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Abstract Algorithmic Mechanism Design attempts to marry computation and incen-
tives, mainly by leveraging monetary transfers between designer and selfish agents
involved. This is principally because in absence of money, very little can be done to
enforce truthfulness. However, in certain applications, money is unavailable, morally
unacceptable or might simply be at odds with the objective of the mechanism. For
example, in combinatorial auctions (CAs), the paradigmatic problem of the area, we
aim at solutions of maximum social welfare but still charge the society to ensure
truthfulness. Additionally, truthfulness of CAs is poorly understood already in the
case in which bidders happen to be interested in only two different sets of goods.
We focus on the design of incentive-compatible CAs without money in the general
setting of k-minded bidders. We trade monetary transfers with the observation that
the mechanism can detect certain lies of the bidders: i.e., we study truthful CAs with
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verification and without money. We prove a characterization of truthful mechanisms,
which makes an interesting parallel with the well-understood case of CAs with money
for single-minded bidders. We then give a host of upper bounds on the approximation
ratio obtained by either deterministic or randomized truthful mechanisms when the
sets and valuations are private knowledge of the bidders. (Most of these mechanisms
run in polynomial time and return solutions with (nearly) best possible approximation
guarantees.) We complement these positive results with a number of lower bounds
(some of which are essentially tight) that hold in the easier case of public sets. We thus
provide an almost complete picture of truthfully approximating CAs in this general
setting with multi-dimensional bidders.

Keywords Combinatorial auctions · Algorithmic Mechanism Design · Approximate
mechanism design without money · Mechanisms with verification

1 Introduction

Algorithmic Mechanism Design has as main scope the realignment of the objective
of the designer with the selfish interests of the agents involved in the computation.
Since the Internet, as the principal computing platform nowadays, is perhaps the
main motivation to study problems in which these objectives are different, one would
expect truthful mechanisms to have concrete and widespread practical applications.
However, one of the principal obstacles to this is the assumption that the mecha-
nisms use monetary transfers. On one hand, money may provoke (unreasonably) large
payments [9]; on the other hand, while money might be reasonable in some appli-
cations, such as sponsored search auctions, little justification can be found for either
the presence of a digital currency or the use of money at all. There are contexts
in which money is morally unacceptable (such as, to support certain political deci-
sions) or even illegal (as for example, in organ donations). Additionally, there are
applications in which the objective of the computation collides with the presence of
money.

Consider combinatorial auctions (CAs, for short), the paradigmatic problem in
Algorithmic Mechanism Design. In a combinatorial auction we have a set U of m
goods and n bidders. Each bidder i has a private valuation function vi that maps
subsets of goods to nonnegative real numbers (vi (∅) is normalized to be 0). Agents’
valuations are monotone, i.e., for S ⊇ T we have vi (S) ≥ vi (T ). The goal is to find a
partition S1, . . . , Sn of U such that

∑n
i=1 vi (Si )—the social welfare—is maximized.

For this problem, we are in a paradoxical situation: whilst, on one hand, we pursuit
the noble goal of maximizing the happiness of the society (i.e., the bidders), on the
other, we consider it acceptable to charge the society itself (and then “reduce” its total
happiness) to ensure truthfulness. CAs without money would avoid this paradox and
deal with budgeted bidders (a case which is generally hard to handle in presence of
money).

In this paper, we focus on k-minded bidders, i.e., bidders are interested in obtaining
one out of a collection of k subsets of U. In this general setting, we want to study
the feasibility of designing truthful CAs without money, returning (ideally, in polyno-
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mial time) reasonable approximations of the optimal social welfare. This is, however,
an impossible task in general: it is indeed pretty easy to show that there is no better
than n-approximate mechanisms without money, even in the case of single-item auc-
tions and truthful-in-expectation mechanisms [8]. We therefore focus on the model
of CAs with verification, introduced in [18]. In this model, which is motivated by
a number of real-life applications and has also been considered by economists [6],
bidders do not overbid their valuations on the set that they are awarded. The hope
is that money can be traded with the verification assumption so to be able to design
“good” (possibly, polynomial-time) mechanisms, which are truthful without money
in a well-motivated—still challenging—model.

The model of CAs with verification is perhaps best illustrated by means of the
following motivating scenario, discussed first in [18]. Consider a government (auc-
tioneer) auctioning business licenses for a set U of cities under its administration. A
company (bidder) wants to get a business license for some subset of cities (subset ofU)
to sell her product stock to the market. Consider the bidder’s profit for a subset of cities
S to be equal to a unitary publicly known product price (e.g., for some products, such
as drugs, the government could fix a social price) times the number of product items
available in the stocks that the company possesses in the cities comprising S.1 In this
scenario, the bidder is strategic on her stock availability. As noted in literature in Eco-
nomics [6], a simple inspection on the stock consistency implies that bidders cannot
overbid their profits: the concealment of existing product items in stock is costless but
disclosure of unavailable ones is prohibitively costly. The assumption is verification
a posteriori2: the inspection is carried on for the solutions actually implemented and
then each bidder cannot overstate her valuation for the set she gets allocated, if any.
It is important to notice that bidders can misreport sets and valuations for unassigned
sets in an unrestricted way. A formal definition of the model of CAs with verification
and without money can be found in Sect. 2.

1.1 Our Contribution

In this model, we firstly give a complete characterization of algorithms that are
incentive-compatible in both the cases in which the collections of k sets, each bid-
der is interested in, are public (also referred to, as known bidders) and private (also
known as, unknown bidders); valuations are always assumed to be private. We prove
that truthfulness is characterized in this context in terms of k-monotone algorithms:
in the case of known bidders, if a bidder is awarded a set S and augments her decla-
ration for S then a k-monotone algorithm must, in this new instance, grant her a set
in her collection which is not worse than S (i.e., a set with a valuation not smaller
than her valuation for S). (This generalizes neatly to the case of unknown bidders.)

1 Note that bidders will sell products already in stock (i.e., no production costs are involved as they have
been sustained before the auction is run). This is conceivable when a government runs an auction for urgent
needs (e.g., salt provision for icy roads or vaccines for pandemic diseases).
2 A stronger model of verification would require bidders to be unable to overbid at all and not just on the
awarded set. However, there appears to be weaker motivations for this model: the investment required on
inspections would be considerable and rather unrealistic.
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There are two important facts we wish to emphasize about our characterizations. First,
their significance stems from the fact that the corresponding problem of characterizing
truthfulness for CAs with money and k-minded bidders is poorly understood: this is
a long-standing open problem already for k = 2, see, e.g., [26, Chapter 12]. Second,
it is pretty easy to see that these notions generalize the properties of monotonicity
shown to characterize truthfulness with money for single-minded bidders in [20,23]
for known and unknown bidders, respectively. More generally, these properties of
monotonicity are also proved to be sufficient to get truthful mechanisms for so-called
generalized single-minded bidders [3]. This is an interesting development as, to the
best of our knowledge, it is the first case inwhich a truthfulmechanismwithmoney can
be “translated” into a truthful mechanism without money. The price to pay is “only”
to perform verification to prevent certain lies of the bidders, while algorithms (and
then their approximation guarantees) remain unchanged. Thus, in light of our results,
previously known algorithms presented in, e.g., [3,12,20] assume a double relevance:
they are truthful not only when money can be used, but also in absence of money when
verification can be implemented. This equivalence gives also a strong motivation for
our model. Naturally, the picture for the multi-dimensional case of k > 1 is more
blurry since, as we mention above, truthfulness with money is not well understood yet
in these cases.

Armed with the characterization of truthfulness, we provide a number of upper and
lower bounds on the approximation guarantee to the optimal social welfare of truthful
CAs without money and with verification. The upper bounds hold for the harder case
of unknown bidders. We give an upper bound of O(b b

√
m) in the case in which each

good inU has a supply b. This algorithm is deterministic, runs in polynomial time and
adapts an idea of multiplicative update of good prices by [19]. Following similar ideas,
we also obtain randomized universally truthful mechanisms with approximation ratios
of O(d1/b · log(bm)) and O(m1/(b+1) · log(bm)), where d is the maximum size of sets
in the bidders’ collections. Our most significant deterministic polynomial-time upper
bound is obtained, in the case of b = 1, by a simple greedymechanism that exploits the
characteristics of the model without money. This algorithm returns a min{m, d + 1}-
approximate solution. We also give two simple randomized universally truthful CAs
without money: the first achieves a k-approximation in exponential time; the second
runs instead in polynomial-time and has a O(

√
m)-approximation guarantee. We note

here that all our polynomial-time upper bounds are computationally (nearly) best
possible even when the algorithm has full knowledge of the bidders’ data—cf. Table 1.
We also would like to note that all, but the k-approximate, upper bounds given can be
obtained in the setting in which bidders’ declare so-called demand oracles, see, e.g.,
[26, Chapter 11].

We complete this study by proving a host of lower bounds on the approximation
guarantee of truthful CAs without money for known bidders, without any computa-
tional assumption. (Note that the class of incentive-compatible algorithms for known
bidders is larger than the class for unknown bidders.) We prove the following lower
bounds: 2 for deterministic mechanisms; 5/4 for universally truthful mechanisms;
and, finally, 1.09 for truthful-in-expectation mechanisms. This implies that the opti-
mal mechanisms are not truthful in our model. Additionally, stronger lower bounds are
proved for deterministic truthful mechanisms that use priority algorithms [1]. These
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Table 1 Our upper bounds compared with the computational hardness to approximate the problem

Mechanism type Upper bound (unknown k-minded
bidders)

Computational lower bounds [14,20,
24]

Deterministic O(b · m1/b)

Univ. truthful O(d1/b · log(bm))

Univ. truthful O(m1/(b+1) · log(bm)) O(d/ log d)

b = 1, deterministic min{m, d + 1} m1/2−ε

b = 1, univ. truthful k (exp. time)

b = 1, univ. truthful O(
√
m)

Table 2 Our lower bounds at a
glance

Mechanism type Unconditional lower bounds (known
k-minded bidders)

Deterministic 2

Univ. truthful 5/4

Truthful in expectation 1.09

Priority (bids) (1 − δ)d, any δ > 0

Priority (bidders) (1 − δ)m/2, any δ > 0

algorithms process (and take decisions) one elementary item at the time, from a list of
ordered items. The ordering can also change adaptively after each item is considered.
(Note that our greedy mechanism falls in the category of non-adaptive priority algo-
rithms since it process bids as items, which are ordered at the beginning.) We give a
lower bound of d for priority algorithms that process bids as elementary items (thus,
essentially matching the upper bound of the greedy algorithm) and a lower bound of
m/2 in the case in which the algorithm processes bidders as items. A summary of our
lower bounds is presented in Table 2.

Our bounds give a rather surprising picture of the relative power of verification
versus money, thus suggesting that the two models are somehow incomparable. For
example, we have a O(

√
m)-approximate universally truthful mechanism, which

matches the guarantee of the universally truthful mechanism with money given by
[7]. (However, it is worth mentioning that the latter mechanism does not guarantee the
approximation ratio since there is an error probability of O(logm/

√
m) which cannot

be reduced by, e.g., repeating the auction or otherwise truthfulness would be lost.)
On the other hand, because of our lower bounds, we know that it is not possible to
implement the optimal outcomewithout money; while, if we have exponential compu-
tational time, we can truthfully implement the optimal solution using VCG payments.
However, if we restrict to polynomial-time mechanisms, then we have a deterministic
truthful min{m, d+1}-approximation mechanism without money, based on the afore-
mentioned greedy algorithm; with money, instead, it is not known how to obtain any
polynomial-time deterministic truthful mechanism with an approximation ratio better
than theO(m/

√
logm)-approximation given in [15].Moreover, [1, Theorem2] proved

a lower bound of �(m) on the approximation ratio of any truthful greedy mechanism
with money for instances with demanded sets of cardinality at most 2. Our greedy
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mechanism achieves an approximation ratio of 3 for such instances, which implies
that this lower bound does not hold in our model without money. Additionally, we
show that the greedy mechanism cannot be made truthful with money, which suggests
that the model without money couples better with greedy selection rules. A general
lower bound in terms of m for CAs without money would shed further light on this
debate of power of verification versus power of money. In this regard, we offer an
interesting conjecture in Sect. 5.5.

1.2 Related Work

CAs as an optimization problem (without strategic consideration) is known to be
NP-hard to solve optimally or even to approximate: neither an approximation ratio of
m1/2−ε , for any constant ε > 0, nor of O(d/ log d) can be obtained in polynomial time
[14,20,24]. As a consequence, a large body of literature has focused on the design of
polynomial-time truthful CAs that return as good an approximate solution as possible,
under assumptions (i.e., restrictions) on bidders’ valuation domains. For single-minded
domains, a host of truthful CAs have been designed (see, e.g., [3,20,23]). A more
complete picture of what is known for truthful CAs under different restrictions of
bidders’ domains can be found in Figure 11.2 of [26].

The authors of [18], instead of restricting the domains of the bidders, proposed
to restrict the way bidders lie. We are adopting here their model, adapting it to the
case without money. The definition of CAs with verification is inspired by the liter-
ature on mechanisms with verification (see, e.g., [25,28,29] and references therein).
Mechanism design problems where players have restrictions on the way of lying are
also considered in theoretical economics. We next discuss some of the work more
relevant to this paper. Green and Laffont [13] define and motivate a model of partial
verification wherein bidders can only report bids from a type-dependent set of allowed
messages; they characterize bidding domains for which the Revelation Principle holds
in presence of this notion of restricted bidding. This model has been further studied
by Singh andWittman [32] and later extended in [4] to allow probabilistic verification
of bids outside the set of allowed messages. The economic model that is closest to
ours is the one studied in [6]; therein verification is supposed to take place for every
outcome and not just for the implemented solution and is therefore stronger and less
realistic than ours. Another related line of work tries to establish when a subset of
incentive-compatibility constraints is sufficient to obtain full incentive-compatibility.
Moore [22] considers a single good, single buyer optimal auction design and studies
conditions under which no-overbidding constraints would also imply the full incentive
compatibility of the underlying auction. Other papers studying this kind of questions
are [5,31]. In particular, the results in [5,11] (and to some extent in [4]) imply that one
has to focus only on “one-sided” verification, for otherwise a mechanism is truthful if
and only if it satisfies a subset of incentive-compatibility constraints.

Our work fits in the framework of approximate mechanism design without money,
initiated by [30]. The idea is that for optimization problems where the optimal solu-
tion cannot be truthfully implemented without money, one may resort to the notion
of approximation, and seek for the best approximation ratio achievable by truthful
algorithms. Approximate mechanisms without money have been obtained for various
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problems, among them, for locating one or two facilities in metric spaces (see e.g.,
[21,30]). Due to the apparent difficulty of truthfully locating three or more facilities
with a reasonable approximation guarantee, notions conceptually similar to our notion
of verification have been proposed [10,27]. Koutsoupias [16] considers truthful mech-
anisms without money, for scheduling selfish machines whose execution times can be
(strongly) verified. The authors of [8] consider the design of mechanisms without
money for, what they call, the Generalized Assignment problem: n selfish jobs com-
pete to be processed by m unrelated machines; the only private data of each job is the
set of machines by which it can be actually processed. This problem can be modeled
via maximum weight bipartite matching and the latter can be cast as a special case of
CAs with demanded sets of cardinality 1; then [8, Algorithm 1] can be regarded as a
special case of our greedy algorithm.

2 Model and Preliminaries

In a combinatorial auction we have a set U of m goods and n agents, a.k.a. bidders.
Each k-minded XOR-bidder i has a private valuation function vi and is interested
in obtaining only one set in a private collection Si of subsets of U, k being the size
of Si . The valuation function maps subsets of goods to nonnegative real numbers
(vi (∅) is normalized to be 0). Agents’ valuations are monotone: for S ⊇ T we have
vi (S) ≥ vi (T ).

The goal is to find a partition S1, . . . , Sn of U such that
∑n

i=1 vi (Si ) –the social
welfare– is maximized. As an example consider U = {1, 2, 3} and the first bidder to
be interested in S1 = {{1}, {2}, {1, 2}}. The valuation function of bidder i for S /∈ Si
is

vi (S) =
{
maxS′∈Si :S⊇S′ {vi (S′)} if ∃S′ ∈ Si ∧ S ⊇ S′,
0 otherwise.

(1)

Accordingly, we say that vi (S) 
= 0 (for S /∈ Si ) is defined by an inclusion-maximal
set S′ ∈ Si such that S′ ⊆ S and vi (S′) = vi (S). If vi (S) = 0 then we say that ∅
defines it. So in the example above v1({1, 2, 3}) is defined by {1, 2}.

Throughout the paper we assume that bidders are interested in sets of cardinality
at most d ∈ N, i.e., d = max{|S| : ∃ i s.t. S ∈ Si ∧ vi (S) > 0}.

Assume that the sets S ∈ Si and the values vi (S) are private knowledge of the
bidders. Then, we want to design an allocation algorithm (auction) that for a given
input of bids from the bidders, outputs a feasible assignment (i.e., at most one of the
requested sets is allocated to each bidder, and allocated sets are pair-wise disjoint). The
auction should guarantee that no bidder has an incentive to misreport her preferences
andmaximize the social welfare (i.e., the sumof the valuations of thewinning bidders).

More formally, we let Ti be a set of k non-empty subsets of U and let zi be the
corresponding valuation function of agent i , i.e., zi : Ti → R

+. We call bi = (zi , Ti )
a declaration (or bid) of bidder i . We let ti = (vi ,Si ) be the true type of agent i . We
also let Di denote the set of all the possible declarations of agent i and call Di the
declaration domain of bidder i . Fix the declarations b−i of all the agents but i . For
any declaration bi = (zi , Ti ) in Di , we let Ai (bi ,b−i ) be the set that an auction A on
input b = (bi ,b−i ) allocates to bidder i . If no set is allocated to i then we naturally
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set Ai (bi ,b−i ) = ∅. Observe that, according to (1), vi (∅) = 0. We say that A is a
truthful auction without money if the following holds for any i , bi ∈ Di and b−i :

vi (Ai (ti ,b−i )) ≥ vi (Ai (b)). (2)

We also define notions of truthfulness in the case of randomization: we either have
universally truthful CAs, in which case the mechanism is a probability distribution
over deterministic truthful mechanisms, or truthful-in-expectation CAs, where in (2)
we use the expected values, over the random coin tosses of the algorithm, of the
valuations. We also say that a mechanism A is an α-approximation for CAs with k-
minded bidders if for all t = (vi ,Si )ni=1,

∑n
i=1 vi (Ai (t)) ≥ OPT/α, OPT being the

value of a solution with maximum social welfare for the instance t.
Recall that Ai (ti ,b−i ) may not belong to the set of demanded sets Si . In par-

ticular, there can be several sets in Si (or none) that are subsets of Ai (ti ,b−i ).
However, as observed above (cf. (1)), the valuation is defined by a set in Si ∪ {∅}
which is an inclusion-maximal subset of set Ai (ti ,b−i ) that maximizes the valua-
tion of agent i . We denote such a set as σ(Ai (ti ,b−i )|ti ), i.e., vi (Ai (ti ,b−i )) =
vi (σ (Ai (ti ,b−i )|ti )). In our running example above, it can be for some algorithm
A and some b−1, that A1(t1,b−1) = {1, 2, 3} /∈ S1 whose valuation is defined as
observed above by {1, 2}; the set {1, 2} is denoted as σ(A1(t1,b−1)|t1). (Similarly, we
define σ(Ai (bi ,b−i )|bi )) ∈ Ti ∪ {∅} w.r.t. Ai (bi ,b−i ) and declaration bi .) Follow-
ing the same reasoning, we let σ(Ai (bi ,b−i )|ti ) denote the set in Si ∪ {∅} such that
vi (Ai (bi ,b−i )) = vi (σ (Ai (bi ,b−i )|ti )).

We focus on exact algorithms3 in the sense of [20]. This means that Ai (bi ,b−i ) ∈
Ti ∪ {∅}. This implies, by monotonicity of the valuations, that Ai (bi ,b−i ) =
σ(Ai (bi ,b−i )|bi ) and then the definition of σ(·|·) yields the following for any
ti , bi ∈ Di :

σ(Ai (bi ,b−i )|ti ) ⊆ Ai (bi ,b−i ) = σ(Ai (bi ,b−i )|bi ). (3)

Verificationmodel for CAs In the verificationmodel each bidder can only declare lower
valuations for the set she is awarded.More formally, bidder i whose type is ti = (vi ,Si )
can declare a type bi = (zi , Ti ) if and only if whenever σ(Ai (bi ,b−i )|bi ) 
= ∅:

zi (σ (Ai (bi ,b−i )|bi )) ≤ vi (σ (Ai (bi ,b−i )|ti )). (4)

In particular, bidder i evaluates the assigned set σ(Ai (bi ,b−i )|bi ) ∈ Ti as
σ(Ai (bi ,b−i )|ti ) ∈ Si ∪ {∅}, i.e., vi (σ (Ai (bi ,b−i )|ti )) = vi (σ (Ai (bi ,b−i )|bi )).
Thus the set σ(Ai (bi ,b−i )|bi ) can be used to verify a posteriori that bid-
der i has overbid declaring zi (σ (Ai (bi ,b−i )|bi )) > vi (σ (Ai (bi ,b−i )| bi )) =
vi (σ (Ai (bi ,b−i )|ti )). To be more concrete, consider the motivating scenario for CAs
with verification above. The set of cities σi (A(bi ,b−i )|bi ) for which the government
assigns licenses to bidder i when declaring bi , can be used a posteriori to verify over-
bidding by simply counting the product items available in the stock of the cities for
which licenses were granted to bidder i .

3 An algorithm is exact if, to each bidder, either only one of the declared sets is awarded or none.
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When (4) is not satisfied then the bidder is caught lying by the verification step. We
assume that this behavior is very undesirable for the bidder (e.g., for simplicity we can
assume that in such a case the bidder loses prestige and the possibility to participate in
the future auctions). This way (2) is satisfied directly when (4) does not hold (as in such
a case a lying bidder would have an infinitely bad utility because of the assumption
above). Thus in our model, truthfulness with verification and without money of an
auction is fully captured by (2) holding only for any i , b−i and bi = (zi , Ti ) ∈ Di

such that (4) is fulfilled. Since our main focus is on this class of truthful mechanisms
with verification and no money, we sometimes avoid mentioning that and simply refer
to truthful mechanisms/algorithms.
A graph-theoretic approach The technique we will use to derive truthful auctions
for multi-minded XOR bidders is a straightforward variation of the so-called cycle
monotonicity technique. Consider an algorithm A. We will set up a weighted graph
for each bidder i depending on A, bidder domain Di and the declaration b−i of all
the bidders but i in which the non-existence of negative-weight edges guarantees
the truthfulness of the algorithm. This is a well known technique. More formally,
fix algorithm A, bidder i and declarations b−i . The declaration graph associated to
algorithm A has a vertex for each possible declaration in the domain Di . We add an
arc between a = (z, T ) and b = (w,U) in Di whenever a bidder of type a can declare
to be of type b obeying (4). Following the definition of the verification setting, edge
(a, b) belongs to the graph if and only if z(σ (b|a)) ≥ w(σ(b|b)). 4 5 The weight of
the edge (a, b) is defined as z(σ (a|a)) − z(σ (b|a)) and thus encodes the loss that a
bidder whose type is (z, T ) incurs by declaring (w,U). The following result (whose
proof is straightforward) relates the weight of edges of the declaration graph to the
truthfulness of the algorithm.

Proposition 1 A is a truthful auction with verification without money for CAs with
k-minded bidders if and only if each declaration graph associated to algorithm A does
not have negative-weight edges.

In the case of mechanisms without verification, the graph above is complete. Such
a graph can be used to check whether algorithms can be augmented with payments so
to ensure truthfulness, both in the scenario with verification and without. Incentive-
compatibility of algorithms is known to coincide with the case in which each graph has
no negative-weight cycles [33]. We will use this fact to show that certain algorithms
cannot be made truthful with money.
Known versus Unknown k-minded bidders In the discussion above, we consider the
case in which the collection of k sets, each bidder is interested in, is private knowledge.
In this case, we refer to the problem of designing truthful auctions that maximize the
social welfare as CAs with unknown k-minded bidders (or, simply, unknown bidders).
An easier scenario is the setting in which the sets are public knowledge and bidders

4 To ease our notation we let σ(b|a) be a shorthand for σ(Ai (b, b−i )|a) when the algorithm, the bidder i
and declarations b−i are clear from the context as in this case.
5 Strictly speaking for an edge (a, b) in the graph, we should require that z(σ (b|a)) ≥ w(σ(b|b)) only
whenever σ(b|b) 
= ∅ as this set would be needed to verify. However, because of the monotonicity and
normalization of valuations, z(σ (b|a)) ≥ w(σ(b|b)) holds also whenever σ(b|b) = ∅, since σ(b|a) = ∅
and z(∅) = w(∅) = 0.
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are only strategic about their valuations. In this case, we instead talk about CAs with
known k-minded bidders (or, simply, known bidders). Our upper bounds hold for the
more general case of unknown bidders, while the lower bounds apply to the larger
class of mechanisms truthful for known bidders.

3 Characterization of Truthful Mechanisms

In this section we characterize the algorithms that are truthful in our setting, in both the
scenarios of known and unknown bidders. Interestingly, the characterizing property
is algorithmic only and turns out to be a generalization of the properties used for the
design of truthful CAs with money and no verification for single-minded bidders.

3.1 Characterization for Known Bidders

In this case, for each k-mindedbidder i weknowSi . The followingproperty generalizes
monotonicity of [23] and characterizes truthful auctions without money and with
verification.

Definition 1 An algorithm A is k-monotone if the following holds for any i , any b−i ,
any a ∈ Di : if Ai (a,b−i ) = S then for all b ∈ Di such that b(S) ≥ a(S) it holds
b(Ai (b,b−i )) ≥ b(S).

To gain some intuition, we give an example explaining what this definition means
for known single-minded bidders, see, e.g., [23]. If bidder i is single-minded, then her
declaration ai = (zi , Ti ) ∈ Di contains only a single subset, that is, Ti = {T }, for
some T ⊆ U, and then, for any subset S ⊆ U, (1) reduces to

zi (S) =
{
zi (T ) if S ⊇ T,

0 otherwise.
(5)

Now, suppose that on declaration ai the mechanism assigns to bidder i set S, that
is, Ai (ai ,b−i ) = S and bidder i changes her declaration to bi = (wi , Ti ) (note
that Ti = {T } remains the same because the bidder is known single-minded and wi

fulfills (5)). Applying Definition 1 of 1-monotonicity, if bi (S) ≥ ai (S), which is
equivalent to wi (S) ≥ zi (S), then bi (Ai (bi ,b−i )) ≥ bi (S). The only non-trivial case
is when S = T (recall that mechanism Ai is exact) and ai (S) = zi (T ) > 0. But then
bi (Ai (bi ,b−i )) > 0 and by exactness of Ai , we have that bi (Ai (bi ,b−i )) = T . This
means that Definition 1 is the same in case of known single-minded bidders as the
definition of monotonicity in [23].

Theorem 1 An algorithm A is truthful without money and with verification for known
k-minded bidders if and only if A is k-monotone.

Proof Fix i , b−i and consider the declaration graph associated to algorithm A. Take
any edge of the graph (b, a) and let S denote Ai (a,b−i ). By definition, the edge exists
if and only if b(S) ≥ a(S).
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Now if the algorithm is k-monotone then we also have that b(Ai (b,b−i )) ≥ b(S)

and then the weight b(Ai (b,b−i )) − b(S) of edge (b, a) is non-negative. Vice versa,
assume that theweight of (b, a) is non-negative: thismeans thatwhenever b(S) ≥ a(S)

then it must be b(Ai (b,b−i )) ≥ b(S) and therefore A is k-monotone. The theorem
follows from Proposition 1. ��

Similarly to [23], k-monotonicity implies the existence of thresholds (critical
values/prices). Towards this end, it is important to consider the sets in Si in decreas-
ing order of (true) valuations. Accordingly, we denote Si = {S1i , . . . , Ski }, with
vi (S

j
i ) > vi (Sli ) if and only if j < l.

Lemma 1 An algorithm A is k-monotone if and only if for any i , any b−i , any ti
there exist k threshold values �1

i (b−i ), . . . ,�
k
i (b−i ) such that: if bi (S

j
i ) > �

j
i (b−i )

and bi (S�
i ) < ��

i (b−i ), for all � < j then σ(Ai (bi ,b−i )|ti ) = S j
i . Moreover, if

bi (S�
i ) < ��

i (b−i ), for all � ∈ [k] then σ(Ai (bi ,b−i )|ti ) = ∅.
Proof Let us first show that the existence of the thresholds for an algorithm A implies
that A is k-monotone. Fix i , b−i and ti ; let a be a declaration in Di such that a(S j

i ) >

�
j
i (b−i ) for some j ∈ [k] and a(S�

i ) < ��
i (b−i ) for � < j . Then Ai (a,b−i ) = S j

i .

Now take b ∈ Di such that b(S j
i ) ≥ a(S j

i ). No matter what the declaration b(Shi ) is,
for h 
= j , by definition of thresholds we have that Ai (b,b−i ) = Sli , l ≤ j .

For the opposite direction, fix i , b−i and ti ; let a be a declaration in Di such
that Ai (a,b−i ) = S j

i . We prove by induction on j that there exists a threshold

�
j
i (b−i ) as in the statement. For the base case consider j = 1. It is straightforward

to see that the threshold �1
i (b−i ) exists [20]. Now assume that there are thresh-

olds �1
i (b−i ), . . . , �

j−1
i (b−i ) and take b ∈ Di to be such that b(S j

i ) ≥ a(S j
i ) and

b(Shi ) < �h
i (b−i ) for h < j . By definition of �1

i (b−i ), . . . , �
j−1
i (b−i ) and that

of k-monotonicity, σ(Ai (b,b−i )|ti ) = S j
i . We can then conclude that there exists a

threshold �
j
i (b−i ) as well. ��

The lemma above assumes that bidders have k different valuations for each of their
minds. This is a rather nonrestrictive way to model CAs for k-minded bidders. In the
more general case in which bidders are allowed to have ties in their valuations, one can
prove that monotonicity implies the existence of thresholds, while the other direction
is not true in general but only under some assumption on Ai (bi ,b−i ).

3.2 Characterization for Unknown Bidders

The following property generalizes the property ofmonotonicity of algorithms defined
by [20] and characterizes truthful auctions without money and with verification.

Definition 2 An algorithm A is k-set monotone if the following holds for any i , any
b−i and any a = (z, T ) ∈ Di : if Ai (a,b−i ) = T then for all b = (w,U) such that
σ(T |b) = U , w(U ) ≥ z(T ) we have Ai (b,b−i ) = S with w(S) ≥ w(U ).
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To see how this notion generalizes [20], it is important to understand what is U .
In detail, σ(T |b) = U , in the above definition, should be read as to indicate that
bidder i going from declaration a to declaration b, substituted T ∈ T with U ∈ U
and U ⊆ T . This is because, as from its definition in Sect. 2, σ(T |b) denotes the set
in the collection of sets demanded by a bidder of type b which defines the valuation
of T . Specifically, U ∈ U is such that w(U ) = w(T ). (Note that if T belonged to U
then U would be T itself.)

Theorem 2 An algorithm A is truthful without money and with verification for k-
minded bidders if and only if A is k-set monotone.

Proof Fix i , b−i and consider the declaration graph associated to algorithm A. Take
any edge of the graph (b = (w,U), a = (z, T )) and let T denote Ai (a,b−i ). By
definition, the edge exists if and only if w(U ) ≥ z(T ), with U = σ(T |b).

Now if the algorithm is k-set monotone then we also have that w(Ai (b,b−i )) ≥
w(U ) and then the weight w(Ai (b,b−i )) − w(U ) of edge (b, a) is non-negative.
Vice versa, assume that the weight of (b, a) is non-negative: this means that when-
ever w(U ) ≥ z(T ) then it must be w(Ai (b,b−i )) ≥ w(U ) and therefore A is k-set
monotone. The theorem follows from Proposition 1. ��

Observe, that our characterization ofTheorem2 for unknown single-mindedbidders
implies the existence of a threshold for any set.Namely, let A be a given 1-setmonotone
algorithm, and let i be a fixed bidder with declaration (z, T ) ∈ Di . Then for the set
T ∈ T (here, |T | = 1), algorithm A is monotone with respect to z(T ) and thus there
exists a critical threshold. It is not hard to see that thresholds exist also for unknown
k-minded bidders, with k > 1.

The result in Theorem 2 also relates to the characterization of truthful CAs with
money and no verification (see, e.g., Proposition 9.27 in [26]). While the two char-
acterizations look pretty similar, there is an important difference: in the setting with
money and no verification, each bidder optimizes her valuation minus the critical price
over all her demanded sets; in the setting without money and with verification, each
bidder optimizes only her valuation over all her demanded sets among those that are
bounded from below by the threshold.

3.3 Implications of Our Characterizations

We discuss here two conceptually relevant consequences of our results above. In a
nutshell, a reasonably large class of truthful mechanisms with money can be turned
into truthful mechanisms without money, by using the verification paradigm.

3.3.1 Single-Minded Versus Multi-minded Bidders

Observe that our characterization of truthful mechanisms without money for CAs
with 1-minded bidders with known and unknown bidders is exactly the same as the
characterization of truthful mechanisms with money in this setting, see, e.g., pages
274–275 in [26]. This means that the two classes of truthful mechanisms in fact
coincide. More formally, we have:
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Proposition 2 Any (deterministic) truthful α-approximation mechanism with money
for single-minded CAs can be turned into a (deterministic) truthful α-approximation
mechanism without money with verification for the same problem, and vice versa. This
holds for single-minded CAs with either known or unknown bidders.

3.3.2 Beyond CAs

It is known that a slight generalization of monotonicity of [20] is a sufficient property
to obtain truthful mechanisms with money also for problems involving generalized
single-minded bidders [3]. Intuitively, generalized single-minded bidders have k pri-
vate numbers associated to their type: their valuation for a solution is equal to the first
of these values or minus infinity, depending on whether the solution asks the agent to
“over-perform” on one of the other k−1 parameters, see [3] for details. By Theorem 2,
all the truthful mechanisms with money designed for this quite general type of bidders
can be turned into truthful mechanisms without money, when the verification para-
digm is justifiable. As a direct corollary of our characterization, we then have a host
of truthful mechanisms without money and with verification for the (multi-objective
optimization) problems studied in [3,12].

4 Upper Bounds for Unknown Bidders

In this section we present our upper bounds for CAs with unknown k-minded bidders.

4.1 CAs with Arbitrary Supply of Goods

In this section, we consider the more general case in which elements inU are available
in b copies each. Note that the characterizations above hold also in this multi-unit case
(i.e., it is, in fact, harmless to substitute sets of goods with multi-sets and adjust the
notations accordingly so that, for example, Ai (b) is the multi-set of goods that auction
A grants to i on input b). We present three polynomial-time algorithms, which are
truthful for CAs with unknown bidders: the first is deterministic, the remaining are
randomized and give rise to universally truthful CAs.

4.1.1 Deterministic Truthful CAs

We adapt here the overselling multiplicative price update algorithm and its analysis
from [19] to our settingwithoutmoney. The algorithm considers bidders in an arbitrary

Algorithm 1: Multiplicative price update algorithm

1 For each good e ∈ U do p1e := p0.
2 For each bidder i = 1, 2, . . . , n do

3 Set Si := argmax {vi (S) : S ∈ Si such that vi (S) ≥ ∑
e∈S pie}.

4 Update for each good e ∈ Si : p
i+1
e := pie · r .

5 Return S = (S1, S2, . . . , Sn).
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given order. We assume that the algorithm is given a parameter μ ≥ 1 such that
μ/2 ≤ vmax < μ. We will assume that such μ is known to the mechanism, and
afterwards we will modify our mechanism and show how to truthfully guess vmax.

Algorithm 1 processes the bidders in an arbitrary given order, i = 1, 2, . . . , n. The
algorithm starts with some relatively small, uniform price p0 = μ

4bm of each item.
When considering bidder i , the algorithm uses the current prices as defining thresholds
and allocates to bidder i a set Si in her demand set Si that has the maximum valuation
vi (Si ) among all her sets with valuations above the thresholds. Then the prices of the
elements in the set Si are increased by a factor r and the next bidder is considered. For
a detailed description see Algorithm 1.

Algorithm 1 is very similar to the basic algorithm of [19] (and the same happens
for the analysis). The only important difference is that in [19], since they have CAs
with money, the prices pie are used to determine the payment for each bundle. So, in
[19], each bidder i is allocated a set Si in her demand set Si that maximizes vi (Si ) −∑

e∈Si p
i
e, i.e., bidder’s i valuation for Si minus her payment for Si . In our case,

since we do not have monetary transfers, but we use verification instead, the prices
pie are used to determine the threshold of each bundle. Therefore, each bidder i is
now allocated a set Si in Si that maximizes vi (Si ) among all sets S′ ∈ Si with
vi (S′) ≥ ∑

e∈S′ pie. This simple (but essential) change makes the basic algorithm of
[19] truthful without money and with verification and allows us to apply the main
steps of their analysis.

Let �ie be the number of copies of good e ∈ U allocated to all bidders preceding
bidder i and �∗

e = �n+1
e denote the total allocation of good e to all bidders. Let,

moreover, p∗
e = p0 · r�∗

e be good e’s price at the end of the algorithm.
We claim now that if p0 and r are chosen so that p0rb = μ, then the allocation

S = (S1, . . . , Sn) output by Algorithm 1 is feasible, that is, it assigns at most b copies
of each good to the bidders. The argument is as follows. Consider any good e ∈ U.
Notice that when the b-th copy of good e is sold to any bidder then its price is updated
to p0rb = μ > vmax. Thus, good e alone has a price which is above the maximum
valuation of any bidder, and so no further copy will be sold.

Next we prove two lower bounds on the social welfare v(S) = ∑n
i=1 vi (Si ) of the

sets S1, . . . , Sn chosen by Algorithm 1. Let OPT denote the optimal social welfare,
and recall that p∗

e denotes the final price of good e ∈ U.

Lemma 2 It holds v(S) ≥ 1
r−1

(∑
e∈U p∗

e − mp0
)
and v(S) ≥ OPT − b

∑
e∈U p∗

e .

Proof We first prove the first bound. Because the algorithm sells only sets above their
thresholds, vi (Si ) ≥ ∑

e∈Si p
i
e. Hence,

v(S) ≥
n∑

i=1

∑

e∈Si
pie =

n∑

i=1

∑

e∈Si
p0r

�ie = p0
∑

e∈U

�∗
e−1∑

k=0

rk = p0
∑

e∈U

r�∗
e − 1

r − 1
,

which gives the bound.
For the second bound of the lemma, consider an optimal feasible allocation T =

(T1, . . . , Tn). The set choice in line 3 in the algorithm of [19] is done by asking the
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demand oracle.6 We observe here that the set choice in this line in Algorithm 1 is
sufficient for showing this claim. Namely, if vi (Ti ) ≥ ∑

e∈Ti p
i
e, then by the choice

of the algorithm vi (Si ) ≥ vi (Ti ), and so we have vi (Si ) ≥ vi (Ti ) − ∑
e∈Ti p

i
e. If on

the other hand vi (Ti ) <
∑

e∈Ti p
i
e, then vi (Si ) ≥ vi (Ti ) − ∑

e∈Ti p
i
e also holds.

Because p∗
e ≥ pie, for every i and e, this implies vi (Si ) ≥ vi (Ti )−∑

e∈Ti p
∗
e . Sum-

ming over all bidders gives v(S) = ∑n
i=1 vi (Si ) ≥ ∑n

i=1 vi (Ti ) − ∑n
i=1

∑
e∈Ti p

∗
e ≥

v(T ) − b
∑

e∈U p∗
e , where the latter equation uses the fact that T is feasible so that

each good is given to at most b sets. ��
Combining the above lemmas yields the following result for the algorithm.

Theorem 3 Algorithm 1 with p0 = μ
4bm and r = (4bm)1/b produces a feasible

allocation S such that v(S) ≥ OPT
2(b(r−1)+1) ≥ OPT

O(b·(m)1/b)
.

Proof Feasibility follows from the fact that p0rb = μ. The first bound of Lemma 2
givesb(r−1)v(S) ≥ b

∑
e∈U p∗

e−bmp0,which by the secondbound isb(r−1)v(S) ≥
b

∑
e∈U p∗

e −bmp0 ≥ OPT−v(S)−bmp0 ≥ OPT/2−v(S), where the last inequality
follows by vmax ≤ OPT. This finally gives us v(S) ≥ OPT

2(b(r−1)+1) , implying the final
approximation ratio. ��
Theorem 4 Algorithm 1 is a truthful mechanism without money and with verification
for CAs with unknown k-minded bidders.

Proof Fix i and b−i . As in Definition 2, take two declarations of bidder i , a = (z, T )

and b = (w,U) with w(U ) ≥ z(T ), where T = Ai (a,b−i ) andU = σ(T |b). (In this
proof, A denotes Algorithm 1.) Recall that U ⊆ T and U ∈ U .

Note that the ordering is independent of the bids and then when i is considered
the prices pie for the elements e of U are the same in both A(a,b−i ) and A(b,b−i ).
Since T = Ai (a,b−i ), we note that z(T ) ≥ ∑

e∈T pie. This yields, w(U ) ≥ z(T ) ≥∑
e∈T pie ≥ ∑

e∈U pie. This implies that when A(b,b−i ) executes line 3, the set U is
taken into consideration and we can therefore conclude that w(Ai (b,b−i )) ≥ w(U ).
This shows that A is k-set monotone and then, by Theorem 2, our claim follows. ��

We now modify Algorithm 1 in order to remove the assumption on the knowledge
of μ. The idea behind the modified algorithm is that we elicit the information about
the maximum valuation of any bidder, which is needed for the computation of μ,
by ranking first the bidder j with the maximum valuation v

j
max and offering him the

corresponding bundle. Since bidder j cannot overbid on this bundle, we elicit v
j
max

in a truthful way. The modified algorithm is presented as Algorithm 2. We have the
following result.

Theorem 5 Algorithm 2 is a truthful mechanism without money and with verification
for CAs with unknown k-minded bidders. Its approximation ratio is O(b · (m)1/b).

6 Given goods’ prices, the demand oracle of a given bidder with valuation function vi outputs the set S
maximizing the difference between the set’s valuation vi (S) and the sum of the prices of its goods.
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Algorithm 2:Modified multiplicative price update algorithm

1 For each bidder i ∈ {1, 2, . . . , n}, let vimax be the valuation of i’s most valuable set.

2 Let j ∈ {1, 2, . . . , n} be the bidder with highest value v
j
max (smallest index in case of ties).

3 Let p0 = μ
4bm , where μ = (1 + ε)v

j
max, for a fixed 0 < ε � 1.

4 For each good e ∈ U do p j
e := p0.

5 Let for any i = j, 1, 2, 3, 4, . . . , j − 1, j + 1, . . . , n, next(i) be the next number in this order, e.g.,
next( j) = 1, next(1) = 2, . . . , next( j − 1) = j + 1, . . . , next(n − 1) = n, next(n) = n + 1.

6 For each bidder i = j, 1, 2, . . . , j − 1, j + 1, . . . , n do

7 Set Si := argmax {vi (S) : S ∈ Si such that vi (S) ≥ ∑
e∈S pie}.

8 Update for each good e ∈ Si : p
next(i)
e := pie · r .

9 Return S = (S1, S2, . . . , S j−1, S j , S j+1, . . . , Sn).

Proof Approximation ratio and feasibility of the produced solution follow from the
choice of p0 and from setting μ = (1 + ε)v

j
max, for 0 < ε � 1. Indeed, we can use

the previous analysis of Algorithm 1 that did not make any assumption on the order
in which bidders are processed and only required μ/2 ≤ vmax < μ.

Wewill argue now about truthfulness of themodified algorithm. Let us call bidder j
in Algorithm 2, themax bidder. We first observe that bidder j is allocated the set in her
(reported) demand with highest (reported) valuation. This is because her declaration

of v
j
max for her best set, say Q, is larger than

∑
e∈Q p j

e = |Q| · p0 = |Q| · (1+ε)v
j
max

4bm
since |Q| ≤ m. Now, fix i and b−i . As in Definition 2, take two declarations of
bidder i , a = (z, T ) and b = (w,U) with w(U ) ≥ z(T ), where T = Ai (a,b−i ) and
U = σ(T |b). (In this proof, A denotes Algorithm 2.) Recall that U ⊆ T and U ∈ U .
Let ja (resp., jb) be the max bidder for the bid vector (a,b−i ) (resp., (b,b−i )). We
distinguish three cases.
Case 1: i = ja . In this case, z(T ) is larger than all the valuations in b−i . Since
w(U ) ≥ z(T ) and since b−i is unchanged then w(U ) is also larger than all the
valuations in b−i , which yields i = jb. But then, as observed above, since i is the max
bidder in (b,b−i ) she will get her best set in U and therefore w(Ai (b,b−i )) ≥ w(U ).
Case 2: i = jb. Since i is the max bidder in (b,b−i ) then we can argue, as above, that
she will get her best set and so we have w(Ai (b,b−i )) ≥ w(U ).
Case 3: i 
= ja, jb. Since the other bids are unchanged, in this case, we have ja = jb.
This implies that the ordering in which bidders are considered is the same in both
A(a,b−i ) and A(b,b−i ) which in turns implies that the prices pie considered by the
algorithm in line 7 are the same in both instances.We can then use the same arguments
used in the proof of Theorem 4 to conclude that w(Ai (b,b−i )) ≥ w(U ).

In all the three cases we have shown that the algorithm is k-set monotone and then
the claim follows from Theorem 2. ��
4.1.2 Randomized Truthful CAs

We show here how to use Algorithm 2 to obtain randomized universally truthful mech-
anisms without money and with verification for CAs with unknown k-minded bidders
with expected approximation ratios of O(d1/b log(bm)) and O(m1/(b+1) log(bm)),
respectively.
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Algorithm 3: Multiplicative price update algorithm with randomized rounding.

1 For each good e ∈ U do p1e := p0, b1e := b.
2 For each bidder i = 1, 2, . . . , n do

3 Let Ui = {e ∈ U | bie > 0}.
4 Set Si := argmax {vi (S) : S ∈ Si such that S ⊆ Ui and vi (S) ≥ ∑

e∈S pie}.
5 Update for each good e ∈ Si : p

i+1
e := pie · r .

6 With probability q set Ri := Si else Ri := ∅.
7 Update for each good e ∈ Ri : b

i+1
e := bie − 1.

8 Return R = (R1, R2, . . . , Rn).

Algorithm 4: Modified multiplicative price update algorithm with randomized
rounding

1 For each bidder i ∈ {1, 2, . . . , n}, let vimax be the valuation of i’s most valuable set.

2 Let j ∈ {1, 2, . . . , n} be the bidder with highest value v
j
max (smallest index in case of ties).

3 Let p0 = μ
4bm , where μ = (1 + ε)v

j
max, for a fixed 0 < ε � 1.

4 For each good e ∈ U do p j
e := p0, b1e := b.

5 Let for any i = j, 1, 2, 3, 4, . . . , j − 1, j + 1, . . . , n, next(i) be the next number in this order, e.g.,
next( j) = 1, next(1) = 2, . . . , next( j − 1) = j + 1, . . . , next(n − 1) = n, next(n) = n + 1.

6 For each bidder i = j, 1, 2, . . . , j − 1, j + 1, . . . , n do

7 Let Ui = {e ∈ U | bie > 0}.
8 Set Si := argmax {vi (S) : S ∈ Si such that S ⊆ Ui and vi (S) ≥ ∑

e∈S pie}.
9 Update for each good e ∈ Si : p

next(i)
e := pie · r .

10 If i = j then set Ri := Si else (with probability q set Ri := Si else Ri := ∅).
11 Update for each good e ∈ Ri : b

next(i)
e := bie − 1.

12 Return R = (R1, R2, . . . , R j−1, R j , R j+1, . . . , Rn).

Observe first that if we execute Algorithm 1 with a smaller update factor r = 21/b,
as in [19], then the output solution is infeasible and as proved in [19, Lemma 1], it
allocates at most sb copies of each good to the bidders, where s = log(4bm). This
simply follows from the fact that if sb copies of good e ∈ U were sold, then its price
is p02log(4bm) = μ > vmax. But this infeasible solution is an O(1)-approximation
to the optimal feasible solution: plugging r = 21/b in the approximation ratio of
2(b(r − 1) + 1) in Theorem 3 indeed implies an O(1)-approximation (see also [19,
Theorem 1]). This idea leads to the following randomized algorithm in [19]: use
r = 21/b, explicitly maintain feasibility of the produced solution, and define q =
1/(2ed1/b log(4bm)) (where e ≈ 2.718) as the probability of allocating the best set to
a bidder (see alsoAlgorithm 3 for a precise description). They prove that this algorithm
is a universally truthful O(d1/b log(4bm))-approximation mechanism.

We now introduce the same randomization idea into our Algorithm 2. The resulting
algorithm is Algorithm 4, where we assume r = 21/b.

Theorem 6 Algorithm 4 is a universally truthful mechanism without money and with
verification for CAs with unknown k-minded bidders. Its expected approximation ratio
is O(d1/b · log(bm)).
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Proof Approximation guarantee and feasibility of the output solution R follows from
essentially the same arguments and in the sameway as in [19].Wewill argue now about
universal truthfulness of Algorithm 4. This algorithm can be viewed as a probability
distribution over deterministic algorithms. Each such algorithm, call it A, is defined
by a 0/1-vector a ∈ {0, 1}n−1 and first selects and serves the max bidder j and then
serves the remaining n−1 bidders 1, 2, . . . , j −1, j +1, . . . , n. When serving bidder
i 
= j , algorithm A deterministically allocates set Si to bidder i < j if and only if
ai = 1 and to bidder i > j if and only if ai−1 = 1. Consider algorithm A where
vector a = (1, 1, . . . , 1) and observe that this corresponds to our Algorithm 2. Thus,
to show that A is (deterministically) truthful we use the same argument of the proof
of Theorem 5 and the additional observation that bidders whose corresponding bit in
the vector a is 0 have no incentive to lie, since they are not served anyway. ��

Finally we can also obtain a universally truthful mechanism in case demanded sets
have unbounded sizes.

Theorem 7 There exist a universally truthful mechanism without money and with
verification for CAs with unknown k-minded bidders with an expected approximation
ratio of O(m1/(b+1) · log(bm)).

Proof We use Algorithm 4 as a subroutine and use a standard randomization on the
top of this algorithm. Namely, the mechanism flips a fair coin to choose one out of
two algorithms. If the coin shows head, then Algorithm 4 is executed with parameter

q set analogously to the case of sets of size at most d = �m b
b+1 �, that is, with q−1 =

2ed1/b log(4bm). If the coin shows tail, then the mechanism only considers sets of full
cardinality m. This setting corresponds to an auction where each bidder wants to buy
only a single super item (corresponding to U) which is available in b copies. The b
copies of the super item are sold by calling Algorithm 4 with m = 1 (single item) and
d = 1 (sets of cardinality 1). This mechanism can easily be shown to be universally
truthful and a simple analysis shows the claimed approximation ratio, see, e.g., [19].

��

4.2 CAs with Single Supply

We now go back to the case in which the goods in U are provided with single supply.
We present three incentive-compatible CAs: the first is deterministic, the remaining
two are randomized. Among these three mechanisms, only two run in polynomial
time.

4.2.1 Greedy Algorithm

We now present a simple greedy algorithm for CAs where the supply b = 1, see
Algorithm 5. (Note that for goods with arbitrary supply b, the greedy algorithm cannot
do better than Algorithm 2 because of the lower bound of

√
m in [17].) Recall that

each bidder i = 1, 2, . . . , n declares (vi ,Si ), where Si is a collection of k sets bidder
i demands and vi (S) is the valuation of set S ∈ Si . The algorithms first organizes
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Algorithm 5: The greedy algorithm.
1 Let l denote the number of different bids, l = nk.
2 Let b1, b2, . . . , bl be the non-zero bids and S1, . . . , Sl be the corresponding sets, ordered such that
b1 ≥ . . . ≥ bl . In case of ties between declarations of different bidders consider first the smaller
index bidder.

3 For each j = 1, . . . , l let β( j) ∈ {1, . . . , n} be the bidder bidding b j for the set S j .
4 P := ∅, B := ∅.
5 For i = 1, . . . , l do
6 If β(i) /∈ B ∧ Si ∩ S = ∅ for all S in P then
7 P := P ∪ {Si } .
8 B := B ∪ β(i).
9 Return P .

all these pairs in non-decreasing order of valuations (using bidders’ ids to break ties,
if any). Observe that sets S1, . . . , Sl are all the sets demanded by all bidders (with
non-zero bids), i.e., {S1, . . . , Sl} = S1 ∪ . . . ∪ Sn . Subsequently, it scans this list and
greedily assigns sets to bidders while maintaining the feasibility of the allocation.

We will use the linear programming duality theory to prove the approximation
guarantees of our algorithm. Let us denote the set family S = ∪n

i=1Si , where bidder
i demands sets Si . For a given set S ∈ Si we denote by bi (S) the bid of bidder i for
that set. Let [n] be the set {1, . . . , n}. The standard LP relaxation of our problem is
(see e.g., [26, Section 11.3.1]):

max
∑n

i=1
∑

S∈Si
bi (S)xi (S) (6)

s.t.
∑n

i=1
∑

S:S∈Si ,e∈S xi (S) ≤ 1 ∀e ∈ U (7)
∑

S∈Si
xi (S) ≤ 1 ∀i ∈ [n] (8)

xi (S) ≥ 0 ∀i ∈ [n]∀S ∈ Si , (9)

The corresponding dual linear program is then the following:

min
∑

e∈U ye +
∑n

i=1
zi (10)

s.t. zi +
∑

e∈S ye ≥ bi (S) ∀i ∈ [n] ∀S ∈ Si (11)

zi , ye ≥ 0 ∀i ∈ [n] ∀e ∈ U. (12)

In this dual linear program dual variable zi corresponds to the constraint (8).

Theorem 8 Algorithm 5 is a min{m, d + 1}-approximation algorithm for CAs with
k-minded bidders.

Proof Suppose that Algorithm 5 has terminated and output solution P . Let U(P) =
∪S∈P S. Notice that for each set S ∈ S that was not chosen to the final solution P ,
there either is an element e ∈ U(P) ∩ S which was the witness of that event during
the execution of the algorithm, or there exists a bidder i and set S′ ∈ P such that
S′, S ∈ Si . For each set S ∈ S \P we keep in U(P) one witness for S. In case if there
is more than one witness in U(P) ∩ S, we keep in U(P) the (arbitrary) witness for S
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that belongs to the set among sets {T ∈ P : U(P) ∩ S ∩ T 
= ∅} that was considered
first by the greedy order. We discard the remaining elements from U(P).

Let us also denoteP(S) = S∩U(P) if S∩U(P) 
= ∅ andP(S) = S if S∩U(P) = ∅.
Observe first that if m = 1, then any feasible solution just has a single set assigned

to a single bidder and thus the algorithm outputs an optimal solution, as required.
We then assume that m ≥ 2. We now define a dual solution during the execution

of Algorithm 5. We need to know the output solution P for the definition of this dual
solution, which is needed only for analysis. In line 4 of Algorithm 5 we initialize these
variables: ye := 0 for all e ∈ U and zi := 0 for all i ∈ [n].Weadd the following in line 7

of Algorithm 5: ye := 

Si
e , for all e ∈ P(Si ), where 


Si
e = bβ(i)(Si )

|P(Si )| , for e ∈ P(Si ).
Note, that for e ∈ Si \U(P) the value of ye is not updated and remains zero. We also
add the following instruction in line 7 of Algorithm 5: zβ(i) := bβ(i)(Si ).

It is obvious that the dual solution provides a lower bound on the cost of the output
solution: ∑

e∈U
ye ≤

∑

Si∈P
bβ(i)(Si ). (13)

We will show now that the scaled solution (d ′ · y, z) is feasible for the dual linear
program,where d ′ = min{d,m−1}.We need to show that constraints (11) are fulfilled
for all sets S ∈ S. Thus, we have to prove that, for each set S ∈ S ∩ Si ,

zi + d ′ ∑

e∈S
ye ≥ bi (S). (14)

Suppose first that S = Sr ∈ S \P , and let β(r) = i . There are two possible reasons
that set S has not been included in the solution P: (i) Case (a): there must be an
element e ∈ U(P) such that e ∈ S, or (ii) Case (b): there is another set S′ ∈ P with
S, S′ ∈ Si .

Let us first consider Case (a). In that case adding set S to solution P would violate
constraint (7). Let S′′ = S j ∈ P be the set in the solution that contains element e and
let h = β( j).

Recall that e ∈ S ∩ S′′, thus
∑

e′∈S ye′ ≥ ye = 
S′′
e = bh(S′′)

|P(S′′)| ≥ bh(S′′)
d ≥ bi (S)

d ,

where the last inequality follows from the greedy selection rule and definition of
the witnesses. In the case of |S| = m, that is, S = U, we obtain that

∑
e′∈S ye′ ≥

∑
e′′∈S′′ ye′′ = ∑

e′′∈S′′ 
S′′
e′′ = bh(S′′) ≥ bi (S), where the last inequality is by the

greedy selection rule. Because m ≥ 2, this proves (14) in Case (a).
We consider now Case (b). Suppose that S = Sr ∈ S \ P and there is another set

S′ = S j ∈ P with S, S′ ∈ Si . In this case we have i = β( j) = β(r). Observe that
when set S′ was chosen by Algorithm 5 the dual variable zi was updated in line 7 as
follows: zi = bi (S′). Now, because set S′ was considered by the algorithm before set
S we have zi = bi (S′) ≥ bi (S) by the greedy selection rule, which implies (14) in
this case.

Notice that claim (14) follows immediately from the definition of zi if set S ∈ Si
has been chosen by our algorithm, that is, S ∈ P . This concludes the proof of (14).

Finally, we put all the pieces together.We have shown that the dual solution (d ′ ·y, z)
is feasible for the dual linear program and so by weak duality

∑n
i=1 zi + d ′ ∑

e∈U ye
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is an upper bound on the value of the optimal integral solution to our problem. We
have also shown in (13), that

∑
e∈U ye ≤ ∑

Si∈P bβ(i)(Si ). Therefore, by letting OPT
denote the optimal social welfare, we obtain that

OPT ≤
n∑

i=1

zi + d ′ ∑

e∈U
ye =

∑

Si∈P
zβ(i) + d ′ ∑

e∈U
ye

≤
∑

Si∈P
bβ(i)(Si ) + d ′ ∑

Si∈P
bβ(i)(Si ) = (d ′ + 1)

∑

Si∈P
bβ(i)(Si ).

��
We now prove the truthfulness of Algorithm 5.

Theorem 9 Algorithm 5 is a truthful mechanism without money and with verification
for CAs with unknown k-minded bidders.

Proof Fix i and b−i . As in Definition 2, take two declarations of bidder i , a = (z, T )

and b = (w,U) with w(U ) ≥ z(T ), where T = Ai (a,b−i ) andU = σ(T |b). (In this
proof, A denotes Algorithm 5.) Recall that U ∈ U and U ⊆ T .

Let Sa (respectively, Sb) be the set comprised of the sets in declarations of b−i

processed by A(a,b−i ) (respectively, A(b,b−i )) when z(T ) (respectively, w(U )) is
considered. Since A grants T to bidder i in the instance (a,b−i ) then it must be the
case that T ∩ S = ∅ for all S ∈ Sa granted by A. Since w(U ) ≥ z(T ), then we have
that Sb ⊆ Sa . Thus, sinceU ⊆ T then we have thatU ∩ S = ∅ for all S ∈ Sb granted
by the algorithm. Therefore, the only reason for which U might not be granted to i is
that A had already granted a set in U to i , which implies that w(Ai (b,b−i )) ≥ w(U ).
Then the algorithm is k-set monotone and the claim follows from Theorem 2.

Borodin and Lucier [1, Theorem 2] proved a lower bound of �(m) on the approxi-
mation ratio of any truthful greedy priority mechanism with money for instances with
demanded sets of cardinality at most 2. Nevertheless, we have shown that Algorithm 5
is truthful and achieves an approximation ratio of at most 3 for such instances. We
here investigate the reasons behind this sharp contrast.

Proposition 3 There are no payments that augment Algorithm 5 so to make a truthful
mechanism for CAs with k-minded bidders, even in the case of known bidders.

Proof We consider 3 instances I , I ′, I ′′, with known bidders and U = {a, b}. In all of
them, bidder 1 is interested in S1 = {{a}, {b}}, and bidder 2 is interested in S2 = {{a}}
and has v2({a}) = 1. Let δ > 0 be some small constant less than 1/2. In I , bidder 1 has
v1({a}) = 1− δ and v1({b}) = 0. In I ′, bidder 1 has v′

1({a}) = 1+ δ and v′
1({b}) = 1.

In I ′′, bidder 1 has v′′
1 ({a}) = 1− δ and v′′

1 ({b}) = 1−2δ. Therefore, the allocation of
Algorithm 5 is {b} to bidder 1 and {a} to bidder 2 for instance I , {a} to bidder 1 and ∅
to bidder 2 for instance I ′, and {b} to bidder 1 and {a} to bidder 2 for instance I ′′. Now
we consider the vertices corresponding to v1, v′

1, and v′′
1 of the declaration graph for

Algorithm 5 and find an edge (v1, v
′
1) of weight−(1−δ), an edge (v′

1, v
′′
1 ) of weight δ,

and an edge (v′′
1 , v1) of weight 0. Therefore, the declaration graph contains a negative

cycle v1 → v′
1 → v′′

1 → v1, which implies that the valuation-greedy mechanism
cannot be truthfully implemented with money. ��
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4.2.2 Randomized Exponential-Time Mechanism

Wedescribe the exponential-timemechanism, orRandExp in brief. Let I be an instance
of CAs with unknown k-minded bidders, and let I�, 1 ≤ � ≤ k, be the subinstance
of I that consists of the elementary bids (i, S�

i , vi (S
�
i )), i ∈ N , where S�

i denotes the
�-th most valuable set demanded by bidder i . Then, RandExp computes the maximum
social welfare OPT� for each subinstance I� by breaking ties among optimal solutions
in a bid-independent way, and outputs the allocation corresponding to OPT� with
probability 1/k, for each � ∈ [k].
Theorem 10 RandExp is a universally truthful mechanism without money and with
verification for CAs with unknown k-minded bidders. It achieves an approximation
ratio of k.

Proof Since all bidders are single-minded in each subinstance I�, the allocation cor-
responding to the maximum social welfare OPT� using a fixed tie-breaking rule is, by
Theorem 2, truthful, for each � ∈ [k]. Therefore, RandExp is universally truthful. As
for the approximation ratio, the expected social welfare of RandExp is

∑k
�=1 OPT�/k.

Since themaximumsocialwelfare of I is atmost
∑k

�=1 OPT�, RandExphas an approx-
imation ratio of k. ��

4.2.3 Randomized Polynomial-Time Mechanism

We describe the polynomial-time mechanism, or RandPoly in brief. Let I be an
instance of CAs with unknown k-minded bidders, let vmax be the maximum valu-
ation of some bidder, and let Smax a set with valuation vmax. Moreover, let Is be the
subinstance of I that consists of the elementary bids (i, S, vi (S)), i ∈ N , where for
each set S, |S| ≤ √

m. Then, RandPoly either only allocates Smax to the corresponding
bidder breaking ties in a bid-independent waywith probability 1/2, or with probability
1/2, outputs the allocation computed by the Algorithm 5 on the subinstance Is . Next,
we show the following fact.

Theorem 11 RandPoly is a universally truthful mechanism without money and with
verification for CAs with unknown k-minded bidders. It achieves an approximation
ratio of O(

√
m).

Proof As for the truthfulness of RandPoly, the deterministic allocation of the set of
maximum valuation with a fixed tie-breaking rule is, by Theorem 2, truthful. Further-
more, the formation of the subinstance Is and the application of Algorithm 5 to it
can be regarded as a run of the algorithm on I where any elementary bid (i, S, vi (S))

with |S| >
√
m is considered infeasible and immediately rejected. By using the argu-

ments used in Theorem 9, we can prove that this
√
m-cardinality-sensitive variant of

Algorithm 5 to I is truthful. Therefore, RandPoly is universally truthful.
As for the approximation ratio, we let OPT denote the optimal social welfare of

I , OPTs denote the optimal social welfare of the subinstance Is , and OPTl denote
the optimal social welfare of the subinstance Il = I \ Is . We observe that OPT ≤
OPTs +OPTl . Since Il contains only elementary bids (i, S, vi (S))with |S| >

√
m and
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vi (S) ≤ vmax, OPTl ≤ √
mvmax. Moreover, by Theorem 8, the allocation computed

by the application of valuation-greedy to Is is a (
√
m + 1)-approximation of OPTs .

Hence, the expected social welfare of RandPoly is at least:

1

2

(

vmax + OPTs√
m + 1

)

≥ OPTs + OPTl

2(
√
m + 1)

Therefore, the approximation ratio of RandPoly is 2(
√
m + 1). ��

5 Lower Bounds for Known Bidders

In this section, we prove lower bounds on the approximation ratio of (deterministic or
randomized)mechanisms forCAswith known k-minded bidders. Themainmessage of
our results is that unlike the setting of CAs with money, where if we have exponential
computational time, we can truthfully implement the optimal solution using VCG
payments, in our setting with known k-minded bidders, for k ≥ 2, it is not possible to
truthfully implement the optimal solution, even in exponential time.

5.1 Deterministic Mechanisms

Wefirst adapt the proof of [8, Theorem3.3] and show a lower bound of 2 on the approx-
imation ratio of any deterministic truthful mechanism. We highlight that this lower
bound does not make any assumptions on the computational power of the mechanism,
and holds even for exponential-time mechanisms.

Theorem 12 There are no deterministic truthful mechanisms with approximation
ratio better than 2 for CAs with known 2-minded bidders. This holds even for simple
instances with n = 2 bidders, and m = 2 goods.

Proof For sake of contradiction, let us assume that there is a deterministic truthful
mechanism A with an approximation ratio of 2− δ, for some δ > 0. We consider two
instances where U = {a, b}, and both bidders are in S1 = S2 = {{a}, {b}}. In the first
instance, v1({a}) = 1 + δ and v1({b}) = 1, and v2({a}) = 1 + δ and v2({b}) = 1.
Since A is a (2 − δ)-approximation algorithm, A(v1, v2) must allocate both sets {a}
and {b}. Without loss of generality, we assume that A(v1, v2) allocates {a} to bidder
1 and {b} to bidder 2. Moreover, by Theorem 1, if v′

2({a}) = 1 + δ and v′
2({b}) = 0,

then A(v1, v
′
2) must allocate {a} to bidder 1 and {b} to bidder 2. Therefore, A has an

approximation ratio of at least (2+δ)/(1+δ), which is larger than 2−δ, for all δ > 0.
��

We note here, that our Algorithm 5 is a truthful 2-approximate mechanism on
instances used in the proof of Theorem 12. This theorem indicates that our assumption
that the bidders do not overbid on their winning sets is less powerful than the use of
payments, when we do not take computational issues into consideration. Furthermore,
it shows that, unlike the case of single-minded bidders, already with double-minded
bidders the class of algorithms that can be implemented with money is a strict superset
of the class of 2-monotone algorithms.
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5.2 Universally Truthful Mechanisms

Next, we apply Yao’s principle and show that no randomized mechanism that is uni-
versally truthful can achieve an approximation ratio better than 5/4.

Theorem 13 There are no randomized mechanisms that are universally truthful and
have approximation ratio better than 5/4 for CAs with known 2-minded bidders. This
holds even for simple instances with n = 2 bidders, and m = 2 goods.

Proof Wepresent a probability distribution over instances ofCAswith n = 2 known2-
minded bidders, andm = 2 goods, forwhich the best deterministic truthfulmechanism
has expected approximation ratio greater than 5/4−δ, for any δ > 0.We consider two
instances I and I ′ whereU = {a, b}, the first bidder is interested in S1 = {{a, b}, {b}},
and the second bidder is interested in S2 = {{a}}. In both, the valuation of bidder 2 is
v2({a}) = 1. The valuation of bidder 1 is v1({a, b}) = 2 and v1({b}) = 0 in I , and
v′
1({a, b}) = 2 and v′

1({b}) = 2 − δ in I ′. Each instance occurs with probability 1/2,
and the expected maximum social welfare is (5 − δ)/2. Let A, applied to instance
I , allocate {a, b} to bidder 1 and ∅ to bidder 2. Then, by Theorem 1, since A is a
deterministic truthful mechanism, when applied to instance I ′, it must allocate {a, b}
to bidder 1 and ∅ to bidder 2. Therefore, the expected social welfare of A is 2, and its
expected approximation ratio is (5− δ)/4 > 5/4− δ. If A, applied to instance I , does
not allocate {a, b} to bidder 1, its expected social welfare is at most (4− δ)/2, and its
expected approximation ratio is (5 − δ)/(4 − δ) > 5/4 − δ, a contradiction. ��

5.3 Truthful in Expectation Mechanisms

Finally, we show a weaker lower bound of 1.09 on the approximation ratio achievable
by the larger class of randomized mechanisms that are truthful in expectation.

Theorem 14 There are no randomized mechanisms that are truthful in expectation
and have approximation ratio less or equal than 1.09 for CAs with known 2-minded
bidders. This holds even for simple instances with n = 2 bidders, and m = 2 goods.

Proof For sake of contradiction, we assume that there is a randomized truthful-in-
expectation mechanism A with approximation ratio at most ρ = 1.09.

As in the proofs of Theorems 12 and 13, we consider instances where U = {a, b},
the first bidder is interested in S1 = {{a, b}, {b}}, and the second bidder is interested in
S2 = {{a}}.We consider two instances I and I ′. In both of them, the valuation of bidder
2 is v2({a}) = 1. The valuation of bidder 1 is v1({a, b}) = ϕ, where ϕ = (1+ √

5)/2
is the golden ratio, and v1({b}) = 0 in I , and v′

1({a, b}) = ϕ and v′
1({b}) = 1 in I ′.

We assume that A can have only two different solutions for instances I and I ′. More
specifically, either A allocates {a, b} to bidder 1 and ∅ to bidder 2, which happens with
probability p for instance I and q for instance I ′, or A allocates {b} to bidder 1 and
{a} to bidder 2, which happens with probability 1 − p for instance I and 1 − q for
instance I ′. Note that this assumption is without loss of generality, since all the other
feasible solutions have worst social welfare than the two considered.
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Using that the approximation ratio of A is at most ρ, we obtain that:

ϕ

pϕ + 1 − p
≤ ρ ⇒ p ≥ ϕ − ρ

ρ(ϕ − 1)
(15)

2

qϕ + 2(1 − q)
≤ ρ ⇒ 1 − q ≥ 2 − ρϕ

ρ(2 − ϕ)
(16)

where (15) follows from the approximation ratio of A for instance I , and (16) follows
from the approximation ratio of A for instance I ′.

Moreover, since A is truthful in expectation, the expected welfare of bidder 1 from
A’s allocation for instance I , which is pϕ, does not exceed her expected welfare from
A’s allocation for instance I ′, which is qϕ + (1 − q). Otherwise, bidder 1 could
underbid on {b} by declaring v1, and get an expected welfare of pϕ. Therefore, we
obtain that:

pϕ ≤ qϕ + 1 − q ⇒ q ≥ pϕ − 1

ϕ − 1
(17)

Combining (15), (16), and (17), we conclude that ρ satisfies that:

2 − ρϕ

ρ(2 − ϕ)
+ ϕ

ϕ−ρ
ρ(ϕ−1) − 1

ϕ − 1
≤ 1

This is a contradiction, because the inequality above does not hold if ρ ∈ [1, 1.09].
Thus, we conclude that any randomized mechanism A for CAs that is truthful-in-
expectation, has an approximation ratio worse than 1.09. ��

5.4 Priority Mechanisms

Our lower bounds in this section apply to truthful mechanisms that use algorithms that
operate according to the priority framework introduced in [2].

We now briefly introduce this framework. The input of a priority mechanism is a
finite subset I of the class I of all permissible input items. For CAs, we consider two
classes of input items. The first class consists of elementary bids, i.e., each item is a
triple (i, S, vi (S)), where i is the bidder, S is one of i’s demanded sets, and vi (S) is
i’s valuation for S. The second class of input items consists of bidders, i.e., each item
is a pair (i, vi ), where i is the bidder and vi is i’s valuation function. The output of a
priority mechanism consists of a decision for each input item processed. If elementary
bids are the input items, the output consists of an accept or reject decision for each
bid. If a bid (i, S, vi (S)) is accepted, S is allocated to i , and the algorithm obtains a
welfare of vi (S). If bidders (i, vi ) are the input items, the output consists of a (possibly
empty) set S allocated to bidder i , and the algorithm collects a welfare of vi (S).

A (possibly adaptive) priority mechanism A receives as input a finite set of items
I ⊆ I, and proceeds in rounds, processing a single item in each round. While there
are unprocessed items in I , A selects a total order T on I without looking at the set
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of unprocessed items. It is important that T can be any total order on I, and that for
adaptive priority algorithms, the order may be different in each round. In each round,
A receives the first (according to T ) unprocessed item x ∈ I and makes an irrevocable
decision for it (e.g., if x is an elementary bid, A accepts or rejects it, if x is a bidder,
A decides about the set allocated to her). Then, x is removed from I .

5.4.1 Lower Bound for Priority Mechanisms Processing Elementary Bids

We first show that any truthful priority mechanism A that processes elementary bids
has an approximation ratio of at least d for CAs with known bidders. The proof of the
next result adapts the proof of [1, Theorem 3].

Theorem 15 Let A be a truthful priority mechanism with verification and no money
for CAs with known k-minded bidders. If A processes elementary bids then the approx-
imation ratio of A is greater than (1 − δ)d, for any δ > 0.

Proof For sake of contradiction, let us assume that for some given d, 2 ≤ d ≤ m,
there is a truthful priority mechanism A for CAs with known k-minded bidders that
achieves an approximation ratio of (1 − δ)d, for some constant δ > 0.

Let L be any subset ofU of cardinality d. As an input to A, we consider an instance
I1 that for each bidder i , contains elementary bids (i, L , 1 + δ) and (i, S, 1), for all
∅ 
= S ⊂ L . As a priority mechanism, A selects a bid from I1 and considers it first. In
the following, we distinguish between the case where the first bid is (i, L , 1 + δ), for
some bidder i , and the case where the first bid is (i, S, 1), for some bidder i and some
set S, and show how to arrive at contradiction in both.
Case 1. Let us assume that the first bid is (i, L , 1 + δ), for some bidder i . Then, if A
accepts (i, L , 1+δ), it obtains a social welfare of 1+δ, while the optimal social welfare
is d, which contradicts the hypothesis that the approximation ratio of A is (1 − δ)d.
If A rejects (i, L , 1+ δ), we consider A’s approximation ratio for an instance I2 ⊆ I1
that includes only the elementary bid (i, L , 1+δ). Since A cannot distinguish between
I1 and I2, it rejects (i, L , 1 + δ) when considering I2, which leads to an unbounded
approximation ratio for I2.
Case 2. Let us assume that the first bid is (i, S, 1), for some bidder i and some set
∅ 
= S ⊂ L . Then, if A accepts (i, S, 1), we consider A’s approximation ratio for an
instance I3 ⊆ I1 that includes the elementary bids (i, S, 1) and (i, L , 1 + δ). Since
A cannot distinguish between I1 and I3, it again selects bid (i, S, 1) first and accepts
it, when it considers I3. But then consider the instance I ′

3 in which i changes (i, S, 1)
into (i, S, 1/d). Since A has an approximation ratio of (1− δ)d, it must allocate L to
bidder i in I ′

3. But this contradicts the hypothesis that A is truthful since the two bids
of bidder i in I3 and I ′

3 do not satisfy k-monotonicity (cf. Definition 1).
If A rejects (i, S, 1), we consider A’s approximation ratio for an instance I4 ⊆ I1

that includes only the elementary bid (i, S, 1). Since A cannot distinguish between I1
and I4, it rejects (i, S, 1) when considering I4, which leads to an unbounded approxi-
mation ratio for I4. ��

We note that with a minor change in the proof, the lower bound of Theorem 15
applies to the special case of 2-minded bidders. Thus, taking into account instances
with d = m, we obtain the following result.
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Corollary 1 Let A be a truthful priority mechanism with verification and no money
for CAs with known 2-minded bidders. If A processes elementary bids then the approx-
imation ratio of A is greater than (1 − δ)m, for any δ > 0.

5.4.2 Lower Bound for Priority Mechanisms Processing Bidders

We next show that any truthful priority mechanism A that processes bidders has an
approximation ratio of at least m/2 for CAs with known k-minded bidders. We note
that such prioritymechanism A is potentiallymore powerful than a prioritymechanism
that processes elementary bids, since when A decides about the set allocated to each
bidder i , it has full information about i’s valuation function. The proof of the following
result adapts the proof of [1, Theorem 4] to our setting.

Theorem 16 Let A be a truthful priority mechanism with verification and no money
for CAs with known 2-minded bidders. If A processes bidders then the approximation
ratio of A is greater than (1 − δ)m/2, for any δ > 0.

Proof For sake of contradiction, let us assume that there is a truthful priority mecha-
nism A for CAs with known 2-minded bidders that processes bidders and achieves an
approximation ratio of (1 − δ)m/2, for some constant δ > 0.

We consider a universe U = {a1, . . . , am} and m bidders. For each i , 1 ≤ i ≤ m,
we let gi be a single-minded valuation where the demanded set is {ai } with valuation
1. More specifically, for each S ⊆ U, gi (S) = 1, if ai ∈ S, and gi (S) = 0, otherwise.
Moreover, for each i , 1 ≤ i ≤ m, we let fi be a double-minded valuation where the
demanded set is either {ai } with valuation m2 + δ, or U with valuation m2 + 2δ. More
specifically, fi (U) = m2 + 2δ, and for each S ⊂ U, fi (S) = m2 + δ, if ai ∈ S, and
fi (S) = 0, otherwise. In the following, we only consider restricted instances of CAs
where every bidder has a valuation of type either g or f .

We first show that for any bidder i and for all instances where all bidders j 
= i
have single-minded valuations of type g and i has a valuation of type f , A allocates
U to i and ∅ to any bidder j 
= i (this claim is the equivalent of [1, Lemma 5] in
our setting). We let fk , for some 1 ≤ k ≤ m, be the valuation of bidder i . Since the
optimal social welfare is at least m2 + 2δ, A allocates either U or a set S ⊇ {ak} to
bidder i . Otherwise, the social welfare of Awould be at mostm−1, which contradicts
the hypothesis that the approximation ratio of A is (1− δ)m/2. However, the fact that
A is truthful, implies, by Theorem 1, that A must assign U to i on input g valuations
from bidders other than i and fk valuation from i . Indeed, assume that it is not the
case and consider a new instance in which bidder i declares a single-minded valuation
where the demanded set is U with valuation m2 + 2δ. Because of the approximation
guarantee of A, on this new instance, Amust grantU to i . The two declarations would
then contradict k-monotonicity (cf. Definition 1). Therefore, A allocates U to bidder
i and ∅ to any bidder j 
= i .

Using this claim, we can prove the following proposition which is identical to [1,
Lemma 6]. The proof is by induction on i , and is omitted because it is essentially
identical to the proof in [1, Lemma 6]. In fact, that proof of [1, Lemma 6] uses only
standard properties of priority algorithms, the assumption that the approximation ratio
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of A is (1 − δ)m/2, and [1, Lemma 5], which, in our case, is replaced by the claim
above.

Proposition 4 Let A be any truthful priority mechanismwhich for restricted instances
withm goods, achieves an approximation ratio of (1−δ)m/2, for some constant δ > 0.
Then, there exists a labeling of the bidders and the goods such that the following holds
for all i ∈ {0, 1, . . . ,m/2− 1}. Let instance Ii = {( j, g j ) : 1 ≤ j ≤ i}. Then, for any
restricted instance I ⊇ Ii , A considers all the bidders in Ii before all other bidders
in I , and allocates ∅ to each bidder in Ii .

Proof Using Proposition 4, we can now complete the proof of the lemma. Let I ′ =
{( j, g j ) : 1 ≤ j ≤ m/2−1} be the instance Ii defined in Proposition 4 for i = m/2−1,
and let I = I ′ ∪ {( j, gm) : m/2 ≤ j ≤ m}. We note that the optimal social welfare
for I is m/2, and that I is a restricted instance such that I ′ ⊆ I , as required by
Proposition 4. Therefore, mechanism A considers bidders 1, . . . ,m/2 − 1 first and
allocates ∅ to each of them. Since bidders m/2, . . . ,m are all single-minded for good
am , the social welfare of A for instance I is at most 1, which contradicts the hypothesis
that the approximation ratio of A is (1 − δ)m/2. ��

5.5 Discussion

A step that seems necessary for an approximation ratio of O(
√
m) for CAs is that the

algorithm somehow compares the social welfare and chooses the best of the following
two extreme solutions: a solution that only consists of the most valuable set demanded
by somebidder, and a solution consisting ofmany small setswith a large total valuation.
Otherwise, the algorithm cannot achieve an approximation ratio of o(m) even for the
simple case where bidder 1 is double-minded for U = {a1, . . . , am} with valuation
x ∈ {1+ ε,m2} and for the good a1 with valuation 1, and each bidder i , 2 ≤ i ≤ m, is
single-minded for the good ai with valuation 1. In fact, this is one of the restrictions
of priority algorithms exploited in the proofs of the lower bounds of �(m) above.

On the other hand, comparing the social welfare of these two extreme solutions
seems also sufficient for an O(

√
m)-approximation, in the sense that taking the best of

(i) themost valuable set demanded by some bidder, and (ii) the solution ofAlgorithm5,
if we only allocate sets of cardinality at most

√
m, gives an O(

√
m)-approximation

(see Theorem 11 for the analysis, see also e.g., [3, Section 6] for another example of
an O(

√
m)-approximation algorithm based on a similar comparison).

For CAs without money, it seems virtually impossible to let a deterministic mecha-
nism truthfully implement a comparison between the social welfare of those extreme
solutions. This is because the only way for a deterministic mechanism to make sure
that the bidder with the maximum valuation does not lie about it is to allocate her most
valuable set to her, so that verification applies to this particular bid (see also howAlgo-
rithm 2 learns about vmax). But this leads to an approximation ratio of �(m). In fact,
this seems the main obstacle towards a deterministic truthful O(

√
m)-approximate

mechanism for CAs with k-minded bidders. So, the main open problem arising from
our work is prove (or disprove) that there is a strong lower bound of �(m) on the
approximation ratio of deterministic truthful mechanisms.
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