {0, 1, . . . , r} be a finite alphabet.
The mutation operator mutr creates an image y ∈ Σn from x ∈ Σn by indepen-

dently replacing each character xi of x (1 ≤ i ≤ n) with probability 1/n with a symbol
drawn uniformly at random from Σ \ {xi }.

123

Algorithmica (2016) 75:554–576 557

Algorithm1 (μ+1)EAwith genotype diversity for a finite alphabetΣ = {0, 1, . . . , r}.
Initialize x∗ = {x1, . . . , xμ}, st. xi �= x j for all i �= j .
for t ← 1, 2, . . . do

Select xa from x∗ uniformly at random.
Let xt = mutr (xa).
if xt /∈ x∗ then

G ← x∗ ∪ {xt }
xmin ← argminx∈G f (x, t), chosen uniformly at random
x∗ ← G \ {xmin}

Definition 2 Anevent E is said to occurwith highprobability if, for every constant c >

0, Pr(E) = 1−O(n−c).An event E is said to occurwithinO(f (n)) iterationswith high
probability if for every constant c > 0 there exists a c′ > 0, possibly depending on c
but not on n, such that E occurs within c′ f (n) iterations with probability 1−O(n−c).

In Sect. 5, we will consider how theMax–Min Ant System [17] algorithmMMAS∗,
shown as Algorithm 2, is able to track the optimum of the finite-alphabet Maze
function.

To use a path-constructing algorithm with a fitness function that assigns values to
n-character strings, we use the construction graph shown in Fig. 1: every n-character
string x ∈ Σn corresponds to the path from v0 to vn consisting of the edges ei,c for
which xi = c, and every v0-vn path corresponds to some x ∈ Σn in this fashion.Weuse
the standard choice for τmax = 1−1/n, and set τmin = 1/(rn) and ρ = Ω (1/(rn)) to
accommodate an (r + 1)-character alphabet of the extended Maze function. Notably,
for r > 1, the sum of the pheromone values on edges leaving a vertex is no longer
always equal to 1, and, when considering probabilities of selecting a particular edge,
we have to use the bounds presented in Lemma 3, similar to [19, Lemma 1] and [18,
Lemma 15].

Algorithm 2 The MMAS∗ algorithm on a directed multigraph G = (V, E), with
pheromone bounds τmin and τmax, and evaporation rate ρ, where v0, vn ∈ V are the
start and destination vertices respectively, and deg+(v) is the outdegree of a vertex.
Initialize τa ← 1

/
deg+(v) for all a = (v, v′) ∈ E

for t ← 1, 2, . . . do
Let xt be an empty path.
p ← v0, S ← {

(p, v′) ∈ E | v′ /∈ xt
}

while |S| > 0 and p �= vn do
Select edge e = (p, h′) from S with probability:

pe = τe
/ ∑

s∈S τs
Append e to xt
p ← h′, S ← {

(p, v′) ∈ E | v′ /∈ xt
}

if t = 1 or f (xt , t) > f (x∗, t) then
x∗ ← xt

for each e ∈ E do

τe ←
{
min(τmax, (1 − ρ)τe + ρ) if e ∈ x∗
max(τmin, (1 − ρ)τe) otherwise

123

558 Algorithmica (2016) 75:554–576

v0 v1

. . .
vn−1 vn

...
...

...
...

e1,0

e1,r

e2,0

e2,r

en−1,0

en−1,r

en,0

en,r

Fig. 1 Construction graph used for MMAS∗ on the finite-alphabet Maze function. There are r + 1 edges
between each pair of vertices (vi−1, vi)

Lemma 3 The sum of the pheromone values on edges leaving any specific vertex v,
τsum, can be bounded as:

1 ≤ τsum ≤ 1 + (deg+(v) − 1)τmin = 1 + 1/n,

where deg+(v) is the out-degree of vertex v.

Proof Recall that deg+(v) = r + 1 and τmin = 1/(rn). We prove these bounds by
induction, noting that both hold at initialization, where τsum = 1.

If, prior to a pheromone update, τsum ≥ 1, and no pheromone values are affected
by the τmax border, τsum(1−ρ)+ρ ≥ 1 after the update; while if there are pheromone
values capped at τmax after the update, we note that even if all the other pheromone
values are τmin, τmax + r · τmin = 1, proving the first inequality.

If, prior to a pheromone update, τsum ≤ 1+ 1/n, τsum(1− ρ) + ρ ≥ τsum can only
occur as a consequence of pheromone values being affected by the lower pheromone
border (as τsum ≥ 1), i. e., those for which τ(1 − ρ) ≤ τmin, increasing τsum by at
most ρτmin for each such value. We note that there can be at most r such values, as the
reinforced pheromone value cannot drop below τmin, thus the sumof pheromone values
after the update is atmost τsum(1−ρ)+ρ+r ·ρτmin = τsum(1−ρ)+ρ+ρ/n ≤ 1+1/n,
proving the second inequality. �

Note that both algorithms re-evaluate the fitness function when updating the popu-
lation or the best-so-far solution. Similarly to [8], the considered clock t is external to
theMaze function, making it possible to evaluate many solutions in one clock tick of
theMaze; this corresponds to having hardware available to evaluate many solutions in
parallel, while the problem changes occur at fixed intervals regardless of the number
of parallel evaluations.

3 (2+1) EA on Maze

The (1+1) EA will with high probability require an exponential amount of time to find
the 0n optimum on theMaze function, because there is at least a constant probability
of ending each phase p > 0 with x∗ �= 0p1n−p, which lets the (1+1) EA revert
to optimizing OneMax, destroying the 0-prefix constructed so far, and eventually
requiring a large mutation to recover [9]. In this section, we will show that a (2+1) EA
with genotypediversity avoids this problembybeing able to store both of the oscillating
individuals in each phase, thereby ensuring that 0p1n−p is in the population at the start
of the next phase. This ensures that at the end of the last phase, the 0n individual is in
the population with high probability.

123

Algorithmica (2016) 75:554–576 559

Theorem 4 The (2 + 1) EA with genotype diversity will with high probability have
the 0n optimum in the population at the end of the last phase of the Maze.

To show this, we will prove that the 1n = OPT0 individual is found with high
probability during the initial OneMax phase, and the EA is then able to follow the
oscillation process: if OPTp−1 is in the population at the beginning of phase p, OPTp

will be in the population at the end of that phase – meaning that at the end of final
phase, OPTn = 0n will be in the population.

Lemma 5 The (2+1) EA will discover the 1n individual within O(n log n) iterations
with high probability.

Proof Recall that each phase of theMaze lasts kn3 log n iterations for some constant
k > 0. The fitness level method can be applied: partition the possible populations into
levels based on the maximum fitness value of any individual within the population.
The probability of an iteration leaving the level where the highest fitness value is n− i
is at least pi ≥ (1/2) · (1/n) · (1 − 1/n)n−1 ≥ i/(2ne): i. e., that of selecting the
best-valued individual in the population as the ancestor, and flipping a single zero bit.
Even if the EA starts at the lowest of n + 1 fitness levels, it has to leave at most n
levels in order to reach the level where 1n is in the population; in expectation, this
takes E(T) ≤ ∑n

i=1
1
pi

= 2en log n iterations.
The high probability result is obtained by applying the tail bounds on fitness levels

derived in [20, Theorem 2]: using s = 50n2 > 4π2e2n2/6 ≥ ∑n
i=1

1
pi 2

, and h =
1/(2en) ≤ min pi , the probability that 1n is found within E(T)+δ iterations is at least

1−e− δ
4 ·min{δ/s,h}. Setting δ = 50cn log n, where c > 0, and observing that h < δ/s for

sufficiently large n, yields a probability of finding 1n within O(n log n) = o(kn3 log n)

iterations of at least

1 − e
− 50cn log n

4 ·min
{
50cn log n

50n2
, 1
2en

}

≥ 1 − e− 50c log n
8e > 1 − n−2c.

�
Lemma 6 If OPTp−1 is in the population at the beginning of phase p, OPTp will with
high probability be in the population when phase p ends.

Proof As OPTp−1 ∈ ALLp, it has a fitness value of at least n + 1 during phase p,
and therefore cannot be removed from the population. The OPTp individual can be
constructed by selectingOPTp−1 as the ancestor and flipping a single bit, which occurs
in each iteration with probability at least 1/(2en). The probability of this occurring
within n3 log n iterations is at least:

1 − (1 − 1/(2en))n
3 log n ≥ 1 − e− 1

2e n
2 log n = 1 − n−Ω(n2).

As OPTp has a fitness value of at least n+1 during phase p, when constructed, it will
replace a OneMax-valued individual in the population, and cannot be removed from
the population during phase p. �

123

560 Algorithmica (2016) 75:554–576

Combined, Lemmas 5 and 6 prove Theorem 4.

Proof (of Theorem 4)By applying a union bound on the probabilities of failure during
each of Maze’s n + 1 phases, we can conclude that the (2+1) EA finishes phase n
with 0n in the population with high probability. �

4 (µ+1) EA and the Finite-Alphabet Maze

While a (2+1) EA with genotype diversity is able to track the optimum of the original
Maze, it is interesting to consider whether there existMaze-like functions for which a
larger population is required. In this section, we use theMaze function extended over
a finite alphabet Σ = {0, 1, . . . , r}, and consider a (μ+1) EA with genotype diversity,
where r ∈ O(n) and μ < n/2. The phase length is still kn3 log n for some sufficiently
large constant k > 0. We will build toward two results: a population of μ ≤ r is
insufficient to track the optimum, while μ > r is sufficient and enables the (μ+1) EA
to find 0n in polynomial time. These results are formalized in Theorems 7 and 8.

Theorem 7 If r ≥ μ, r ∈ O(n), and μ ≤ n/(2 + ε), where ε > 0 is an arbitrarily
small constant, (μ+1) EA with genotype diversity will with high probability not find
the 0n optimum on Maze within a polynomial number of iterations.

Theorem 8 If μ, r ∈ O(n), and r < μ, (μ+1) EA with genotype diversity will with
high probability finish the last phase of theMazewith the 0n optimum in the population
given that an appropriately large constant k is chosen for the phase length t0.

As before, we need to verify that 1n is found during the initial OneMax phase;
this is done in Lemma 9; notably, the constant k in the phase length t0 may need to
be adjusted based on the high-probability constant c: i. e., in order to make sure that
1n is located initially, the initial phase needs to be sufficiently long. Then, Lemma 10
shows that if an iteration begins with one of ALLp individuals (i. e., those with a non-
OneMax value during that phase) in the population, the population will with high
probability be saturated with ALLp individuals before the phase is over. These two
lemmas are used in the proofs of both Theorems 7 and 8.

Lemmas 11 and 12 are used for Theorem7. The former shows that once a population
ofμ ≤ r individuals is filled with ALLp individuals, the probability of OPTp being in
the population is at most a constant after a small number of additional iterations; while
the latter states that if a phase p begins with no ALLp individuals in the population
(i. e., OPTp−1 was not in the population when the phase p − 1 ended), the (μ+1) EA
loses track of the optimum and reverts to optimizing OneMax with at least constant
probability. This proof strategy is inspired by the lower bound for the (1+1) EA on the
original Maze [9].

Lemma 9 The (μ+1) EA will discover the 1n individual within O(μrn log n) =
O(n3 log n) iterations with high probability.

The method used to prove Lemma 5 can be applied to prove Lemma 9 as well: we
require that the best-fitness individual in the population is chosen as the ancestor,
and the mutation operator changes a single non-1 character into a 1, resulting in an
individual with a higher OneMax-value than any previously in the population.

123

Algorithmica (2016) 75:554–576 561

Lemma 10 During phase p, once an individual from ALLp is in the population, the
population will contain min(μ, r + 1) individuals from ALLp within O(μrn log n)

iterations with high probability.

Proof The general form of the fitness level method can be applied by partitioning
the μ-individual populations into levels by the number of ALLp individuals they
contain, from 0 to min(μ, r + 1), observing that the number of ALLp individuals in
the population cannot be reduced during phase p. As the phase starts with a population
containing at least oneALLp individual, there are atmostmin(μ, r+1)−1 “population
levels” that the process may need to pass through before the population is saturated
with ALLp individuals; the time for this to happen can be bounded as a sum of
geometrically distributed waiting times to leave each “level”.

If i < min(μ, r + 1) is the number of ALLp individuals in the population, the
probability of a single iteration creating a new ALLp individual (and hence moving to
a higher level) by selecting one of the i as the ancestor and performing a one-character
mutation is pi ≥ i

μ
r+1−i

r
1
en . Let T be the number of iterations before the population

is saturated with ALLp individuals, and m = min(μ, r + 1) − 1 be the number of
ALLp individuals that need to be added to the population to achieve saturation, thus
the expectation E(T) is at most:

m∑

i=1

μ

i

r

r + 1 − i
en = rμen

m∑

i=1

1

i(r + 1 − i)
= O(rμn).

Applying the tail bounds from [20, Theorem 2]: using s = 13μ2r2n2 >
∑m

i=1
1
pi 2

,
and h = 1/(μren) < min pi , the probability that m ALLp individuals are added

to the population within E(T) + δ iterations is at least 1 − e− δ
4 ·min{δ/s,h}. Setting

δ = 13cμrn log n, where c > 0, and observing that h < δ/s for sufficiently large
n, yields a probability of reaching the final level within O(μrn log n) iterations of at
least

1 − e
− 13crμn log n

4 ·min
{
13crμn log n
13μ2r2n2

, 1
erμn

}

≥ 1 − e− 13c log n
4e > 1 − n−c.

Thus, if an ALLp individual exists in the population during phase p, the popu-
lation will be saturated with ALLp individuals in O(μrn log n) iterations with high
probability. �

The following lemmas consider the situation for μ ≤ r , i. e., a population size
too small to contain every individual in ALLp. In this case, OPTp can be removed
from the population after being discovered. Interestingly, this happens with constant
probability regardless of μ.

Lemma 11 If, during phase p, the population consists of μ individuals from ALLp,
and r ≥ μ, then afterΩ(rn) iterations, the probability that OPTp is in the population
is at most a constant smaller than 1.

123

562 Algorithmica (2016) 75:554–576

Proof OPTp can be replaced by an ALTp individual that was not in the population
during an iteration that favors ALTp individuals over OPTp. The probability pL of
OPTp being replaced by one of r + 1− μ ALTp individuals not yet in the population
can then be bounded:

pL = r + 1 − μ

r

1

n

(

1 − 1

n

)n−1

,
1

rne
≤ pL ≤ 1

n
.

The OPTp individual can be added to the population during any iteration favoring it
over the ALTp individuals by a single-character mutation of any individual in ALTp.
The probability pW of OPTp being rediscovered during an iteration favoring it can be
bounded:

pW = 1

r

1

n

(

1 − 1

n

)n−1

,
1

rne
≤ pW ≤ 1

rn
.

Consider the probability of the OPTp individual being in the population after three
additional iterations: it is greatest when the first of these three iterations favors ALTp

individuals, and the subsequent two favor OPTp. Let pW3 be the probability that OPTp

is constructed during the two iterations favoring it (being added to the population if it
was not already there):

pW3 = pW + (1 − pW) · pW ,
1

rne
≤ pW ≤ pW3 ≤ 2pW ≤ 2

rn
,

and pL3 be the probability that OPTp is replaced by an ALTp individual in the first
iteration, and then not constructed in the two following iterations:

pL3 = pL · (1 − pW3),
1

2rne
≤ 1

rne

rn − 2

rn
≤ pL3 ≤ 1

n

(

1 − 1

rne

)

<
1

n
,

where the lower bound holds for n ≥ 4.
This behavior can be modeled in a two-state Markov chain, where the states repre-

sent having or not having OPTp in the population, with transition probabilities pW3
and pL3; each step of this Markov chain thus corresponds to three iterations of the
(μ+1) EA. Let πH be the steady-state probability of the OPTp individual being in the
population:

πH · pL3 = (1 − πH) · pW3

1 − πH

πH
= pL3

pW3
≥ 1

4e

πH ≤ 1

1 + 1
4e

< 0.916.

Assume, as the worst case, that the OPTp individual is in the population when it
becomes saturated with ALLp individuals. Markov chain mixing time, t (ε), can then

123

Algorithmica (2016) 75:554–576 563

be used to find the number of steps required to reduce the total variation distance to
the steady state πH to at most some ε (and hence the number of iterations required
to reduce the probability of OPTp being in the population to at most some constant
smaller than 1), and can be upper-bounded by coupling time as in [18, Corollary4]:

t (ε) ≤ min

{

t : max
x,y∈Ω

Pr(Txy > t) ≤ ε

}

,

where Txy = min{t : Xt = Yt | X0 = x,Y0 = y} is the coupling time, i. e., the earliest
time at which the two equivalentMarkov chains Xt andYt , initialized in different states
x , y, are in the same state.

With only two states (and symmetry), the coupling time Txy is greatest when the
chains begin in different states. The probability that the chains remain in different
states for at least t steps is then:

max
x,y∈Ω

Pr(Txy > t) = (pL3 pW3 + (1 − pL3)(1 − pW3))
t .

To get an upper bound on t (ε), an upper bound on the expression in parentheses is
needed. Inserting the appropriate bounds on pW3 and pL3 yields:

2pW3 pL3 + 1 − pL3 − pW3 ≤ 4

rn2
+ 1 − 3

2rne

≤ 1 − 1

rne

(

1.5 − 4e

n

)

< 1 − 1

rne
(for n ≥ 22),

t (ε) ≤ min

{

t :
(

1 − 1

rne

)t

≤ ε

}

.

After, e. g., t (0.01) < 4.61rne steps of the Markov chain, the probability that
coupling has not occurred is at most 0.01. As coupling time is an upper bound for
mixing time, and eachMarkov chain step corresponds to threeEA iterations, thismeans
that after at most 37.60rn iterations, the probability that OPTp is in the population is
at most πH +0.01, and so the probability that OPTp is not in the population is at least
0.083.

Therefore,Ω(rn) iterations after the population is saturatedwithALLp individuals,
the probability that OPTp is in the population is at most a constant. �

Lemma11 therefore implies that there is at least a constant probability of phase p+1
beginning with only ALTp individuals in the population when r ≥ μ. The following
lemma considers the consequences of this—as OPTp is the only individual in both
ALLp and ALLp+1, this means that phase p+1 begins without any ALLp+1 individ-
uals in the population, leaving the EA with only OneMax-valued individuals at the
beginning of phase p + 1.

Lemma 12 If at the beginning of phase p ≥ n/2 + 4, the population contains no
individuals from ALLp, and only individuals with fitness values between n − p and

123

564 Algorithmica (2016) 75:554–576

n, with at least constant probability, the population at the end of phase p will consist
only of 1n and one-character mutations of 1n.

Proof Observe that ALLp contains only individuals with fitness values n − p and
n − p − 1: thus, in order to construct an ALLp individual from the individuals in the
population, a mutation must change at least one character to a specific value. If an
ALLp individual is constructed, it will be accepted, and the optimization process will
resume according to Lemma 10. If no such individual is constructed, individuals with
higher OneMax-values will continue being accepted into the population, eventually
leading to the discovery of 1n as in Lemma 9.

Until an ALLp individual has been constructed, the probability of constructing
one can be upper-bounded by the probability of a mutation changing a character at a
specific position to a specific value, i. e., 1/(rn).

Let a value-improving mutation be a mutation that produces an individual with a
strictly higher OneMax-value than the worst individual currently in the population.
Note that even if a value-improving mutation occurs, the resulting individual might
already be one of the μ − 1 other individuals in the population, in which case the
population is notmodified.Wewill now show that the probability pI of such amutation
occurring while the minimum OneMax-value of any individual in the population is
below n − p + 4 is at least:

pI ≥ n

2

1

n

1

r

(

1 − 1

n

)n−1

≥ 1

2er
.

Let n − p ≤ v ≤ n − p + 3 be the minimum OneMax-value of an individual in
the population during an iteration. If the ancestor selected during an iteration has a
OneMax-value of at least v+2, any one-charactermutationwill produce an individual
of sufficient value to be accepted; there are n ≥ n/2 such mutations. If the selected
ancestor has a value of at most v + 1, it contains at least n− (n− p+ 4) ≥ n/2 non-1
characters, and hence at least n/2 one-character mutations can produce an individual
with a strictly higher OneMax-value than such an ancestor. Thus, regardless of the
ancestor selection, there are at least n/2 possible one-character mutations leading to
an acceptable fitness value.

No more than a constant fraction of those value-improving mutations can fail to be
accepted due to already being in the population (as μ ≤ n/(2 + ε)). This means that
the probability of a value-improving mutation occurring and being accepted during a
single iteration is at least Ω(pI) = Ω(1/r).

Consider the probability of the minimum OneMax-value of the population rising
to at least n− p+4 without any ALLp individual being constructed; this requires that
at most 4μ value-improving mutations to be accepted (as a value-improving mutation
can only introduce an individual with the same fitness value into the population at
most μ times). This occurs with at least constant probability: let A be the event that
an ALLp individual is constructed, and V be the the event that a value-improving
mutation is accepted, then:

Pr(A | A ∨ V) ≤ 1/(rn)

1/(rn) + Ω(1/r)
= O(n−1),

123

Algorithmica (2016) 75:554–576 565

Pr(4μ V s without A) ≥ (1 − Pr(A | A ∨ V))4μ = (1 − O(n−1))O(n) = Ω(1).

Once the minimum OneMax-value of the population is raised to n − p + 4, con-
structing an ALLp individual requires at least three characters to be changed into a 0
simultaneously, which occurs with probability at most 1/(rn)3.

Thus, with at least constant probability, if phase p begins without an ALLp indi-
vidual in the population, no ALLp individual is constructed within the O(μrn log n)

iterations required to find the 1n individual with high probability (per Lemma 9).
Furthermore, once the 1n individual is in the population, one-character mutations of
that individual will fill the population in O(μ log n) iterations with high probabil-
ity, making construction of an ALLp individual require a p − 2 = Ω(n) character
mutation. �

By combining these lemmas, it is now possible to prove Theorems 7 and 8.

Proof (of Theorem 7) Per Lemma 9, the EA is able to construct the 1n individual
with high probability during phase 0, and therefore also fill the population with one-
character mutations of 1n . At the start of each phase p, the fitness value of individuals
in the population is thus with high probability not below n− p, as any individual would
have to have been accepted during the previous phase, so it was either an individual in
ALLp−1, which have a fitness value of at least n − p, or has a OneMax fitness value
at least that of an individual already in the population.

Pessimistically assume that at the end of the phase n/2 + 3, the population does
not yet consist of 1n and one-character mutations of it, i.e. the EA has not fully
reverted to optimizingOneMax during the first n/2+3 phases.Ω(n) of the remaining
phases, per Lemma 11, have at least a constant probability of beginning without an
ALLp individual in the population, and with all individuals in the population having
fitness values between n − p and n; per Lemma 12, a phase beginning under such
circumstances will with at least constant probability end with a population consisting
of 1n and one-character mutations thereof. Once the population is in this configuration,
constructing an ALL individual (for this or any future phase) will require at leastΩ(n)

characters to be mutated correctly in a single iteration, which occurs with probability
(rn)−Ω(n).

Therefore, with high probability, the EA will find the initial 1n optimum, but will
at some point fail to track the oscillation, revert to optimizing OneMax, and require
an exponential number of iterations to find the final 0n optimum. �
Proof (of Theorem 8) Per Lemma 9, the EA is able to find the 1n individual with high
probability during phase 0. For the subsequent n oscillation phases, apply Lemma 10:
if the phase begins with OPTp−1 (i. e., an individual from ALLp) in the population,
then the remaining individuals from ALLp, including OPTp will be added to the
population before phase p ends with high probability. Add up the failure probabilities
in these n + 1 phases using a union bound; with high probability, none of the phases
fail, and phase n ends with OPTn = 0n in the population – so the (μ+1) EA is able to
find the 0n optimum within a polynomial number of iterations with high probability
when μ > r . �

123

566 Algorithmica (2016) 75:554–576

5 ACO on Larger Alphabets

Kötzing and Molter [9] study the case where r = 1, i. e., the case of bit strings, and
show that MMAS∗ with overwhelming probability (i. e., probability 1− 2−Ω(n)) will
track the optimum of Mazewith oscillation phase length t0 = kn3 log n in polynomial
time. Their proof can be summarized as follows, wherein all references to lemmas and
theorems refer to the paper:

1. While a bit is oscillating, taking the total over three steps of a so-called OPT-OPT-
ALT oscillation (where OPT is favored in the first two steps and ALT in the last
step) there is a drift of the pheromone value on the 0-edge of the bit (i. e., the edge
associated with OPT) towards its maximum. With overwhelming probability, the
pheromone value will reach its upper border in O(n3 log n) steps (Lemma 2 in
their paper) provided the bit keeps oscillating so long. To obtain the bound on the
probability, a multiplicative drift theorem is used, which, according to [9], “wastes
a lot” since the bound on the drift obtained is additive.

2. Despite the fact that the pheromone value reaches its upper border within the
oscillation phase of a bit, the multiplicative drift theorem does not imply that the
pheromone value stays close to the border by the end of the oscillation phase. To
prove that this is unlikely, a negative drift theorem is applied (Lemma 3), implying
that it takes a large polynomial amount of time until the pheromone value drops
below 1 − O((log2 n)/n).

3. The transition from “bit i oscillating” to “bit i + 1 oscillating” is analyzed. It is
shown that a string outside ALL will be best-so-far string only temporarily for at
most O(log n) steps after the transition, with high probability (Lemma 3). Drift
arguments towards the 0-value are applied afterwards.

4. Using an O((n log n)/ρ) bound from the literature on the time from initialization
until the all-ones string with is found high probability (Lemma 5) and basically
applying union bounds leads to the result (Theorem 6).

It turns out that the above analysis to a very large extent carries over to larger
alphabets. Basically, one can group together all edges belonging to the non-0 entries
of a character and identify the sum of their pheromone values with the pheromone on
the 1-edge in the binary case. The only thing to pay attention to is the new lower bound
on the pheromone values, which may increase the time to reach the upper border by
a factor of r .

However, we are going to present a stronger and, as we think, more elegant analysis
here. In particular, we contribute a technique that supplements the drift result from
Lemma 3 in [9] with a statement on probability distributions (also called occupation
probabilities), which makes the application of the negative drift theorem (Lemma 4
in [9]) unnecessary. In addition, the stronger analysis allows us to work with shorter
oscillation phase lengths, as detailed below.

We now present the tool by which the statement on occupation probabilities is
obtained. The following lemma is a variable drift theorem that is not concerned with
the expected first hitting time of a set of target states but with the probability of being
in this set at any time t (however, results on the hitting time can be easily obtained from
this probability). It is a spin-off of the variable drift theoremwith tail bounds from [10]

123

Algorithmica (2016) 75:554–576 567

and goes back to a statement fromHajek’s paper [6] that, to the best of our knowledge,
has not been applied in the running time analysis of evolutionary algorithms yet. The
lemma requires a bound on the moment-generating function of a potential function g
that is usually derived from the one-step drift (via the function h).

Lemma 13 Let (Xt)t≥0, be a stochastic process, adapted to a filtration (Ft)t≥0, over
some state space S ⊆ {0}∪[xmin, xmax], where xmin ≥ 0. Let a, b ∈ {0}∪[xmin, xmax],
b > a. Let h : [xmin, xmax] → R

+ be such that 1/h is integrable on [xmin, xmax] and
define g : {0} ∪ [xmin, xmax] → R

≥0 by g(x) := xmin
h(xmin)

+ ∫ x
xmin

1
h(y) dy for x ≥ xmin

and g(0) := 0.
If there exist λ > 0, β < 1 and D > 0 such that for all t ≥ 0

E(e−λ(g(Xt)−g(Xt+1)) · 1 {Xt > a} | Ft) ≤ β

and E(e−λ(g(a)−g(Xt+1)) · 1 {Xt ≤ a} | Ft) ≤ D,

then

Pr(Xt ≥ b | X0) < β t · eλ(g(X0)−g(b)) + 1 − β t

1 − β
Deλ(g(a)−g(b))

for all t > 0.

Proof We use ideas implicit in in the proof of Inequality 2.6 of [6], which uses the
exponential method (a generalized Chernoff bound), and argue

Pr(Xt ≥ b | X0) = Pr(g(Xt) ≥ g(b) | X0) = Pr(eλg(Xt) ≥ eλg(b) | X0)

≤ E(eλg(Xt)−λg(b) | X0),

where the first inequality uses that g(x) is non-decreasing, the equality that x �→ ex

is a bijection, and the last inequality is Markov’s inequality. Now,

E(eλg(Xt) | X0) = E
(
eλg(Xt) · 1 {Xt−1 > a} | X0

)
+E

(
eλg(Xt) · 1 {Xt−1 ≤ a} | X0

)

= E
(
eλg(Xt−1) · E(e−λ(g(Xt−1)−g(Xt)) · 1 {Xt−1 > a} | Ft) | X0

)

+ E
(
eλg(a) · E(e−λ(g(a)−g(Xt)) · 1 {Xt−1 ≤ a} | Ft) | X0

)

≤ βE
(
eλg(Xt−1) | X0

)
+ Deλg(a)

by our prerequisites; we omitted the condition on X0 for space reasons in lines 2–4.
Inductively (note that this does not assume independence of the g(Xt−1) − g(Xt)),
we get

E
(
eλg(Xt) | X0

)
≤ β t eλg(X0) +

t−1∑

r=0

βr Deλg(a),

123

568 Algorithmica (2016) 75:554–576

altogether

Pr(Xt ≥ b | X0) ≤ eλ(g(X0)−g(b))β t + 1 − β t

1 − β
Deλ(g(a)−g(b))

as suggested. �
The preceding lemma will be applied to show Lemma 15, whose purpose is to

combine Lemmas 2 and 3 from [9] and which shows that the pheromone value after a
certain point of time will come close to its border and stay close with high probability.
In fact, due to the strength of the lemma, we can work with a smaller oscillation
length per character if r is not too big. More precisely, we redefine t0 := kr2n2 ln(rn)

in the Maze function, for some constant k, which is less than the original kn3 log n
if r = o(

√
n). By contrast, [9] needs Ω(n3 log n) oscillations per bit due to the

application of the multiplicative drift theorem along with negative drift.
To prepare the proof of Lemma 15, we set up an appropriate potential function

to define a non-negative stochastic processs (Xt)t≥0, which is partially based on the
distance of the pheromone value to its border. However, as in [9], it also includes
an indicator random variable based on the best-so-far entry. The following lemma
summarizes some crucial properties of the process. Hereinafter, we call the pheromone
values of a character i , 1 ≤ i ≤ n, saturated according to the best-so-far solution x∗
if the edge corresponding to x∗

i has pheromone τmax and all other edges for character i
have value τmin.

Lemma 14 Assume ρ ≤ 1
7rn and ρ = Ω(1

rn). Consider anOPT-OPT-ALT oscillation
of a single character, with the best-so-far solution from ALL, and pheromone values
of the non-oscillating characters saturated according to the best-so-far solution. Let
τt be the pheromone value on the edge corresponding to the 0-entry for the oscillating
character after t OPT-OPT-ALT oscillations, Ct be an indicator that the best-so-far
solution at the start of the oscillation is OPT, and Xt := 1 − 1/n − τt + 7

2ρ(1 − Ct)

be a potential function. Then, for Xt ≥ 1/n, the following observations hold:

1. Pr(Xt+1 > Xt | Ct = 1) = O(Xt) and Pr(Xt+1 < Xt | Ct = 0) = O(1 − Xt),
2. (Xt − Xt+1 | Ct = 1) = O(Xtρ) and (Xt+1 − Xt | Ct = 0) = O((1 − Xt)ρ),
3. E(Xt − Xt+1 | Ct = 1) = Ω(Xtρ) and E(Xt − Xt+1 | Ct = 0) = Ω((1− Xt)ρ).

Proof Consider the statements conditioned on Ct = 1 first: i. e., those that consider
oscillations that begin with OPT as the best-so-far solution. In such oscillations, the
first two iterations will always reinforce τt , as the best-so-far solution OPT has the
highest possible fitness value; while the last iteration may replace OPT with a solution
from ALT if one is constructed.

We note that the potential function Xt decreases unless an ALT solution is con-
structed in the third iteration, and upper-bound this probability using τt , noting that
iterations reinforcing τt do not increase the probability that ALT solutions are con-
structed:

Pr(Xt+1 > Xt | Ct = 1) < 1 − τt = Xt + 1
n ≤ 2Xt ,

as Xt ≥ 1/n.

123

Algorithmica (2016) 75:554–576 569

If an ALT solution is not constructed, τt is reinforced thrice during the oscillation,
decreasing Xt by at most:

(Xt − Xt+1 | Ct = 1) ≤ τt (1 − ρ)3 + ρ
(
1 + (1 − ρ) + (1 − ρ)2

)
− τt

= (1 − τt)ρ(3 − 3ρ + ρ2) < 3(Xt + 1
n) = 6Xtρ,

as Xt ≥ 1/n.
Finally, for the expected decrease in Xt , bound the probability of constructing ALT

in the third iteration using pa ≤ (1− τt/τsum)τmax
n−1 ≤ (1− τt/τsum)/2, where τsum

denotes the sum of pheromone values on the edges belonging to the character. The
upper bound equals the probability of selecting an oscillating edge corresponding to
an ALT solution, and n − 1 other edges with pheromone values τmax corresponding
to the remaining characters in the ALT solution, using that τmax

n−1 ≤ 1/2 for n > 1.
Hence,

E(τt+1 | Ct = 1) = τt (1 − ρ)3 + ρ(1 − ρ)2 + ρ(1 − ρ) + (1 − pa)ρ,

E(Xt − Xt+1 | Ct = 1) = E(τt+1 | Ct) − τt − pa · (7
2ρ

)

= ρ
(
(1 − τt)

(
3 − 3ρ + ρ2

)
− 9

2 pa
)

≥ ρ
(
(1 − τt)

(
3
4 − 3ρ + ρ2

)
− 9

4τt/n
)

= Ω(ρXt),

recalling that τsum ≤ 1 + 1/n, yielding (1 − τt/τsum) ≤ 1 − τt + τt/n.
In the statements conditioned on Ct = 0, the best-so-far solution is in ALT. The

first two iterations will evaporate τt unless an OPT solution is constructed; while the
final iteration will evaporate τt if an ALT solution is constructed, or if OPT was not
constructed during the first two.

We note that Xt increases unless an OPT solution is constructed during at least one
of the first two iterations, and upper-bound this probability using τt , τmax

n−1 ≤ 1/2
for n > 1, and a union bound:

Pr(Xt > Xt+1 | Ct = 0) < 2(τt/2) = τt = 1 − Xt − 1
n + 7

2ρ < 1 − Xt .

If an OPT solution is not constructed, τt is evaporated thrice during the oscillation,
increasing Xt by at most:

(Xt+1 − Xt | Ct = 0) = τt − τt (1 − ρ)3 = τtρ(3 − 3ρ + ρ2)

< 3
(
1 − Xt − 1

n + 7
2ρ

)
ρ < 3(1 − Xt)ρ.

Finally, to compute the expected decrease in Xt , we need to derive bounds for three
probabilities: po, the probability that OPT is constructed at least once in the first two
iterations; p f , the probability that given OPT is constructed in the first two iterations,
it was constructed in the first iteration; and pa , the probability that given that OPT
was constructed in the first two iterations, an ALT solution is constructed in the third
iteration.

123

570 Algorithmica (2016) 75:554–576

Using τmax
n−1 ≥ 1/e, we upper-bound the probability that OPT is not constructed

by 1− po ≤ (1− τt/(eτsum))(1− τt (1− ρ)/(eτsum)), which provides a lower bound
on po.

In most cases, OPT is more likely to be constructed in the first iteration compared to
the second, as its corresponding pheromone value would decrease due to pheromone
evaporation. However, if τt (1 − ρ) drops below τmin, and τsum > 1 is reduced, the
second iteration may be more likely to construct OPT than the first. This effect is
greatestwhen τt = τmin and τsum is as large as possible, i. e., 1+1/n, i.e. the probability
that OPT is constructed during the first iteration can be bounded as p1 ≥ τmin/(1 +
1/n), while the probability that OPT is constructed in the second given that it was not
constructed in the first can be bounded as p2 ≤ τmin/(1 + 1/n − ρ/n), i. e., the first
iteration is at least p1

p2
= n+1−ρ

n+1 ≥ 2−1/7
2 = 13

14 times as likely to construct OPT as the
second. The probability that OPT is then constructed in the first iteration given that it
is constructed at all during the first two iterations is then p f ≥ p1

p1+(1−p1)p2
, and thus

p f > 1/3 can be used as a very coarse lower-bound by substituting p2 ≥ p1 ≥ 13
14 p2

and computing the limit as p2 approaches 0 from above.
Pessimistically assuming that OPT is not constructed in the first iteration, so the

pheromone value on the OPT edge evaporates during the first iteration, and lower-
bounding the effect of the pheromone evaporation and reinforcement in the second
iteration as 0, the pheromone value on the OPT edge is at least τ(1 − ρ) during the
third iteration, and hence the probability of constructing anALT solution can be upper-
bounded as pa ≤ (1 − τt (1 − ρ)/τsum)τmax

n−1 ≤ (1 − τt (1 − ρ)/τsum)(38/100) for
n > 15.

Combining the three probability bounds,we consider the expected pheromone value
τt+1 on the edge corresponding toOPT, and then the distance Xt+1, which additionally
decreases by 7

2ρ if OPT is constructed in either of the first two iterations, and ALT is
not constructed in the third iteration:

E(τt+1 | Ct = 0) ≥ τt (1 − ρ)3 + poρ(p f (1 − ρ)2 + (1 − ρ) + (1 − pa)),

E(Xt − Xt+1 | Ct = 0) ≥ E(τt+1 | Ct = 0) − τt + po(1 − pa)
7
2ρ

≥ ρ
(
po

(
35
6 − 9

2 pa
)

− 3τt
)

+ ρ2
(
3τt − 5

3 po
)

− ρ3 (
τt + 1

3 po
)

= ρτt

((
35
6 − 9

2 pa
)
b − 3 + ρ

(
3 − 5

3b
)

− ρ2 (
1 − 1

3b
))

= ρτt

((
1237
300 + 171

100
τt

τsum

)
b − 3 + ρ

(
3 − 5

3b − 171
100

τt b
τsum

)

−ρ2 (
1 − 1

3b
))

,

where b = 2−ρ
eτsum

− τt
1−ρ

e2τsum2 ≤ po/τt . By bounding 2
e > b > 2

e − τt
e2

− o(1),

E(Xt − Xt+1 | Ct = 0) ≥ ρτt
((1237

300 + 1.71τt/τsum
)
b − 3 − O(ρ)

)

> ρτt

((1237
300 + 1.71τt/τsum

) (
2/e − τt/e

2 − o(1)
)

123

Algorithmica (2016) 75:554–576 571

−3 − o(1))

= ρτt

(
1237
150e − 3 + τt

(
3.42
eτsum

− 1237
300e2

− 1.71τt
e2τsum

)
− o(1)

)

> ρτt (0.033 − o(1)) = Ω(ρ(1 − Xt)),

by observing that for a sufficiently large n (and hence a τsum sufficiently close to 1),
the expression multiplied with the inner τt is positive. �
Lemma 15 Let the assumptions from Lemma 14 hold; recall that τt denotes the
pheromone value on the edge corresponding to the 0-entry for the oscillating charac-
ter after t oscillations. For t ≥ C(rn2 + αn), where C > 0 is some sufficiently large
constant, and all α ≥ 0 it holds

Pr

(

τt ≤ 1 − O

(
1

n
+ log2 n

rn

))

≤ e−α + e−Ω(log2 n).

Proof We will apply Lemma 13, using the bounds from Lemma 14. Note that 0 ≤
Xt ≤ 1− 1

n − 1
rn + 7

2ρ ≤ 1− 1
2n since 1

rn ≤ τt ≤ 1− 1
n and ρ ≤ 1

7rn . We will consider
the cases Ct = 0 and Ct = 1 separately. First, let Ct = 1. If Xt ≥ 1/n, we get from
the third item of Lemma 14 and the choice ρ = Θ(1/(rn)) a drift of the Xt -process
according to E(Xt − Xt+1 | Xt ; Xt ≥ 1/n) = Ω(Xtρ) ≥ c1Xt

rn for some sufficiently
small constant c1 > 0.

We therefore set xmin := 0, a := 1
n , b := a+ log2 n

rn , xmax = 1−1/(2n) and h(x) :=
c1
rn2

in Lemma 13. The choice of h(x) results in E(Xt − Xt+1 | Xt ; Xt > a) ≥ h(Xt).

Moreover, by definition, g(x) := xrn2
c1

since xmin = 0. Hence, we have the following
simple bound on the drift of the g(Xt)-process:

E(g(Xt) − g(Xt+1) | Xt ; Xt > a) ≥ E(Xt − Xt+1 | Xt ; Xt > a)

c1/(rn2)

≥ c1Xt/(rn)

c1/(rn2)
= Xtn.

Note that Xt − Xt+1 ≤ 13
2 ρ since three iterations can change τt by at most 3ρ and

Ct ≤ 1 holds. This implies g(Xt) − g(Xt+1) ≤ c2rn2ρ for some constant c2 > 0.
Hence, as ρ = Θ(1/(rn)), we get g(Xt)−g(Xt+1) ≤ c3n for another constant c3 ≥ 1.
An expansion of the exponential function will show for λ := c4

n , where c4 > 0 is a
sufficiently small constant, that

E(e−λ(g(Xt)−g(Xt+1)) · 1 {Xt > a} | Xt)

≤ E(e−λ(g(Xt)−g(Xt+1)) | Xt ; Xt > a) ≤ 1 − λ

2
≤ e−λ/2,

which then can be used to prove the lemma.
We supply the details for the expansion now. By setting c4 ≤ 1

c3
, we get λ(g(Xt)−

g(Xt+1)) ≤ 1. Using e−x ≤ 1− x + x2 for x ≤ 1, we get for the moment-generating
function (mostly omitting the conditions Xt ; Xt > a in expectations for readability)

123

572 Algorithmica (2016) 75:554–576

E
(
e−λ(g(Xt)−g(Xt+1)) | Xt ; Xt > a

)

≤ 1 − λE (g(Xt) − g(Xt+1)) + λ2E
(
(g(Xt) − g(Xt+1))

2
)

≤ 1 − λE (g(Xt) − g(Xt+1)) + λ2E (|g(Xt) − g(Xt+1)|) (c3n)

We already know that E(g(Xt) − g(Xt+1)) ≥ Xtn. We are left with an estimate
for E(|Δ|), where Δ := g(Xt) − g(Xt+1). By the law of total probability (and again
using |Δ| ≤ c3n, where c3 ≥ 1),

E(|Δ|) ≤ E(Δ | Δ > 0) + c3n Pr(Δ < 0) ≤ c5Xtn + c3nc6Xt ≤ (c5 + c6)c3nXt ,

where we used the first and second item from Lemma 14 and introduced appropriate
constants c5, c6 > 0 to cover the implicit constants from O-notation and the factor
1/c1 from g(x).

Hence,

E(e−λ(g(Xt)−g(Xt+1))) ≤ 1 − λXtn + λ2(c5 + c6)Xt (c3n)2

≤ 1 − λXtn + λ
c4
n

(c5 + c6)(c
2
3n)Xtn.

Choosing c4 ≤ 1/(2c23(c5 + c6)), we get from last bound that

E(e−λ(g(Xt)−g(Xt+1))) ≤ 1 − λXtn + λ

2
Xtn = 1 − λ

2
Xtn ≤ 1 − λ

2
,

which completes the analysis for Ct = 0 if Xt > a = 1/n.
If Ct = 0, we can redo the above calculations analogously with E(g(Xt) −

g(Xt+1)) ≥ (1 − Xt)n and replace Xt with 1 − Xt . We note that 1 − Xt ≥ 1/(2n),
hence still E(Xt − Xt+1 | Xt ; Xt ≥ 1/n) = Ω(1/(rn2)). In the estimation of E(|Δ|),
the events Δ < 0 and Δ > 0 are swapped. The constants may take different values,
but remain constants. Choosing c4 small enough to cover both cases, we get

E(e−λ(g(Xt)−g(Xt+1)) | Xt ; Xt > a) ≤ 1 − λ

2
≤ e−λ/2

regardless of whether Ct = 0 or Ct = 1.
We are left with the case Xt ≤ a in Lemma 13. Pessimistically assuming the

maximum change (13/2)ρ of the Xt -values, we can bound

E(e−λ(g(a)−g(Xt+1)) · 1 {Xt ≤ a} | Xt) ≤ ec4c2ρrn ≤ D

for some constant D > 0. Applying Lemma 13 with β := 1 − λ/2 ≤ e−λ/2,

Pr(Xt ≥ b) ≤ e
− tc4

2n + c4
n

rn2
c1 + D

λ/2
· eλ(g(a)−g(b))

123

Algorithmica (2016) 75:554–576 573

since X0 ≤ 1. Now, if t = 2rn2
c1

+ 2αn
c4

then Pr(Xt ≥ b) ≤ e−α + 2D
λ
eλ(g(a)−g(b)).

The second term is O(n) · e−Ω(log2(n)) = e−Ω(log2(n)). Setting C := max{ 2
c1

, 2
c4

} and
noting that Xt ≥ b corresponds to τt ≤ 1 − O(1n + log2 n

rn), the lemma follows. �
We remark here that the statement of Lemma 15 can most likely be strengthened

to hold already for t ≥ C(rn ln n + αn) by using a different h(x). However, since the
bottleneck will be in the analysis of the time needed for phase 0, we are content with
the present statement.

The following lemma takes the role of Lemma 4 in [9], which analyzes the tran-
sition from character i oscillating to character i + 1 oscillating. It applies to the case
that the best-so-far solution at the end of phase i is not OPTi but ALTi despite the
pheromone values favoring OPTi . Then, when the new phase starts and the best-so-far
is reevaluated, the fitness function will equal OneMax. However, it is very likely that
MMAS∗ recovers quickly from this; more precisely, it will sample the solution OPTi ,
which is in ALLi+1, again before the pheromones have changed significantly. The
lemma can be proven in the very same way as in [9]. In fact, the probability of setting
a character being 0 in the best-so-far solution to 1, assuming saturated pheromones,
will even be 1/(rn). This is less than the bound 1/n used in the proof from [9].

Lemma 16 Let ρ = Θ(1
rn). Assume for i ∈ {1, . . . , n} that the current-best solution

is 0i−11n−i+1 and that the pheromones of the first i − 1 edges belonging to 0-entries
as well as the last n − i edges belonging to 1-entries all are τmax = 1− 1/n. Finally,
assume that the pheromone belonging to the i-th 0-entry is 1 − O((log2 n)/n). Then
for all c > 0, MMAS∗ will sample 0i1n−i within O(log n) iterations with probability
1 − O(n−c).

Finally, Theorem 5 in [9] states a tail bound on the optimization time of classical
MMAS∗ on OneMax, which is used in phase 0 of Maze, where the all-ones string
is the first target. This theorem carries mostly over to our enlarged search space, see
Theorem 18 below, except for that the modified lower pheromone border introduces
a factor of r at two places. The following lemma is used for the analysis.

Lemma 17 Assume there is a character whose value remains fixed in all best-so-far
solutions of MMAS∗. Then the pheromone values of the character will be saturated
according to the best-so-far solution after at most ln(rn)/ρ steps.

Proof The edges belonging to the r entries different from the best-so-far value each
have a pheromone value of at most

τmax · (1 − ρ)t

or are already capped by their lower border after t steps, all of which by assump-
tion reinforce the edge belonging to the best-so-far entry. Setting t := ln(rn)/ρ, the
expression becomes at most 1/(rn) = τmin. Since by Lemma 3 always τsum ≥ 1, the
value for the best-so far entry must be at least 1 − rτmin = τmax. �

123

574 Algorithmica (2016) 75:554–576

Theorem 18 For all c > 0 with probability 1−O(n−c), MMAS∗ for the search space
{0, . . . , r}n optimizes OneMax in O(nr log(rn)/ρ) iterations and then saturates the
all-ones string in pheromone.

Proof We will use a fitness-level argument combined with an analysis of “freezing
time” as commonly used in the analysis of ACO algorithms [12, p. 125]. The num-
ber of characters being 1 in the best-so-far solution is non-decreasing over time. By
Lemma 17, pessimistically assuming no update of the best-so-far, the pheromone val-
ues of every 1-entry must be saturated after at most ln(rn)/ρ steps. This applies to
all characters simultaneously, also to the entries different from 1. Hence, pheromone
values are saturated according to the best-so-far solution after a so-called freezing
time of O(ln(rn)/ρ) steps (or an improvement is found before).

Given a currentOneMax-value of i ≤ n−1, the probability of finding an improve-
ment in such a situation is at least

(
n − i

1

)

τmax
iτmin ≥ n − i

ern
=: pi

Hence, in the notation of Theorem 2 in [20], we have n + 1 fitness levels A0, . . . , An

corresponding to the OneMax-values and corresponding probabilities of improve-
ment (assuming saturated pheromones) given by pi for 0 ≤ i ≤ n − 1. Now,
s = ∑n−1

i=0 1/p2i = O(r2n2), h = Ω(1/(rn)) and
∑n−1

i=0 1/pi = O(rn log n). Hence,
by setting δ = Ccrn ln n for some constant C > 0 in the theorem, the time to reach
the last level (without the freezing time) is O(rn log n) with probability 1 − n−c

On at most n levels, the pheromone values need to be saturated according to the
best-so-far solution in order for the fitness-level argument to apply; onemore saturation
may be required for the final all-ones string. This accounts for a deterministic term
of O(n ln(rn)/ρ) that has to be added to the time bound given by the fitness-level
argument. Taking the two bounds together, the lemma follows. �

We note that the proof of Theorem 18 is the only place in our analysis where
the strict >-selection for the update of the best-so-far solution by MMAS∗ is used.
Otherwise, the arguments would hold for the algorithm using non-strict ≥-selection,
which is often simply called MMAS in the literature.

Putting everything together, we obtain the following theorem, taking the role of
Theorem 6 in [9]. Recall that t0, the length of the so-called oscillation phase, is the
number of iterations that a character is oscillating as OPT-OPT-ALT; however, the
very first phase of length t0, called phase 0, has objective function OneMax.

Theorem 19 Given any r > 0, choose ρ ≤ 1
7rn and ρ = Ω(1

rn). We say that MMAS∗
tracks the optimum of the Maze for the (r + 1)-character alphabet if the best-so-far
solution at the end of every oscillation phase has Hamming distance at most 1 to the
optimum. Then for all c > 0 there is a constant k such that choosing t0 ≥ kr2n2 ln(rn)

makes MMAS∗ track the optimum with probability 1 − O(n−c).

Proof We follow the argumentation in [9]. Let k′ be the largest implicit constant in
the bounds of Lemmas 15, 16 and Theorem 18 for obtaining a failure probability of

123

Algorithmica (2016) 75:554–576 575

O(n−c−1). Let k = 3k′. In the following, we assume that the events proved to hold
with probability 1 − O(n−c−1) actually happen and call it a failure otherwise.

Since Maze equals OneMax within phase 0, we know from Theorem 18 that
MMAS∗ finds the all-ones string and saturates all pheromones in the phase with
probability 1− O(n−c−1). The conditions of Lemma 15 hold for the start of phase 1,
where the first character is oscillating. Setting α = n, we get that the pheromone value
on the corresponding 0-edge will be at least 1 − O(log2 n/(rn)) by the end of the
phase with probability 1 − o(n−c−1). The best-so-far solution by the end of phase 1
is guaranteed to be in ALL1; however, it might be ALT1, which does not belong to
ALL2.

We now analyze the transition to phase 2. According to Lemma 16, a solution from
ALL2 will be created in the first third of the phase with probability 1 − O(n−c−1).
Within at most O(rn ln(rn)) steps of the second third of the phase, MMAS∗ by
Lemma 17 saturates all pheromones except for the oscillating character corresponding
to the solutions from ALL2. Now the conditions of Lemma 15 are satisfied. By the
end of the final third of the phase, the pheromone value on the 0-edge for character 2
will be 1−O(log2 n/(rn)) with probability 1−o(n−c−1). The subsequent phases are
analyzed in the very same way as the second one.

By a union bound, the failure probability over all n + 1 phases is O(n−c). �

6 Conclusions

We have revisited the analysis of evolutionary algorithms and ACO on the dynamic
fitness function Maze [9]. First, we have shown that a (2+1) EA with a simple popu-
lation diversity mechanism is able to track the optimum, which the (1+1) EA cannot.
Subsequently, we have generalized this to a hierarchy result on strings over finite
alphabets, where for given μ, there exists a Maze variant for which a population size
of at least μ in a (μ+1) EA with genotype diversity is sufficient to track the optimum,
whereas population size μ− 1 causes the EA lose track of the optimum. Surprisingly,
it turns out that a generalization of MMAS∗ to the larger state space does not require
a population and is sufficient on all functions from the hierarchy. Along the way, we
have introduced a variable drift theorem dealing with occupation probabilities, which
allows for a more precise and simpler analysis of the pheromone values in MMAS∗
compared to [9]. As a subject for future research, it is interesting to study the benefits
and the limitations of ACO on other dynamic problems.

References

1. Alba, E., Nakib, A., Siarry, P.: Metaheuristics for Dynamic Optimization. Studies in Computational
Intelligence. Springer, Berlin (2013)

2. Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics: Foundations and Recent Devel-
opments. World Scientific Publishing, Singapore (2011)

3. Doerr, B., Pohl, S.: Run-time analysis of the (1+1) evolutionary algorithm optimizing linear functions
over a finite alphabet. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’12), pp. 1317–1324. ACM Press, New York (2012)

123

576 Algorithmica (2016) 75:554–576

4. Droste, S.: Analysis of the (1+1) EA for a dynamically bitwise changing OneMax. In: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO ’03), pp. 909–921. Springer, Berlin
(2003)

5. Gunia, C.: On the analysis of the approximation capability of simple evolutionary algorithms for
scheduling problems. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’05), pp. 571–578. ACM Press, New York (2005)

6. Hajek, B.: Hitting and occupation time bounds implied by drift analysis with applications. Adv. Appl.
Probab. 14, 502–525 (1982)

7. Jansen, T., Schellbach, U.: Theoretical analysis of a mutation-based evolutionary algorithm for a track-
ing problem in the lattice. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’05), pp. 841–848. ACM Press, New York (2005)

8. Jansen, T., Zarges, C.: Evolutionary algorithms and artificial immune systems on a bi-stable dynamic
optimisation problem. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’14), pp. 975–982. ACM Press, New York (2014)

9. Kötzing, T., Molter, H.: ACO beats EA on a dynamic pseudo-boolean function. In: Parallel Problem
Solving from Nature-PPSN XII, pp. 113–122. Springer, Berlin (2012)

10. Lehre, P.K., Witt, C.: General drift analysis with tail bounds (2013). arXiv:1307.2559
11. Lissovoi, A.,Witt, C.:MMASversus population-based EA on a family of dynamic fitness functions. In:

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’14), pp. 1399–1406.
ACM Press, New York (2014)

12. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization: Algorithms and their
Computational Complexity. Natural Computing Series. Springer, Berlin (2010)

13. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey of the state of the art.
Swarm Evolut. Comput. 6, 1–24 (2012)

14. Oliveto, P.S., Zarges, C.: Analysis of diversity mechanisms for optimisation in dynamic environments
with low frequencies of change. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO ’13), pp. 837–844. ACM Press, New York (2013)

15. Rohlfshagen, P., Lehre, P.K., Yao, X.: Dynamic evolutionary optimisation: An analysis of frequency
and magnitude of change. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’09), pp. 1713–1720. ACM Press, New York (2009)

16. Storch, T.: On the choice of the parent population size. Evolut. Comput. 16(4), 557–578 (2008)
17. Stützle, T., Hoos, H.H.: Max–min ant system. Futur. Gener. Comput. Syst. 16(8), 889–914 (2000)
18. Sudholt, D.: Using markov-chain mixing time estimates for the analysis of ant colony optimization. In:

Proceedings of the 11th Workshop on Foundations of Genetic Algorithms (FOGA ’11), pp. 139–150.
ACM Press, New York (2011)

19. Sudholt, D., Thyssen, C.: Running time analysis of ant colony optimization for shortest path problems.
J. Discrete Algorithms 10, 165–180 (2012)

20. Witt, C.: Fitness levels with tail bounds for the analysis of randomized search heuristics. Inf. Process.
Lett. 114(1), 38–41 (2014)

123

http://arxiv.org/abs/1307.2559

	MMAS Versus Population-Based EA on a Family of Dynamic Fitness Functions
	Abstract
	1 Introduction
	2 Preliminaries
	3 (2+1) EA on Maze
	4 (μ+1) EA and the Finite-Alphabet Maze
	5 ACO on Larger Alphabets
	6 Conclusions
	References

