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Abstract A strong direct product theorem for a problem in a given model of com-
putation states that, in order to compute k instances of the problem, if we provide
resource which is less than k times the resource required for computing one instance
of the problem with constant success probability, then the probability of correctly
computing all the k instances together, is exponentially small in k. In this paper, we
consider the model of two-party bounded-round public-coin randomized communica-
tion complexity. We show a direct product theorem for the communication complexity
of any complete relation in this model. In particular, our result implies a strong direct
product theorem for the two-party constant-round public-coin randomized commu-
nication complexity of all complete relations. As an immediate application of our
result, we get a strong direct product theorem for the pointer chasing problem. This
problem has been well studied for understanding round v/s communication trade-offs
in both classical and quantum communication protocols. Our result generalizes the
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result of Jain which can be regarded as the special case when the number of messages
is one. Our result can be considered as an important progress towards settling the
strong direct product conjecture for two-party public-coin communication complex-
ity, a major open question in this area. We show our result using information theoretic
arguments. Our arguments and techniques build on the ones used by Jain. One key
tool used in our work and also by Jain is a message compression technique due to
Braverman and Rao, who used it to show a direct sum theorem in the same model of
communication complexity as considered by us. Another important tool that we use
is a correlated sampling protocol which, for example, has been used by Holenstein for
proving a parallel repetition theorem for two-prover games.

Keywords Communication complexity · Information theory · Strong direct product
theorem

Mathematics Subject Classification 68Q10 · 68Q17

1 Introduction

A fundamental question in complexity theory is howmuch resource is needed to solve
k independent instances of a problem compared to the resource required to solve one
instance. More specifically, suppose that for solving one instance of a problem with
probability of correctness p, we require c units of some resource in a given model of
computation. A natural way to solve k independent instances of the same problem is to
solve them independently, which needs k · c units of resource and the overall success
probability is pk . A strong direct product theorem for this problem would state that
any algorithm, which solves k independent instances of this problem with o(k · c)
units of the resource, can only compute all the k instances correctly with probability
at most p−Ω(k). The weaker direct sum theorems state that in order to compute k
independent instances of a problem, if we provide o(k · c) units of resource, then the
success probability for computing all the k instances correctly is at most a constant
q < 1.

In this work, we are concerned with themodel of communication complexity which
was introduced by Yao [40]. In this model there are different parties who wish to
compute a joint relation of their inputs. They do local computation, use public or
private coins, and communicate to achieve this task. The resource that is counted
is the number of bits communicated. The text by Kushilevitz and Nisan [27] is an
excellent reference for this model.

Direct product questions and direct sum questions have been extensively investi-
gated in different sub-models of communication complexity. Some examples of known
direct product theorems are Parnafes et al. [32] theorem for forests of communica-
tion protocols, Shaltiel’s [36] theorem for the discrepancy bound (which is a lower
bound on the distributional communication complexity) under the uniform distribu-
tion, extended to arbitrary distributions by Lee et al. [29], extended to the multi-party
case by Viola and Wigderson [39], extended to the generalized discrepancy bound
by Sherstov [38]. Jain et al. [16] proved direct product theorem for the subdistribu-
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tion bound. Klauck et al. [26] proved it for the quantum communication complexity
of the set disjointness problem and Klauck [24] proved it for the public-coin com-
munication complexity of the set disjointness problem (which was re-proven using
different arguments by Jain [14]). Ben-Aroya et al. [4] showed it for the one-way
quantum communication complexity of the index function problem. Jain showed it
for randomized one-way communication complexity and for the conditional relative
min-entropy bound [14], which is a lower bound on public-coin communication com-
plexity. Recently, Jain and Yao [22] showed a strong direct product theorem in terms
of the smooth rectangle bound. Later, Braverman and Weinstein [8] strengthened the
result by showing a strong direct product theorem in terms of the (internal) information
cost. Direct sum theorems were shown in the public-coin one-way model [18], in the
public-coin simultaneous message passing model [18], in the entanglement-assisted
quantum one-way communication model [20], in the private-coin simultaneous mes-
sage passing model [15], in the constant-round public-coin two-way model [5] and in
the general two-way model [3]. On the other hand, strong direct product conjectures
have been shown to be false by Shaltiel [36] in some models of distributional commu-
nication complexity (and of query complexity and circuit complexity) under specific
choices for the error parameter. Examples of direct product theorems in others models
of computation include Yao’s XOR lemma [41], Raz’s [34] theorem for two-prover
games, Shaltiel’s [36] theorem for fair decision trees, Nisan et al. [30] theorem for deci-
sion forests, Drucker’s [11] theorem for randomized query complexity, Sherstov’s [38]
theorem for approximated polynomial degree, and Lee and Roland’s [28] theorem for
quantumquery complexity. Besides their inherent importance, direct product theorems
had various important applications such as in probabilistically checkable proofs [34],
in circuit complexity [41], and in showing time-space trade-offs [1,24,26].

In this paper,we showadirect product theorem for two-party bounded-roundpublic-
coin randomized communication complexity. In this model, for computing a relation
f ⊆ X ×Y ×Z (whereX ,Y , andZ are finite sets), one party, sayAlice, is given an
input x ∈ X and the other party, say Bob, is given an input y ∈ Y . They are supposed
to do local computations using public coins shared between them, communicate a fixed
number of rounds and at the end, output an element z ∈ Z .We only consider complete
relations so there exists a z. They succeed if (x, y, z) ∈ f . For a natural number t ≥ 1
and ε ∈ (0, 1), let R(t),pub

ε ( f ) be the two-party t-round public-coin communication
complexity of f with worst case error ε (see Definition 2.13).

We show the following.

Theorem 1.1 LetX ,Y , andZ be finite sets, f ⊆ X ×Y ×Z a complete relation,
ε > 0, and k, t ≥ 1 integers. There exists a constant κ ≥ 0 such that

R(t),pub

1−(1−ε/2)Ω(kε2/t2)

(
f k
)

= Ω

(
ε · k
t

·
(
R(t),pub

ε ( f ) − κt2

ε

))
.

In particular, it implies a strong direct product theorem for the two-party constant-
round public-coin randomized communication complexity of all complete
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relations.1 Our result generalizes the result of Jain [14] which can be regarded as the
special casewhen t = 1. Prior to our result, randomized one-way communication com-
plexity is the only model whose strong direct product theorem was established [14].
Hence our result can be considered as an important progress towards settling the
strong direct product conjecture for two-party public-coin communication complex-
ity, amajor open question in this area. Recently, our result was improved byBraverman
et al. [6] with better dependence on the number of rounds, using a new sampling tech-
nique introduced in Ref. [7].

As a direct consequence of our result, we get a direct product theorem for the pointer
chasing problem defined as follows. Let n, t ≥ 1 be integers. Alice and Bob are given
functions FA : [n] → [n] and FB : [n] → [n], respectively. Let Ft represent alternate
composition of FA and FB done t times, starting with FA. The parties are supposed to
communicate and determine Ft (1). In the bit version of the problem, the players are
supposed to output the least significant bit of Ft (1). We refer to the t-pointer chasing
problem as FPt and the bit version as BPt . The pointer chasing problem naturally
captures the trade-off between number ofmessages exchanged and the communication
used. There is a straightforward t-round deterministic protocol with t · log n bits of
communication for both FPt and BPt . However, if only t − 1 rounds are allowed
to be exchanged between the parties, exponentially more communication is required,
treating t as a fixed constant. The communication complexity of this problem has been
verywell studied in both the classical and the quantummodels [17,23,25,31,33]. Some
tight lower bounds that we know so far are as follows.

Theorem 1.2 [33] For any integer t ≥ 1,

R(t−1),pub
1/3 (FPt ) ≥ Ω

(
n log(t−1) n

)

R(t−1),pub
1/3 (BPt ) ≥ Ω(n)

As a consequence of Theorem 1.1 we get strong direct product results for this
problem.Note that in the descriptions of FPt andBPt , t is a fixed constant, independent
of the input size.

Corollary 1.3 For integers t, k ≥ 1,

R(t−1),pub

1−2−Ω(k/t2)

(
FPkt

)
≥ Ω

(
k

t
· n log(t−1) n

)

R(t−1),pub

1−2−Ω(k/t2)

(
BPkt

)
≥ Ω

(
k

t
· n
)

.

1.1 Our Techniques

We prove our direct product result using information theoretic arguments. Informa-
tion theory is a versatile tool in communication complexity, especially in proving

1 When R(t),pub
ε ( f ) is a constant, all the lower bounds are constants as well. It is known that several lower

bounds satisfy a strong direct product theorem, such as conditional relative entropy [14]. Thus in this case
a strong direct product result for the model we concerns follows directly.
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lower bounds and direct sum and direct product theorems [2,3,5,9,14,15,18–20]. The
similar information theoretic arguments have been used to prove parallel repetition
theorems for two-prover one-round games as well [12,34]. The broad argument that
we use is as follows. For a given relation f , let the communication required for com-
puting one instance with t rounds and constant success be c. Let us consider a protocol
for computing f k with t rounds and communication o(kc). Let us condition on suc-
cess on some � coordinates. If the overall success in these � coordinates is already
as small as we want then we are done. Otherwise, we exhibit another coordinate j
outside of these � coordinates such that success in the j-th coordinate, even when
conditioned on success in these � coordinates, is bounded away from 1. This way the
overall success keeps going down and becomes exponentially small (in k) eventually.
We do this argument in the distributional setting where one is concerned with average
error over the inputs coming from a specified distribution rather than the worst case
error over all inputs. The distributional setting is then related to the worst case setting
by the well known Yao’s principle [40].

More concretely, letμ be a distribution onX ×Y , possibly non-product acrossX
and Y . Let c be the minimum communication required for computing f with t-round
protocols having error at most ε averaged over μ. Let the inputs for f k be drawn
from distribution μk (k independent copies of μ). Consider a t-round protocolP for
f k with communication o(kc) and for the rest of the argument condition on success
on a set of coordinates C . If the success probability of this event is as small as we
desire then we are done. Otherwise we exhibit a new coordinate j /∈ C satisfying the
following conditions conditioning on success on all coordinates in C . The distribution
of Alice’s and Bob’s input in the j-th coordinate (X jY j ) is quite close to μ. Here
use the same symbol to represent a random variable and its distribution. The joint
distribution X jY j M , where M is the message transcript of P , can be approximated
very well by Alice and Bob using a t-round protocol for f , when they are given input
according to μ, using communication less than c. This shows that success in the j-th
coordinate must be bounded away from one.

To sample the transcript, we adopt themessage compression protocol of Braverman
and Rao [5], where they used the protocol to show a direct sum theorem for the same
communication model we are considering. Informally, the protocol can be stated as
follows.

Braverman–Rao protocol (informal) Given a Markov chain Y ↔ X ↔ M (see
Definition 2.1), there exists a public-coin protocol between Alice and Bob, with inputs

X andY ,with a singlemessage fromAlice toBobof O
(
I
(
X : M ∣∣Y )+

√
I
(
X : M ∣∣Y )

)

+ 1 bits, such that at the end of the protocol, Alice and Bob both possess a random
variable M ′ which is close to M in the �1 distance.

Consider the situation after conditioning on success in all the coordinates in C , as
above, and let X jY j represent the input in the j-th coordinate. The Braverman–Rao
compression protocol cannot be directly applied at this point. Take the first mes-
sage M1, sent by Alice, for instance. Y j X j M1 doesn’t necessarily form a Markov
chain. For example, M1 is the message in which Alice tries to guess Bob’s input Y j
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and the event of success is Alice succeeds in doing so. Then it is easy to see that
Y j X j M1 is not a Markov chain conditioning on success. However, we are able to
show that Y j X j M1 is ‘close’ to being a Markov chain by further conditioning on
appropriate sub-events. We then use a more ‘robust’ Braverman–Rao compression
protocol (along the lines of the original), where by being ‘robust’, we mean that the
communication cost and the error does not vary much even for XYM which is close
to being a Markov chain. (Similar arguments were used by Jain in Ref. [14].) We
then apply such a robust message compression protocol to each successive message.
Conditioning on success in C incurs a small statistical loss for each message. Thus,
the overall error is bounded as the number of messages exchanged is bounded in
our model. Recently, Braverman et.al. introduced in Ref. [7] a new simulation whose
statistical error is independent of the number of messages. Using this simulation,
Braverman et al. [6] strengthened our result with better dependence on the number of
rounds.

Another difficulty in this argument is that since μ may be a non-product distrib-
ution, the input of Alice and Bob in other coordinates may be correlated with each
other’s input in the j-th coordinate when conditioned on success in C . We overcome
this by introducing new random variables DU conditioning on which Alice’s input
is independent of Bob’s input. Namely, DU split μk into a convex combination of
product distributions.

This idea of splitting a non-product distribution into convex combination of product
distributions has been used in several previous works [2,3,5,12,14,34,35]. D− jU− j

is independent of X jY j without conditioning on success in all coordinates in C . This
fact is sufficient for several direct sum results [2,5]. However, after conditioning on
success in all coordinates in C , D− jU− j is correlated with X jY j . This lead us to use
another important tool namely the correlated sampling protocol, that was also used
for example by Holenstein [12] in his proof of a strong direct product theorem for
two-prover one-round games. We prove that D− jU− j can be correlatedly sampled by
Alice and Bob. Conditioning on D− jU− j and their own inputs, Alice and Bob are
able to complete the remaining XY .

As mentioned previously, we build on the arguments used by Jain [14]. He showed
a new characterization of two-party one-way public-coin communication complexity
and used that characterization to show a strong direct product result for all relations
in this model. We are unable to arrive at such characterization for protocols with more
than one messages so we use a more direct approach, as outlined above, to prove our
direct product result.

1.2 Organization

The rest of the paper is organized as follows. In Sect. 2, we present some background
on information theory and communication complexity. In Sect. 3, we prove our main
result, Theorem 1.1, starting with some lemmas that are helpful in building the proof.
Some proofs are deferred to Sect. 4.
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2 Preliminaries

2.1 Information Theory

For integer n ≥ 1, let [n] represent the set {1, 2, . . . , n} and let [0] be the empty set.
LetX andY be finite sets and k be a natural number. LetX k be the setX ×· · ·×X
the cross product of X , k times. Let μ be a probability distribution on X . Let μ(x)
represent the probability of x ∈ X according to μ. Let X be a random variable
distributed according to μ. We use the same symbol to represent a random variable
and its distribution whenever it is clear from the context. We use letters in lower-case
such as x, y, z to represent the elements in the supports of X,Y, Z , respectively. The
expectation of function f on X is defined as

E
x←X

[ f (x)]
def=

∑
x∈X

μ (x) · f (x).

The entropy of X is defined by Shannon in [37] as

H(X)
def= −

∑
x∈X

μ(x) · logμ(x).

For two distributions μ and λ on X , the distribution μ ⊗ λ is defined as (μ ⊗
λ)(x1, x2)

def= μ(x1) · λ(x2). Define μk to be μ ⊗ · · · ⊗ μ with k times. If L =
L1 · · · Lk , we define L−i

def= L1 · · · Li−1Li+1 · · · Lk and L<i
def= L1 · · · Li−1. The

random variable L≤i is defined analogously. The total variance distance between μ

and λ is defined to be half of the �1 norm of μ − λ, i.e.,

‖λ − μ‖1 def= 1

2

∑
x

|λ(x) − μ(x)| = max
S⊆X

|λS − μS|

where λS
def= ∑

x∈S λ(x). We say that λ is ε-close to μ if ‖λ − μ‖1 ≤ ε. The relative
entropy between distributions X and Y onX is defined as

D
(
X
∥∥Y ) def= E

x←X

[
log

Pr[X = x]

Pr[Y = x]

]
.

The relative min-entropy between them is defined as

S∞
(
X
∥∥Y ) def= max

x∈X

{
log

Pr[X = x]

Pr[Y = x]

}
.

It is easy to see that D
(
X
∥∥Y ) ≤ S∞

(
X
∥∥Y ). Let X , Y , and Z be jointly distributed

random variables. We often write XY as a shorthand for the pair (X,Y ). With slight
abuse of notations, we write XX for a joint distribution XX ′ where X and X ′ are
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always equal, i.e., Pr
[
X = X ′] = 1 Let Yx denote the distribution of Y conditioned

on X = x . The conditional entropy of Y conditioned on X is defined as

H(Y |X)
def= E

x←X
[H(Yx )] = H(XY ) − H(X).

The mutual information between X and Y is defined as

I(X : Y )
def= H(X) + H(Y ) − H(XY )

= E
y←Y

[
D
(
Xy
∥∥X)]

= E
x←X

[
D
(
Yx
∥∥Y )] .

It is easily seen that I(X : Y ) = D
(
XY

∥∥X ⊗ Y
)
. We say that X and Y are independent

if I(X : Y ) = 0. The conditional mutual information between X and Y , conditioned
on Z , is defined as

I
(
X : Y ∣∣Z) def= E

z←Z

[
I
(
X : Y ∣∣Z = z

)]

= H (X |Z) + H (Y |Z) − H (XY |Z) .

The following chain rule for mutual information can be proved easily

I(X : Y Z) = I(X : Z) + I
(
X : Y ∣∣Z) .

Definition 2.1 Let X , X ′, Y , and Z be jointly distributed random variables. We define
the joint distribution of (X ′Z)(Y |X) by

Pr[(X ′Z)(Y |X) = (x, z, y)] def= Pr[X ′ = x, Z = z] · Pr[Y = y|X = x].

We say that X , Y , and Z is a Markov chain if XY Z = (XY )(Z |Y ) and we denote it
by X ↔ Y ↔ Z .

It is easy to see that X , Y , Z is a Markov chain if and only if I
(
X : Z ∣∣Y ) = 0.

Ibinson et al. [13] showed that if I
(
X : Z ∣∣Y ) is small then XY Z is close to being a

Markov chain.

Lemma 2.2 ([13]) For any random variables X, Y , and Z, it holds that

I
(
X : Z ∣∣Y ) = min

{
D
(
XY Z

∥∥X ′Y ′Z ′) : X ′ ↔ Y ′ ↔ Z ′} .

The minimum is achieved by the distribution X ′Y ′Z ′ = (XY )(Z |Y ).

Wewill need the following basic facts.Avery good text for reference on information
theory is [10].
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Fact 2.3 ([10, page32]) The relative entropy is jointly convex in its arguments. That
is, for distributions μ,μ1, λ, λ1 ∈ X and p ∈ [0, 1],

D
(
pμ + (1 − p)μ1

∥∥pλ + (1 − p)λ1
)

≤ p · D(μ∥∥λ)+ (1 − p) · D
(
μ1
∥∥λ1

)
.

Fact 2.4 ([10, page24]) The relative entropy satisfies the following chain rule. Let
XY and X1Y 1 be random variables on X × Y . It holds that

D
(
X1Y 1

∥∥XY
)

= D
(
X1
∥∥X
)

+ E
x←X1

[
D
(
Y 1
x

∥∥Yx
)]

.

In particular,

D
(
X1Y 1

∥∥X ⊗ Y
)

= D
(
X1
∥∥X
)

+ E
x←X1

[
D
(
Y 1
x

∥∥Y
)]

≥ D
(
X1
∥∥X
)

+ D
(
Y 1
∥∥Y
)

,

where the inequality is from Fact 2.3.

Note that there is no conditioning on x in Y at the end of the first line as in the
second argument of the relative entropy X and Y are independent. The following fact
proves that the minimizer of the relative entropy is the product of the marginals.

Fact 2.5 Let XY and X1Y 1 be random variables on X × Y . It holds that

D
(
X1Y 1

∥∥X ⊗ Y
)

≥ D
(
X1Y 1

∥∥X1 ⊗ Y 1
)

= I
(
X1 : Y 1

)
.

Proof From the definition of the relative entropy, we have

D
(
X1Y 1

∥∥X ⊗ Y
)

=
∑
xy

Pr
[
X1Y 1 = xy

]
log

Pr
[
X1Y 1 = xy

]

Pr[X = x] Pr[Y = y]

=
∑
xy

Pr
[
X1Y 1 = xy

](
log

Pr
[
X1Y 1 = xy

]

Pr
[
X1 = x

]
Pr
[
Y 1 = y

]

+ log
Pr
[
X1 = x

]
Pr
[
Y 1 = y

]

Pr[X = x] Pr[Y = y]

)

= D
(
X1Y 1

∥∥X1 ⊗ Y 1
)

+ D
(
X1
∥∥X
)

+ D
(
Y 1
∥∥Y
)

≥ D
(
X1Y 1

∥∥X1 ⊗ Y 1
)

.

The equality D
(
X1Y 1

∥∥X1 ⊗ Y 1
) = I

(
X1 : Y 1

)
can easily be verified from the defi-

nitions.
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Fact 2.6 (Pinsker’s inequality, [10, page370]) For distributions λ and μ,

0 ≤ ‖λ − μ‖1 ≤
√
D
(
λ
∥∥μ).

The following fact gives a lower bound on each term in the summation in the
definition of the relative entropy.

Fact 2.7 ([21]) Let λ and μ be distributions onX . For any subsetS ⊆ X , it holds
that

∑
x∈S

λ(x) · log λ(x)

μ(x)
≥ −1.

Hence, for any r > 0, c > 0, if D
(
λ
∥∥μ) ≤ c, then it holds that

Pr
x←λ

[
log

λ (x)

μ (x)
≤ c + 1

r

]
≤ r.

The following fact easily follows from the triangle inequality and Fact 2.4.

Fact 2.8 The �1 distance and the relative entropy are monotone non-increasing when
subsystems are considered. Let XY and X1Y 1 be random variables onX × Y , then

∥∥∥XY − X1Y 1
∥∥∥
1

≥
∥∥∥X − X1

∥∥∥
1

and

D
(
XY

∥∥X1Y 1
)

≥ D
(
X
∥∥X1

)
.

Fact 2.9 For any function f : X ×R → Y and random variables X , X1 onX and
R onR, such that R is independent of XX1, it holds that

‖X f (X, R) − X1 f (X1, R)‖1 = ‖X − X1‖1 .

Proof

‖X f (X, R) − X1 f (X1, R)‖1
= 1

2

∑
xy

∣∣∣Pr[X f (X, R) = xy] − Pr
[
X1 f (X1, R) = xy

]∣∣∣

= 1

2

∑
x

∣∣∣Pr[X = x] − Pr
[
X1 = x

]∣∣∣ ·
∑
y

Pr[ f (x, R) = y]

= 1

2

∑
x

∣∣∣Pr[X = x] − Pr
[
X1 = x

]∣∣∣ =
∥∥∥X − X1

∥∥∥
1
.

�
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The following definition was introduced by Holenstein [12]. It plays a critical role
in his proof of a parallel repetition theorem for two-prover games.

Definition 2.10 ([12]) For two distributions (X0Y0) and (X1SY1T ), we say that
(X0,Y0) is (1 − ε)-embeddable in (X1S,Y1T ) if there exists a probability distribution
R over a set R, which is independent of X0Y0 and functions f A : X × R → S ,
fB : Y × R → T , such that

‖X0Y0 f A(X0, R) fB(Y0, R) − X1Y1ST ‖1 ≤ ε.

The following lemma was shown by Holenstein [12] using a correlated sampling
protocol.

Lemma 2.11 (Corollary 5.3 in [12]) For random variables S, X, and Y , if

‖XY S − (XY )(S|X)‖1 ≤ ε

and

‖XY S − (XY )(S|Y )‖1 ≤ ε

then (X,Y ) is (1 − 5ε)-embeddable in (XS,Y S).

We will need the following generalization of the previous lemma.

Lemma 2.12 For joint random variables (A′, B ′,C ′) and (A, B), satisfying

D
(
A′B ′∥∥AB) ≤ ε (1)

E
(a,c)←A′C ′

[
D
(
B ′
a,c

∥∥Ba
)] ≤ ε (2)

E
(b,c)←B′C ′

[
D
(
A′
b,c

∥∥Ab
)] ≤ ε (3)

it holds that (A, B) is
(
1 − 5

√
ε
)
-embeddable in (A′C ′, B ′C ′).

Proof Using the definition of the relative entropy, we get the following.

E
(a,c)←A′C ′

[
D
(
B ′
a,c

∥∥Ba
)]− E

(a,c)←A′C ′

[
D
(
B ′
a,c

∥∥B ′
a

)]

= E
(a,b,c)←A′B′C ′

[
log

Pr
[
B ′ = b|A′ = a

]

Pr[B = b|A = a]

]

= E
a←A′

[
D
(
B ′
a

∥∥Ba
)] ≥ 0.

This means that

E
(a,c)←A′C ′

[
D
(
B ′
a,c

∥∥B ′
a

)] ≤ E
(a,c)←A′C ′

[
D
(
B ′
a,c

∥∥Ba
)] ≤ ε. (4)
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Furthermore,

E
(a,c)←A′C ′

[
D
(
B ′
a,c

∥∥B ′
a

)] = D
(
A′C ′B ′∥∥ (A′C ′) (B ′|A′)) (5)

= D
(
A′B ′C ′∥∥ (A′B ′) (C ′|A′)) (6)

≥ ∥∥A′B ′C ′ − (
A′B ′) (C ′|A′)∥∥2

1 . (7)

Above, Eq. (5) follows from the chain rule for the relative entropy, Eq. (6) is because
the distributions

(
A′C ′) (B ′|A′) and (A′B ′) (C ′|A′) are same by Definition 2.1, and

Eq. (7) follows from Fact 2.6. Now from Eqs. (4) and (7) we get

∥∥A′B ′C ′ − (
A′B ′) (C ′|A′)∥∥

1 ≤ √
ε.

By similar arguments we get

∥∥A′B ′C ′ − (
A′B ′) (C ′|B ′)∥∥

1 ≤ √
ε.

The two inequalities above (using Lemma 2.11) imply that
(
A′, B ′) is (1 − 5

√
ε
)
-

embeddable in
(
A′C ′, B ′C ′). Namely, there exist functions f1 and f2 and randomvari-

able R independent of A′B ′ such that
∥∥A′B ′ f1

(
A′, R

)
f2
(
B ′, R

)− A′B ′C ′C ′∥∥
1 ≤

5
√

ε. Furthermore, from Fact 2.6 and Eq. (1) we get that

∥∥A′B ′ − AB
∥∥
1 ≤ √

ε.

Finally,

∥∥AB f (A, R) f (B, R) − A′B ′C ′C ′∥∥
1

≤ ∥∥AB f1 (A, R) f2 (B, R) − A′B ′ f1
(
A′, R

)
f2
(
B ′, R

)∥∥
1

+ ∥∥A′B ′ f1
(
A′, R

)
f2
(
B ′, R

)− A′B ′C ′C ′∥∥
1

= ∥∥AB − A′B ′∥∥
1 + ∥∥A′B ′ f1

(
A′, R

)
f2
(
B ′, R

)− A′B ′C ′C ′∥∥
1 ≤ 6

√
ε,

where the equality is from Fact 2.9. Thus
we get that (A, B) is

(
1 − 6

√
ε
)
-embeddable in (A′C ′, B ′C ′). �

2.2 Communication Complexity

Let f ⊆ X ×Y ×Z be a relation, t ≥ 1 an integer, and ε ∈ (0, 1). In this work we
only consider complete relations, i.e., for every (x, y) ∈ X ×Y , there is some z ∈ Z
such that (x, y, z) ∈ f . In the two-party t-round public-coinmodel of communication,
Alice, with input x ∈ X , and Bob, with input y ∈ Y , do local computation using
public coins shared between them and exchange t messages, with Alice sending the
first message. At the end of the protocol, the party receiving the t-th message outputs
some z ∈ Z . The output is declared correct if (x, y, z) ∈ f and wrong otherwise.
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Definition 2.13 Let R(t),pub
ε ( f ) represent the two-party t-round public-coin commu-

nication complexity of f with worst case error ε, i.e., the minimum number of bits that
Alice and Bob need to exchange in a t-round public-coin protocol that the output for
each input (x, y) is correct with probability at least 1− ε. We similarly consider two-
party t-round deterministic protocols where there are no public coins used by Alice
and Bob. Let μ ∈ X ×Y be a distribution. We let D(t),μ

ε ( f ) represent the two-party
t-round distributional communication complexity of f under μ with expected error
ε, i.e., the minimum number of bits Alice and Bob need to exchange in a two-party
t-round deterministic protocol for f with distributional error (average error over the
inputs) at most ε under μ.

The following is a consequence of the min–max theorem in game theory, see
e.g., [27, Theorem 3.20].

Lemma 2.14 (Yao’s principle, [40]) R(t),pub
ε ( f ) = max

μ
D(t),μ

ε ( f ).

The following fact about communication protocols can be verified easily.

Fact 2.15 Let M1, . . . , Mt be t messages in a deterministic communication protocol
between Alice and Bob with inputs X and Y , where X and Y are independent. Then
for any s ∈ [t], X and Y are independent even conditioned on M1, . . . , Ms .

Let f k ⊆ X k × Y k × Z k be the cross product of f with itself k times. In a
protocol for computing f k , Alice will receive input inX k , Bob will receive input in
Y k and the output of the protocol will be in Z k .

3 Proof of Theorem 1.1

We start by showing a few lemmas which are helpful in the proof of the main result.
The following theorem was shown by Jain [14] and follows primarily from a message
compression argument due to Braverman and Rao [5].

Theorem 3.1 (Lemma 3.8 in [14]) Let δ > 0 and c ≥ 0. Let X ′, Y ′, and N be random
variables for which Y ′ ↔ X ′ ↔ N is a Markov chain and the following holds.

Pr
(x,y,m)←X ′,Y ′,N

[
log

Pr
[
N = m|X ′ = x

]

Pr[N = m|Y ′ = y]
> c

]
≤ δ. (8)

There exists a public-coin protocol between Alice and Bob, with inputs X ′ and Y ′, with
a single message from Alice to Bob of at most c+O(log(1/δ)) bits, such that at the end
of the protocol, Alice and Bob possess random variables MA and MB, respectively,
satisfying

∥∥X ′Y ′NN − X ′Y ′MAMB
∥∥
1 ≤ 2δ.

Remark 3.2 In Ref. [5], the condition I
(
X ′ : N ∣∣Y ′) ≤ c is used instead of Eq.

(8). It is changed to the current one in Ref. [14]. By the equality I
(
X ′ : N ∣∣Y ) =

D
(
X ′Y ′N

∥∥X ′Y ′ (N |Y ′)) and Fact 2.7, I
(
X ′ : N ∣∣Y ′) ≤ c implies
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Pr
(x,y,m)←X ′,Y ′,N

[
log

Pr
[
N = m|X ′ = x

]

Pr[N = m|Y ′ = y]
>

c + 1

δ

]
≤ δ.

This modification is essential in our argument since the condition in Eq. (8) is robust
when the underlying joint distribution is perturbed slightly, while I

(
X ′ : N ∣∣Y ′) may

change a lot with such a perturbation.

As mentioned in Sect. 1, we will have to work with approximate Markov chains in
our argument for the direct product. The following lemma makes Theorem 3.1 more
robust to deal with approximate Markov chains. Its proof appears in Sect. 4.

Lemma 3.3 Let c ≥ 0, 1 > ε > 0, and ε′ > 0. Let X ′, Y ′, and M ′ be random
variables for which the following holds,

I
(
X ′ : M ′ ∣∣Y ′) ≤ c and I

(
Y ′ : M ′ ∣∣X ′) ≤ ε.

There exists a public-coin protocol between Alice and Bob, with inputs X ′ and Y ′,
with a single message from Alice to Bob of at most c+5

ε′ + O
(
log 1

ε′
)
bits, such that

at the end of the protocol, Alice and Bob possess a random variable MA and MB,
respectively, satisfying

∥∥X ′Y ′M ′M ′ − X ′Y ′MAMB
∥∥
1 ≤ 3

√
ε + 6ε′.

The following lemma generalizes the above lemma to deal with multiple messages.
Its proof appears in Sect. 4.

Lemma 3.4 Let t ≥ 1 be an integer. Let ε′ > 0, cs ≥ 0, and 1 > εs > 0 for all
1 ≤ s ≤ t . Let R′, X ′, Y ′, M ′

1, . . . , M
′
t be random variables for which the following

holds. (Below M ′
<s = M ′

1 · · · M ′
s−1 by definition.)

I
(
X ′ : M ′

s

∣∣Y ′R′M ′
<s

) ≤ cs (9)

I
(
Y ′ : M ′

s

∣∣X ′R′M ′
<s

) ≤ εs (10)

for odd s and

I
(
Y ′ : M ′

s

∣∣X ′R′M ′
<s

) ≤ cs (11)

I
(
X ′ : M ′

s

∣∣Y ′R′M ′
<s

) ≤ εs (12)

for even s. There exists a public-coin t-round protocol Pt between Alice, with input
X ′R′, and Bob, with input Y ′R′, with Alice sending the first message. The total com-
munication of Pt is at most

∑t
s=1 cs + 5t

ε′ + O

(
t log

1

ε′

)
.
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At end of the protocol, Alice and Bob possess random variables M ′
A,1, . . . , M

′
A,t and

M ′
B,1, . . . , M

′
B,t , respectively, satisfying

∥∥R′X ′Y ′M ′
1M

′
1 · · · M ′

t M
′
t − R′X ′Y ′M ′

A,1M
′
B,1 · · · M ′

A,t M
′
B,t

∥∥
1

≤ 3
t∑

s=1

√
εs + 6ε′t.

In the above lemma, Alice and Bob shared an input R′ (potentially correlated with
X ′Y ′). Eventually we will need Alice and Bob to generate this shared part themselves
using correlated sampling. The following lemma, obtained from the lemma above, is
the one that we will finally use in the proof of our main result. Its proof appears in
Sect. 4.

Lemma 3.5 Let random variables R′, X ′, Y ′, and M ′
1, . . . , M

′
t and numbers ε′, cs ,

and εs satisfy all the conditions in Lemma 3.4. Let τ > 0 and let random variables
(X,Y ) be (1 − τ)-embeddable in (X ′R′,Y ′R′). There exists a public-coin t-round
protocol Qt between Alice, with input X, and Bob, with input Y , with Alice sending
the first message, and total communication at most

∑t
s=1 cs + 5t

ε′ + O

(
t log

1

ε′

)
.

At the end of the protocol, Alice possesses RAMA,1 · · · MA,t and Bob possesses
RBMB,1 · · · MB,t , such that

∥∥XY RARBM1M1 · · · MtMt − X ′Y ′R′R′M ′
A,1M

′
B,1 · · · M ′

A,t M
′
B,t

∥∥
1

≤ τ + 3
t∑

s=1

√
εs + 6ε′t.

We are now ready to prove our main result, Theorem 1.1. We restate it here for
convenience.
Theorem 1.1 LetX ,Y , andZ be finite sets, f ⊆ X ×Y ×Z a complete relation,
ε > 0, and k, t ≥ 1 integers. There exists a constant κ ≥ 0 such that

R(t),pub

1−(1−ε/2)Ω(kε2/t2)

(
f k
)

= Ω

(
ε · k
t

·
(
R(t),pub

ε ( f ) − κt2

ε

))
.

Proof of Theorem 1.1 Let δ
def= ε2

7500t2
and δ1 = ε

3000t . From Yao’s principle (Lemma
2.14) it suffices to prove that for any distribution μ onX × Y ,

D(t),μk

1−(1−ε/2)�δk�
(
f k
)

≥ δ1kc

where c
def= D(t),μ

ε ( f ) − κt2
ε
, for constant κ to be chosen later. Let XY be distributed

according to μk . LetQ be a t-round deterministic protocol between Alice, with input
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X , and Bob, with input Y , that computes f k , with Alice sending the first message and
total communication δ1kc bits. We assume that t is odd for the rest of the argument
and so Bob makes the final output. (The case when t is even follows similarly.) The
following claim implies that the success ofQ is at most (1− ε/2)�δk� and this shows
the desired. �
Claim 3.6 For each i ∈ [k], let us define a binary random variable Ti ∈ {0, 1}, which
represents the success of Q, i.e., Bob’s output being correct, on the i-th instance.
So Ti = 1 if the protocol Q computes the i-th instance of f correctly and Ti = 0

otherwise. Let k′ def= �δk�. There exist k′ coordinates {i1, . . . , ik′ } such that for each
1 ≤ r ≤ k′ − 1, either

Pr
[
T (r) = 1

]
≤ (1 − ε

2
)k

′

or

Pr
[
Tir+1 = 1

∣∣T (r) = 1
]

≤ 1 − ε

2

where T (r) def=
r∏
j=1

Ti j .

Proof For s ∈ [t], we denote the s-th message of Q by Ms . Let M
def= M1 · · · Mt . In

the following, we assume that 1 ≤ r < k′. However, the same argument also works
when r = 0, i.e., for identifying the first coordinate, which we skip for the sake of
avoiding repetition. Suppose that we have already identified r coordinates i1, . . . , ir
satisfying that

Pr
[
Ti1 = 1

] ≤ 1 − ε

2

and

Pr
[
Ti j+1 = 1

∣∣T ( j) = 1
]

≤ 1 − ε

2

for 1 ≤ j ≤ r − 1. If Pr
[
T (r) = 1

] ≤ (1 − ε
2 )

k′
then we are done. So from now on,

assume that

Pr
[
T (r) = 1

]
> (1 − ε

2
)k

′ ≥ 2−δk .

Let D be a random variable uniformly distributed in {0, 1}k and independent of
XY . Let Ui = Xi if Di = 0 and Ui = Yi if Di = 1. For any random variable L , let
us introduce the notation

L1 def= (L|T (r) = 1).

123



736 Algorithmica (2016) 76:720–748

For example, X1Y 1 = (XY |T (r) = 1). Let C
def= {i1, . . . , ir } and

Ri
def= D−iU−i XC∪[i−1]YC∪[i−1]

for i ∈ [k]. We denote an element from the range of Ri by ri .2

To prove the claim, we will show that there exists a coordinate j /∈ C such that

1.
(
X j ,Y j

)
can be embedded well in

(
X1

j R
1
j ,Y

1
j R

1
j

)
(with appropriate parameters

as required by Lemma 2.12.)
2. Random variables R1

j , X
1
j , Y

1
j , and M1

1 , . . . , M
1
t satisfy the conditions of Lemma

3.4 with appropriate parameters.

The following calculations are helpful for achieving the condition in Eq. (1) in
Lemma 2.12. That is, X1

j Y
1
j is close to μ.

δk > S∞
(
X1Y 1

∥∥XY
)

≥ D
(
X1Y 1

∥∥XY
)

≥
∑
i /∈C

D
(
X1
i Y

1
i

∥∥XiYi
)

(13)

where the first inequality follows from the assumption that Pr
[
T (r) = 1

]
> 2−δk

and the last inequality follows from Fact 2.4. The following calculations are helpful

for achieving the conditions in Eqs. (2) and (3) in Lemma 2.12 that
(
X1

j |R1
j Y

1
j

)
≈

(
X j |Y j

)
and

(
Y 1
j |R1

j X
1
j

)
≈ (

Y j |X j
)
. It implies that Alice and Bob are able to sample

R1
j correlatedly with inputs X1

j Y
1
j .

δk > S∞
(
X1Y 1D1U 1

∥∥XY DU
)

≥ D
(
X1Y 1D1U 1

∥∥XY DU
)

≥ E
(d,u,xC ,yC )←D1U1X1

CY
1
C

[
D

((
X1Y 1

)
d,u,xC ,yC

∥∥ (XY )d,u,xC ,yC

)]
(14)

=
∑
i /∈C

E
(d,u,xC∪[i−1],yC∪[i−1])

←D1U1X1
C∪[i−1]Y 1

C∪[i−1]

[
D

((
X1
i Y

1
i

)
d,u,xC∪[i−1],

yC∪[i−1]

∥∥ (XiYi )d,u,xC∪[i−1],
yC∪[i−1]

)]

(15)

2 We justify here the composition of Ri . Random variables D−iU−i are useful because conditioning on
them makes the distribution of inputs product across Alice and Bob (for fixed values of XiYi ). Random
variables XCYC are helpful since conditioning on them ensures that the inputs become product even when
conditioned on success on C . Random variables X[i−1]Y[i−1] are helpful because we use the following
chain rule to draw a new coordinate outside of C with low information.

I(XY : M) =
∑
i

I
(
XiYi : M ∣∣X[i−1]Y[i−1]

)
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=
∑
i /∈C

E
(di ,ui ,ri )←D1

i U
1
i R

1
i

[
D
(
(X1

i Y
1
i )di ,ui ,ri

∥∥(XiYi )di ,ui ,ri

)]
(16)

= 1

2

∑
i /∈C

E
(ri ,xi )←R1

i X
1
i

[
D

((
Y 1
i

)
ri ,xi

∥∥ (Yi )xi

)]

+ 1

2

∑
i /∈C

E
(ri ,yi )←R1

i Y
1
i

[
D

((
X1
i

)
ri ,yi

∥∥ (Xi )yi

)]
. (17)

Above, Eqs. (14) and (15) follow from Fact 2.4. Equation (16) is because (di , ui , ri )
and

(
d, u, xC∪[i−1], yC∪[i−1]

)
are same up to the order. Equation (17) follows because

D1
i is independent of R1

i and with probability half D1
i is 0, in which case U 1

i = X1
i

and with probability half D1
i is 1 in which case U 1

i = Y 1
i .

The following calculation is useful for achieving the conditions of Eqs. (9) and
(11), exhibiting that the information carried by the messages about the sender’s input
is small.

δ1ck ≥
∣∣∣M1

∣∣∣ (|M1|represents the length ofM1)

≥ I
(
X1Y 1 : M1

∣∣D1U 1X1
CY

1
C

)

=
∑
i /∈C

I
(
X1
i Y

1
i : M1

∣∣D1U 1X1
C∪[i−1]Y 1

C∪[i−1]
)

=
∑
i /∈C

t∑
s=1

I
(
X1
i Y

1
i : M1

s

∣∣D1U 1X1
C∪[i−1]Y 1

C∪[i−1]M1
<s

)

=
∑
i /∈C

t∑
s=1

I
(
X1
i Y

1
i : M1

s

∣∣D1
i U

1
i R

1
i M

1
<s

)

=
∑
i /∈C

(∑
sodd

I
(
X1
i Y

1
i : M1

s

∣∣D1
i U

1
i R

1
i M

1
<s

)
+
∑
seven

I
(
X1
i Y

1
i : M1

s

∣∣D1
i U

1
i R

1
i M

1
<s

))

= 1

2

∑
i /∈C

(∑
sodd

I
(
X1
i : M1

s

∣∣R1
i Y

1
i M

1
<s

)
+
∑
seven

I
(
Y 1
i : M1

s

∣∣R1
i X

1
i M

1
<s

))
(18)

Above, we have used the chain rule for the mutual information in the first two equali-
ties. The last inequality follows because D1

i is independent of X1
i Y

1
i R

1
i M

1 and with
probability half D1

i is 0, in which caseU
1
i = X1

i , and with probability half D
1
i is 1, in

which case U 1
i = Y 1

i .
The following calculation is useful for achieving the conditions of Eqs. (10) and

(12), exhibiting that the information carried by the messages about the receiver’s input
is very small. Here we are only able to argue round by round and hence pay a factor
proportional to the number of messages in the final result. Let s ∈ [t] be odd for now.
δk ≥ S∞

(
D1U 1X1Y 1M1≤s

∥∥DUXYM≤s

)

≥ D
(
D1U 1X1Y 1M1≤s

∥∥DUXYM≤s

)
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≥ E
(d,u,xC ,yC ,m≤s )←D1U1X1

CY
1
CM1≤s

[
D
(
(X1Y 1)d,u,xC ,yC ,m≤s

∥∥(XY )d,u,xC ,yC ,m≤s

)]

=
∑
i /∈C

E
(d,u,xC∪[i−1],yC∪[i−1],m≤s )

←D1U1X1
C∪[i−1]Y 1

C∪[i−1]M1≤s

[
D

(
(X1

i Y
1
i )d,u,xC∪[i−1],

yC∪[i−1],m≤s

∥∥(XiYi )d,u,xC∪[i−1],
yC∪[i−1],m≤s

)]

=
∑
i /∈C

E
(di ,ui ,ri ,m≤s )←D1

i U
1
i R

1
i M

1≤s

[
D
(
(X1

i Y
1
i )di ,ui ,ri ,m≤s

∥∥(XiYi )di ,ui ,ri ,m≤s

)]

(19)

≥ 1

2

∑
i /∈C

E
(xi ,ri ,m≤s )←X1

i R
1
i M

1≤s

[
D
(
(Y 1

i )xi ,ri ,m≤s

∥∥(Yi )xi ,ri ,m≤s

)]

= 1

2

∑
i /∈C

E
(xi ,ri ,m≤s )←X1

i R
1
i M

1≤s

[
D
(
(Y 1

i )xi ,ri ,m≤s

∥∥(Yi )xi ,ri ,m<s

)]
(20)

= 1

2

∑
i /∈C

E
(xi ,ri ,m<s )←X1

i R
1
i M

1
<s

[
D
(
(Y 1

i M
1
s )xi ,ri ,m<s

∥∥(Yi )xi ,ri ,m<s ⊗(M1
s )xi ,ri ,m<s

)]

≥ 1

2

∑
i /∈C

E
(xi ,ri ,m<s )←X1

i R
1
i M

1
<s

[
I
(
(Y 1

i )xi ,ri ,m<s : (M1
s )xi ,ri ,m<s

)]
(21)

= 1

2

∑
i /∈C

I
(
Y 1
i : M1

s

∣∣X1
i R

1
i M

1
<s

)
(22)

Above, we have used Fact 2.4 several times. Equation (19) follows from the definition
of Ri , Eq. (20) follows from the fact that Y ↔ Xi Ri M<s ↔ Ms for any i , when s is
odd, and Eq. (21) follows from Fact 2.5. From a symmetric argument, we can show
that when s ∈ [t] is even then

1

2

∑
i /∈C

I
(
X1
i : M1

s

∣∣Y 1
i R

1
i M

1
<s

)
≤ δk.

This and Eq. (22) together imply that

∑
i /∈C

(∑
sodd

I
(
Y 1
i : M1

s

∣∣R1
i X

1
i M

1
<s

)
+
∑
seven

I
(
X1
i : M1

s

∣∣R1
i Y

1
i M

1
<s

))
≤ 2δkt. (23)

Note that in a true protocol, the LHS in the above inequality is 0. Here we prove that
conditioning on success on all coordinates in C , it is still small.

Combining Eqs. (13), (17), (18) and (23), and making standard use of Markov’s
inequality, we can get a coordinate j /∈ C such that

D
(
X1

j Y
1
j

∥∥X jY j

)
≤ 12δ (24)

E
(r j ,x j )←R1

j X
1
j

[
D

((
Y 1
j

)
r j ,x j

∥∥ (Y j
)
x j

)]
≤ 12δ (25)
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E
(r j ,y j )←R1

j Y
1
j

[
D

((
X1

j

)
r j ,y j

∥∥ (X j
)
y j

)]
≤ 12δ (26)

∑
sodd

I
(
X1

j : M1
s

∣∣R1
j Y

1
j M

1
<s

)
+
∑
seven

I
(
Y 1
j : M1

s

∣∣R1
j X

1
j M

1
<s

)
≤ 12δ1c (27)

∑
sodd

I
(
Y 1
j : M1

s

∣∣R1
j X

1
j M

1
<s

)
+
∑
seven

I
(
X1

j : M1
s

∣∣R1
j Y

1
j M

1
<s

)
≤ 12δt. (28)

Let

ε′ def= ε

125t
(29)

εs
def=
⎧⎨
⎩
I
(
Y 1
j : M1

s

∣∣R1
j X

1
j M

1
<s

)
if s ∈ [t] is odd

I
(
X1

j : M1
s

∣∣R1
j Y

1
j M

1
<s

)
if s ∈ [t] is even

(30)

cs
def=
⎧⎨
⎩
I
(
Y 1
j : M1

s

∣∣R1
j X

1
j M

1
<s

)
if s ∈ [t] is even

I
(
X1

j : M1
s

∣∣R1
j Y

1
j M

1
<s

)
if s ∈ [t] is odd.

(31)

From Eq. (28) and Cauchy–Schwartz inequality, we have that
∑t

s=1
√

εs ≤ √
12δt .

From Eqs. (24) to (26) and Lemma 2.12, we can infer that
(
X j ,Y j

)
is (1 −

10
√
3δ)-embeddable in

(
X1

j R
1
j ,Y

1
j R

1
j

)
. This, combined with Eqs. (27) and (28) and

Lemma 3.5, (by taking ε′, εs , and cs in Lemma 3.5 to be Eqs. (29) and (30) and Eq.
(31), respectively, and taking XY X ′Y ′R′M ′

1 · · · M ′
t to be X jY j X1

j Y
1
j R

1
j M

1
1 · · · M1

t )

imply the following. There exists a public-coin t-round protocol Q1 between Alice,
with input X j , and Bob, with input Y j , with Alice sending the first message and total
communication

12δ1c + 5t

ε′ + O

(
t log

1

ε′

)
< D(t),μ

ε ( f )

such that at the end Alice possesses RAMA,1 · · · MA,t and Bob possesses RBMB,1 · · ·
MB,t , satisfying

∥∥∥X jY j RARBMA,1MB,1 · · · MA,t MB,t − X1
j Y

1
j R

1
j R

1
j M

1
1M

1
1 · · · M1

t M
1
t

∥∥∥
1

≤ 10
√
3δ + 3

√
12δt + 6ε′t <

ε

2
.

Assume towards contradiction that Pr
[
Tj = 1

∣∣T (r) = 1
]

> 1− ε
2 . Consider a protocol

Q2 (with no communication) for f between Alice, with input X1
j R

1
j M

1
1 · · · M1

t , and

Bob, with input Y 1
j R

1
j M

1
1 · · · M1

t , as follows. Bob generates the rest of the random

variables present in Y 1 (not present in his input) himself. He can do this because,
conditioned on his input, those other random variables are independent of Alice’s
input. (Here we used Fact 2.15.) He then generates the output for the j-th coordinate
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in Q, and makes it the output of Q2. This ensures that the success probability of Q2

is Pr
[
Tj = 1

∣∣T (r) = 1
]

> 1 − ε
2 . Now consider a protocol Q3 for f , with Alice’s

input X j and Bob’s input Y j , which is a composition of Q1 followed by Q2. This
ensures, using Fact 2.9, that the probability of success (averaged over the public coins
and inputs X j and Y j ) ofQ3 is larger than 1− ε. Finally, by fixing the public coins of
Q3, we get a deterministic protocolQ4 for f with Alice’s input X j and Bob’s input Y j

such that the communication ofQ4 is less than D(t),μ
ε ( f ) and the success probability

(averaged over the inputs X j and Y j ) ofQ4 is larger than 1−ε. This is a contradiction

to the definition of D(t),μ
ε ( f ). (Recall that X jY j are distributed according to μ.) So it

must be that Pr
[
Tj = 1

∣∣T (r) = 1
] ≤ 1− ε

2 . The claim now follows by setting ir+1 = j .

4 Deferred Proofs

Proof of Lemma 3.3 Let us introduce a new random variable N with joint distribution

X ′Y ′N def= (X ′Y ′)(M ′|X ′).

Note that Y ′ ↔ X ′ ↔ N is a Markov chain. Using Lemma 2.2, we have that

D
(
X ′Y ′M ′∥∥X ′Y ′N

) = I
(
Y ′ : M ′ ∣∣X ′) ≤ ε. (32)

Applying Fact 2.6, we get
∥∥X ′Y ′M ′ − X ′Y ′N

∥∥
1 ≤ √

ε. Theorem 3.1 and Claim 4.1
below together imply that there exists a public-coin protocol between Alice and Bob,

with inputs X ′ andY ′, with a singlemessage fromAlice toBobof c+5
ε′ +O

(
log 1

ε+ε′
)

=
c+5
ε′ + O

(
log 1

ε′
)
bits, at the end of which Alice and Bob possess random variables

N ′
A and N ′

B , respectively, satisfying

∥∥X ′Y ′N ′
AN

′
B − X ′Y ′NN

∥∥
1 ≤ 2

√
ε + 6ε′.

Finally, using the triangle inequality for the �1 norm we conclude the desired.

Claim 4.1 Let random variables X ′, Y ′, M ′, and N and numbers c, ε, and ε′ be the
same as in the statement and the proof of Lemma 3.3. It holds that

Pr
(m,x,y)←N X ′Y ′

[
log

Pr
[
N = m|X ′ = x

]

Pr[N = m|Y ′ = y]
≥ c + 5

ε′

]
≤ 3ε′ + √

ε.

Proof For any m, x , and y, it holds that

log
Pr
[
N = m|X ′ = x

]

Pr[N = m|Y ′ = y]
= log

Pr
[
N = m|X ′ = x,Y ′ = y

]

Pr[N = m|Y ′ = y]

= log
Pr
[
N = m|X ′ = x,Y ′ = y

]

Pr[M ′ = m|X ′ = x,Y ′ = y]
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+ log
Pr
[
M ′ = m|X ′ = x,Y ′ = y

]

Pr[M ′ = m|Y ′ = y]

+ log
Pr
[
M ′ = m,Y ′ = y

]

Pr[N = m,Y ′ = y]
.

From the union bound, the above calculation, and using that 1 > ε > 0, we get

Pr
(m,x,y)←M ′X ′Y ′

[
log

Pr
[
N = m|X ′ = x

]

Pr[N = m|Y ′ = y]
≥ c + 5

ε′

]

= Pr
(m,x,y)←M ′X ′Y ′

[
log

Pr
[
N = m|X ′ = x,Y ′ = y

]

Pr[N = m|Y ′ = y]
≥ c + 5

ε′

]

≤ Pr
(m,x,y)←M ′X ′Y ′

[
log

Pr
[
N = m|X ′ = x,Y ′ = y

]

Pr[M ′ = m|X ′ = x,Y ′ = y]
≥ ε + 1

ε′

]

+ Pr
(m,x,y)←M ′X ′Y ′

[
log

Pr
[
M ′ = m|X ′ = x,Y ′ = y

]

Pr[M ′ = m|Y ′ = y]
≥ c + 1

ε′

]

+ Pr
(m,x,y)←M ′X ′Y ′

[
log

Pr
[
M ′ = m,Y ′ = y

]

Pr[N = m,Y ′ = y]
≥ ε + 1

ε′

]
.

We bound each of the above term separately, starting with the first one. Let us define
the set

G1
def=
{

(m, x, y) : log Pr
[
N = m|X ′ = x,Y ′ = y

]

Pr[M ′ = m|X ′ = x,Y ′ = y]
<

ε + 1

ε′

}
.

The following calculation gives a bound on the first term.

0 ≥ − E
(x,y)←X ′Y ′

[
D
(
M ′

xy

∥∥Nxy

)]

= E
(m,x,y)←M ′X ′Y ′

[
log

Pr
[
N = m|X ′ = x,Y ′ = y

]

Pr[M ′ = m|X ′ = x,Y ′ = y]

]
(33)

=
∑

(m,x,y)∈G1

(
Pr
[
M ′ = m, X ′ = x,Y ′ = y

] · log Pr
[
N = m|X ′ = x,Y ′ = y

]

Pr[M ′ = m|X ′ = x,Y ′ = y]

)

+
∑

(m,x,y)/∈G1

(
Pr
[
M ′ = m, X ′ = x,Y ′ = y

] · log Pr
[
N = m|X ′ = x,Y ′ = y

]

Pr[M ′ = m|X ′ = x,Y ′ = y]

)

≥
∑

(m,x,y)∈G1

(
Pr
[
M ′ = m, X ′ = x,Y ′ = y

] · log Pr
[
N = m|X ′ = x,Y ′ = y

]

Pr[M ′ = m|X ′ = x,Y ′ = y]

)

+ Pr
[(
M ′, X ′,Y ′) /∈ G1

] · ε + 1

ε′ (34)
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=
∑

(m,x,y)/∈G1

(
Pr
[
M ′ = m, X ′ = x,Y ′ = y

] · log Pr
[
M ′ = m|X ′ = x,Y ′ = y

]

Pr[N = m|X ′ = x,Y ′ = y]

)

− D
(
M ′X ′Y ′∥∥N X ′Y ′)+ Pr

[(
M ′, X ′,Y ′) /∈ G1

] · ε + 1

ε′ (35)

≥ −1 − ε + Pr
[(
M ′, X ′,Y ′) /∈ G1

] · ε + 1

ε′ (36)

Above, Eqs. (33) and (35) follow from the definition of the relative entropy and Eq.
(34) follows from the definition of G1. To get Eq. (36), we use Fact 2.7 and Eq. (32).
Equation (36) implies that

Pr
[(
M ′, X ′,Y ′) /∈ G1

] ≤ ε′.

To upper bound the second term, let us define

G2
def=
{

(m, x, y) : log Pr
[
M ′ = m|X ′ = x,Y ′ = y

]

Pr[M ′ = m|Y ′ = y]
<

c + 1

ε′

}
.

The following calculation gives a bound on the second term.

c ≥ I
(
M ′ : X ′ ∣∣Y ′) (37)

= E
(m,x,y)←M ′X ′Y ′

[
log

Pr
[
M ′ = m|X ′ = x,Y ′ = y

]

Pr[M ′ = m|Y ′ = y]

]
(38)

=
∑

(m,x,y)∈G2

(
Pr
[
M ′ = m, X ′ = x,Y ′ = y

] · log Pr
[
M ′ = m|X ′ = x,Y ′ = y

]

Pr[M ′ = m|Y ′ = y]

)

+
∑

(m,x,y)/∈G2

(
Pr
[
M ′ = m, X ′ = x,Y ′ = y

] · log Pr
[
M ′ = m|X ′ = x,Y ′ = y

]

Pr[M ′ = m|Y ′ = y]

)

≥ −1 + c + 1

ε′ · Pr[(M ′, X ′,Y ′) /∈ G2
]

(39)

Above, Eq. (37) is one of the assumptions in Lemma 3.3. Equation (38) follows from
the definition of the conditional mutual information and Eq. (39) follows from the
definition of G2 and Fact 2.7. Equation (39) implies that

Pr
[(
M ′, X ′,Y ′) /∈ G2

] ≤ ε′.

To bound the last term, we define

G3
def=
{

(m, x, y) : log Pr
[
M ′ = m,Y ′ = y

]

Pr[N = m,Y ′ = y]
<

ε + 1

ε′

}
.
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The following calculation gives a bound on the third term.

ε ≥ D
(
X ′Y ′M ′∥∥X ′Y ′N

)

≥ D
(
Y ′M ′∥∥Y ′N

)
(40)

= E
(m,x,y)←M ′X ′Y ′

[
log

Pr
[
M ′ = m,Y ′ = y

]

Pr[N = m,Y ′ = y]

]

=
∑

(m,x,y)∈G3

(
Pr
[
M ′ = m, X ′ = x,Y ′ = y

] · log Pr
[
M ′ = m,Y ′ = y

]

Pr[N = m,Y ′ = y]

)

+
∑

(m,x,y)/∈G3

(
Pr
[
M ′ = m, X ′ = x,Y ′ = y

] · log Pr
[
M ′ = m,Y ′ = y

]

Pr[N = m,Y ′ = y]

)

≥ −1 + Pr
[(
M ′, X ′,Y ′) /∈ G3

] · ε + 1

ε′ (41)

Above, Eq. (40) follows from Fact 2.8 and Eq. (41) follows from the definition of G3
and Fact 2.7. Equation (41) implies that

Pr
[(
M ′, X ′,Y ′) /∈ G3

] ≤ ε′.

Combining the bounds for the three terms we get

Pr
(m,x,y)←M ′X ′Y ′

[
log

Pr
[
N = m|X ′ = x

]

Pr[N = m|Y ′ = y]
≥ c + 5

ε′

]
≤ 3ε′.

Using
∥∥X ′Y ′M ′ − X ′Y ′N

∥∥
1 ≤ √

ε (as was shown previously), we finally have

Pr
(m,x,y)←N X ′Y ′

[
log

Pr
[
N = m|X ′ = x

]

Pr[N = m|Y ′ = y]
≥ c + 5

ε′

]
≤ 3ε′ + √

ε.

�
Proof of Lemma 3.4 We prove the lemma by induction on t . For the base case t = 1,
note that

I
(
X ′R′ : M ′

1

∣∣Y ′R′) = I
(
X ′ : M ′

1

∣∣Y ′R′) ≤ c1

and

I
(
Y ′R′ : M ′

1

∣∣X ′R′) = I
(
Y ′ : M ′

1

∣∣X ′R′) ≤ ε1.

Lemma 3.3 implies (by taking X ′, Y ′, and M ′ in Lemma 3.3 to be X ′R′, Y ′R′, and
M ′

1 respectively) that Alice, with input X ′R′, and Bob, with input Y ′R′, can run a
public-coin protocol with a single message from Alice to Bob of
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c1 + 5

ε′ + O

(
log

1

ε′

)

bits and generate random variables M ′
A,1 and M ′

B,1, respectively, satisfying

∥∥R′X ′Y ′M ′
1M

′
1 − R′X ′Y ′M ′

A,1M
′
B,1

∥∥
1

≤ 3
√

ε1 + 6ε′.

Now let t > 1. We assume that t is odd. For even t , a similar argument follows.
From the induction hypothesis, there exists a public-coin t − 1 round protocol Pt−1
between Alice, with input X ′R′, and Bob, with input Y ′R′, with Alice sending the first
message, and total communication

∑t−1
s=1 cs + 5(t − 1)

ε′ + O

(
(t − 1) log

1

ε′

)
(42)

such that at the end both Alice and Bob possess random variables M ′
A,1, . . . , M

′
A,t−1

and M ′
B,1, . . . , M

′
B,t−1, satisfying

∥∥R′X ′Y ′M ′
A,1M

′
B,1 · · · M ′

A,t−1M
′
B,t−1 − R′X ′Y ′M ′

1M
′
1 · · · M ′

t−1M
′
t−1

∥∥
1

≤ 3
t−1∑
s=1

√
εs + 6ε′(t − 1). (43)

Note that

I
(
Y ′R′M ′

<t : M ′
t

∣∣X ′R′M ′
<t

) = I
(
Y ′ : M ′

t

∣∣X ′R′M ′
<t

) ≤ ct

and

I
(
X ′R′M ′

<t : M ′
t

∣∣Y ′R′M ′
<t

) = I
(
X ′ : M ′

t

∣∣Y ′R′M ′
<t

) ≤ εt .

Therefore, Lemma 3.3 implies (by taking X ′,Y ′, andM ′ in Lemma 3.3 to be X ′R′M ′
<t ,

Y ′R′M ′
<t , and M ′

t respectively) that Alice, with input X
′R′M ′

<t , and Bob, with input
Y ′R′M ′

<t , can run a public coin protocolP with a single message from Alice to Bob
of

ct + 5

ε′ + O

(
log

1

ε′

)
(44)

bits and generate new random variable M ′′
A,t and M ′′

B,t , respectively, satisfying

∥∥R′X ′Y ′M ′
1 · · · M ′

t−1M
′
t M

′
t − R′X ′Y ′M ′

1 · · · M ′
t−1M

′′
A,t M

′′
B,t

∥∥
1
≤3

√
εt+6ε′. (45)

Fact 2.9 and Eq. (43) imply that
Thus, Alice, with input X ′R′M ′

A,<t , and Bob, with input Y ′R′M ′
B,<t , on running

protocolP will generate new randomvariablesM ′
A,t andM

′
B,t , respectively, satisfying
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∥∥R′X ′Y ′M ′
A,1M

′
B,1 · · · M ′

A,t−1M
′
B,t−1M

′
A,t M

′
B,t −R′X ′Y ′M ′

1M
′
1 · · · M ′

t−1M
′
t−1M

′′
A,t M

′′
B,t

∥∥
1

= ∥∥R′X ′Y ′M ′
A,1M

′
B,1 · · · M ′

A,t−1M
′
B,t−1 − R′X ′Y ′M ′

1M
′
1 · · · M ′

t−1M
′
t−1

∥∥
1

≤ 3
t−1∑
s=1

√
εs + 6ε′(t − 1). (46)

where the equality follows from Fact 2.9 because M ′
A,t and M ′′

A,t can be obtained by
applying a same function (protocol) on XR′M ′

A,<t andY
′R′M ′

B,<t , respectively. Same
for M ′

B,t and M ′′
B,t . The equality is from Eq. (43). Therefore, by composing protocol

Pt−1 and protocolP , using Eqs. (42) and (44)–(46) and the triangle inequality for the
�1 norm,we get a public-coin t-round protocolPt betweenAlice,with input X ′R′, and
Bob, with input Y ′R′, with Alice sending the first message, and total communication

∑t
s=1 cs + 5t

ε′ + O

(
t log

1

ε′

)
,

such that at the end Alice and Bob possess random variables M ′
A,1, . . . , M

′
A,t and

M ′
B,1, . . . , M

′
B,t , respectively, satisfying

∥∥R′X ′Y ′M ′
1M

′
1 · · · M ′

t M
′
t − R′X ′Y ′M ′

A,1M
′
B,1 · · · M ′

A,t M
′
B,t

∥∥
1

≤ 3
t∑

s=1

√
εs + 6ε′t.

�
Proof of Lemma 3.5 InQt , Alice and Bob, using public coins and no communication,
first generate RA and RB such that

∥∥XY RARB − X ′Y ′R′R′∥∥
1 ≤ τ . They can do this

because (X,Y ) is (1 − τ)-embeddable in
(
X ′R′,Y ′R′). Now they will run protocol

Pt (given by Lemma 3.4) with Alice’s input being XRA and Bob’s input being
Y RB and at the end Alice and Bob possess MA,1, . . . , MA,t and MB,1, . . . , MB,t ,
respectively. From Lemma 3.4, the communication of Qt is as desired. Now, from
Fact 2.9, Lemma 3.4, and the triangle inequality for the �1 norm, we get

∥∥XY RARBMA,1MB,1 · · · MA,t MB,t − X ′Y ′R′R′M ′
1M

′
1 · · · M ′

t M
′
t

∥∥
1

≤ τ + 3
t∑

s=1

√
εs + 6ε′t.

�

5 Open Problems

Some natural questions that arise from this work are:

1. Recently Braverman et al. [6] improved our result by showing that

R(t),pub

1−2−Ω(ε2k)

(
f k
)

= Ω

(
ε2 · k ·

(
R(7t),pub

ε ( f ) − κ

(
t log t

ε
− t

ε2

)))
,
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for some constant κ . Can the dependence on t be improved further?
2. Direct product conjectures for quantum communication complexity are still widely

open. Can these techniques be extended to show direct product theorems for
bounded-round quantum communication complexity?
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