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Abstract Although widely applied in optimisation, relatively little has been proven
rigorously about the role and behaviour of populations in randomised search processes.
This paper presents a newmethod to prove upper bounds on the expected optimisation
time of population-based randomised search heuristics that use non-elitist selection
mechanisms and unary variation operators. Our results follow from a detailed drift
analysis of the population dynamics in these heuristics. This analysis shows that the
optimisation time depends on the relationship between the strength of the selective
pressure and the degree of variation introduced by the variation operator. Given limited
variation, a surprisingly weak selective pressure suffices to optimise many functions
in expected polynomial time. We derive upper bounds on the expected optimisation
time of non-elitist evolutionary algorithms (EA) using various selection mechanisms,
including fitness proportionate selection. We show that EAs using fitness proportion-
ate selection can optimise standard benchmark functions in expected polynomial time
given a sufficiently low mutation rate. As a second contribution, we consider an opti-
misation scenario with partial information, where fitness values of solutions are only
partially available. We prove that non-elitist EAs under a set of specific conditions
can optimise benchmark functions in expected polynomial time, even when vanish-
ingly little information about the fitness values of individual solutions or populations

This paper refines earlier results published in the proceedings of GECCO’11 and GECCO’14 [5,6,24].
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is available. To our knowledge, this is the first runtime analysis of randomised search
heuristics under partial information.

Keywords Runtime · Drift analysis · Evolutionary algorithms · Non-elitism ·
Fitness-levels · Partial evaluation

1 Introduction

Randomised search heuristics (RSHs) such as evolutionary algorithms (EAs) or
Genetic Algorithms (GAs) are general purpose search algorithms which require little
knowledge of the problem domain for their implementation. Nevertheless, they are
often successful in practice [3,36]. Despite their often complex behaviour, there have
been significant advances in the theoretical understanding of these algorithms over the
recent years [1,17,31]. One contributing factor behind these advances may have been
the clear strategy to initiate the analysis on the simplest settings before proceeding
to more complex scenarios, while at the same time developing appropriate analytical
techniques. Therefore, most analytical techniques of the current literature were first
designed for the single-individual setting, i.e., the (1 + 1) EA and the like (see [17]
for a overview). Some techniques have emerged later for analysing EAs with popu-
lations. The family tree technique was introduced in [35] to analyse the (μ + 1) EA.
However, the analysis does not cover offspring populations. A performance compar-
ison of (μ + μ) EA for μ = 1 and μ > 1 was conducted in [16] using Markov
chains to model the search processes. Based on a similar argument to fitness-levels
[34], upper bounds on the expected runtime of the (μ + μ) EA were derived in [2].
The fitness-level argument also assisted the analysis of parallel EAs in [22]. However,
the analysis is restricted to EAs with truncation selection and does not apply to gen-
eral selection schemes. Drift analysis [13] was used in [30] and in [24] to show the
inefficiency of standard fitness proportionate selection without scaling. The approach
involves finding a function that maps the state of an entire population to a real number
measuring the distance between the current population and the set of optimal solu-
tions. The required distance function is highly complex even for a simple function like
OneMax.

In this paper, we are interested in estimating upper bounds on the expected runtime
of a large class of algorithms that employs non-elitist populations. More precisely,
the technique developed in this paper is applied to algorithms covered by the scheme
of Algorithm 1. The general term Population Selection-Variation Algorithm is used
to emphasise that it does not only cover EAs, but also other population-based RSHs.
In this scheme, each solution of the current population is generated by first sampling
a solution from the previous population with a so-called sampling mechanism psel,
then by perturbing the sampled solution with a so-called variation operator pmut. The
scheme defines a class of algorithms which can be instantiated by specifying the
variation operator pmut, and the selection mechanism psel. Here, we assume that the
algorithm optimises a fitness function f : X → R, implicitly given by the selection
mechanism psel. Particularly, this description of psel allows the scheme to cover other
optimisation scenarios than just static/classical optimisation. The variation operator
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pmut is restricted to unary ones, i.e., those where each individual has only one parent.
Further discussions on higher-arity variation operators can be found in [4].

Algorithm 1 Population selection-variation algorithm
Require: Finite state space X ,

and initial population P0 ∼ Unif(X λ).
1: for t = 0, 1, 2, . . . until a termination condition is met do
2: for i = 1 to λ do
3: Sample It (i) ∈ [λ] according to psel(Pt ).
4: x := Pt (It (i)).
5: Sample x ′ according to pmut(x).
6: Pt+1(i) := x ′.
7: end for
8: end for

Algorithm 1 has been studied in a sequence of papers [23,24,26], while a specific
instance of the scheme known as the (1, λ) EA was analysed in [32]. Its runtime
depends critically on the balance between the selective pressure imposed by psel,
and the amount of variation introduced by pmut [26]. When the selective pressure falls
below a certain threshold which depends on the mutation rate, the expected runtime of
the algorithm becomes exponential [23]. Conversely, if the selective pressure exceeds
this threshold significantly, it is possible to show using a fitness-level argument [34]
that the expected runtime is bounded from above by a polynomial [24].

The so-called fitness-level technique is one of the simplest ways to derive upper
bounds on the expected runtime of elitist EAs [34]. The idea is to partition the search
space X into so-called fitness levels A1, . . . , Am+1 ⊆ X , such that for all 1 ≤ j ≤ m,
all the search points in fitness level A j have inferior function value to the search
points in fitness level A j+1, and all global optima are in the last level Am+1. Due
to the elitism, which means the offspring population has to compete with the best
individuals of the parent population, the EA will never lose the highest fitness level
found so far. If the probability of mutating any search point in fitness level A j into
one of the higher fitness levels is at least s j , then the expected time until this occurs is
at most 1/s j . The expected time to overcome all the inferior levels, i.e., the expected
runtime, is by linearity of expectation nomore than

∑m
j=1 1/s j . This simple technique

can sometimes provide tight upper bounds of the expected runtime. Recently in [33],
an extension of the method has been shown to be able to derive tight lower bounds,
the key idea is to estimate the number of fitness levels being skipped on average.

Non-elitist algorithms, such as Algorithm 1, may lose the current best solution.
Therefore, to guarantee the optimisation of f , a set of conditions has to be applied
so that the population does not frequently fall down to lower fitness levels. Such
conditions were introduced in [24], which imply a large enough population size and
a strong enough selective pressure relative to the variation operator. In particular,
the probability that Algorithm 1 in line 1 selects an individual x among the best γ -
fraction of the population, and the variation operator in line 1 does not produce an
inferior individual x ′, must be at least (1+ δ)γ , for all γ ∈ (0, γ0], where δ and γ0 are
positive constants. When the conditions are satisfied, [24] concludes that the expected
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runtime is bounded from above by O(mλ2+∑m
j=1 1/s j ). The proof divides the run of

the algorithm into phases. A phase is considered successful if the population does not
fall to a lower fitness level during the phase. The duration of each phase conditional
on the phase being successful is analysed separately using drift analysis [15]. An
unconditional upper bound on the expected runtime of the algorithm is obtained by
taking into account the success probabilities of the phases.

In this paper, we present a new theorem which improves the results of [24]. The
contributions of this paper are twofold: (i) a more precise and general upper bound
for the fitness-level technique of [24] and (ii) a new application of the technique to
the analysis of EAs under uncertainty or incomplete information. In (i), we improve

the above bound to O
(
mλ ln λ + ∑m

j=1 1/s j
)
for the case of constant δ. Increas-

ing the population size therefore has a smaller impact on the runtime than previously
thought. This improvement is illustrated with upper bounds on the expected runtime of
non-elitist EAs on many example functions and for various selection mechanisms. On
the other hand, the new theorem makes the relationship between parameter δ and the
runtime explicit. This observation allows us to prove that standard fitness proportion-
ate selection can be made efficient without scaling, in contrast to the previous result
[24,30]. Particularly in (ii), using the improved technique we show that non-elitist
EAs under a set of specific conditions are still able to optimise standard functions,
such as OneMax and LeadingOnes, in expected polynomial time even when little
information about the fitness values of individual solutions or populations is available
during the search. To the best of our knowledge, this is the first time optimisation under
incomplete information has been formalised for pseudo-Boolean functions and rigor-
ously analysed for population-based algorithms. All these improvements are achieved
due to a much more detailed analysis of the population dynamics.

The remainder of the paper is organised as follows. Section 2 provides a set of
preliminary results that are crucial for our improvement. Our new theorem is presented
with its proof in Sect. 3. The new results for the set of functions which were previously
presented in [24] are described in Sect. 4. Section 5 presents another application of the
new theorem to runtime analysis of EAs under incomplete information. Finally, some
conclusions are drawn. Some supplementary results can be found in the “Appendix”.

2 Preliminaries

For any positive integer n, define [n] := {1, 2, . . . , n}. The notation [A] is the Iverson
bracket, which is 1 if the conditionA is true and 0 otherwise. The natural logarithm is
denoted by ln(·), and the logarithm to the base 2 is denoted by log(·). For a bitstring x
of length n, define |x |1 := ∑n

i=1 xi . Without loss of generality, we assume throughout
the paper the objective is to maximise some function f : X → R, which we call the
fitness function.

A random variable X is stochastically dominated by a random variable Y , denoted
by X � Y , if Pr(X > x) ≤ Pr(Y > x) for all x ∈ R. Equivalently, X � Y holds if
and only if E [ f (X)] ≤ E [ f (Y )] for any non-decreasing function f : R → R. The
indicator function 1E : Ω → R for an event E ⊆ Ω is defined as
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1E (ω) :=
{
1 if ω ∈ E, and

0 otherwise.

For any event E ⊆ Ω and time index t ∈ N, we denote the probability of an event
E conditional on the σ -algebra Ft by

Pr t (E) := E [1E | Ft ]

We denote the expectation of a random variable X conditional on the σ -algebra Ft

and the event E by

Et [X | E] := E [X ; E | Ft ]

Prt (E)

where the semi-colon notation “ ; ” is defined as (see e.g. [20], page 49)

E [X ; E | Ft ] := E [X · 1E | Ft ] .

Algorithm 1 keeps a vector Pt ∈ X λ, t ≥ 0, of λ search points. In analogy with
evolutionary algorithms, the vector will be referred to as a population, and the vector
elements as individuals. Each iteration of the inner loop is called a selection-variation
step, and each iteration of the outer loop, which counts for λ iterations of the inner
loop, is called a generation. The initial population is sampled uniformly at random. In
subsequent generations, a new population Pt+1 is generated by independently sam-
pling λ individuals from the existing population Pt according to psel, and perturbing
each of the sampled individuals by a variation operator pmut.

The ordering of the elements in a population vector P ∈ X λ according to non-
increasing f -value will be denoted x(1), x(2), . . . , x(λ), i.e., such that f (x(1)) ≥
f (x(2)) ≥ · · · ≥ f (x(λ)). For any constant γ ∈ (0, 1), the individual x(
γ λ�) will
be referred to as the γ -ranked individual of the population.

Similar to the analysis of randomised algorithms [10], the runtime of the algorithm
when optimising f is defined to be the first point in time, counted in terms of number
of solution evaluations, when a global optimum x∗ of f , i.e., ∀x ∈ X , f (x∗) ≥ f (x),
appears in Pt . However, the number of solution evaluations in a run of Algorithm 1 is
implicitly defined, i.e., it is equal to the number of selection-variation steps multiplied
by the number of fitness evaluations in psel. Therefore, in our general result the runtime
of the algorithm will be stated as the number of selection-variation steps, while in
specific cases the latter is translated into number of fitness evaluations.

Variation operators are formally represented as transitionmatrices pmut : X×X →
[0, 1] over the search space, where pmut(x | y) represents the probability of perturb-
ing an individual y into an individual x . Selection mechanisms are represented as
probability distributions over the set of integers [λ], where the conditional probability
psel(i | Pt ) represents the probability of selecting individual Pt (i), i.e., the i-th indi-
vidual from population Pt . From Algorithm 1, it follows that each individual within a
generation t is sampled independently from the same distribution psel.
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In contrast to rank-based selection mechanisms in which the decisions are made
based on the ranking of the individuals with respect to the fitness function, some
selection mechanisms rely directly on the fitness values. Thus the performance of an
algorithm making use of such selection mechanisms may depend on how much the
fitness values differ.

Definition 1 A function f : X → R is called θ -distinctive for some θ > 0 if for all
x, y ∈ X and f (x) �= f (y) we have | f (x) − f (y)| ≥ θ .

In this paper, we will work exclusively with fitness-based partitions of the search
space, of which the formal definition is the following.

Definition 2 ([34]) Given a function f : X → R, a partition of X into m + 1 levels
A1, . . . , Am+1 is called f -based if all of the following conditions hold: (i) f (x)< f (y)
for all x ∈ A j , y ∈ A j+1 and j ∈ [m + 1]; (ii) f (y) = maxx∈X { f (x)} for all
y ∈ Am+1.

The selective pressure of a selection mechanism refers to the degree to which the
selection mechanism selects individuals that have higher f -values. To quantify the
selective pressure in a selective mechanism psel, we define its cumulative selection
probability with respect to a fitness function f as follows.

Definition 3 ([24]) The cumulative selection probability β of a selection mechanism
psel with respect to a fitness function f : X → R is defined for all γ ∈ (0, 1] and
P ∈ X λ by

β(γ, P) :=
λ∑

i=1

psel(i | P) · [ f (P(i)) ≥ f (x(
γ λ�))
]

Informally, β(γ, P) is the probability of selecting an individual with fitness at least
as high as that of the γ -ranked individual. We write β(γ ) instead of β(γ, P) when β

can be bounded independently of the population vector P . Our main tool to prove the
theorem in Sect. 3 is the following additive drift theorem.

Theorem 4 (Additive Drift Theorem [15]) Let X1, X2, ... be a stochastic process over
state space S, d : S → R be a distance function on S andFt be the filtration induced
by X1, . . . , Xt . Define T := min{t | d(Xt ) ≤ 0}. If there exist B,Δ > 0 such that,

1. ∀t ≥ 0 : Pr (d(Xt ) < B) = 1, and
2. ∀t ≥ 0 : E [

d(Xt ) − d(Xt+1) ; d(Xt ) > 0 | Ft
] ≥ Δ,

then E [T ] ≤ B/Δ.

The drift theorem in evolutionary computation is typically applied to bound the
expected time until the process reaches a potential of 0 (ie., d(Xt ) = 0). The so-
called potential or distance function d serves the purpose of measuring the progress
toward the optimum. In our case, Xt = X�

t represents the number of individuals in
the population that have advanced to a higher fitness level than the current level �.
We are interested in the time until Xt ≥ γ0λ, ie., until some constant fraction of the
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population has advanced to the higher fitness level, sometimes called the take-over
time. The earlier fitness-level theorem for populations [24] used a linear potential
function on the form d(x) = C − x , and obtained an expected progress of δXt for
some constant δ. This situation is somehow inverse to that in multiplicative drift [7],
as we are waiting for the process Xt to reach a large value. It is well known that
d should be chosen such that Δ is a constant independent of Xt . In this paper, we
therefore consider the potential function d(x) = C − ln(1 + cx), for appropriate
choices of C and c. However, in order to bound the drift with this potential function, it
is insufficient to only consider the expectation of Xt+1. The following lemma shows
that it is sufficient to exploit the fact that Xt+1 is binomially distributed.

Lemma 5 If X ∼ Bin(λ, p) with p ≥ (i/λ)(1 + δ) and i ≥ 1 for some δ > 0, then

E
[

ln

(
1 + cX

1 + ci

)]

≥ cε,

where ε = min{1/2, δ/2} and c = ε4/24.

Proof Let Y ∼ Bin(λ, (i/λ)(1 + 2ε)), then Y � X . Therefore,

E
[

ln

(
1 + cX

1 + ci

)]

≥ E
[

ln

(
1 + cY

1 + ci

)]

,

and it is sufficient to show thatE
[
ln

(
1+cY
1+ci

)]
≥ cε to complete the proof.We consider

the two following cases.
For i ≥ 8/ε3: Let q := Pr (Y ≤ (1 + ε)i), then by the law of total probability

E
[

ln

(
1 + cY

1 + ci

)]

≥ (1 − q) ln

(
1 + c(1 + ε)i

1 + ci

)

− q ln(1 + ci)

= ln

(

1 + cεi

1 + ci

)

− q ln (1 + c(1 + ε)i) .

Note that ci = (ε4/24)i ≥ (ε4/24)(8/ε3) = ε/3, thus

ciε

ci + 1
= ε

1 + 1/ci
≥ ε

1 + 3/ε
= ε2

ε + 3
≥ ε2

1/2 + 3
= 2ε2

7
. (1)

We have the following based on Lemma 33 and (1)

ln

(

1 + cεi

1 + ci

)

≥ ln
(
1 + 2ε2/7

)
≥

(
2ε2/7

) (
1 − ε2/7

)

≥
(
2ε2/7

)
(1 − 1/28) = 27ε2/98.
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Using Lemma 27 with E [Y ] = (1 + 2ε)i , and ex > x , ε ≤ 1/2, we get

q = Pr

(

Y ≤
(

1 − ε

1 + 2ε

)

E [Y ]

)

≤ exp

(

− iε2

2(1 + 2ε)

)

≤ exp

(

− iε2

4

)

<
4

iε2
.

We then have

q ln(1 + c(1 + ε)i) ≤ qc(1 + ε)i ≤
(

4

iε2

)(
ε4(1 + 1/2)i

24

)

= ε2

4
.

Putting everything together, we get

E
[

ln

(
1 + cY

1 + ci

)]

≥ ε2
(
27

98
− 1

4

)

= 5ε2

196

> (1/8) (ε/24) ε = (1/8)
(
c/ε3

)
ε ≥ cε.

For 1 ≤ i ≤ 8/ε3: Note that ε ≤ 1/2 implies E [Y ] = (1 + 2ε)i ≤ 2i , and for
binomially distributed random variables we have Var [Y ] ≤ E [Y ], so

E
[
Y 2

]
= Var [Y ] + E [Y ]2 ≤ 2i(1 + 2i) ≤ 2i(i + 2i) = 6i2. (2)

Using Lemma 33, (2), ci ≤ ε/3, and ε ≤ 1/2, we get

E
[

ln

(
1 + cY

1 + ci

)]

= E [ln(1 + cY )] − ln(1 + ci)

≥ E [cY ] − E
[
c2Y 2

]

2
− ci

≥ ci(1 + 2ε) − 3c2i2 − ci

≥ ci(2ε − 3(ε/3)) = ciε ≥ cε.

Combining the two cases, we have, for all i ≥ 1,

E
[

ln

(
1 + cX

1 + ci

)]

≥ E
[

ln

(
1 + cY

1 + ci

)]

≥ cε.

��
We will also need the following three results.

Lemma 6 (Lemma 18 in [24]) If X ∼ Bin(λ, p) with p ≥ (i/λ)(1 + δ), then
E
[
e−κX

] ≤ e−κi for any κ ∈ (0, δ).
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Proof For the completeness of ourmain theorem,wedetail the proof of [24] as follows.
The value of the moment generating function MX (t) of the binomially distributed
variable X at t = −κ is

E
[
e−κX

]
= MX (−κ) = (

1 − p
(
1 − e−κ

))λ
.

It follows from Lemma 31 and from 1 + κ < 1 + δ that

p(1 − e−κ) ≥ i(1 + δ)

λ

(
κ

1 + κ

)

≥ κi

λ
.

Altogether, E
[
e−κX

] ≤ (1 − κi/λ)λ ≤ e−κi . ��
We also use negative drift to prove the inefficiency of the (1 + 1) EA under the

partial information setting in Sect. 5. The following theorem, which is a corollary
result of Theorem 2.3 in [13], was presented in [25].

Theorem 7 (Hajek’s theorem [25]) Let {Xt }t≥0 be a stochastic process over some
bounded state S ∈ [0,∞), Ft be the filtration generated by X0, ..., Xt . Given a(n)

and b(n) depending on a parameter n such that b(n) − a(n) = Ω(n), define T :=
min{t | Xt ≥ b(n)}. If there exist positive constants λ, ε, D such that

(L1) E
[
Xt+1 − Xt ; Xt > a(n) | Ft

] ≤ −ε,
(L2) (|Xt+1 − Xt | | Ft ) � Y with E

[
eλY

] ≤ D,

then there exists a positive constant c such that

Pr
(
T ≤ ecn | X0 < a(n)

) ≤ e−Ω(n).

Informally, if the progress (toward state b(n)) becomes negative from state a(n)

(L1) and big jumps are rare (L2), thenE [T ] is exponential, e.g., byMarkov’s inequality

E [T | X0 < a(n)] ≥ Pr
(
T > ecn | X0 < a(n)

)
ecn

≥
(
1 − e−Ω(n)

)
ecn = eΩ(n).

3 A Refined Fitness Level Theorem

For notational convenience, define for j ∈ [m] the set A+
j := ⋃m+1

i= j+1 Ai , i.e., the set
of search points at higher fitness levels than A j . We have the following theorem and
corollaries for the runtime of non-elitist populations.

Theorem 8 Given a function f : X → R, and an f -based partition (A1, . . . , Am+1),
let T be the number of selection-variation steps until Algorithm 1 with a selection
mechanism psel obtains an element in Am+1 for the first time. If there exist parameters
p0, s1, . . . , sm, s∗ ∈ (0, 1], and γ0 ∈ (0, 1) and δ > 0, such that

(C1) pmut

(
y ∈ A+

j | x ∈ A j

)
≥ s j ≥ s∗ for all j ∈ [m],
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(C2) pmut

(
y ∈ A j ∪ A+

j | x ∈ A j

)
≥ p0 for all j ∈ [m],

(C3) β(γ, P)p0 ≥ (1 + δ)γ for all P ∈ X λ and γ ∈ (0, γ0],
(C4) λ ≥ 2

a
ln

(
16m

acεs∗

)

with a = δ2γ0

2(1 + δ)
, ε = min{δ/2, 1/2} and c = ε4/24,

then

E [T ] ≤ 2

cε

⎛

⎝mλ(1 + ln(1 + cλ)) + p0
(1 + δ)γ0

m∑

j=1

1

s j

⎞

⎠ .

The new theorem has the same form as the one in [24]. Similarly to the classical
fitness-level argument, it assumes an f -based partition (A1, . . . , Am+1) of the search
space X . Each subset A j is called a fitness level. Condition (C1) specifies that for
each fitness level A j , the “upgrade probability”, i.e., the probability that an individual
in fitness level A j is mutated into a higher fitness level, is bounded from below by a
parameter s j . Condition (C2) requires that there exists a lower bound p0 on the prob-
ability that an individual will not “downgrade” to a lower fitness level. For example,
in the classical setting of bitwise mutation with mutation rate 1/n, it suffices to pick
any parameter p0 ≤ (1 − 1/n)e−1, which is less than the probability of not flipping
any bits.

Condition (C3) requires that the selective pressure (see Definition 3) induced by
the selection mechanism is sufficiently strong. The probability of selecting one of
the fittest γ λ individuals in the population, and not downgrading the individual via
mutation (probability p0), should exceed γ by a factor of at least 1+δ. In applications,
the parameter δmay depend on the optimisation problem and the selectionmechanism.

The last condition (C4) requires that the population size λ is sufficiently large. The
required population size depends on the number of fitness levels m, the parameter
δ (c and ε are functions of δ) which characterises the selective pressure, and the
upgrade probabilities s j which are problem-dependent parameters. A population size
of λ = Θ(ln n), where n is the number of problem dimensions, is sufficient for many
pseudo-Boolean functions.

If all the conditions (C1-4) are satisfied, then an upper bound on the expected
runtime of the algorithm is guaranteed. Note that the upper bound has an additive term
which is similar to the classical fitness-level technique, e.g., applied to the (1+1) EA.
However, this does not prevent us from proving that population-based algorithms
are better choices than single-individual solution approaches, as we will see typical
examples in the second part of the paper.

The refined theorem makes the relationship between the expected runtime and the
parameters, including δ, explicit.Most notably, the assumption about δ being a constant
as required by the old theorem in [24] is removed. This allows the new theorem to be
applied in more complex settings. The following corollaries provide a simplification
for (C4) and the corresponding result for arbitrary δ ∈ (0, 1].
Corollary 9 For any δ ∈ (0, 1], condition (C4) of Theorem 8 holds if

(C4’) λ ≥ 8

γ0δ2

(

ln

(
m

γ0δ7s∗

)

+ 11

)

.
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Proof For δ ∈ (0, 1], we have ε = min{δ/2, 1/2} = δ/2. Therefore 1/ε = 2/δ,
1/c = 24/ε4 = 384/δ4, 1/a = (2/γ0)(1/δ + 1/δ2) ≤ 4/(γ0δ2). So

2

a
ln

(
16m

acεs∗

)

≤ 8

γ0δ2
ln

(
4 · 2 · 384 · 16 · m

γ0δ7s∗

)

<
8

γ0δ2

(

ln

(
m

γ0δ7s∗

)

+ 11

)

.

Therefore, (C4’) implies (C4). ��
If we further have m > 1, 1/δ ∈ poly(m), 1/s∗ ∈ poly(m) and 1/γ0 ∈ O(1) then
there exists a constant b such that (C4) is satisfied with λ ≥ (b/δ2) lnm.

Corollary 10 For any δ ∈ (0, 1], the expected runtime of Algorithm 1 satisfying
conditions (C1-4) of Theorem 8 is

E [T ] ≤ 1536

δ5

⎛

⎝mλ

(

1 + ln

(

1 + δ4λ

384

))

+ 1

γ0

m∑

j=1

1

s j

⎞

⎠ .

Proof For δ ∈ (0, 1], we have ε = min{δ/2, 1/2} = δ/2. Hence 2/(cε) = 48/ε5 =
1536/δ5. In addition, we have p0

(1+δ)γ0
≤ 1

γ0
, so by Theorem 8

E [T ] ≤ 1536

δ5

⎛

⎝mλ

(

1 + ln

(

1 + δ4λ

384

))

+ 1

γ0

m∑

j=1

1

s j

⎞

⎠ .

��
If δ is bounded from below by a constant, then the following corollary holds.

Corollary 11 In addition to (C1-4) of Theorem 8, if γ0 and δ can be fixed as constants
with respect to m, then there exists a constant C such that

E [T ] ≤ C

⎛

⎝mλ ln λ +
m∑

j=1

1

s j

⎞

⎠ .

In the case of constant δ, the first term of the expected runtime is reduced from
O(mλ2) as previously stated in [24] to O(mλ ln λ). In other words, the overhead
when increasing the population size is significantly reduced compared to previously
thought.

Themain proof idea of the theorem is to estimate the expected time for the algorithm
to leave each level j . The expected runtime is then their sum, given that population
does not lose its best solutions too often. This condition is shown to hold using a
Chernoff bound, relying on a sufficiently large population size. The process of leaving
the current level j is pessimistically assumed to follow two phases: first the algorithm
waits for the arrival of an advanced individual, i.e., the one at level of at least j+1; then
the γ0-upper portion of the population is filled up with advanced individuals, at least
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through the selection of the existing ones and the application of harmless mutation.
The algorithm is considered to have left level j when there are at least 
γ0λ� advanced
individuals in the population. The full proof is formalisedwith drift analysis as follows.

Proof of Theorem 8 We use the following notation. The number of individuals with
fitness level at least j at generation t is denoted by X j

t for j ∈ [m + 1]. The current
fitness level of the population at generation t is denoted by Zt , and Zt = � if X�

t ≥

γ0λ� and X�+1

t < γ0λ. Note that Zt is uniquely defined, as it is the fitness level of
the γ0-ranked individual at generation t . We are interested in the first point in time
that Xm+1

t ≥ γ0λ, or equivalently Zt = m + 1. This stopping time gives a valid upper
bound on the runtime.

Since condition (C3) holds for all P , we will write β(γ ) instead of β(γ, P) to
simplify the notation. For each level j , define a parameter q j := 1− (1− β(γ0)s j )λ.
Note that q j is a lower bound on the probability of generating at least one individual at
fitness level strictly better than j in the next generation conditioned on the event that
the 
γ0λ� best individuals of the current population are at level j . Due to Lemma 31,
we have

q j ≥ β(γ0)λs j
β(γ0)λs j + 1

.

Using the following potential function, the theorem can now be proven solely
relying on the additive drift argument.

g(Pt ) := g1(Pt ) + g2(Pt )

with g1(Pt ) := (m − Zt ) ln(1 + cλ) − ln
(
1 + cX Zt+1

t

)

and g2(Pt ) := 1

qZt e
κX Zt+1

t

+
m∑

j=Zt+1

1

q j
with some κ ∈ (0, δ).

Here, parameter κ serves the purpose of “smoothing” the transition so that the
progress depends mostly on g1 when X Zt+1

t > 0 and depends mostly on g2 when
X Zt+1
t = 0. We will only need to show that κ exists in the given interval in order to

use Lemma 6 later on. Note also that as far as Zt < m + 1, i.e., the process before the
stopping time, we have g(Pt ) > 0.

The function g(Pt ) is bounded from above by,

g(Pt ) ≤ m ln(1 + cλ) +
m∑

j=1

1

q j

≤ m ln(1 + cλ) +
m∑

j=1

(

1 + 1

β(γ0)λs j

)

= m(1 + ln(1 + cλ)) + 1

β(γ0)λ

m∑

j=1

1

s j
. (3)
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At generation t , we use R = Zt+1 − Zt to denote the random variable describing
the next progress in fitness levels. To simplify further writing, let � := Zt , i := X�+1

t ,
X := X�+1

t+1 , and Δ := g(Pt ) − g(Pt+1) = Δ1 + Δ2 where

Δ1 := g1(Pt ) − g1(Pt+1) = R ln(1 + cλ) + ln

(
1 + X�+R+1

t+1

1 + ci

)

,

Δ2 := g2(Pt ) − g2(Pt+1) = 1

q�eκi
− 1

q�+Re
κX�+R+1

t+1

+
�+R∑

j=�+1

1

q j
.

LetFt be the filtration induced by Pt . Define Et to be the event that the population
in the next generation does not fall down to a lower level, Et : Zt+1 ≥ Zt , and Ēt the
complementary event. We have

Et [Δ] = (
1 − Pr t

(Ēt
))
Et [Δ | Et ] + Pr t

(Ēt
)
Et

[
Δ | Ēt

]

= Et [Δ | Et ] − Pr t
(Ēt

) (
Et [Δ | Et ] − Et

[
Δ | Ēt

])
.

Wefirst compute the conditional forwarddriftEt [Δ | Et ]. For all i ≥ 0 and � ∈ [m],
it holds for any integer R ∈ [m − � + 1] that

Δ = R ln(1 + cλ) + ln

(
1 + X�+R+1

t+1

1 + ci

)

+ 1

q�eκi
− 1

q�+Re
κX�+R+1

t+1

+
�+R∑

j=�+1

1

q j

≥ ln(1 + cλ) + ln

(
1

1 + ci

)

+ 1

q�eκi
− 1

q�+R
+

�+R∑

j=�+1

1

q j

= ln

(
1 + cλ

1 + ci

)

+ 1

q�eκi
+

�+R−1∑

j=�+1

1

q j

≥ ln

(
1 + cλ

1 + ci

)

+ 1

q�eκi
,

and for R = 0 that

Δ = ln

(
1 + cX

1 + ci

)

+ 1

q�eκi
− 1

q�eκX
=: Δ0

≤ ln

(
1 + cλ

1 + ci

)

+ 1

q�eκi
.

Given Ft and conditioned on Et , the support of R is indeed {0} ∪ [m − � + 1]
and from the above relations it holds that Δ0 � Δ. Hence, Et [Δ | Et ] ≥ Et [Δ0 | Et ]
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and we only focus on R = 0 to bound the drift from below. We separate two cases:
i = 0 (event Zt ) and i ≥ 1 (event Z̄t ). Recall that each individual is generated
independently from each other, so during Z̄t we have that X ∼ Bin(λ, p) where
p ≥ β(i/λ)p0 ≥ (i/λ)(1 + δ). The inequality is due to condition (C3). Hence by
Lemma 5, it holds for i ≥ 1 (event Z̄t ) that

Et
[
Δ1 | Et , Z̄t

] ≥ Et

[

ln

(
1 + cX

1 + ci

)

| Et , Z̄t

]

≥ cε,

Et [Δ1 | Et ,Zt ] ≥ Et [ln(1) | Et ,Zt ] = 0.

By Lemma 6, we have e−κi ≥ E
[
e−κX

]
for i ≥ 1, thus

Et
[
Δ2 | Et , Z̄t

] ≥ 1

q�

(
e−κi − Et

[
e−κX | Et , Z̄t

])
≥ 0.

For i = 0, Pr t (X ≥ 1 | Et ,Zt ) ≥ q�, so

Et [Δ2 | Et ,Zt ] ≥ Pr t (X ≥ 1 | Et ,Zt )Et

[
1

q�eκi
− 1

q�eκX
| Et ,Zt , X ≥ 1

]

≥ q� · 1

q�

(
e−κ·0 − e−κ·1) = 1 − e−κ .

So the conditional forward drift is Et [Δ | Et ] ≥ min{cε, 1− e−κ }. Furthermore, κ
can be picked in the non-empty interval (− ln(1−cε), δ) ⊂ (0, δ), so that 1−e−κ > cε
and Et [Δ | Et ] ≥ cε.

Next, we compute the conditional backward drift. This can be done for the worst
case, i.e., the potential is increased from 0 to the maximal value. From (3) and s j ≥ s∗
for all j ∈ [m], we have

Et
[
Δ | Ēt

] ≥ −
⎛

⎝m(1 + ln(1 + cλ)) + 1

β(γ0)λ

m∑

j=1

1

s j

⎞

⎠

≥ −m

(

1 + ln(1 + cλ) + 1

β(γ0)λs∗

)

.

The probability of not having event Et is computed as follows. Recall that X�
t ≥


γ0λ� and X�
t+1 is binomially distributed with a probability of at least β(γ0)p0 ≥

(1 + δ)γ0 due to (C3), so Et
[
X�
t+1

] ≥ (1 + δ)γ0λ. The event Ēt happens when the
number of individuals at fitness level � is strictly less than 
γ0λ� in the next generation.
The probability of such an event is

Pr t
(Ēt

) = Pr t
(
X�
t+1 < 
γ0λ�

)
≤ Pr t

(
X�
t+1 ≤ γ0λ

)

= Pr t

(

X�
t+1 ≤

(

1 − δ

1 + δ

)

(1 + δ)γ0λ

)
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≤ Pr t

(

X�
t+1 ≤

(

1 − δ

1 + δ

)

Et

[
X�
t+1

])

≤ exp

(

−δ2Et
[
X�
t+1

]

2(1 + δ)2

)

due to Lemma 27

≤ exp

(

−δ2(1 + δ)γ0λ

2(1 + δ)2

)

= e−aλ.

Recall condition (C4) on the population size that

λ ≥ 2

a
ln

(
16m

acεs∗

)

⇒ 8m

acεs∗
≤ e

aλ
2

2
≤ eaλ

aλ
due to Lemma 32

⇒ Pr t
(Ēt

) ≤ e−aλ ≤ cεs∗
8mλ

.

Altogether, we have the drift of

Et [Δ] ≥ cε − cεs∗
8mλ

(

cε + m

(

1 + ln(1 + cλ) + 1

β(γ0)λs∗

))

= cε − cε

8λ

(
cεs∗
m

+ s∗ + s∗ ln(1 + cλ) + 1

β(γ0)λ

)

≥ cε − cε

8λ
(1 + 1 + cλ + 1) = cε − cε

8λ
λ

(

c + 3

λ

)

≥ cε

2
.

The second inequality makes use of (C3), which is β(γ0)λ ≥ (1 + δ)γ0λ/p0 >

γ0λ ≥ 1. Finally, applying Theorem 4 with the above drift, with the maximal potential
from (3), and again using 1/β(γ0) ≤ p0/((1 + δ)γ0) from (C3) give the expected
runtime in terms of variation-selection steps

E [T ] ≤ 2

cε

⎛

⎝mλ(1 + ln(1 + cλ)) + p0
(1 + δ)γ0

m∑

j=1

1

s j

⎞

⎠ .

��
We now discuss some limitations of the current result and possible directions to its

future improvement. First, one can observe from the proof that the bound for λ/q j is
loosely estimated using Lemma 31 (e.g., see the partial sum argument in its proof).
This implies the second term in the runtime being proportional to

∑m
i=1 1/s j which is

similar to the classical fitness level [34]. So one may ask if this term could have been
improved with a better estimation for λ/q j . The answer is no because of the following
result.
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Lemma 12 For any γ0, β(γ0), s j ∈ (0, 1) and any λ ∈ N, we have

λ

1 − (1 − β(γ0)s j )λ
>

1

s j
.

Proof From the condition, we have −β(γ0)s j ∈ (−1, 0), it follows from Lemma 29
that (1 − β(γ0)s j )λ ≥ 1 − β(γ0)s jλ, then

λ

1 − (1 − β(γ0)s j )λ
≥ 1

β(γ0)s j
>

1

s j
.

��
The bigger term is the expected waiting time for Algorithm 1 to generate one

advanced individual. This is similar to the waiting time of a (1+ λ) EA to leave level
j . So unless parallel implementations are considered it is impossible for the current
approach to improve the second term

∑m
j=1 1/s j in the runtime.

In addition, in the second phase to leave the current fitness level (see the proof
idea before the actual proof), we only consider the spreading of advanced solutions
by harmless mutations whilst completely ignoring occasional updates from the cur-
rent level. This could be a very pessimistic choice, and it is crucial in the future to
fully understand the population dynamic during this phase to determine more precise
expressions for the runtime.

In the following sections, we discuss the applications of the new theorem and its
corollaries.

4 Optimisation of Pseudo-Boolean Functions

In this first application, we use Theorem 8 to improve the results of [24] on expected
optimisation times of pseudo-Boolean functions using Algorithm 1with bitwise muta-
tions as variation operators (the so-called non-elitist EAs). The same notation as in the
literature, χ/n, is used to denote the probability of flipping a bit position in a bitwise
mutation. Formally, if x ′ is sampled from pmut(x), then independently for each i ∈ [n]

x ′
i =

{
1 − xi with probability χ/n, and

xi with probability 1 − χ/n.

The following selection mechanisms are considered:

– In a tournament selection of size k ≥ 2, denoted as k-tournament, k individuals are
uniformly sampled from the current population with replacement then the fittest
one is selected. Ties are broken uniformly at random.

– In ranking selection, each individual is assigned a rank between 0 and 1, where
the best one has rank 0 and the worst one has rank 1. Following [12], a function
α : R → R is considered a ranking function if α(x) ≥ 0 for all x ∈ [0, 1],
and

∫ 1
0 α(x)dx = 1. The selection mechanism chooses individuals such that the

123



444 Algorithmica (2016) 75:428–461

probability of selecting individuals ranked γ or better is
∫ γ

0 α(x)dx . Note that this
finite integral coincides with our definition of β(γ ). The linear ranking selection
uses the ranking function α(x) := η(1 − 2x) + 2x with η ∈ (1, 2].

– In a (μ, λ)-selection, parent solutions are selected uniformly at random among the
best μ out of λ individuals in the current population.

– The fitness proportionate selection with power scaling parameter ν ≥ 1 is defined
for maximisation problems as follows

∀i ∈ [λ] psel(i | Pt , f ) := f (Pt (i))ν
∑λ

j=1 f (Pt ( j))ν
.

Setting ν = 1 gives the standard version of fitness proportionate selection.

4.1 Tighter Upper Bounds

For the optimisation of pseudo-Boolean functions and bitwise mutation operators with
χ being a constant, it is already proven in [24] that δ and γ0 of Theorem 8 can be
fixed as constants by appropriate parameterisation of the selection mechanisms. The
following lemma summarises these settings.

Lemma 13 For any constants δ′ > 0 and p0 ∈ (0, 1), there exist constants δ > 0
and γ0 ∈ (0, 1) such that condition (C3) of Theorem 8 is satisfied for

– k-tournament selection with k ≥ (1 + δ′)/p0,
– linear ranking selection with η ≥ (1 + δ′)/p0,
– (μ, λ)-selection with λ/μ ≥ (1 + δ′)/p0,
– fitness proportionate selection on 1-distinctive functions with themaximal function
value fmax and ν ≥ ln(2/p0) fmax.

Proof See Lemmas 5, 6, 7 and 8 in [24]. ��
Once δ and γ0 are fixed as constants, Corollary 11 provides the runtime for the

following functions.

OneMax(x) :=
n∑

i=1

xi = |x |1,

LeadingOnes(x) :=
n∑

i=1

i∏

j=1

xi ,

Jumpr (x) :=
{

|x |1 + 1 if |x |1 ≤ n − r or |x |1 = n

0 otherwise
,

Linear(x) :=
n∑

j=1

ci xi .
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Table 1 Expected runtime in
terms of fitness evaluations of
Algorithm 1 with corresponding
parameter settings. For clarity,
all constant factors are omitted
or summarised by a sufficiently
large constant c

The result for fitness
proportionate selection (*) only
holds for the functions or their
subclasses satisfying the
1-distinctive property, for
example the OneMax function

Selection mechanism Parameter

Fitness proportionate (*) ν > fmax ln(2eχ )

Linear ranking η > eχ

k-Tournament k > eχ

(μ, λ) λ > μeχ

Problem Population size E [T ]

OneMax λ ≥ c ln n O(nλ ln λ)

LeadingOnes λ ≥ c ln n O(nλ ln λ + n2)

Linear λ ≥ c ln n O(nλ ln λ + n2)

�-Unimodal λ ≥ c ln(n�) O(�λ ln λ + n�)

Jumpr λ ≥ cr ln n O(nλ ln λ + (n/χ)r )

We also analyse the runtime of �-Unimodal functions. A pseudo-Boolean function
f is called unimodal if every bitstring x is either optimal, or has aHamming-neighbour
x ′ such that f (x ′) > f (x). We say that a unimodal function is �-Unimodal if it has �

distinct function values f1 < f2 < · · · < f�. Note that LeadingOnes is a particular
case of �-Unimodal with � = n + 1 and OneMax is a special case of Linear with
ci = 1 for all i ∈ [n]. Corresponding to the new results reported in Table 1, the
following theorem improves the results previously reported [24].

Theorem 14 Algorithm 1 with bitwise mutation rate χ/n for any constant χ > 0,
and where psel is either linear ranking selection, k-tournament selection, or (μ, λ)-
selection where the parameter settings satisfy column “Parameter” in the first part
of Table 1 has expected runtimes as indicated in column E [T ] in the second part,
given the population sizes respecting column “Population Size” of the same part. The
result of fitness proportionate selection only holds for the functions or their subclasses
satisfying the 1-distinctive property.

Corollary 15 Algorithm 1 with either linear ranking, or fitness proportionate
or k-tournament, or (μ, λ)-selection optimises OneMax in O(n ln n ln ln n) and
LeadingOnes in O(n2) expected fitness evaluations. With either linear ranking, or
k-tournament, or (μ, λ) selection, the algorithm optimises Linear in O(n2) and �-
Unimodalwith � ≤ nd in O(n�) expected fitness evaluations for any constant d ∈ N.

Proof The corollary is obtained from the theorem by taking the smallest population
size. It is clear that we have O(n ln n ln ln n) forOneMax and O(n(ln n ln ln n+n)) =
O(n2) for Linear and LeadingOnes. In the case of �-Unimodal, because � ≤ nd

we have c ln(n�) ≤ c(d + 1) ln n. It suffices to pick λ = c(d + 1) ln n and the runtime
is bounded by O(�(ln n� ln ln n� + n)) = O(n�).

The proof of the theorem is similar to the one in [24], except the main tool is
Corollary 11. We recall those arguments shortly as follows. The f -based partitions
and upgrade probabilities are similar to the ones in [21,22,33]. For a Linear function
f , without loss of generality we assume the weights c1 ≥ c2 ≥ · · · ≥ cn ≥ 0, then
set m := n and choose the partition
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A j :=
⎧
⎨

⎩
x ∈ {0, 1}n |

j∑

i=1

ci ≤ f (x) <

j+1∑

i=1

ci

⎫
⎬

⎭
and Am+1 := {1n}.

For OneMax, LeadingOnes, and �-Unimodal functions, with � distinct function
values f1 < · · · < f�, we set m := � − 1 and use the partition

A j := {
x ∈ {0, 1}n | f (x) = f j

}
.

For Linear functions, and for �-Unimodal functions which also include the case
� = n of LeadingOnes, it is sufficient to flip one specific bit, and no other bits to
reach a higher fitness level. For these functions, we therefore choose for all j the
upgrade probabilities s∗ := (χ/n) (1 − χ/n)n−1 =: s j , so s j , s∗ ∈ Ω(1/n).

For OneMax, it is sufficient to flip one of the n − j 0-bits, and no other bits to
escape fitness level j . For this function, we therefore choose the upgrade probabilities
s j := (n − j)(χ/n)(1 − χ/n)n−1 and s∗ := sn−1, thus s j ∈ Ω(1 − j/n) and
s∗ ∈ Ω(1/n).

For Jumpr , we set m := n − r + 2, and choose

A1 := {x ∈ {0, 1}n | n − r < |x |1 < n},
A j := {x ∈ {0, 1}n | |x |1 = j − 2} ∀ j ∈ [2, n − r + 2],

Am+1 := {1n}.

In order to escape fitness level A1 and Am , it is sufficient to flip at most 
r/2� and
r 0-bits respectively and no other bits. For the other fitness levels A j , it suffices to
flip one of n − j 0-bits and no other bits. Hence, we choose the upgrade probabilities
s1 := (χ/n)
r/2�(1 − χ/n)n−
r/2�, sm := (χ/n)r (1 − χ/n)n−r =: s∗ and s j :=
(n − j)(χ/n) (1 − χ/n)n−1 for all j ∈ [2, n − r + 2], thus s1, sm, s∗ ∈ Ω((χ/n)r )

and s j ∈ Ω(1 − j/n).
By the above partitions, the first condition (C1) is satisfied. Next, we set the para-

meter p0 to be a lower bound on the probability of not flipping any bits (1 − χ/n)n ,
condition (C2) is therefore satisfied. For any constant θ ∈ (0, 1), it holds for all
n > 2χ2/(− ln(1 − θ)) that

(
1 − χ

n

)n ≥
[(

1 − χ

n

) n
χ

−1
]χ+ 2χ2

n ≥ (1 − θ)e−χ .

We can set p0 = (1 − θ)e−χ which is a constant. According to the parameter
settings of Table 1 and Lemma 13 there exist constants δ and γ0 so that (C3) is satisfied.
Regarding (C4), for Linear functions (including OneMax), m/s∗ = O(n2). For �-
Unimodal functions (including LeadingOnes),m/s∗ = O(n�). For Jumpr ,m/s∗ =
O(nr+1/χr ). Condition (C4) is satisfied if the population size λ is set according to
column “Population size” of Table 1. All conditions are satisfied, and the upper bounds
in Table 1 follow. ��
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Note that for most of the functions in the corollary, the population does not incur
any overhead compared with the (1+1) EA. The only exception isOneMax for which
there is a small overhead factor of O(ln ln n).

4.2 Polynomial Runtime with Standard Fitness Proportionate Selection

It is well-known that fitness proportionate selection without scaling (ν = 1) is
inefficient, i.e., it requires exponential optimisation time on simple functions (see
[14,24,30]). However, these previous studies often concern the standard mutation rate
1/n, thus it may be possible to optimise OneMax and LeadingOnes in expected
polynomial time without scaling but with a different mutation rate. Note also that the
result of the previous section does not confirm such a possibility because the condition
of Lemma 13 is equivalent to ν ≥ n ln 2 + n ln(1/p0) which cannot be satisfied for
ν = 1 and any p0 ∈ (0, 1).

Based on Theorem 8, we can determine sufficient conditions for polynomial opti-
misation time of those functions. The conditions imply themutation rate being reduced
to Θ(1/n2) and a sufficiently large population.

Theorem 16 Algorithm1with standardfitness proportionate selection, bit-wisemuta-
tion where χ = 1/(6n) and population λ = bn2 ln n for some constant b, optimises
OneMax and LeadingOnes in O(n8 ln n) expected fitness evaluations.

Proof We use the same partitions as in the proof of Theorem 14. Again for OneMax,
it suffices to flip one of the n − j bits and to keep the others unchanged to leave
level A j . By Lemma 29,the associated probability (n − j)(χ/n)(1 − χ/n)n−1 ≥
(n − j)(χ/n)(1 − χ/n)n can be bounded from below by (n − j)(χ/n)(1 − χ) ≥
(n − j)(1/(6n2))(1 − 1/6) = (n − j)(5/(36n2)) =: s j and in the worst case
5/(36n2) =: s∗. For LeadingOnes, it suffices to flip the leftmost 0-bit and keep
the others unchanged, hence s j := (5/(36n2)) =: s∗. We pick p0 as (1 − χ/n)n =
(1−χ/n)(n/χ−1)nχ/(n−χ) ≥ e−χ(1+χ/(n−χ)) ≥ e−2χ = e−1/(3n) =: p0. So conditions
(C1) and (C2) of Theorem 8 are satisfied with these choices.

Given that there are at least γ λ individuals at level A+
j , define fγ to be the fitness

value of the γ -ranked individual. Because of the 1-distinctive property of the two
functions, a lower bound of β(γ ) can be deduced by assuming that all individuals
below the γ -ranked one have fitness value fγ − 1.

∀γ ≤ 1/2 β(γ ) ≥ fγ γ λ

(λ − γ λ)( fγ − 1) + fγ γ λ
= γ

(1 − γ )(1 − 1/ fγ ) + γ

≥ γ

(1 − γ )(1 − 1/n) + γ
= γ

1 − 1/n + γ /n

≥ γ

1 − 1/n + 1/(2n)
≥ γ e1/(2n).

Then,

∀γ ≤ 1/2 β(γ )p0 ≥ e1/(2n)−1/(3n)γ = e1/6nγ ≥ (1 + 1/(6n))γ.
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Therefore, (C3) is satisfied with γ0 = 1/2 and δ = 1/(6n). It follows from Corol-
lary 9 that there exists a constant b such that (C4) is satisfied with λ = (b/δ2) ln n =
bn2 ln n. Since all conditions are satisfied, the expected time to optimise OneMax
follows from Corollary 10.

O

⎛

⎝n5

⎛

⎝n3 ln n(1 + ln(1 + (1/n4)n2 ln n)) +
n−1∑

j=1

n2

n − j

⎞

⎠

⎞

⎠ = O
(
n8 ln n

)
.

Similarly, the expected time to optimise LeadingOnes is

O

⎛

⎝n5

⎛

⎝n3 ln n(1 + ln(1 + (1/n4)n2 ln n)) +
n−1∑

j=1

n2

⎞

⎠

⎞

⎠ = O
(
n8 ln n

)
.

��
Note that the selective pressure δ is small in fitness proportionate selection without

scaling. However, with sufficiently low mutation rate, the low selective pressure does
not prevent the algorithm from optimising standard functions within expected poly-
nomial time. In the next section, we explore further consequences of this observation
in the scenarios of optimisation under incomplete information.

5 Optimisation Under Incomplete Information

In real-world optimisation problems, complete and accurate information about the
quality of candidate solutions is either not available or prohibitively expensive to
obtain. Optimisation problems with noise, dynamic objective function or stochastic
data, generally known as optimisation under uncertainty [19], are examples of the
unavailability. On the other hand, expensive evaluations often occur in engineering,
especially in structural and engine design. For example, in order to determine the
fitness of a solution, the solution has to be put in a real experiment or a simulation
which may be time/resource consuming or even requiring collection and processing
of a large amount of data. Such complex tasks give rise to the use of surrogate model
methods [18] to assist EAs where a cheap and approximate procedure fully or partially
replaces the expensive evaluations. The full replacement is equivalent to the case of
unavailability. We summarise this kind of problem as optimisation only relying on
imprecise, partial or incomplete information (for now) about the problem.

While EAs have been widely and successfully used in this challenging area of
optimisation [18,19], only few rigorous theoretical studies have been dedicated to
fully understand the behaviours of EAs under such environments. In [8,9,11], the
inefficiency of (1 + 1) EA has been rigorously demonstrated for noisy and dynamic
optimisation of OneMax and LeadingOnes. The reason behind this inefficiency is
that in such environments, it is difficult for the algorithm to compare the quality of
solutions, e.g., often it will choose thewrong candidate. On the other hand, such effects
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could be reduced by having a population, for example the model of infinite population
in [27] or finite elitist populations in [11].

In this section, we initiate runtime analysis of evolutionary algorithms where only
partial or incomplete information about fitness is available. Two scenarios are investi-
gated: (i) in partial evaluation of solutions, only a small amount of information about
the problem is revealed in each fitness evaluation, we formulate a model that makes
this scenario concrete for pseudo-Boolean optimisation (ii) in partial evaluation of
populations, not all individuals in the population are evaluated. For both scenarios,
we rigorously prove that given appropriate parameterisation, non-elitist evolutionary
algorithms can optimise many functions in expected polynomial time even with little
information available.

5.1 Partial Evaluation of Pseudo-Boolean Functions

Weconsider pseudo-Boolean functions over bitstrings of length n. It is well known that
for any pseudo-Boolean function f : {0, 1}n → R, there exists a set S := {S1, . . . , Sk}
of k subsets Si ⊆ [n] and an associated set W = {wi } where wi ∈ R such that

f (x) =
k∑

i=1

wi

∏

j∈Si
x j . (4)

For example, we have k = n and Si := {i} for linear functions, in which OneMax
is the particular case where wi = 1 for all i ∈ [n]. For LeadingOnes, we also get
k = n and wi = 1 but Si := [i]. In a classical optimisation problem, full access to
(S,W ) is guaranteed so that the exact value of f (x) is returned in each evaluation of
a solution x .

In anoptimisationproblemunder partial information, the access to (S,W ) is random
and incomplete in each evaluation, e.g., restricted to only random subsets. Therefore,
a random value Fc(x) is returned instead of f (x) in each evaluation of a solution x .
Here c is the parameter of the source of randomness. There are many ways to define
the randomisation, however given no prior information, it is natural to consider the
randomisation over the access to the subsets of S (or the weights of W ). Therefore, in
this paper we focus on the following model.

Fc(x) :=
k∑

i=1

wi Ri

∏

j∈Si
x j with Ri ∼ Bernoulli(c). (5)

Informally, each subset Si has probability c of being taken into account in the eval-
uation.OneMax and LeadingOnes functions are considered as the typical examples.
The corresponding optimisation problems are:OneMax(c), each 1-bit has only prob-
ability c to be added up in each fitness evaluation; LeadingOnes(c), each product∏i

j=1 x j (associated to an i ∈ [n]) has only probability c of contributing to the fitness
value.
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For simplification, we restrict psel in our analysis to binary tournament selection.
The algorithm is detailed in Algorithm 2. The runtime of the algorithm is still defined
in terms of the discovery of a true optimal solution. In other words, we focus on when
the algorithm finds a true optimal solution for the first time and ignore how such an
achievement is recognised. Nevertheless, the use of Theorem 8 will guarantee that
when the runtime is reached, a large number of solutions in the population, more
precisely the γ0-portion, are indeed the true optimum.

Algorithm 2 EAs (2-tournament, partial information)

1: Sample P0 ∼ Unif(X λ), where X = {0, 1}n .
2: for t = 0, 1, 2, . . . until a termination condition is met do
3: for i = 1 to λ do
4: Sample two parents x, y ∼ Unif(Pt ).
5: fx := Fc(x) and fy := Fc(y).
6: if fx > fy then
7: z := x
8: else if fx < fy then
9: z := y
10: else
11: z ∼ Unif({x, y})
12: end if
13: Flip independently each bit position in z with probability χ/n.
14: Pt+1(i) := z.
15: end for
16: end for

Theorem 8 requires lower bounds for the cumulative selection probability function
β(γ ), so that the necessary condition for the mutation rate χ/n can be established.
The value of β(γ ) depends on the probability that the fitter of individual x and y is
selected in lines 6–12 of Algorithm 2. Formally, for any x and y where f (x) > f (y),
we want to know a lower bound on the probability that the algorithm selects x in those
lines. The corresponding event is denoted by z = x .

Lemma 17 Let f be either the OneMax or the LeadingOnes function on {0, 1}n.
For any input x, y ∈ {0, 1}n with f (x) > f (y) of the 2-tournament selection in
Algorithm 2, we have Pr(z = x) ≥ (1/2)(1 + c Pr(X = Y )) where X and Y are
identical independent random variables following distribution Bin( f (y), c).

Proof For OneMax(c), each bit of the f (x) 1-bits of x has probability c being
counted, so Fc(x) ∼ Bin( f (x), c) in Algorithm 2. The same argument holds for
LeadingOnes(c), i.e., each block of consecutive 1-bits starting from the first position
has probability c being contributed to the fitness value and there are f (x) blocks in
total, so Fc(x) ∼ Bin( f (x), c). Similarly, Fc(y) ∼ Bin( f (y), c) holds for bitstring y
on the two functions.

We now remark that f (x) = f (y) + ( f (x) − f (y)), we can decompose Fc(x)
and Fc(y) further. Let X , Y and Δ be independent random variables such that X ∼
Bin( f (y), c), Y ∼ Bin( f (y), c) andΔ ∼ Bin( f (x)− f (y), c), thenwe have Fc(x) =
X + Δ and Fc(y) = Y .
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By the law of total probability,

Pr(z = x) = Pr(X > Y ) + Pr(X = Y )

(

Pr(Δ > 0) + Pr(Δ = 0)

2

)

= Pr(X > Y ) + Pr(X = Y )

(

Pr(Δ ≥ 0) − Pr(Δ = 0)

2

)

= Pr(X > Y ) + Pr(X = Y )

(

1 − (1 − c)( f (x)− f (y))

2

)

≥ Pr(X > Y ) + Pr(X = Y )

(

1 − 1 − c

2

)

.

The inequality is due to (1 − c) ∈ (0, 1) and f (x) − f (y) ≥ 1. Because X and Y
are identically distributed and independent, we have Pr(X < Y ) = Pr(X > Y ). We
also have the total probability Pr(X > Y ) + Pr(X = Y ) + Pr(X < Y ) = 1. The two
results imply Pr(X > Y ) = (1 − Pr(X = Y ))/2. Put into the previous calculation of
Pr (z = x),

Pr(z = x) ≥ 1 − Pr(X = Y )

2
+ Pr(X = Y )

(

1 − 1 − c

2

)

= 1

2
(1 + c Pr(X = Y )) .

��
Corollary 18 Under the same assumption as in Lemma 17, we have

Pr(z = x) ≥ 1

2

(

1 + 64c/81

6
√

(n − 1)c(1 − c) + 1

)

.

Proof From Lemma 17, we apply the result of Lemma 34 for X,Y ∼ Bin(n − 1, c)
(in the worst case, we have f (y) = n − 1) and d = 3. ��
Lemma 19 For any γ ∈ (0, 1), the cumulative selection probability of Algorithm 2
is at least

β(γ ) ≥ γ

(

1 + (1 − γ )64c/81

6
√

(n − 1)c(1 − c) + 1

)

,

for OneMax(c) and LeadingOnes(c) functions.

Proof Without loss of generality, for any inputs x and y of the tournament selectionwe
assume that f (x) ≥ f (y). Recall that β(γ ) is the probability of picking an individual
with fitness at least equal to the fitness of the γ -ranked individual, i.e., belonging to
the upper γ -portion of the population. Therefore, it suffices if either x and y are picked
from the portion, or only x is picked from the portion and then wins the tournament.
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β(γ ) ≥ γ 2 + 2γ (1 − γ )Pr(z = x)

= γ (1 + (1 − γ )(2 Pr(z = x) − 1)).

From Corollary 18, we have

2 Pr(z = x) − 1 ≥ 2

(
1

2

(

1 + 64c/81

6
√

(n − 1)c(1 − c) + 1

))

− 1

= 64c/81

6
√

(n − 1)c(1 − c) + 1
.

So

β(γ ) ≥ γ

(

1 + (1 − γ )64c/81

6
√

(n − 1)c(1 − c) + 1

)

.

��
Corollary 20 For any c ∈ (0, 1) and any constant γ0 ∈ (0, 1), then there exists
constant a ∈ (0, 1) such that β(γ ) ≥ γ (1 + 2δ) for all γ ∈ (0, γ0] where δ =
min{ac, a√

c/n}.
Proof From Lemma 19, for all γ ∈ (0, γ0] we have

β(γ ) ≥ γ

(

1 + uc

v
√
nc + 1

)

,

where u = (1 − γ0)64/81, v = 6.

If c ≤ 1/n, then
√
nc ≤ 1 and

uc

v
√
nc + 1

≥
(

u

v + 1

)

c.

If c > 1/n, then
√
nc > 1 and

uc

v
√
nc + 1

>
uc

v
√
nc + √

nc
=

(
u

v + 1

)√
c

n
.

The statement now follows by choosing a = u/(2(v + 1)). ��
We now rigorously prove that for 1/c ∈ poly(n), a population-based EA can opti-

miseOneMax(c) in expected polynomial time. On the other hand, the (1+1) EA needs
exponential time in expectation for any constant c < 1.

Theorem 21 Given c ∈ (0, 1) such that 1/c ∈ poly(n), there exist constants a and b
such that Algorithm 2 with χ = δ/3 and λ = b ln n/δ2 where δ = min{ac, a√

c/n}
optimises OneMax(c) in expected time

⎧
⎪⎪⎨

⎪⎪⎩

O

(
n ln n

c7

)

if c ≤ 1/n and

O

(
n9/2 ln n

c7/2

)

if c > 1/n.
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Proof Corollary 20 and 1/c ∈ poly(n) imply 1/δ ∈ poly(n), δ ∈ (0, 1) and χ < 1/3.
We then use the partition A j := {x ∈ {0, 1}n | |x |1 = j} to analyse the runtime. The
probability of improving a solution at fitness level j by mutation is lower bounded by
the probability that a single 0-bit is flipped and not the other bits,

(n − j)
(χ

n

) (
1 − χ

n

)n−1
>

(

1 − j

n

)(
χ
(
1 − χ

n

)n)
.

It follows from Lemma 29 and χ < 1/3 that (1 − χ/n)n ≥ (1 − χ) > 2/3.
Therefore,χ(1−χ/n)n > (δ/3)(2/3) = 2δ/9, and it suffices to choose the parameters
s j := (1− j/n)(δ/9) and s∗ := δ/(9n) so that (C1) is satisfied. In addition, (1−χ/n)n

is the probability of not flipping any bit, hence picking p0 = 1 − χ satisfies (C2).
It now follows from Corollary 20 that for all γ ∈ (0, γ0]
β(γ )p0 ≥ γ (1 + 2δ)(1 − χ) = γ (1 + 2δ)(1 − δ/3)

= γ (1 − δ/3 + 2δ − 2δ2/3) ≥ γ (1 − δ/3 + 2δ − 2δ/3) = γ (1 + δ).

Therefore, (C3) is satisfied with the given value of δ. Because 1/δ ∈ poly(n) we
have 1/s∗ ∈ poly(n) and by Corollary 9, there exists a constant b such that condition
(C4) is satisfied for λ = (b/δ2) lnm. All conditions are satisfied, and by Corollary 10,
the expected optimisation time is

O

⎛

⎝ 1

δ5

⎛

⎝mλ(1 + ln(1 + δ4λ)) +
m∑

j=1

1

s j

⎞

⎠

⎞

⎠

= O

⎛

⎝ 1

δ5

⎛

⎝
(
n ln n

δ2

)

(1 + ln(1 + δ2 ln n)) + n

δ

n∑

j=1

1

j

⎞

⎠

⎞

⎠ .

By the definition of δ, it follows that δ = O(1/
√
n), so 1 + ln(1 + δ2 ln n) = O(1).

Furthermore, n
δ

∑n
j=1 1/j = O(n ln n/δ) is dominated by the left term n ln n/δ2.

Hence, the optimisation time is E [T ] = O(n ln n/δ7). The theorem follows by noting
that δ = ac if c ≤ 1/n, and δ = a

√
c/n otherwise. ��

Wenow consider partial evaluation ofLeadingOnes, i.e., the optimisation problem
LeadingOnes(c). The following result holds.

Theorem 22 For any c ∈ (0, 1) where 1/c ∈ poly(n), there exist constants a and b
such that Algorithm 2 with χ = δ/3 and λ = b ln n/δ2 where δ = min{ac, a√

c/n}
optimises LeadingOnes(c) in expected time

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

O

(
n ln n

c7

)

if c ≤ 1/n and

O

(
n9/2 ln n

c7/2
+ n5

c3

)

if c > 1/n.

123



454 Algorithmica (2016) 75:428–461

Proof Conditions (C2)-(C4) are shown exactly as in the proof of Theorem 21. For
condition (C1), we use the canonical partition

A j := {
x ∈ {0, 1}n | LeadingOnes(x) = j

}
.

The probability of improving a solution at fitness level j bymutation is lower bounded
by the probability that the leftmost 0-bit is flipped, and no other bits are flipped,

(χ

n

) (
1 − χ

n

)n−1
>

(
1

n

)

(χ(1 − χ)) ≥ 2δ

9n
.

We therefore choose s j = s∗ = δ/(9n) and the runtime is

O

(
1

δ5

((
n ln n

δ2

)(
1 + ln

(
1 + δ2 ln n

))
+ n2

δ

))

= O

(
n ln n

δ7
+ n2

δ6

)

.

The result now follows by noting that δ = ac if c ≤ 1/n, and δ = a
√
c/n otherwise.

��
We have shown that non-elitist EAs with populations of polynomial sizes and

without elitism can optimise OneMax(c) and LeadingOnes(c) in expected poly-
nomial runtime, precisely in terms of partial evaluation calls, for small c, i.e.,
1/c ∈ poly(n). Particularly, for any constant c ∈ (0, 1), the non-elitist EAs can
optimise LeadingOnes(c) in O(n5) and OneMax(c) in O(n9/2 ln n). We now show
that the classical (1 + 1) EA, which is summarised in Algorithm 3, already requires
exponential runtime on OneMax(c) for any constant c < 1.

Algorithm 3 (1+1) EA (partial information)
1: Sample x0 ∼ Unif({0, 1}n).
2: for t = 0, 1, 2, . . . until a termination condition is met do
3: x ′ := xt .
4: Flip independently each bit position in x ′ with probability 1/n.
5: if Fc(x ′) ≥ Fc(xt ) then
6: xt+1 := x ′.
7: else
8: xt+1 := xt .
9: end if
10: end for

Theorem 23 For any constant c ∈ (0, 1), the expected optimisation time of (1+1) EA
on OneMax(c) is eΩ(n).

Proof Weuse Theorem 7with Xt as theHamming distance from 0n (all-zero bitstring)
to xt , so Xt := H(0n, xt ) and b(n) := n. The use of Fc(x) implies that the algorithm
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can accept degraded solutions with less 1-bits than the current solution. This typically
happens when all bit positions of x ′ are not flipped except a 1-bit then the evaluation
of x ′ does not recognise the change, such an event is denoted by E . To analyse Pr (E),
let us denote the event that a specific bit position i being flipped and not the others,
and Fc(x ′) does not evaluate position i , by Ei .

Pr (Ei ) = (1 − c)

(
1

n

)(

1 − 1

n

)n−1

≥ 1 − c

ne
.

Assuming that there are currently j 1-bits in xt , events Ei with respect to those bits are
non-overlapping. In addition, under the condition that one of those events Ei happens
[so with probability j Pr (Ei )], we use X to denote the number of the remaining 1-
bits in xt being evaluated, and Y the number of evaluated 1-bits in x ′. Indeed, X and
Y are identical and independent variables following the same binomial distribution
Bin( f (x), c), so Pr(Y ≥ X) ≥ 1/2. We get,

Pr (E) ≥ j · 1 − c

ne
· Pr (Y ≥ X) ≥ j (1 − c)

2ne
.

The drift is then

E
[
Xt+1 − Xt | Ft

] ≤ −1 · j (1 − c)

2ne
+ (n − j) · 1

n
= 1 − j

n

(
2e + 1 − c

2e

)

.

We have a negative drift when

j ≥ n

(
2e

2e + 1 − c

)

= n

(

1 − 1 − c

2e + 1 − c

)

.

From that, for any constant ε ∈ (0, 1 − c), there exists a(n) := n
(
1 − 1−c−ε

2e+1−c

)
so

that

E
[
Xt+1 − Xt ; Xt > a(n) | Ft

]

≤ 1 −
(

1 − 1 − c − ε

2e + 1 − c

)(
2e + 1 − c

2e

)

= − ε

2e
.

We have here b(n)−a(n) = Ω(n) and the condition (L1) of Theorem 7 is satisfied.
Condition (L2) holds trivially due to the property of Hamming distance |H(xt , 0n) −
H(xt+1, 0n)| ≤ H(xt , xt+1) ≤ H(xt , x ′). So

(|Xt − Xt+1| | Ft ) � Z where Z := H
(
xt , x

′) .

Then Z ∼ Bin(n, 1/n) and E
[
eλZ

] ≤ e for λ = ln 2. Note also that if each bit
position of x0 is initialised uniformly at random from {0, 1}, then X0 will be highly
concentrated near n/2 ≤ a(n). It then follows fromTheorem 7 that (1+1)EA requires
expected exponential runtime to optimise OneMax(c). ��
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5.2 Partial Evaluation of Populations

In the previous section, we have seen that EAs with populations do not need complete
but only little information about the fitness of a solution in each evaluation to discover
a true optimal solution in expected polynomial runtime. One might wonder if the
same could be true if in each generation, only few solutions of the population make
use of their fitnesses while the rest reproduces randomly. Here we talk about the
information contained within a population, in contrast to the information contained
within a solution.

We first give the motivation for how such a lack of information about the pop-
ulation can arise. In real-life applications, the evaluation of solutions can be both
time-consuming (e.g., requiring extensive simulation) and inaccurate. We associate a
probability 1 − r with the event that the quality of a solution is not available to the
algorithm. We model such a scenario in Algorithm 4 by assuming that the outcome
of any comparison between two individuals is only available to the algorithm with
probability r .

Algorithm 4 EAs (2-tournament, partially eval. pop.)

1: Sample P0 ∼ Unif(X λ), where X = {0, 1}n .
2: for t = 0, 1, 2, . . . until a termination condition is met do
3: for i = 1 to λ do
4: Sample two parents x, y ∼ Unif(Pt ).

5: z :=
{
argmax{ f (x), f (y)} with probability r

x otherwise
6: Flip independently each bit position in z with probability χ/n.
7: Pt+1(i) := z
8: end for
9: end for

Unlike Algorithm 2, the algorithm in this section uses complete information about
the problem to evaluate solutions. However, the evaluation of individuals in the par-
ent populations is not systematic but random. Two individuals x and y are sampled
uniformly at random from the population as parents (line 4). With probability r , the
individuals are evaluated and the fitter individual is selected (line 5). Otherwise, a
parent x is arbitrarily chosen independently of the fitness value. Like before, efficient
implementation is possible but that does not change the outcome of our analysis. The
analysis is more straightforward compared to the previous section.

Lemma 24 For any r ∈ (0, 1) and constant γ0 ∈ (0, 1), there exists a constant
a ∈ (0, 1) such that Algorithm 4 satisfies β(γ ) ≥ γ (1+2δ) for all γ ∈ (0, γ0), where
δ = ar.

Proof An individual among the best γ -portion of the population is selected if either
(i) a uniformly chosen individual is chosen as parent (with probability 1 − r ), and
this individual belongs to the best γ -portion, or (ii) the tournament selection happens
(with probability r ), and at least one of the selected parents belongs to the γ -portion.
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β(γ ) ≥ γ (1 − r) + r
(
1 − (1 − γ )2

)

= γ (1 + (1 − γ )r).

So for all γ ∈ (0, γ0], β(γ ) ≥ γ (1+(1−γ0)r) and the statement follows by choosing
a = (1 − γ0)/2. ��

The lemma can be generalised to k-tournament selection. However, too larg tourna-
ment sizes may lead to overheads in the average number of evaluations per generation.
This number is a random variable following the binomial distribution Bin(kλ, r).
Hence, we focus on k = 2. Similarly to the previous section, we allow small r , i.e.,
1/r ∈ poly(n). The following theorem holds for the runtime of OneMax(c).

Theorem 25 There exist constants a and b such that Algorithm 4 optimisesOneMax
if r ∈ (0, 1) and 1/r ∈ poly(n), χ = δ/3 and λ = b ln n/δ2 where δ = ar in
O(n ln n ln ln n)/r7).

Proof We use the same partition from Theorem 21 and the proof idea is similar. We
first remark that by Lemma 24 and from 1/r ∈ poly(n) we have 1/δ ∈ poly(n),
δ ∈ (0, 1) and χ < 1/3. The probability of improving a solution at fitness level j by
mutation is at least

(n − j)
(χ

n

) (
1 − χ

n

)n−1
>

(

1 − j

n

)(
2δ

9

)

.

So we can pick s j := (1− j/n)(δ/9), s∗ := δ/(9n) and p0 = 1− χ so that (C1) and
(C2) are satisfied.

It now follows from Lemma 24 that for all γ ∈ (0, γ0]

β(γ )p0 ≥ γ (1 + 2δ)(1 − χ) = γ (1 + 2δ)(1 − δ/3) ≥ γ (1 + δ).

Therefore, (C3) is satisfied with the given value of δ. Because 1/δ ∈ poly(n), then
1/s∗ ∈ poly(n) and by Corollary 9, there exists a constant b such that condition (C4)
is satisfied with λ = (b/δ2) lnm. All conditions are satisfied, and by Corollary 10 the
expected optimisation time is

O

⎛

⎝ 1

δ5

⎛

⎝
(
n ln n

δ2

)

(1 + ln(1 + δ2 ln n)) + n

δ

n∑

j=1

1

j

⎞

⎠

⎞

⎠

= O

⎛

⎝n ln n(1 + ln(1 + δ2 ln n))

δ7
+ n

δ6

n∑

j=1

1

j

⎞

⎠

= O

(
n ln n ln ln n

δ7

)

.

The result now follows by noting that δ = ar . ��
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Remark that the theorem overestimates the optimisation time for small δ, e.g., if
δ2 ln n = O(1) then the term ln ln n can be ignored. In addition, when the parameter
r is small, the fitness function is evaluated only a few times per generation. More
precisely, the fitness function is evaluated 2N times, where N ∼ Bin(λ, r). The proof
of Theorem 8 pessimistically assumes that the fitness function is evaluated 2λ times
per generation. A more sophisticated analysis which takes this into account may lead
to tighter bounds than those above.

We can also use Algorithm 4 to optimise LeadingOnes. The following theorem
holds for its runtime.

Theorem 26 There exist constants a and b such that Algorithm 4 optimise
LeadingOnes under condition r ∈ (0, 1) and 1/r ∈ poly(n), with χ = δ/3 and
λ = b ln n/δ2 where δ = ar in O(n ln n/r7 + n2/r6).

Proof We use the same approach as the proof of Theorem 22, including the partition.
So we have the same s j = s∗ = δ/(9n), and the expected runtime for any r ∈ (0, 1)
with 1/r ∈ poly(n) is

O

(
n ln n

δ7
+ n2

δ6

)

= O

(
n ln n

r7
+ n2

r6

)

.

��
Our results have shown that EAs do not need the fitness values of all individuals

in their populations to efficiently optimise a function. Another interpretation is that
strong competition between all individuals before reproduction is not necessary for
efficient evolution. Note that non-elitism can be considered as a way of reducing
the competitiveness in populations. These observations have many analogies with
evolution in biology.

6 Conclusions

We have presented a new version of the main theorem introduced in [24]. The new
theorem offers a general tool to analyse the expected runtime of randomised search
heuristics with non-elitist populations on many optimisation problems. Sharing sim-
ilarities with the classical fitness-level technique, our method is straightforward and
easy-to-use. The structure of the new proof was simplified and amore detailed analysis
of the population dynamics has been provided. This leads to significantly improved
upper bounds for the expected runtimes of EAs on many pseudo-Boolean func-
tions. Furthermore, the new fitness-level technique makes the relationship between
the selective pressure and the runtime of the algorithm explicit. Surprisingly, a weak
selective pressure is sufficient to optimisemany functions in expected polynomial time.
This observation has interesting consequences such as the proofs of the efficiency of
population-based EAs in solving optimisation problems under uncertainty.
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Appendix

Lemma 27 (Chernoff’s Inequality, see [10]) If X = ∑m
i=1 Xi , where Xi ∈

{0, 1}, i ∈ [m], are independent random variables, then Pr (X ≤ (1 − ε)E [X ]) ≤
exp

(−ε2E [X ] /2
)
for any ε ∈ [0, 1].

Lemma 28 (Chebyshev’s Inequality, see [29]) For any random variable X with finite
expected value μ and finite non-zero variance σ 2, it holds that Pr (|X − μ| ≥ dσ) ≤
1/d2 for any d > 0.

Lemma 29 (Bernoulli’s inequality, see [28]) For any integer n ≥ 0 and any real
number x ≥ −1, it holds that (1 + x)n ≥ 1 + nx.

Lemma 30 (Jensen’s inequality, see [28]) For any function f (x) convex in [α, β] and
ai ∈ [α, β] with i ∈ [n],

f

(
1

n

n∑

i=1

ai

)

≤ 1

n

n∑

i=1

f (ai )

Lemma 31 For n ∈ N and x ≥ 0, we have 1 − (1 − x)n ≥ 1 − e−xn ≥ xn
1+xn .

Proof From ex ≥ x + 1, it follows that 1− (1− x)n ≥ 1− e−nx ≥ 1− (1+ x)−n =
1 − 1/

(
1 + ∑n

k=1

(n
k

)
xk

)
. Note that xk ≥ 0 for all x ≥ 0, thus any partial sum of

∑n
k=1

(n
k

)
xk provides a valid lower bound.

The result is obtained for the single term k = 1. ��
Lemma 32 For all x ∈ R, e2x ≥ (x + 1)ex > xex and for x > 0, e2x/x > ex .

Proof Multiplying ex to ex − x ≥ 1 > 0 and adding xex to both sides give the first
result, then dividing them by x > 0 provides the second one. ��
Lemma 33 For all x ≥ 0, x ≥ ln(1 + x) ≥ x(1 − x/2).

Proof For each inequality, it suffices tofirst show that the gapbetween the (supposedly)
larger side and the (supposedly) smaller one is non-decreasing in x , e.g., by looking
at the derivative, then show that the initial gap is 0 at x = 0. ��
Lemma 34 Let X and Y be identically distributed independent random variables with
integer support, finite expected value μ and finite non-zero variance σ 2, it holds that

Pr(X = Y ) ≥
(
1 − 1/d2

)2

2dσ + 1
for any d ≥ 1
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Proof For any k, � ∈ R with 
k� ≤ ���, we have

Pr (X = Y ) =
∑

i∈Z
Pr(X = i)2 ≥

���∑

i=
k�
Pr(X = i)2

≥
(∑���

i=
k� Pr(X = i)
)2

��� − 
k� + 1
≥ Pr(k < X < �)2

��� − 
k� + 1

The second last equality is due to Lemma 30 with the convex function f (x) = x2. It
suffices to pick k = μ − dσ and � = μ + dσ , so that by Lemma 28, we get

Pr (X = Y ) ≥ Pr (|X − μ| < dσ)2

2d�σ� + 1

= (1 − Pr (|X − μ| ≥ dσ))2

2d�σ� + 1
≥

(
1 − 1/d2

)2

2dσ + 1
.

��
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