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Abstract The class of unichord-free graphs was recently investigated in the context
of vertex-colouring (Trotignon and Vušković in J Graph Theory 63(1): 31–67, 2010),
edge-colouring (Machado et al. in Theor Comput Sci 411(7–9): 1221–1234, 2010) and
total-colouring (Machado and de Figueiredo in Discrete Appl Math 159(16): 1851–
1864, 2011). Unichord-free graphs proved to have a rich structure that can be used
to obtain interesting results with respect to the study of the complexity of colour-
ing problems. In particular, several surprising complexity dichotomies of colouring
problems are found in subclasses of unichord-free graphs. In the present work, we
investigate clique-colouring and biclique-colouring problems restricted to unichord-
free graphs. We show that the clique-chromatic number of a unichord-free graph is at
most 3, and that the 2-clique-colourable unichord-free graphs are precisely those that
are perfect. Moreover, we describe an O(nm)-time algorithm that returns an optimal
clique-colouring of a unichord-free graph input. We prove that the biclique-chromatic
number of a unichord-free graph is either equal to or one greater than the size of a
largest twin set. Moreover, we describe an O(n2m)-time algorithm that returns an
optimal biclique-colouring of a unichord-free graph input. The clique-chromatic and
the biclique-chromatic numbers are not monotone with respect to induced subgraphs.
The biclique-chromatic number presents an extra unexpected difficulty, as it is not

An extended abstract containing partial results of this paper has been published in Proceedings of 10th
Latin American Symposium on Theoretical Informatics (LATIN’12), Lecture Notes in Comput. Sci., vol.
7256, Springer, 2012, pp. 530–541. Research partially supported by FAPERJ–APQ1/Cientistas do Nosso
Estado, and by CNPq–Universal.

B R. C. S. Machado
machado.work@gmail.com

1 COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

2 Inmetro—Instituto Nacional de Metrologia, Qualidade e Tecnologia, Duque de Caxias, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-015-0106-7&domain=pdf


Algorithmica (2017) 77:786–814 787

the maximum over the biconnected components, which we overcome by considering
additionally the star-biclique-chromatic number.

Keywords Unichord-free · Decomposition · Hypergraphs · Clique-colouring ·
Biclique-colouring

Mathematics Subject Classification 05C15 · 05C85

1 Introduction

Let G = (V, E) be a simple graph with n = |V | vertices and m = |E | edges. A
clique of G is a maximal set of vertices that induces a complete subgraph of G with
at least one edge. A biclique of G is a maximal set of vertices that induces a complete
bipartite subgraph of G with at least one edge. A clique-colouring of G is a colouring
of the vertices such that no clique is monochromatic. If the colouring uses at most
k colours, then we say that it is a k-clique-colouring. A biclique-colouring of G is
colouring of the vertices such that no biclique is monochromatic. If the colouring uses
at most k colours, then we say that it is a k-biclique-colouring. The clique-chromatic
number of G, denoted by κ(G), is the least k for which G has a k-clique-colouring.
The biclique-chromatic number of G, denoted by κB(G), is the least k for which G
has a k-biclique-colouring.

Both clique-colouring and biclique-colouring have a “hypergraph colouring ver-
sion”. Recall that a hypergraph H = (V, E) is an ordered pair where V is a set of
vertices and E is a set of hyperedges, each of which is a set of vertices. A colouring
of a hypergraph H = (V, E) is a colouring of the vertices such that no hyperedge
is monochromatic. Let G = (V, E) be a graph and let HC (G) = (V, EC ) and
HB(G) = (V, EB) be the hypergraphs whose hyperedges are, respectively, EC =
{K ⊆ V | K is a clique of G} and EB = {K ⊆ V | K is a biclique of G}—HC (G)

and HB(G) are called, resp., the clique-hypergraph and the biclique-hypergraph of
G. A clique-colouring of G is a colouring of its clique-hypergraph HC (G); a biclique-
colouring of G is a colouring of its biclique-hypergraph HB(G).

Clique-colouring and biclique-colouring are analogous problems in the sense that
they refer to the colouring of hypergraphs arising from graphs. In particular, the hyper-
edges are subsets of vertices that are cliques (resp. bicliques). The clique is a classical
important structure in graphs, hence it is natural that the clique-colouring problem has
been studied for a long time—see, for example, [1,4,15,20]. Bicliques, on the other
hand, only recently started to be more extensively studied. Although complexity results
for complete bipartite subgraph problems are mentioned in [8] and the (maximum)
biclique problem is shown to beNP-hard in [27], only in the last decade the (maximal)
bicliques were rediscovered in the context of counting problems [9,24], enumeration
problems [5,6,22,23], and intersection graphs [11]. For that reason, only recently the
biclique-colouring problem started to be investigated [10] and this problem can be
seen as “the state of the art” regarding the colouring of biclique-hypergraphs.

Clique-colouring and biclique-colouring have some similarities with usual vertex-
colouring; in particular, any vertex-colouring is also a clique-colouring and a
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Fig. 1 Subgraphs may even
have a larger clique-chromatic
number

Fig. 2 Subgraphs may even
have a larger biclique-chromatic
number

biclique-colouring. In other words, both the clique-chromatic number κ and the
biclique-chromatic number κB are bounded above by the vertex-chromatic number
χ . Optimal vertex-colourings and clique-colourings coincide in the case of K3-free
graphs, while optimal vertex-colourings and biclique-colourings coincide in the (much
more restricted) case of K1,2-free graphs (K1,2-free graphs are precisely the disjoint
unions of complete graphs). Notice that the triangle K3 is the minimal complete graph
that contains, as a proper induced subgraph, the graph induced by one edge (K2), while
the K1,2 is the minimal complete bipartite graph that contains, as a proper induced
subgraph, the graph induced by one edge (K1,1).

Clique-colouring and biclique-colouring share essential differences with respect
to usual vertex-colouring. A clique-colouring (resp. biclique-colouring) may not be
clique-colouring (resp. biclique-colouring) when restricted to a subgraph. Subgraphs
may even have a larger clique-chromatic number (resp. larger biclique-chromatic num-
ber). Indeed, an odd hole with five vertices C5 and a wheel graph with six vertices W6
are examples (resp. a triangle K3 and a diamond K4 \ e). See Fig. 1 (resp. see Fig. 2).
Most remarkably, although κ(G) is the maximum of the clique-chromatic numbers
of the biconnected components, the parameter κB(G), may not behave well under
1-cutset decomposition.

In the present work, we consider clique-colouring and biclique-colouring prob-
lems restricted to unichord-free graphs, which are graphs that do not contain a cycle
with a unique chord as an induced subgraph. The class of unichord-free graphs has
been investigated in the context of colouring problems—namely vertex-colouring [26],
edge-colouring [18], and total-colouring [17], as the results in Table 1 show. Regarding
the clique-colouring problem, we show that every unichord-free graph is 3-clique-
colourable, and that the 2-clique-colourable unichord-free graphs are precisely those
that are perfect. Moreover, we obtain an O(nm)-time algorithm that returns an opti-
mal clique-colouring of a unichord-free graph input. The former result is interesting
because perfect unichord-free graphs are a natural subclass of diamond-free perfect
graphs, a class that attracted much attention in the context of clique-colouring—
clique-colouring diamond-free perfect graphs is notably recognized as a difficult open
problem [1,3,4]. As a remark, unichord-free and diamond-free graphs have a number
of cliques linear in the number of vertices and edges, respectively. Every biconnected
component of a unichord-free graph is a complete graph or a triangle-free graph (see
Theorem 1), and every edge of a diamond-free graph is in exactly one clique (other-
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Table 1 Computational complexity of colouring problems restricted to unichord-free and special subclasses

Colouring problem \ class General Unichord-free {�, unichord}-free {�, unichord}-free

Vertex-col. NPC [14] P [26] P [26] P [26]

Edge-col. NPC [13] NPC [18] NPC [18] NPC [18]

Total-col. NPC [21] NPC [17] P [16,17] NPC [17]

Clique-col. Σ
p
2 C [20] P P P (κ = χ )

Biclique-col. Σ
p
2 C [10] P P P (κB= 2)

Star-col. Σ
p
2 C [10] P P P (κS= 2)

Bold values indicate results established in the paper

Fig. 3 Unichord-free graph
with an exponential number of
bicliques

wise we have a diamond). It is also known that the problem of 2-clique-colouring is
Σ

p
2 -complete for perfect graphs and it isNP-complete for {K4, diamond}-free perfect

graphs [4].
Regarding the biclique-colouring problem, we prove that the biclique-chromatic

number of a unichord-free graph is either equal to or one greater than the size of a largest
set of mutually true twin vertices. Moreover, we describe an O(n2m)-time algorithm
that returns an optimal biclique-colouring by returning an optimal biclique-colouring
of a unichord-free graph input. Notice that even highly restricted unichord-free graphs
have a number of bicliques exponential in the number of vertices, e.g. every graph
obtained by taking t ≥ 1 copies of the complete graph K3 with a vertex in common
has 2t + t bicliques (see Fig. 3).

Both clique-colouring and biclique-colouring algorithms developed in the present
work follow the same general strategy that is frequently used to obtain vertex-colouring
algorithms in classes defined by forbidden subgraphs: a specific structure F is chosen
in such a way that one of the following cases holds.

1. a graph in the class does not contain F and so belongs to a more restricted subclass
for which the solution is already known; or

2. a graph contains F and the presence of such structure entails a decomposition into
smaller subgraphs in the same class.

The chosen structure for the clique-colouring algorithm is the triangle. If there exists
a triangle in the unichord-free graph, we have a decomposition into two smaller graphs
with a single vertex in common [26]. Otherwise, the graph is triangle-free and clique-
colouring reduces to vertex-colouring. Based on an efficient algorithm for vertex-
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colouring unichord-free graphs [26], the construction of an efficient algorithm for
clique-colouring unichord-free graphs is straightforward. Notice that vertex-colouring
is NP-hard when restricted to triangle-free graphs [19].

The biclique-colouring algorithm makes a deeper use of the decomposition results
of Trotignon and Vušković [26]. The first chosen structure for the biclique-colouring
algorithm is the triangle. The second chosen structure for the biclique-colouring algo-
rithm is the square for {triangle, unichord}-free graphs. The third chosen structure is the
2-cutset in a particular setting (to be defined in the next section as a proper 2-cutset) for
{square, triangle, unichord}-free graphs. Finally, an extremal decomposition—which
is a decomposition whereby one of the biconnected components is undecomposable—
is used to biclique-colour {triangle,square,unichord}-free graphs.

The composition of colourings along graphs decomposed when the triangle was the
chosen structure is surprisingly difficult in the context of biclique-colouring, while it
is straightforward in the context of vertex-colouring and clique-colouring. In order to
make the composition more manageable, we introduce star-colouring, as follows. A
star is a maximal set of vertices that induces a complete bipartite graph with a universal
vertex and at least one edge. A star-colouring is a colouring of the vertices such that no
star is monochromatic. If the colouring uses at most k colours, then we say that it is a
k-star-colouring. The star-chromatic number of G, denoted by κS(G), is the least k for
which G has a k-star-colouring. A biclique-colouring which is also a star-colouring
is the key to provide an O(n2m)-time algorithm that returns an optimal biclique-
colouring by returning an optimal star-biclique-colouring of unichord-free graphs.
We prove that the biclique-chromatic number and the star-biclique-chromatic number
coincide for unichord-free graphs. We remark that by definition, clique-colouring and
vertex-colouring coincide for triangle-free graphs, while biclique-colouring and star-
biclique-colouring coincide for square-free graphs.

Table 1 highlights the computational complexity of colouring problems restricted to
classes related to unichord-free graphs. It is interesting to note that the class of {square,
unichord}-free graphs provides: for total-colouring, the surprising example of a class
for which total-colouring is Polynomial although edge-colouring is NP-complete;
while for biclique-colouring, since biclique-colouring and star-colouring coincide,
the challenge is to colour the stars. For total-colouring, the difficult decomposition is
the proper 1-join, while for biclique-colouring, as we shall see, surprisingly, it is the
1-cutset.

Section 2 reviews the structure of unichord-free graphs according to the decomposi-
tion defined by Trotignon and Vušković [26], which is very useful for clique-colouring
and biclique-colouring unichord-free graphs throughout this paper. Section 3 contains
the clique-colouring results for unichord-free graphs. Section 4 contains the biclique-
colouring results for unichord-free graphs. Finally, Sect. 5 contains our concluding
remarks.

2 Preliminary Results

In the present section we review the structure of unichord-free graphs according to the
decomposition defined by Trotignon and Vušković [26].
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Given a graph F , we say that a graph G contains F if F is isomorphic to an induced
subgraph of G. A graph G is F-free if it does not contain F . A chordless cycle on n
vertices is denoted by Cn , n ≥ 3. A hole is a chordless cycle of length at least 4 and
an �-hole is a hole of length �. A triangle is a cycle C3 of length 3 and is a complete
graph K3 of order 3. A square is a chordless cycle C4 of length 4 and a 4-hole.

The Petersen graph is the cubic graph on vertices {a1, . . . , a5, b1, . . . , b5} such
that both a1a2a3a4a5a1 and b1b2b3b4b5b1 are chordless cycles, and such that the only
edges between some ai and some b j are a1b1, a2b4, a3b2, a4b5, a5b3. Note that the
Petersen graph contains a 5-hole. The Heawood graph is the cubic bipartite graph on
vertices {a1, . . . , a14} such that a1a2 . . . a14a1 is a cycle, and such that the only other
edges are a1a10, a2a7, a3a12, a4a9, a5a14, a6a11, a8a13. We refer the reader to the
Fig. 7 for a picture of the Heawood graph. Note that the Heawood graph contains a
6-hole. We invite the reader to check that both the Petersen graph and the Heawood
graph are unichord-free.

A graph is strongly 2-bipartite if it is square-free and bipartite with bipartition
(X, Y ), where every vertex in X has degree 2 and every vertex in Y has degree at
least 3. A strongly 2-bipartite graph is unichord-free because any chord of a cycle is
an edge between two vertices of degree at least three, so that every cycle in a strongly
2-bipartite graph is chordless.

A graph G is called basic if it is a complete graph, a hole of length at least 7,
a strongly 2-bipartite graph, or an induced subgraph (not necessarily proper) of the
Petersen graph or of the Heawood graph. Note that every basic graph is square-free.

A cutset S of a connected graph G is a set of vertices or edges whose removal
disconnects G. A graph is biconnected if it is connected and has no cut-vertex. A
biconnected component of a graph is a maximal subgraph that is biconnected.

A decomposition of a graph is the systematic removal of a cutset to obtain smaller
graphs—called the blocks of decomposition—possibly adding some vertices and edges
to connected components of G \ S, until obtaining a set of basic (indecomposable)
graphs. The goal of decomposing a graph is to solve a problem on the original graph
by combining the solutions on the blocks of decompositions. The following cutsets
are used in the decomposition for unichord-free graphs.

– A 1-cutset of a connected graph G = (V, E) is a vertex v such that V can be
partitioned into sets X , Y , and {v}, such that there is no edge between X and Y . We
say that (X, Y, v) is a split of this 1-cutset.

– A proper 2-cutset of a connected graph G = (V, E) is a pair of non-adjacent
vertices a, b, both of degree at least three, such that V can be partitioned into sets
X , Y , and {a, b} such that: |X | ≥ 2, |Y | ≥ 2; there is no edge between X and
Y , and both G[X ∪ {a, b}] and G[Y ∪ {a, b}] contain a path a . . . b. We say that
(X, Y, a, b) is a split of this proper 2-cutset.

– A proper 1-join of a graph G = (V, E) is a partition of V into sets X and Y such
that there exist sets A ⊆ X and B ⊆ Y such that: |A| ≥ 2, |B| ≥ 2; A and B are
stable sets; there are all possible edges between A and B; there is no other edge
between X and Y . We say that (X, Y, A, B) is a split of this proper 1-join.
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The blocks of decomposition w.r.t. a 1-cutset, a proper 2-cutset, and a proper 1-join
are defined precisely as follows. Moreover, all blocks of decomposition of a unichord-
free graph were constructed in such a way that they remain unichord-free [26].

– The block of decomposition G X (resp. GY ) of a graph G w.r.t. a 1-cutset with split
(X, Y, v) is G[X ∪ {v}] (resp. G[Y ∪ {v}]).

– The blocks of decomposition G X and GY of a graph G w.r.t. a proper 2-cutset with
split (X, Y, a, b) are defined as follows. If there exists a vertex c of G such that
NG(c) = {a, b}, then let G X = G[X ∪ {a, b, c}] and GY = G[Y ∪ {a, b, c}].
Otherwise, block of decomposition G X (resp. GY ) is the graph obtained by taking
G[X ∪ {a, b}] (resp. G[Y ∪ {a, b}]) and adding a new vertex c adjacent to a, b.
Vertex c is called the marker of the block of decomposition G X (resp. GY ).

– The block of decomposition G X (resp. GY ) of a graph G w.r.t. a proper 1-join with
split (X, Y, A, B) is the graph obtained by taking G[X ] (resp. G[Y ]) and adding
a vertex y adjacent to every vertex of A (resp. x adjacent to every vertex of B).
Vertices x, y are called markers of their respective blocks of decomposition.

A decomposition tree of a graph is a rooted tree in which each node corresponds to
either G or to a block of decomposition of its parent. We strongly use a decomposition
tree defined by Trotignon and Vušković [26], as follows. A proper decomposition tree
of a connected unichord-free graph G is a rooted tree TG such that the following hold:

1. G is the root of TG .
2. Every node of TG is a connected graph.
3. Every leaf of TG is basic.
4. Every non-leaf node H of TG is of one of the following types:

– Type 1 The children of H in TG are the blocks of decomposition w.r.t. a 1-cutset
or a proper 1-join.

– Type 2 H and all its descendants are {Petersen, triangle, square}-free and have
no 1-cutset and no proper 1-join. Moreover, the children of H in TG are the
blocks of decomposition w.r.t. a proper 2-cutset and every non-leaf descendant
of H is of type 2.

5. If a node of TG is a triangle-free graph then all its descendants are triangle-free
graphs.

We require another property on the type 2 non-leaf node H of TG : (at least) one
block of decomposition is basic. It is always possible, since Machado, de Figueiredo,
and Vušković [18] proved that every non-basic biconnected {square,unichord}-free
graph has the so-called extremal decomposition, which is a decomposition whereby
every non-leaf has (at least) one basic block of decomposition. Such decomposition
is suitable to extend the colouring of a non-leaf type 2 block of decomposition to the
basic block of decomposition. This approach is useful to return an optimal biclique-
colouring of {triangle, square, unichord}-free graphs. We refer the reader to Sect. 3.1
for algorithmic and complexity aspects of the construction of the above decomposition
tree.

Another decomposition result concerns the complete graphs. If a unichord-free
graph G contains a triangle, then either G is a complete graph, or one vertex of
the clique that contains this triangle is a 1-cutset of G [26]. Equivalently, we have the
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following statement, which is a useful tool for clique-colouring and biclique-colouring
unichord-free graphs throughout this paper.

Theorem 1 (Trotignon and Vušković [26]) Every biconnected component of a
unichord-free graph is a complete graph, or a triangle-free graph.

Finally, Theorem 2 states an algorithm that computes an optimal vertex-colouring
of a unichord-free graph. This algorithm is used as a black box to solve the triangle-free
case on optimal clique-colouring.

Theorem 2 (Trotignon and Vušković [26]) Let G be a unichord-free graph. The chro-
matic number of G is χ(G) ≤ max{3, ω(G)}. Moreover, there exists an O(nm)-time
algorithm that computes an optimal vertex-colouring of any unichord-free graph.

3 Clique-Colouring Unichord-Free Graphs

When a graph is triangle-free, clique-colouring reduces to vertex-colouring. Theo-
rem 2 handles this case. If the unichord-free graph contains a triangle, we entail a
decomposition by 1-cutsets given by Theorem 1. The following lemma states that an
optimal clique-colouring of a graph can be obtained from optimal clique-colourings
of its blocks of decomposition w.r.t. a 1-cutset G X and GY .

Lemma 1 Let G be a graph. An optimal clique-colouring of G can be obtained from
optimal clique-colourings of its blocks of decomposition w.r.t. a 1-cutset.

Proof Let G X and GY be the blocks of decomposition w.r.t. a 1-cutset in a graph G.
Consider optimal clique-colourings of G X and GY such that the colours of the 1-cutset
with respect to the colourings agree, and define in a natural way a colouring of G. The
key observation for the proof is that a subset of vertices of a graph G is a clique in
G if, and only if, it is a clique either in G X or in GY . Thus, every clique H of G is
multi-colored. ��

A consequence of Lemma 1 and of Theorem 1 is that the clique-chromatic number
of a unichord-free graph is at most 3.

Theorem 3 Every unichord-free graph is 3-clique-colourable.

Proof We argue by induction on the blocks of decomposition G X and of GY w.r.t.
1-cutsets. If G does not contain a 1-cutset, then G is either a complete graph or a
triangle-free graph by Theorem 1. In the former case, we give one vertex colour 1,
and all the other vertices colour 2. In the latter case, Theorem 2 assigns a 3-clique-
colouring. If G contains a 1-cutset, we entail a decomposition by 1-cutset and apply
the induction hypothesis on G X and on GY , both graphs with fewer vertices than
G. Hence, both blocks of decomposition have a clique-colouring that uses at most
3 colours. The proof of Lemma 1 combines clique-colourings of G X and of GY to
obtain a clique-colouring of G using at most the maximum number of colours from
each clique-colouring, i.e. at most 3 colours. ��
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A graph is perfect if each of its induced subgraphs has chromatic number equal to
its clique number. By the famous Strong Perfect Graph Theorem [2], a graph is perfect
precisely if it has no odd-hole nor odd-antihole, where an odd-hole of a graph is an
odd-order set of vertices that induces a cycle of size at least five, and an odd-antihole
of a graph is an odd-order set of vertices that induces the complement of a cycle
of size at least five. Next, we obtain a characterization that the 2-clique-colourable
unichord-free graphs are exactly those that are perfect.

Theorem 4 A unichord-free graph is 2-clique-colourable if and only if it is perfect.

Proof Assume G is 2-clique-colourable. Let B be a biconnected component of G. If
B is triangle-free, then a clique-colouring of B is also a vertex-colouring, such that B
is 2-vertex-colourable (equivalently bipartite), hence perfect. If B has a triangle then,
by Theorem 1, graph B is a complete graph, hence perfect. As a consequence, all
blocks of decomposition of G are perfect and so is G.

For the converse, we first prove that G is unichord-free and perfect if and only if G is
{unichord, odd-hole}-free and, second, we prove that every {unichord, odd-hole}-free
graph is 2-clique-colourable.

Clearly, graph G is perfect only if G is odd-hole-free. Conversely, we claim that a
{unichord, odd-hole} graph G is odd-antihole-free. Suppose G has an odd-antihole A
and let v1, . . . , v|A| be the sequence of consecutive vertices in the odd-hole of the
complement G[A]. Indeed, if |A| = 5 then A is an odd-hole (contradiction). Oth-
erwise, i.e. if |A| ≥ 7, then G[v1, v3, v4, v6] has a unichord v1v6 (contradiction).
Therefore, G is {unichord,odd-hole,odd-antihole}-free which, by the Strong Perfect
Graph Theorem [2], implies that G is unichord-free and perfect.

Now, we prove that a {unichord, odd-hole}-free graph is 2-clique-colourable. Let
G be a {unichord, odd-hole}-free graph. Suppose G has an odd cycle. Since G is
odd-hole-free, every odd cycle with order at least 5 has a chord. Hence, every bicon-
nected component containing an odd cycle has a triangle. Since G is unichord-free,
the biconnected component containing the triangle is a complete graph, and it is 2-
clique-colourable. On the other hand, every triangle-free biconnected component has
no odd-cycle and it is 2-vertex-colourable, hence 2-clique-colourable. Since every
biconnected component is 2-clique-colourable, we conclude (with Lemma 1) that G
is 2-clique-colourable. ��

3.1 Algorithmic Aspects

Theorem 5 states the complexity to compute an optimal clique-colouring of a unichord-
free graph.

Theorem 5 There exists an O(nm)-time algorithm to compute an optimal clique-
colouring of a unichord-free graph.

Proof Let G be a unichord-free graph and (X, Y, v) be the split of a 1-cutset of G. We
prove the statement by induction on the blocks of decomposition G X and GY w.r.t.
1-cutset. If G does not contain a 1-cutset, then G is either a complete graph or a triangle-
free graph. In the former case, any 2-colouring of its vertices is a clique-colouring,
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while in the latter case an optimal clique-colouring can be handled by Theorem 2. The
given clique-colouring algorithms are respectively linear-time and O(nm)-time. If G
contains a 1-cutset, we entail a decomposition by 1-cutset and apply the induction
hypothesis on G X and on GY , both graphs with fewer vertices than G. The proof of
Lemma 1 gives a constant time algorithm to combine optimal clique-colourings of
G X and GY to obtain an optimal clique-colouring of G. Hence, we are left to prove
that the overall time-complexity to give an optimal clique-colouring of G X and of GY

is O(nm). Let nX = |V (G X )|, nY = |V (GY )|, m X = |E(G X )|, and mY = |E(GY )|.
Since blocks of decomposition w.r.t. a 1-cutset have only one vertex in common,

we have n = nX +nY −1, m = m X +mY . It follows that the overall time-complexity
to give an optimal clique-colouring of G is O(nX m X )+ O(nY mY )+ O(1) = O(nm)

and we conclude our proof. ��

4 Biclique-Colouring Unichord-Free Graphs

We now turn our attention to the biclique-colouring problem restricted to unichord-
free graphs. In contrast to the case of clique-colouring, there exists no analogue of
Lemma 1, for the case of biclique-colouring, to combine colourings along 1-cutsets.
Indeed, an optimal biclique-colouring of the blocks of decomposition of a graph does
not necessarily determine an optimal biclique-colouring of that graph. An example is
illustrated in Fig. 4. A star centered in v is a star with universal vertex v. One can
check that every star centered in a 1-cutset is also a biclique. The key idea of this
section follows. In order to be able to combine colourings along 1-cutsets, we require
the colourings of the blocks to be both biclique-colourings and star-colourings. As
a remark, notice that there are biclique-colourings that are not star-colourings and
vice-versa. See Fig. 5 for instance. A star-biclique-colouring is a biclique-colouring
that is also a star-colouring. If the star-biclique-colouring uses at most k colours,
then we say that it is a k-star-biclique-colouring. See Fig. 6 for the corresponding
star-biclique-colouring versions of the graphs of Fig. 5.

The star-biclique-chromatic number of G, denoted by κSB(G), is the least k for
which G has a k-star-biclique-colouring. Notice that one more restriction for biclique-
colourings might impose the need for more than κB(G) colours to biclique-colour

(a) Graph G (b) GX, GY optimally biclique-coloured (c) Invalid colouring

Fig. 4 Unichord-free graph whose blocks of decomposition optimal biclique-colourings do not determine a
biclique-colouring. a a unichord-free graph, b one optimal biclique-colouring of its blocks of decomposition,
and c shows the existence of a monochromatic star biclique highlighted with bold edges.
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Fig. 5 There are
biclique-colourings that are not
star-colourings and vice-versa. a
A star-colouring which is not a
biclique-colouring. b A
biclique-colouring which is not a
star-colouring (a) (b)

Fig. 6 Corresponding
star-biclique-colouring versions
for the graphs of Fig. 5

the graph G. Fortunately, we show in Theorem 7 that the star-biclique-chromatic
number and the biclique-chromatic number coincide for unichord-free graphs. It is
quite interesting to notice that a further restriction makes our lives easier, since we
are free to glue biclique-colourings along 1-cutsets and only κB(G) colours are still
needed.

We divide this section into two parts. Section 4.1 starts with a 2-star-biclique-
colouring algorithm for biconnected unichord-free graphs. This result is very important
to start Sect. 4.2 with a constructive proof that star-biclique-chromatic number and
the biclique-chromatic number coincide for unichord-free graphs. Section 4.2 then
develops an optimal star-biclique-colouring algorithm for non-biconnected unichord-
free graphs: Sect. 4.2.1 defines our proposed extremal decomposition tree; Sect. 4.2.2
establishes that the star-biclique-chromatic number of a unichord-free graph G is either
β(G) or β(G)+1, where β(G) is the maximum cardinality of a true twin set of graph
G; Sect. 4.2.3 then describes the algorithm that decides between these two possible
values.

4.1 Biconnected Unichord-Free Graphs

From now on, we consider the complete graphs K1 and K2 biconnected components
as in the case where the biconnected component is a complete graph and not in the
case where the biconnected component is a triangle-free graph. This assumption helps
us with case analysis when we consider biconnected {triangle, unichord}-free graphs
and cliques as two distinct cases.

In order to construct an algorithm to combine colourings along 1-cutsets, we start
dealing with a biconnected unichord-free graph G, as follows. If G is a complete
graph, then an optimal star-biclique-colouring uses |V (G)| colours. Hence, we con-
sider next biconnected {triangle, unichord}-free graphs with at least four vertices. An
optimal star-biclique-colouring algorithm of a biconnected {triangle, unichord}-free
graph strongly relies on the proper decomposition tree defined in Sect. 2, where (at
least) one block of decomposition of the type 2 non-leaf node is basic. Recall that
by definition biclique-colouring and star-colouring coincide for square-free graphs.
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Moreover, every leaf of a proper decomposition tree, a basic graph, is square-free, and
that every type 2 non-leaf is square-free.

We hereby construct such optimal star-biclique-colouring algorithm of every bicon-
nected {triangle, unichord}-free graph, as follows. We show in Lemma 2 that every
basic graph has a 2-star-biclique-colouring. In fact, we give a slightly stronger result: a
basic graph has a 2-star-biclique-colouring even if the colours of two arbitrary vertices
at distance 2 are fixed. Such result is suitable to extend the star-biclique-colouring
of a biconnected unichord-free graph to any basic graph. As a consequence of this
strategy, we are able to show in Lemma 3 that every biconnected {triangle, square,
unichord}-free graph has an optimal star-biclique-colouring obtained from optimal
star-biclique-colourings of its blocks of decomposition w.r.t. a proper 2-cutset, when
one of the blocks is basic. We prove in Lemma 4 that every biconnected {triangle,
unichord}-free graph has an optimal star-biclique-colouring obtained from optimal
star-biclique-colourings of its blocks of decomposition w.r.t. a proper 1-join. This
concludes our algorithm for biconnected {triangle, unichord}-free graphs. Finally, we
prove in Lemma 5 that if a unichord-free graph has a square then this graph can be
decomposed by a proper 1-join (indeed, there exists a proper 1-join containing this
square).

Lemma 2 Let G be a non-complete basic graph. Let M be a vertex of degree 2 and let
a and b be two neighbors of M. There exists a 2-star-biclique-colouring of G where
a and b have the same colour (resp. have distinct colours).

Proof Let G be a non-complete basic graph. Recall that the only basic graph that has
a triangle is the complete graph, thus the hypotheses imply that vertices a and b are
non-adjacent. If G is an even or an odd hole, or G is strongly 2-bipartite, or G is a
proper induced subgraph of the Heawood graph, then see Fig. 7 for a 2-star-biclique-
colouring of G assuming the colours of two arbitrary vertices at distance 2 are fixed.

Fig. 7 2-star-biclique-colouring of basic graphs. On the top left two colourings of an even hole, and on the
top right two colourings of an odd hole. On the bottom left, two colourings of a strongly 2-bipartite graph.
On the bottom right, two colourings of a proper induced subgraph of a Heawood graph (obtained from the
Heawood graph by removing the crossed out vertices)
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We observe that for each of the two colourings of the Heawood graph that we give
in Fig. 7, the restriction of the colouring to any induced subgraph that contains M , a,
and b is still a star-biclique-colouring.

Now, we are left to exhibit a 2-star-biclique-colouring for G a proper induced
subgraph of the Petersen graph. Let P be the Petersen graph. There is an automorphism
of the Petersen graph that maps a to a1, M to a2, and b to a3 [12].

If a and b have same colour, then consider the following colouring of P . Assign
the same colour to all vertices of V ′ = {a1, a3, b3, b5}; assign another colour to all
vertices of V (P)\V ′. Otherwise, consider the following colouring of P . Assign the
same colour to all vertices of V ′ = {a1, a2, a4, b2, b3, b5}; assign another colour to
all vertices of V (P)\V ′.

There is no C4 in P , and so all bicliques of P (and therefore of G as well) are
stars. Note that a1 – a2 – a3 is an induced path of G, and that the non-adjacent vertices
b3 and b5 are the only vertices of P that neither belong to nor have a neighbor in
{a1, a2, a3}. Thus, G has exactly one component (call it C) that contains more than
one vertex. Clearly, a1, a2, a3 ∈ V (C), and furthermore, the stars of G are precisely
the stars of C . Since C is connected, triangle-free, and of size at least 3, we have that
every star of C contains a 3-vertex path. But by construction, no 3-vertex path of P is
monochromatic. Thus, our colouring of P restricted to G is a star-biclique colouring
of G. ��
Lemma 3 Let G be a biconnected {triangle, square, unichord}-free graph and let G X

and GY be the blocks of decomposition w.r.t. a proper 2-cutset in such a way that G X

is basic. If GY is 2-star-biclique-colourable then G is 2-star-biclique-colourable.

Proof A 2-star-biclique-colouring of GY can be such that vertices a and b have the
same colour or have distinct colours. In any case, by Lemma 2, we have a 2-star-
biclique-colouring of G X where the cutset vertices a and b and the marker vertex c
of G X have the same colours of a, b, and c of GY . (Actually, the lemma does not
explicitly mention the marker. However, since a and b are the only neighbors of c
in G X and in GY , any valid colour of c in G X is a valid colour of c in GY .) The
2-star-biclique colourings of G X and GY determine a 2-colouring of the vertices of G.
In what follows, we show that such 2-colouring is indeed a 2-star-biclique colourings
of G, except, possibly, for a monochromatic star centered in a or in b, which can be
easily multi-coloured.

Recall that there is no C4 in G, which implies that all bicliques are stars. If a star
in G is centered in X \ {a, b} (resp. centered in Y \ {a, b}) then this star is also a star
in G X (resp. in GY ), because the subgraph induced by N [v], v ∈ X \ {a, b} (resp.
v ∈ Y \ {a, b}) is the same in G and in G X (resp. GY ). By assumption, such star is
multi-coloured by the colouring of G X (resp. GY ). If a star S in G is centered in a then
there are two possible cases. In the first case, the marker c of GY is a real vertex of G.
In this case, S contains a star of GY which, by assumption, was already multi-coloured
by the colouring of GY , hence S is multi-coloured in the colouring of G as well (the
same reasoning could be done by considering that S contains a multi-coloured star of
G X ). In the second case, the marker c of GY is a not real vertex of G. If S is 2-coloured
we are done. If S is monochromatic, we simply swap the colour of a. We claim that
this swapping does not create a monochromatic star. Indeed, since G is triangle-free,
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S is the only star of G that is centered in a. Moreover, since the colour of a becomes
distinct of the unique colour of its neighborhood, a cannot be a pendant vertex of a
monochromatic star. The same reasoning can be applied for a star centered in b. ��
Lemma 4 Let G be a biconnected {triangle, unichord}-free graph and let G X and
GY be the blocks of decomposition w.r.t. a proper 1-join. If G X and GY are 2-star-
biclique-colourable then G is 2-star-biclique-colourable.

Proof Let vertices y, x be the markers of G X and GY , respectively. By assumption G X

and GY have 2-star-biclique-colourings w.l.o.g. using colours red and blue, where y
is blue and x is red, respectively.

Note that G X has a vertex p ∈ A coloured red (respectively GY has a vertex q ∈ B
coloured blue), for otherwise, there would be a monochromatic star in G X centered
in y (respectively monochromatic star in GY centered in x).

From now on, we assume that x = p and y = q. This is just a convenience so
that we can realize that G X = G[X ∪ {q}] and GY = G[Y ∪ {p}], respectively. And
this allows to define a natural colouring of G, namely, the one where each vertex of
G inherits the colour of G X or of GY —in particular, x = p and y = q inherit their
colours from both G X and GY .

Let H be a star or biclique of G. We consider the following cases (note that no star
or biclique could have vertices in X \ A and in Y \ B).

Case 1: H ⊂ X is a star (resp. is a biclique). In this case, H is a star (resp. is a
biclique) of G X . Analogous for H ⊂ Y .

Case 2: H is a star (resp. is a biclique) that contains vertices of X \ A, of A, and of
B. In this case, H ⊂ G[X ∪ B] which implies H ⊃ B, because each vertex in B is
adjacent to every vertex of A. Hence (H \ B) ∪ {q} ⊂ H is a star (resp. is a biclique)
of G X . Analogous for H containing vertices of Y \ B, of B, and of A.

Case 3: H ⊂ A ∪ B.
Case 3.1: H is a biclique which implies H = A ∪ B and is multi-coloured.
Case 3.2: H is a star centered in p′ ∈ A such that N (p′) ∩ (X \ A) = ∅ and

N (p′) ∩ Y = B. If H is monochromatic, then we may recolour p′ red. Analogous for
H a star centered in q ′ ∈ B. ��
Lemma 5 Let G be a biconnected unichord-free graph. If G has a square then G has
a proper 1-join.

Proof Let S = {v1, v2, v3, v4} be a square with stable sets {v1, v3} and {v2, v4}.
Let J be a maximal induced complete bipartite subgraph of G such that S ⊆ V (J )

and denote the vertices of the two stable sets as {x1 = v1, x2 = v3, x3, . . . , x p}
and {y1 = v2, y2 = v4, y3, . . . , yq}. We claim that J determines a proper 1-join
of G. We need to show that for every component C of G \ V (J ), either NG(C) ⊆
{x1, x2, x3, . . . , x p} or NG(C) ⊆ {y1, y2, y3, . . . , yq}. First, we remark that no vertex
of C has a neighbour in both {x1, x2, x3, . . . , x p} and {y1, y2, y3, . . . , yq}, for other-
wise we get an induced diamond or an induced house. Second, we remark that no vertex
of C is adjacent to all vertices of either {x1, x2, x3, . . . , x p} or {y1, y2, y3, . . . , yq},
for otherwise we contradict the maximality of J . Now, assume that NG(C) inter-
sects both {x1, x2, x3, . . . , x p} and {y1, y2, y3, . . . , yq}, and take a minimum-length
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path c1, . . . , ck in C such that c1 has a neighbour in {x1, x2, x3, . . . , x p} and ck has a
neighbour in {y1, y2, y3, . . . , yq}. Let i1, i2 ∈ {1, . . . , p} and j1, j2 ∈ {1, . . . , q} be
such that c1 is adjacent to xi1 and non-adjacent to xi2 , and ck is adjacent to yi1 and non-
adjacent to yi2 . Now c1, . . . , ck, xi1 , xi2 , yi1 , yi2 induce a unichord, a contradiction.

��
A consequence of Lemmas 2, 3, 4, and 5 is that the star-biclique-chromatic number

of a {triangle, unichord}-free biconnected component is 2, stated next.

Theorem 6 There exists a 2-star-biclique-colouring of a biconnected {triangle,
unichord}-free graph.

Proof We prove the statement by induction on the number of blocks of decomposi-
tion G X and GY w.r.t. proper 1-joins and proper 2-cutsets. If G does not contain a
proper 1-join and a proper 2-cutset, then G is a basic graph. The proof of Lemma 2
gives us a recipe to assign a suitable 2-star-biclique-colouring to G. If G contains a
proper 1-join, then we entail an extremal decomposition by proper 1-join and apply
the induction hypothesis on G X and on GY , both graphs with fewer vertices than G.
The proof of Lemma 4 gives us a recipe to combine the 2-star-biclique-colourings
of G X and of GY to obtain a 2-star-biclique-colouring of G. If G does not contain a
proper 1-join and contains a proper 2-cutset, then we entail a decomposition by proper
2-cutset and apply the induction hypothesis on basic G X and on GY , both graphs
with fewer vertices than G. Note that the hypothesis that G does not contain a proper
1-join implies that G is square-free, by Lemma 5. The proof of Lemma 3 gives us
a recipe to combine 2-star-biclique-colourings of basic G X and of GY to obtain a
2-star-biclique-colouring of G. This concludes our induction. ��

4.2 Non-biconnected Unichord-Free Graphs

The given 2-star-biclique-colouring for {triangle, unichord}-free biconnected com-
ponents is the basis to provide a way to glue biclique-colourings along 1-cutsets.
We show below that the star-biclique-colouring strategy also determines an optimal
biclique-colouring of a unichord-free graph.

Theorem 7 The biclique-chromatic number and the star-biclique-chromatic number
coincide for unichord-free graphs.

Proof We prove the statement by induction on the number of biconnected components.
Suppose that G is a biconnected unichord-free graph. If G is a complete graph, then
the bicliques of G are precisely the edges of G and the bicliques of G are precisely the
stars of G. Both optimal biclique-colouring and optimal star-biclique-colouring are
actually optimal vertex-colouring and have |V (G)| colours. Otherwise G is {triangle,
unichord}-free and Theorem 6 states that the star-biclique-chromatic number is 2.

Now, suppose that G is a non-biconnected graph. Suppose that G has an optimal
biclique-colouring that is not a star-biclique-colouring, i.e. there is a monochromatic
star, say S. Notice that S is not a biclique—because G was given a biclique-colouring—
and S is a proper induced subgraph of a biclique that is not a star—and therefore
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this biclique is biconnected. Hence S is a subset of the vertex-set of a triangle-free
biconnected component, say B. We give a new biclique-colouring to G with the same
number of colours as before, such that (i) S is polychromatic and (ii) every biclique
or star of G polychromatic before the new colouring of B is still polychromatic in the
new biclique-colouring of G.

Assign a 2-star-biclique-colouring to B according to Theorem 6, so that S is poly-
chromatic.

For each 1-cutset v of G that is contained in B, proceed as follows. Let c1 (resp. c2)
be the colour of v before (resp. after) the new 2-colouring of B. If c1 = c2, we are done.
Let G ′ be the connected component obtained by all vertices of paths starting from v

and not containing vertices of B \{v}. Clearly, G ′ is a block of decomposition for some
split (X, Y, v) of G. Assign colour c2 to v and swap colours c1 and c2 in the block of
decomposition G ′. Clearly, since B has a 2-star-biclique-colouring, every star centered
in v and every biclique or star properly contained in B are polychromatic. Moreover,
clearly, every biclique or star properly contained in the block of decomposition G ′ is
polychromatic (before and after the swap), and we are done.

Finally, if we repeat this process for all possible triangle-free biconnected compo-
nents, we end with a star-biclique-colouring with the same number of colours of an
optimal biclique-colouring. This concludes our proof. ��

From now on, we are interested in determining an optimal star-biclique-colouring
for unichord-free graphs.

4.2.1 Extremal Decomposition Tree for Non-biconnected Graphs

Let B be a biconnected component of a (not necessarily unichord-free) graph G. Let
C(B) be the set of 1-cutsets of a graph G that are in a biconnected component B of G.
Let C(B) = V (B) \ C(B). If |C(B)| = 1, then B is type F . Now, denote by ΓG(B, v)

the set of biconnected components of G that share only vertex v with B, and remark that
B /∈ ΓG(B, v). If every biconnected component in ΓG(B, v) is type F , then ΓG(B, v)

is a type F set. Let CF (B) be the set of all vertices v ∈ C(B) such that ΓG(B, v) is
a type F set. If |CF (B)| ≥ 1, then B is type S. Now, let CF (B) = C(B) \ CF (B).
If B is type S and |CF (B)| ≤ 1, then B is type S∗. Figure 8 shows examples of the
terminology introduced, where the biconnected components not highlighted are not
type F , S, nor S∗.

Consider a connected graph G and let Λ and Ξ be the collections of biconnected
components of a connected graph that are type F and type S. Notice that Λ = Ξ if,
and only if, G has at most one 1-cutset. In addition, notice that a type S∗ is type S,
but the converse is not always true.

For any connected non-biconnected graph, we prove next that there always exists
at least one type S∗ biconnected component.

Lemma 6 Every connected non-biconnected graph has at least one type S∗ bicon-
nected component.

Proof If all biconnected components of G are of type F , then they are of type S∗
as well. So we assume that G contains at least one biconnected component that is
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Type

Type

Type

Fig. 8 Unichord-free graph enhancing the biconnected component types

not of type F . Let B0, . . . , Bk (with k ≥ 0) be a maximal sequence of pairwise
distinct biconnected components of G such that none of B0, . . . , Bk is of type F , and
such that for all distinct i, j ∈ {0, . . . , k}, Bi and B j share a vertex if and only if
|i − j | = 1. We now show that Bk is of type S∗. First, |CF (Bk)| ≤ 1, for otherwise,
the sequence B0, . . . , Bk could be extended. Second, since Bk is not of type F (and
G is connected but not biconnected), we know that |C(Bk)| ≥ 2, and so |CF (Bk)| =
|C(Bk) \ CF (Bk)| ≥ 1. Thus, Bk is of type S∗. ��

Now, we introduce an extremal decomposition for non-biconnected graphs via a
type S∗ biconnected component, as follows. Consider a graph G with a type S∗
biconnected component B∗. Graph G can be decomposed into subgraphs G1 and G2,

such that G1 = B∗ ∪
⎛
⎝ ⋃

v∈CF (B∗)
ΓG(B∗, v)

⎞
⎠ (please refer to Fig. 10 for an example

of the construction of G1) and G2 = G[V (G \ G1) ∪ V (B∗)]. The decomposition
algorithms of this section have the following general strategy. We first examine G1
and based on it, we determine possible values for the number of colours needed in the

vertices of B∗ for a star-biclique-colouring of G. If G = B∗∪
⎛
⎝ ⋃

v∈CF (B∗)
ΓG(B∗, v)

⎞
⎠,

for a type S∗ biconnected component B∗, then we call G a prime graph, a basic
graph for the proposed extremal decomposition. Note that, if G is a prime graph, then
|CF (B∗)| = 0. On the other hand, if G is non-prime, then |CF (B∗)| = 1, and we shall
denote by v∗ the unique vertex of set CF (B∗).

4.2.2 Bounds for Star-Biclique-Chromatic Number of Unichord-Free Graphs

Let u be a vertex of a graph G. The open neighbourhood of u is N (u) = {v ∈ V (G) |
uv ∈ E(G)}, and the closed neighbourhood of u is N [u] = N (u) ∪ {u}. Two distinct
vertices u, v are true twins if N [u] = N [v]. This equivalence relation on the vertex
set V (G) of a graph defines a partition of V (G) into twin sets. Note that a twin set
induces a complete subgraph but a twin set is not necessarily a clique of G.
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Let β(G) be the size of a largest twin set. Clearly, any twin set—in particular, a
largest one—requires distinct colours for each of its vertices in order to give a biclique-
colouring.

Lemma 7 The star-biclique-chromatic number of a graph G is at least β(G).

Proof Consider a biclique-colouring for a graph G. Each edge of a twin set defines
a biclique. Then, every edge of a twin set requires distinct colours for its extremities
and every twin set T requires |T | colours. In particular, a largest twin set requires
β(G) colours. Therefore, any biclique-colouring (and in particular, any star-biclique-
colouring) of G requires at least β(G) colours. ��

We determine precisely all twin sets of a unichord-free graph in the following
lemma. The result is based on the structure of unichord-free graphs as characterized
by Theorem 1.

Lemma 8 If G is a unichord-free graph then the twin sets are precisely

– C(B), for every complete biconnected component B;
– {v}, if v is a 1-cutset of G or a vertex of a triangle-free biconnected component.

An example of the twin sets of a unichord-free graphs is illustrated in Fig. 9. The
size of the largest twin sets of Fig. 9 is 2.

We prove that the star-biclique-chromatic number of a unichord-free graph G is
at most β(G) + 1. We first show that every non-biconnected unichord-free prime
graph G has a (β(G) + 1)-star-biclique-colouring. Second, we consider that G has a
decomposition via a type S∗ biconnected component B∗. We assign a (β(G)+1)-star-
biclique-colouring to the prime graph G1. We modify G2 to G̃2 by possibly removing
some vertices of B∗ so as to obtain B̃ isomorphic to a K|C(B∗)|+1, if B∗ is complete,

or to a K2, if B∗ is triangle-free—B̃ still attaches to the rest of the graph via the
same single vertex v∗. Note that v∗, the unique vertex in CF (B∗), belongs to B̃. We
assign recursively a (β(G̃2) + 1)-star-biclique-colouring to G̃2. Finally, we combine
the colourings of G1 and of G̃2 to obtain a (β(G) + 1)-star-biclique-colouring for G.
This concludes the general idea of the proof of Theorem 8.

Theorem 8 The star-biclique-chromatic number of a connected unichord-free graph
G is at most β(G) + 1.

Fig. 9 Twin sets of a unichord-free graph G, with β(G) = 2 and κB (G) = 2
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Proof Suppose that G is a biconnected unichord-free graph. By Theorem 1, G is
complete or triangle-free. If G is complete then κSB(G) = |V (G)| = β(G), because
every pair of vertices is a star. If G is triangle-free then, by Theorem 6 and Lemma 8,
κSB(G) = 2 = β(G) + 1.

Now, suppose that G is a non-biconnected unichord-free graph and let B∗ be a type
S∗ biconnected component of G.

Suppose that G is a prime graph. Hence, C(B∗) = CF (B∗), i.e., every com-
ponent attached to B∗ is a type-F biconnected component. We start colouring
biconnected component B∗. If B∗ is complete, then we assign colours 1, . . . , |C(B∗)|
to the vertices of C(B∗), and we assign colour 1 to the vertices of C(B∗). If B∗
is triangle-free, we assign a 2-star-biclique-colouring (see Theorem 6) with colours
1 and 2. Now, we colour the type-F biconnected components attached to B∗. Let
F ∈

⋃
v∈C(B∗)

ΓG(B∗, v). If F is complete, then we give colours 2, . . . , |V (F)| to the

vertices in C(F). If F is triangle-free, we assign a 2-star-biclique-colouring (see The-
orem 6) with colours 1 and 2 in such a way that the unique vertex in C(F) remains
coloured with the same colour assigned by the colouring of B∗ (colour 1 if B∗ is
complete, and colour 1 or 2 if B∗ is triangle-free).

Now, suppose that G is not a prime graph and consider graph G̃2 constructed
as previously defined (just before the statement of the present theorem). Notice that
G̃2 is smaller than G—indeed, G̃2 is a subgraph of G2 which in turn is a proper
subgraph of G—so that we can apply induction and assume that G̃2 has a (β(G̃2)+1)-
star-biclique-colouring. In addition, since every twin set of G̃2 is a twin set of G,
we have β(G̃2) ≤ β(G), so that G̃2 has a (β(G) + 1)-star-biclique-colouring. We
claim that the (β(G) + 1)-star-biclique-colouring of G̃2 determines a (β(G) + 1)-
star-biclique-colouring of G constructed as follows. Assume, w.l.o.g., that the unique
vertex v∗ of CF (B∗) was coloured β(G) + 1. First, we colour the vertices in (G \⋃
v∈CF (B∗)

ΓG(B∗, v)) \ B∗ as in the colouring of G̃2. Second, we colour the vertices

of B∗. If B∗ is complete, then we assign colours 1, 2, . . . , |C(B∗)| to the vertices of
C(B∗) and colour 1 to the vertices of C(B∗)\{v∗} = CF (B∗). If B∗ is triangle-free, we
assign a 2-star-biclique-colouring (see Theorem 6) with colours β(G) and β(G) + 1,
such that v∗ is coloured β(G)+ 1. Finally, let F ∈

⋃
v∈CF (B∗)

ΓG(B∗, v) and denote by

i the colour received by the unique vertex of C(F) in the above colouring procedure. If
F is complete then we assign colours {1, 2, . . . , |V (F)|} \ {i} to the vertices in C(F).
If F is triangle-free, we assign a 2-star-biclique-colouring (see Theorem 6) such that
colour i is assigned to the unique vertex of C(F). ��

See Fig. 10 for an example of the (β(G) + 1)-star-biclique-colouring algorithm
given by the constructive proof of Theorem 8.

Notice that Theorem 8 yields an optimal star-biclique-colouring algorithm for any
unichord-free graph G that is not β(G)-star-biclique-colourable—in particular, when
β(G) = 1. From now on, we consider β(G) ≥ 2.
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Fig. 10 An illustration of the (β(G) + 1)-star-biclique-colouring algorithm for a unichord-free graph G.
a Graph decomposition. b Colouring compositions

4.2.3 Optimal Star-Biclique-Colouring Algorithm

In the previous section, we showed how to star-biclique-colour a unichord-free graph
G using β(G) + 1 colours. The star-biclique-chromatic number of any graph that
contains at least one edge is at least 2, so that a graph has κSB(G) = β(G) only if
β(G) ≥ 2 or G is edgeless. The goal of the present section is to give an optimal star-
biclique-colouring to a unichord-free graph G with β(G) ≥ 2. In the present section,
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we show how to optimally star-biclique-colour a unichord-free graph G—in some
cases, using only β(G) colours, instead of the at most β(G) + 1 colours that we used
in the previous section. Our strategy to optimally star-biclique-colour a graph G is to
determine bounds on the number of colours needed in each biconnected component
of G, based only on the local structure of the biconnected component. More precisely,
we consider each type S∗ biconnected component, looking for a certificate that the
input graph G is not β(G)-star-biclique-colourable—otherwise, we decompose G and
continue the search in its decomposition blocks. The decomposition blocks are defined
in such a way that, if no obstruction is found in any block of the decomposition tree,
then the input graph G is β(G)-star-biclique-colourable. If a biconnected component
is triangle-free, then it can be star-biclique-coloured with 2 colours and is not an
obstruction for a star-biclique-colouring of G using β(G) ≥ 2 colours. The case of
complete biconnected components is more difficult. As we shall see, a complete type
S∗ biconnected component may demand β(G)+ 1 colours even if its twin classes are
all unitary.

Let G be a connected non-biconnected unichord-free graph and B∗ be a complete
type S∗ biconnected component. Consider the following partition of CF (B∗) into two
disjoint sets.

– T (B∗) = {v ∈ CF (B∗) | ∀B ∈ ΓG(B∗, v), B � Kβ(G)+1};
– T (B∗) = CF (B∗) \ T (B∗).

We have the following property about T (B∗).

Lemma 9 Let G be a connected non-biconnected unichord-free graph, B∗ be a com-
plete type S∗ biconnected component, and π be a β(G)-star-biclique-colouring of G.
If v ∈ T (B∗), then π(v) �= π(u) for every u ∈ B∗, u �= v.

Proof Let B be a complete biconnected component in ΓG(B∗, w), w ∈ CF (B∗), with
order β(G) + 1. Let π be a β(G)-star-biclique-colouring of G. B \ {w} needs β(G)

colours because it is a twin set of size β(G). So, one colour should be repeated at w.
Clearly, if every biconnected component in ΓG(B∗, w) is isomorphic to Kβ(G)+1, there
exists a monochromatic star in G[∪B∈ΓG (B∗,w)V (B)] with the colour of w, and with
the addition of any u ∈ B∗, u �= w, this monochromatic star of G[∪B∈ΓG (B∗,w)V (B)]
defines a star of G. Hence, π(u) �= π(w), for every u ∈ B∗, u �= w, and for every
β(G)-star-biclique-colouring π of G. ��

Note that the set of vertices of a complete type-S∗ biconnected component B∗ can
be partitioned into four subsets of vertices, each one playing a particular role in the
structure of B∗:

– The set C(B∗) contains the vertices of B∗ that belong to only one biconnected
component. Its key property is that by Lemma 8 the set C(B∗) defines a twin set
and so by Lemma 7 if π is a β-star-biclique-colouring, then no two vertices in the
set C(B∗) may have the same colour.

– The set T (B∗) contains the vertices of B∗ that belong to one or more type-F
biconnected components, all of which are complete graphs on β + 1 vertices. Its
key property, established in Lemma 9, is that, if π is a β-star-biclique-colouring,
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then each vertex must have a colour that is distinct from any other colour used in
B∗.

– The set T (B∗) contains the vertices of B∗ that belong to one or more type-F
biconnected components, at least one of which is not a complete graph on β + 1
vertices. The vertices of T (B∗) do not impose particular colouring restrictions to
B∗. If π is a β-star-biclique-colouring, then the vertices of the set T (B∗) can all
receive the same colour, and a colour used C(B∗) can be used in T (B∗).

– CF (B∗) = {v∗} is the “connection” between B∗ and the “rest of the graph”. The
only restriction on the colour of v∗ is that it must be distinct of any colour used in
T (B∗). The colour of v∗ might be the same as some colour used in C(B∗) or in
T (B∗), as long as this does not force a monocromatic star centered in v∗, but this
cannot be determined by looking only at the local structure of B∗, because the stars
centered in v∗ contain vertices that do not belong to B∗.

We may determine that a graph is not β-star-biclique-colourable by looking only
at the local structure of B∗. However, if such NO certificate is not found, we need to
continue and analyse the rest of the graph. What we do is to contract B∗—but, this new
contraction must capture the number of colours demanded by B∗. In order to define
a suitable contraction, we determine bounds on the number of colours demanded by
B∗.

Let G be a connected non-biconnected unichord-free graph withκSB(G) = β(G) ≥
2 and B∗ be a type S∗ biconnected component. We denote by f (B∗) the minimum
number of colours used in B∗ in any β(G)-star-biclique-colouring of G. The partition
of the vertices of a complete B∗ into sets CF (B∗), T (B∗), T (B∗), and C(B∗) allows
us to determine in Lemma 10 bounds for the possible values of f (B∗).

Lemma 10 Let G be a non-prime β(G)-star-biclique-colourable connected non-
biconnected unichord-free graph, and B∗ be a type S∗ biconnected component.

– If B∗ is triangle-free, then f (B∗) ≤ 2;
– If B∗ is complete, T (B∗) = ∅, and C(B∗) = ∅ (implying T (B∗) �= ∅), then

f (B∗) = |T (B∗)| + 1;

– If B∗ is complete, T (B∗) �= ∅, and C(B∗) = ∅, then

|T (B∗)| + 1 ≤ f (B∗) ≤ |T (B∗)| + 2;

– If B∗ is complete and C(B∗) �= ∅, then

|T (B∗)| + |C(B∗)| ≤ f (B∗) ≤ |T (B∗)| + |C(B∗)| + 1.

Proof If G is β(G)-star-biclique-colourable, then G admits a β(G)-star-biclique-
colouring such that every triangle-free biconnected component B∗ is 2-star-biclique-
coloured, which implies f (B∗) ≤ 2. Hence we suppose that B∗ is complete. Consider
a β(G)-star-biclique-colouring of G. Let v be a vertex of B∗. If v ∈ T (B∗), then we
can colour all biconnected components in ΓG(B∗, v) in order to make all stars and
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bicliques in G[∪B∈ΓG (B∗,v)V (B)] polychromatic. Hence, every u �= v in T (B∗) can
have the same colour as the colour assigned to v. In particular, we may assume that
all vertices of T (B∗) have the same colour. By Lemma 9, f (B∗) ≥ |T (B∗)| + 1 if
B∗ is complete. Note that the unique vertex v∗ of CF (B∗) must have a distinct colour
from those colours assigned to the vertices of T (B∗). Hence, f (B∗) = |T (B∗)| + 1
if B∗ is complete, T (B∗) = ∅, and C(B∗) = ∅. On the other hand, note that v∗ may
require a colour different from the colour assigned to all vertices in T (B∗). Hence,
f (B∗) ≤ |T (B∗)| + 2 if B∗ is complete, T (B∗) �= ∅, and C(B∗) = ∅. Now, note that
every pair of vertices in C(B∗) is a twin set and induces a biclique of G. Hence, all
vertices in C(B∗) must have distinct colours. On the other hand, all vertices of T (B∗)
can have the same colour of a vertex in C(B∗). Hence, f (B∗) ≥ |T (B∗)|+ |C(B∗)| if
B∗ is complete andC(B∗) �= ∅. Finally, note that v∗ may require a colour different from
the colours assigned to the vertices in C(B∗). Hence, f (B∗) ≤ |T (B∗)|+ |C(B∗)|+1
if B∗ is complete and C(B∗) �= ∅. ��

Lemma 10 provides a necessary condition for a graph G to be β(G)-star-biclique-
colourable, namely, that for any type S∗ biconnected component B∗, the lower bound
given by Lemma 10 for f (B∗) does not exceed β(G). For that reason, it is useful to
define a new function g(·) that returns a lower bound for f (B∗) in terms of T (B∗),
T (B∗), and C(B∗):
– g(B∗) = 1, if B∗ is triangle-free.
– g(B∗) = |T (B∗)| + 1, if B∗ is complete and C(B∗) = ∅.
– g(B∗) = |T (B∗)| + |C(B∗)|, if B∗ is complete and C(B∗) �= ∅.

Note that if B∗ is complete, then g(B∗) describes the exact number of colours that
is needed in the vertices of B∗ \ v∗, where v∗ denotes the unique vertex in CF (B∗).
The range of two possible values for f (B∗) in some of the cases of Lemma 10 is due
to the fact that one cannot determine, only by looking at B∗, whether the vertex v∗
demands a new colour not used in B∗ \ v∗. In other words, vertex v∗ could possibly
have the same colour as some vertex in C(B∗) or in T (B∗), as long as this does not
create in G any monochromatic star centered in v∗—and this information will be given
as soon as the recursion call returns.

In the case of prime graphs, the inexistence of v∗ ∈ CF (B∗) allows the precise deter-
mination of f (B∗) and the characterization of β(G)-star-biclique-colourable graphs.
The proof is omitted due to its similarity with the proof of Lemma 10.

Lemma 11 Let G be a prime connected non-biconnected unichord-free graph with
β(G) ≥ 2 and let B∗ be a type S∗ biconnected component of G. Graph G is β(G)-
star-biclique-colourable if, and only if, (at least) one of the following condition holds.

– B∗ is triangle-free;
– B∗ is complete, T (B∗) = ∅, and C(B∗) = ∅ (implying T (B∗) �= ∅), and

|T (B∗)| ≤ β(G);

– If B∗ is complete, T (B∗) �= ∅, and C(B∗) = ∅, and

|T (B∗)| + 1 ≤ β(G);
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– If B∗ is complete and C(B∗) �= ∅, and

|T (B∗)| + |C(B∗)| ≤ β(G).

Suppose that G has a decomposition via type S∗ biconnected component B∗. In
the light of Lemma 10, we modify G2 to Ĝ2 by possibly removing some vertices of
B∗ so as to obtain B̂ isomorphic to

– K2 if B∗ is triangle-free,
– K|T (B∗)|+1 = B∗ if B∗ is complete, T (B∗) = ∅, and C(B∗) = ∅,
– K|T (B∗)|+2 if B∗ is complete, T (B∗) �= ∅, and C(B∗) = ∅, or
– K|T (B∗)|+|C(B∗)|+1 if B∗ is complete and C(B∗) �= ∅.

B̂ still attaches to the rest of the graph via the same single vertex v∗.
Note that v∗, the unique vertex in CF (B∗), belongs to B̂, and note that κSB(Ĝ2) ≤

κSB(G). The following characterization of non-prime non-biconnected unichord-free
graphs that are β(G)-star-biclique-colourable is the missing step in the proposed opti-
mal star-biclique-colouring algorithm.

Theorem 9 Let G be a non-prime non-biconnected unichord-free graph with β(G) ≥
2, B∗ be a typeS∗ biconnected component and G1 and Ĝ2 obtained by the decomposi-
tion via B∗. Graph G is β(G)-star-biclique-colourable if, and only if, g(B∗) ≤ β(G)

and κSB(Ĝ2) ≤ β(G).

Proof First we prove the necessary condition. Note that g(B∗) determines a lower
bound for the number of colours that appear in B∗ in any β(G)-star-biclique-colouring
of G. Then, G cannot be β(G)-star-biclique-colourable if g(B∗) > β(G). Moreover,
note that a β(G)-star-biclique-colouring of G easily determines a β(G)-star-biclique-
colouring of Ĝ2. Assign to the vertices of (V (Ĝ2)\V (B̂))∪{v∗} the same colour they
receive in G. Finally, assign |V (B̂)| − 1 distinct colours not used in v∗ to the vertices
in B̂ \ v∗.

For the converse, assume that g(B∗) ≤ β(G) and κSB(Ĝ2) ≤ β(G). Consider a
β(G)-star-biclique-colouring of Ĝ2. We show how to extend this colouring to G. We
claim that the β(G)-star-biclique-colouring of Ĝ2 determines a β(G)-star-biclique-
colouring of G constructed as follows. Assume, w.l.o.g., that the unique vertex v∗ of
CF (B∗) was coloured β(G). First, we colour the vertices in (G\

⋃
v∈CF (B∗)

ΓG(B∗, v))\

B∗ as in the colouring of Ĝ2. Second, we colour the vertices of B∗. If B∗ is complete,
then consider the following colouring.

– Assign colours 1, . . . , |T (B∗)| to vertices of T (B∗);
– Assign colour |T (B∗)| + 1 to every vertex in T (B∗);
– Assign colours |T (B∗)| + 1, . . . , |T (B∗)| + |C(B∗)| to vertices of C(B∗).

If B∗ is triangle-free, we assign a 2-star-biclique-colouring (see Theorem 6) with
colours β(G) − 1 and β(G).

Finally, let F ∈
⋃

v∈CF (B∗)
ΓG(B∗, v) and denote by i the colour received by the

unique vertex of C(F) in the above colouring procedure. If F is triangle-free, then we
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Fig. 11 An illustration of the β(G)-star-biclique-colouring algorithm for a β(G)-star-biclique-colourable
unichord-free graph G. a Graph decomposition. b Colouring compositions

assign a 2-star-biclique-colouring (see Theorem 6) such that colour i is assigned to
the unique vertex of C(F). If F is complete, then we need to distinguish two cases: if
|V (F)| = β + 1, then we assign colours {1, . . . , β} to the vertices in C(F), otherwise
|V (F)| ≤ β and we assign colours {1, 2, . . . , |V (F)|} \ {i} to the vertices in C(F). ��

See Fig. 11 for an example of the β(G)-star-biclique-colouring algorithm given
by the constructive proof of Theorem 9, where κSB(G) = β(G) = 3. Note that the
recursion can stop as soon as β(Ĝ2) < β(G) or Ĝ2 is prime.

4.3 Algorithmic Aspects

Let G be a biconnected unichord-free graph. If G is a complete graph, then an optimal
star-biclique-colouring uses |V (G)| colours. Now, we consider G as a biconnected
{triangle, unichord}-free graph. An optimal star-biclique-colouring algorithm of G
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strongly relies on the proper decomposition tree defined in Sect. 2, where (at least)
one block of decomposition of the type 2 non-leaf node is basic.

We construct a proper decomposition tree TG of the input graph G in time O(n2m).
It is shown by Trotignon and Vušković [26] an O(nm)-time algorithm to output a
proper decomposition tree of a unichord-free graph. In their algorithm, we replace the
O(n+m)-time algorithm to find a proper 2-cutset (if any) in a unichord-free graph with
no 1-cutset and no proper 1-join by the following O(nm)-time algorithm. Consider
all possible 2-cutset decompositions of G and pick a proper 2-cutset S that has a block
of decomposition B whose size is smallest possible. Machado, de Figueiredo, and
Vušković [18] showed that B must be basic. All proper 2-cutsets (and its blocks of
decomposition orders) can be found in O(nm)-time. Indeed, for any vertex v, find all
1-cutsets and all blocks of decomposition of G \ {v} with depth-first search. For any
such block of decomposition, check whether the corresponding 1-cutset u is such that
{u, v} is a proper 2-cutset. Keep in memory the size of its blocks of decomposition
and choose a proper 2-cutset with a block of decomposition of minimum size among
them. We now have an algorithm to output a proper decomposition tree such that
every proper 2-cutset subtree decomposition is extremal. On the other hand, it raised
to O(n2m) the time-complexity of the algorithm to output such proper decomposition
tree, because we replaced an O(n + m)-time algorithm to find a proper 2-cutset by an
O(nm)-time algorithm.

Now, we discuss the time-complexity to combine solutions of the blocks of decom-
position of a given node of TG . We have three cases.

– Non-leaf node H of type 1 of TG . Lemma 4 shows how to proceed (in constant
time) to find a star-biclique-colouring of H by asking recursively for appropriately
chosen star-biclique-colouring of its children.

– Non-leaf node H of type 2 of TG . Lemma 3 shows how to proceed (in constant time)
to find a star-biclique-colouring of H in two steps. First, by asking recursively for
appropriately chosen star-biclique-colouring of its non-basic child, if exists such
non-basic child, or one basic child, otherwise. Second, the given star-biclique-
colouring is extended to the other block of decomposition by asking recursively for
an appropriately chosen star-biclique-colouring of the non-basic child. Note that
since H is of type 2, every non-leaf descendant of H is of type 2. Hence, all leaves
under H will have a 2-star-biclique-colouring computed by Lemma 2.

– Leaf node H of TG . Lemma 2 shows how to proceed in linear-time to find a 2-star-
biclique-colouring of H .

So the time-complexity to combine solutions of the blocks of decomposition at
each non-leaf node of TG is O(1). It is proved that TG is O(n) [26] and the sum of
time-complexity to give a 2-star-biclique-colouring at the leaves of TG is O(n + m),
which means that the time-complexity to process the tree is O(n + m).

Notice that the bottleneck of this algorithm is to construct the proper decomposition
tree, i.e. the time-complexity is O(n2m).

Lemma 12 There exists an O(n2m)-time algorithm to compute a 2-star-biclique-
colouring of a {triangle, unichord}-free graph.

Now, we determine the largest size of a twin set and how to find a S∗ biconnected
component. This will be useful to compute the optimal star-biclique-colouring for
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unichord-free graphs. The proposed algorithms rely on Tarjan’s linear-time algorithm
to determine all biconnected components of a graph [25]. We add two integers for
each vertex v of the input graph. Integer i1 stores the number |ΓG(B, v) ∪ B| of
biconnected components containing v and we can easily modify Tarjan’s linear-time
algorithm to compute it. Integer i2 stores the number of biconnected components
containing v that are type F . We identify every biconnected component that is type
F in the graph searching for those biconnected components that contain exactly one
vertex with i1 ≥ 2.

We identify every biconnected component that is type S∗ in a unichord-free graph,
as follows. Search for the biconnected components that contain exactly one vertex with
i1 = i2 ≥ 2, for the biconnected components that are type F , or contain at least one
vertex with i1 = i2 + 1 ≥ 2 and at most one vertex with i1 ≥ i2 + 2, for biconnected
components that are non-type F .

Lemma 13 Let G = (V, E) be a biconnected unichord-free graph with n = |V | and
m = |E |. There exists an O(n + m) algorithm to find all S∗ biconnected components
of a unichord-free graph.

We compute the largest size of a twin set of a graph G, as follows. By Lemma 8, we
have the following twin sets: each vertex of a triangle-free biconnected component,
each vertex with i1 ≥ 2, and each maximal subset of vertices with i1 = 1 belonging
to the same complete biconnected component. Keep in memory the size of each twin
set and choose a largest one. Clearly, it is a linear-time algorithm.

Lemma 14 There exists a linear-time algorithm to compute the largest size of a twin
set of a graph.

Now, we discuss the constructive proof of Theorem 8, which yields an O(n2m)-
time algorithm to compute a (β(G) + 1)-star-biclique-colouring of a unichord-free
graph. We already discussed in Lemma 12 when G is a biconnected component. Now,
suppose that G is a connected non-biconnected unichord-free graph. Suppose that G
is a prime graph. Theorem 8 yields a linear-time algorithm, if G does not contain
a triangle-free biconnected component, or an O(n2m)-time algorithm, otherwise, to
compute a (β(G) + 1)-star-biclique-colouring of G. Now, suppose that G is not a
prime graph. We entail a decomposition via type S∗ biconnected components, say B∗.
Theorem 8 applies recursion on G̃2 to assign a (β(G̃2) + 1)-star-biclique-colouring,
where β(G̃2) ≤ β(G). The proof of Theorem 8 gives an algorithm to extend the
star-biclique-colouring of G̃2 to G, which is a (β(G) + 1)-star-biclique-colouring of
G1. Graphs G1 and G̃2 have at least K2 and at most B∗ in common. Hence, we have

– |V (G1)| + |V (G̃2)| − |V (B∗)| ≤ n ≤ |V (G1)| + |V (G̃2)| − 2 and
– |E(G1)| + |E(G̃2)| − 1 ≤ m ≤ |E(G1)| + |E(G̃2)| − |E(B∗)|.
It follows that the overall time-complexity to give a (β(G)+1)-star-biclique-colouring
of G1 and of G2 is O(n2m).

Lemma 15 There exists an O(n2m)-time algorithm to compute a (β(G) + 1)-star-
biclique-colouring of a given unichord-free graph G.
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The constructive proof of Theorem 9 yields an O(n2m)-time algorithm to compute a
(β(G))-star-biclique-colouring of a unichord-free graph, if such colouring is possible.
The time-complexity case analysis is very similar to that of Lemma 15.

Lemma 16 There exists an O(n2m)-time algorithm to compute a β(G)-star-biclique-
colouring of a given unichord-free graph G, if such colouring exists.

In order to check if the unichord-free graph input is indeed β(G)-star-biclique-
colourable, we need to check if g(B∗) is at most β(G) and Ĝ2 is β(G)-star-biclique-
colourable. If it is not the case, Lemma 15 yields the optimal star-biclique-colouring
to G. Otherwise, Lemma 16 yields the optimal star-biclique-colouring to G.

Theorem 10 There exists an O(n2m)-time algorithm to assign an optimal star-
biclique-colouring to a unichord-free graph G.

5 Conclusion

In our extended abstract [7] presented at LATIN 2012, we showed that the biclique-
chromatic number of a unichord-free graph is at most its clique-number. Unfortunately,
this upper bound may be very large compared to the actual biclique-chromatic number.
Let Hn be the graph on vertices {a1, . . . , a n

2
, b1, . . . , b n

2
} such that {a1, . . . , a n

2
} is a

complete set, {b1, . . . , b n
2
} is a stable set, and such that the only edges between some

ai and some b j are ai bi , for each 1 ≤ i ≤ n
2 . Since Hn is square-free, every biclique

is a star, and H is clearly 2-biclique-colourable, but the clique-number of Hn is n
2 . In

the present work, we strengthen the bounds by showing that the biclique-chromatic
number of a unichord-free graph is the increment of or exactly the size of a largest
twin set. Note that β(Hn) = 1.

The graph H6 is called a net. A block graph is a graph in which every biconnected
component is a clique. Groshaus, Soulignac, and Terlisky [10] gave an optimal star-
biclique-colouring algorithm for net-free block graphs. A cactus graph is a graph in
which every nontrivial biconnected component is a cycle. In our previous extended
abstract, we gave an optimal biclique-colouring algorithm for cacti graphs. The class
of net-free block graphs is incomparable to the class of cacti graphs. Indeed, a complete
graph with four vertices K4 and a chordless cycle with four vertices C4 are examples.
Nevertheless, both classes are unichord-free subclasses. In the present work, we give
an optimal biclique-colouring algorithm for unichord-free graphs.

Finally, we show that {K3, unichord}-free graphs are polynomial-time 2-star-
biclique-colourable. On one hand, the obtained 2-star-biclique-colouring leads to an
optimal biclique-colouring polynomial-time algorithm for unichord-free graphs. On
the other hand, it is an open problem to determine the biclique-colouring complexity
for K3-free graphs [10]. We remark that Groshaus, Soulignac, and Terlisky [10] gave
a polynomial-time 2-star-colouring algorithm for K3-free graphs.
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