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Abstract This paper provides the first general technique for proving information
lower bounds on two-party unbounded-rounds communication problems. We show
that the discrepancy lower bound, which applies to randomized communication com-
plexity, also applies to information complexity. More precisely, if the discrepancy
of a two-party function f with respect to a distribution μ is Discμ f , then any two
party randomized protocol computing f must reveal at least �(log(1/Discμ f )) bits
of information to the participants. As a corollary, we obtain that any two-party pro-
tocol for computing a random function on {0, 1}n × {0, 1}n must reveal �(n) bits
of information to the participants. In addition, we prove that the discrepancy of the
Greater-Than function is �(1/

√
n), which provides an alternative proof to the recent

proof of Viola (Proceedings of the twenty-fourth annual ACM-SIAM symposium on
discrete algorithms, SODA 2013, New Orleans, LA, USA, 6–8 Jan 2013, pp 632–
651, 2013) of the �(log n) lower bound on the communication complexity of this
well-studied function and, combined with our main result, proves the tight �(log n)

lower bound on its information complexity. The proof of our main result develops
a new simulation procedure that may be of an independent interest. In a followup
breakthrough work of Kerenidis et al. (53rd annual IEEE symposium on foundations
of computer science, FOCS 2012, New Brunswick, NJ, USA, 20–23 Oct 2012, pp
500–509, 2012), our simulation procedure served as a building block towards a proof
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that almost all known lower bound techniques for communication complexity (and
not just discrepancy) apply to information complexity as well.

1 Introduction

Themain objective of this paper is to expand the available techniques for proving infor-
mation complexity lower bounds for communication problems. Let f : X × Y →
{0, 1} be a function, andμ be a distribution onX ×Y . Informally, the information com-
plexity of f is the least amount of information that Alice and Bob need to exchange on
average to compute f (x, y) using a randomized communication protocol if initially
x is given to Alice, y is given to Bob, and (x, y) ∼ μ. Note that information here is
measured in the Shannon sense, and the amount of information may be much smaller
than the number of bits exchanged. Thus the randomized communication complex-
ity of f is an upper bound on its information complexity, but may not be a lower
bound.

Within the context of communication complexity, information complexity has first
been introduced in the context of direct sum theorems for randomized communication
complexity [2,7,9]. These techniques are also being used in the related direction of
direct product theorems [12,16,19,20].Adirect sum theorem in a computationalmodel
states that the amount of resources needed to perform k independent tasks is roughly k
times the amount of resources c needed for computing a single task. A direct product
theorem, which is a stronger statement, asserts that any attempt to solve k independent
tasks using o(kc) resources would result in an exponentially small success probability
2−�(k).

The direct sum line of work [2,5,11,14] has eventually led to a tight connection
(equality) between amortized communication complexity and information complexity.
Thus proving lower bounds on the communication complexity of k copies of f for
a growing k is equivalent to proving lower bounds on the information complexity
of f . In particular if f satisfies IC( f ) = �(CC( f )), i.e. that its information cost
is asymptotically equal to its communication complexity, then a strong direct sum
theorem holds for f . In addition to the intrinsic interest of understanding the amount
of information exchange that needs to be involved in computing f , direct sum theorems
motivate the development of techniques for proving lower bounds on the information
complexity of functions.

Another important motivation for seeking lower bounds on the information com-
plexity of functions stems from understanding the limits of security in two-party
computation. In a celebrated result Ben-Or et al. [3] (see also [1]) showed how a
multi-party computation (with three or more parties) may be carried out in a way that
reveals no information to the participants except for the computation’s output. The
protocol relies heavily on the use of random bits that are shared between some, but
not all, parties. Such a resource can clearly not exist in the two-party setting. While it
can be shown that perfect information security is unattainable by two-party protocols
[6,8], quantitatively it is not clear just howmuch information the parties must “leak” to
each other to compute f . The quantitative answer depends on the model in which the
leakage occurs, and whether quantum computation is allowed [15]. Information com-
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plexity answers this question in the strongest possible sense for classical protocols: the
parties are allowed to use private randomness to help them “hide” their information,
and the information revealed is measured on average. Thus an information complexity
lower bound of I on a problem implies that the average (as opposed to worst-case)
amount of information revealed to the parties is at least I .

As mentioned above, the information complexity is always upper bounded by the
communication complexity of f . The converse is not known to be true. Moreover,
lower bound techniques for communication complexity do not readily translate into
lower bound techniques for information complexity. The key difference is that a low-
information protocol is not limited in the amount of communication it uses, and thus
rectangle-based communication bounds do not readily convert into information lower
bounds. No general technique has been known to yield sharp information complexity
lower bounds. A linear lower bound on the communication complexity of the disjoint-
ness function has been shown in [22]. An information-theoretic proof of this lower
bound [7] can be adapted to prove a linear information lower bound on disjointness [5].
One general technique for obtaining (weak) information complexity lower bounds was
introduced in [5], where it has been shown that any function that has I bits of informa-
tion complexity, has communication complexity bounded by 2O(I ). This immediately
implies that the information complexity of a function f is at least the log of its com-
munication complexity (IC( f ) ≥ �(log(CC( f )))). In fact, this result easily follows
from the stronger result we prove below (Theorem 3.1).

1.1 Our Results

In this paper we prove that the discrepancy method—a general communication
complexity lower bound technique—generalizes to information complexity. The dis-
crepancy of f with respect to a distributionμ on inputs, denoted Discμ( f ), measures
how “unbalanced” f can get on any rectangle, where the balancedness is measured
with respect to μ:

Discμ( f )
de f= max

rectangles R

∣
∣
∣
∣
Pr
μ

[ f (x, y)=0∧(x, y) ∈ R]−Pr
μ

[ f (x, y)=1∧(x, y)∈ R]
∣
∣
∣
∣
.

Awell-known lower bound (see e.g [18]) asserts that the distributional communication
complexity of f , denoted Dμ

1/2−ε( f ), when required to predict f with advantage ε over
a random guess (with respect to μ), is bounded from below by �(log 1/Discμ( f )):

Dμ
1/2−ε( f ) ≥ log(2ε/Discμ( f )).

Note that the lower bound holds even if we are merely trying to get an advantage of
ε = √

Discμ( f ) over randomguessing in computing f .We prove that the information
complexity of computing f with probability 9/10 with respect to μ is also bounded
from below by �(log(1/Discμ( f ))).
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Theorem 1.1 Let f :X × Y → {0, 1} be a Boolean function and let μ be any proba-
bility distribution on X × Y . Then

ICμ( f, 1/10) ≥ �(log(1/Discμ( f ))).

Remark 1.2 The choice of 9/10 is somewhat arbitrary. For randomized worst-case
protocols, we may replace the success probability with 1/2+ δ for a constant δ, since
repeating the protocol constantly many times (1/δ2) would yield the aforementioned
success rate, while the information cost of the repeated protocol differs only by a
constant factor from the original one. In particular, using prior-free information cost
[5] this implies IC ( f, 1/2 − δ) ≥ �(δ2 log(1/Discμ( f ))).

In particular, Theorem 1.1 implies a linear lower bound on the information com-
plexity of the inner product function I P(x, y) = ∑n

i=1 xi yi mod 2, and on a random
boolean function fr :{0, 1}n × {0, 1}n → {0, 1}, expanding the (limited) list of func-
tions for which nontrivial information-complexity lower bounds are known:

Corollary 1.3 The information complexity ICuni f orm(I P, 1/10) of I P(x, y) is�(n).
The information complexity ICuni f orm( fr , 1/10) of a random function fr is �(n),
except with probability 2−�(n).

Westudy the communication and information complexity of theGreater-Than func-
tion (GTn) on numbers of length n. This is a very well-studied problem [18,21,24].
Only very recently the tight lower bound of �(log n) in the public-coins probabilistic
model was given by Viola [25]. We show that the discrepancy of the GTn function is
�(1/

√
n):

Lemma 1.4 There exist a distribution μn on X ×Y such that the discrepancy of GTn
with respect to μn satisfies Discμn (GTn) < 20/

√
n.

We defer the proof to the “Appendix 4”. Lemma 1.4 provides an alternative
(arguably simpler) proof of Viola’s [25] lower bound on the communication com-
plexity of GTn . By Theorem 1.1, Lemma 1.4 immediately implies a lower bound on
the information complexity of GTn :

Corollary 1.5 ICμn (GTn, 1/10) = �(log n)

This settles the information complexity of the GT function, since this problem can
be solved by a randomized protocol with O(log n) communication (see [18]). This
lower bound is particularly interesting since it demonstrates the first tight information-
complexity lower bound for a natural function that is not linear.

The key technical idea in the proof of Theorem 1.1 is a new simulation procedure
that allows us to convert any protocol that has information cost I into a (two-round)
protocol that has communication complexity O(I ) and succeeds with probability
> 1/2+ 2−O(I ), yielding a 2−O(I ) advantage over random guessing. Combined with
the discrepancy lower bound for communication complexity, this proves Theorem 1.1.

Our approach, namely, the observation that any nontrivial correlation with the
function’s output requires �(log(1/Discμ f )) communication, was used before by
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Viola and Wigderson [26], who observed the that the discrepancy of a function is
essentially equivalent to the maximum correlation obtainable by a 2-bit protocol. We
show here that this correlation is at least 1/2 + 2−�(I ) (See also Remark 3.6 in Sect.
3).

1.2 Comparison and Connections to Prior Results

The most relevant prior work is an article by Lee et al. [20]. Improving on an earlier
work of Shaltiel [23], Lee et al. show a direct product theorem for discrepancy, proving
that the discrepancy of f ⊗k—the k-wise XOR of a function f with itself—behaves as
Disc( f )�(k). This implies in particular that the communication complexity of f ⊗k

scales at least as �(k · log Disc( f )). Using the fact that the limit as k → ∞ of the
amortized communication complexity of f is equal to the information cost of f [4],
the result of Lee et al. “almost” implies the bound of Theorem 1.1. Unfortunately,
the amortized communication complexity in the sense of [4] is the amortized cost of
k copies of f , where each copy is allowed to err with some probability (say 1/10).
Generally speaking, this task is much easier than computing the XOR (which requires
all copies to be evaluated correctly with high probability). Thus the lower bound that
follows from Lee et al. applies to a more difficult problem, and does not imply the
information complexity lower bound.

Another generic approach one may try to take is to use compression results
such as [2] to lower bound the information cost from communication complex-
ity lower bounds. The logic of such a proof would go as follows: “Suppose there
was a information-complexity-I protocol π for f , then if one can compress it into
a low-communication protocol one may get a contradiction to the communication
complexity lower bound f ”. Unfortunately, all known compression results com-
press π into a protocol π ′ whose communication complexity depends on I but
also on CC(π). Even for external information complexity (which is always greater
than the internal information complexity, the bound obtained in [2] is of the form
Iext (π) · polylog(CC(π)). Thus compression results of this type cannot rule out
protocols that have low information complexity but a very high (e.g. exponential)
communication complexity.

Our result can be viewed as a weak compression result for protocols, where a proto-
col for computing f that conveys I bits of information is converted into a protocol that
uses O(I ) bits of communication and giving an advantage of 2−O(I ) in computing f .
This strengthens the result in [5] where a compression to 2O(I ) bits of communication
has been shown. It should be noted that compression to O(I ) bits of communication
and constant (say 2/3) success probability (as opposed to small advantage over ran-
dom guessing) has recently proven impossible by the breakthrough work of [10], who
showed that 2�(I ) bits is the best one can hope for.

In a very recent breakthrough work of Kerenidis et al. [17], our main protocol
played an important role in the proof that almost all known lower bound techniques
for communication complexity (and not just discrepancy) apply to information com-
plexity. The results of [17] shed more light on the information complexity of many
communication problems, and the question of whether interactive communication can
be compressed.

123



Algorithmica (2016) 76:846–864 851

2 Preliminaries

In an effort to make this paper as self-contained as possible, we provide some back-
ground on information theory and communication complexity, which is essential to
proving our results. For further details and a more thorough treatment of these subjects
see [4] and references therein.

Notation Wereserve capital letters for randomvariables and distributions, calligraphic
letters for sets, and small letters for elements of sets. Throughout this paper, we often
use the notation |b to denote conditioning on the event B = b. Thus A|b is shorthand
for A|B = b.
We use the standard notion of statistical/total variation distance between two distri-
butions.

Definition 2.1 Let D and F be two random variables taking values in a set S.
Their statistical distance is |D − F | de f= maxT ⊆S(|Pr[D ∈ T ] − Pr[F ∈ T ]|) =
1
2

∑

s∈S |Pr[D = s] − Pr[F = s]|

2.1 Information Theory

Definition 2.2 (Entropy) The entropy of a random variable X is H(X)
de f=

∑

x Pr[X = x] log(1/Pr[X = x]). The conditional entropy H(X |Y ) is defined as
Ey∈RY [H(X |Y = y)].

Definition 2.3 (Mutual Information) The mutual information between two random
variables A, B, denoted I (A; B) is defined to be the quantity H(A) − H(A|B)

= H(B) − H(B|A). The conditional mutual information I (A; B|C) is H(A|C)

− H(A|BC).

We also use the notion of divergence (also known as Kullback-Leibler distance
or relative entropy), which is a different way to measure the distance between two
distributions:

Definition 2.4 (Divergence) The informational divergence between two distributions
is

D (A||B)
de f=

∑

x

A(x) log(A(x)/B(x)).

Proposition 2.5 Let A, B,C be random variables in the same probability space. For
every a in the support of A and c in the support of C, let Ba denote B|A = a and Bac

denote B|A = a,C = c. Then I (A; B|C) = Ea,c∈R A,C [D (Bac||Bc)].

2.2 Communication Complexity

We use the standard definitions of the computational model defined in [27]. For com-
plete details see “Appendix 1”.
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Given a communication protocolπ ,π(x, y) denotes the concatenation of the public
randomness with all the messages that are sent during the execution of π . We call
this the transcript of the protocol. When referring to the random variable denoting
the transcript, rather than a specific transcript, we will use the notation �(x, y)—or
simply � when x and y are clear from the context, thus π(x, y) ∈R �(x, y). When x
and y are random variables themselves, we will denote the transcript by �(x, y), or
just �.

Definition 2.6 (Communication Complexity notation) For a function f : X × Y →
ZK , a distribution μ supported on X × Y , and a parameter ε > 0, Dμ

ε ( f ) denotes
the communication complexity of the cheapest deterministic protocol computing f
on inputs sampled according to μ with error ε.

Definition 2.7 (Combinatorial Rectangle) A Rectangle . in X × Y is a subset R ⊆
X × Y which satisfies (x1, y1) ∈ R and (x2, y2) ∈ R �⇒ (x1, y2) ∈ R

2.3 Information+Communication: The Information Cost of a Protocol

The following quantity, which is implicit in [7] and was explicitly defined in [2], is
the central notion of this paper.

Definition 2.8 The (internal) information cost of a protocolπ over inputs drawn from
a distribution μ on X × Y , is given by:

ICμ(π) := I (�; X |Y ) + I (�; Y |X).

Intuitively, Definition 2.8 captures how much the two parties learn about each other’s
inputs from the execution transcript of the protocol π . The first term captures what the
second player learns about X from �—the mutual information between the input X
and the transcript � given the input Y . Similarly, the second term captures what the
first player learns about Y from �.

Note that the information of a protocol π depends on the prior distribution μ, as
the mutual information between the transcript � and the inputs depends on the prior
distribution on the inputs. To give an extreme example, if μ is a singleton distribution,
i.e. one with μ({(x, y)}) = 1 for some (x, y) ∈ X × Y , then ICμ(π) = 0 for all
possible π , as no protocol can reveal anything to the players about the inputs that they
do not already know a-priori. Similarly, ICμ(π) = 0 if X = Y and μ is supported
on the diagonal {(x, x) : x ∈ X }. As expected, one can show that the communication
cost CC(π) of π is an upper bound on its information cost over any distribution μ:

Lemma 2.9 [4] For any distribution μ, ICμ(π) ≤ CC(π).

On the other hand, as noted in the introduction, the converse need not hold. In fact, by
[4], getting a strict inequality in Lemma 2.9 is equivalent to violating the direct sum
conjecture for randomized communication complexity.

As one might expect, the information cost of a function f with respect to μ and
error ρ is the least amount of information that needs to be revealed by a protocol
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computing f with error ≤ ρ:

ICμ( f, ρ) := inf
π : Pμ[π(x,y) �= f (x,y)]≤ρ

ICμ(π).

The (prior-free) information cost was defined in [5] as the minimum amount of infor-
mation that a worst-case error-ρ randomized protocol can reveal against all possible
prior distributions.

IC ( f, ρ) := inf
π is a protocol with P[π(x,y) �= f (x,y)]≤ρ for all (x,y)

max
μ

ICμ(π).

This information cost matches the amortized randomized communication complexity
of f [5]. It is clear that lower bounds on ICμ( f, ρ) for any distribution μ also apply
to IC ( f, ρ).

3 Proof of Theorem 1.1

To establish the correctness of Theorem 1.1, we prove the following theorem, which
is the central result of this paper:

Theorem 3.1 Suppose that ICμ( f, 1/10) = Iμ. Then there exist a protocol π ′ such
that

• CC(π ′) = O(Iμ).
• P(x,y)∼μ[π ′(x, y) = f (x, y)] ≥ 1/2 + 2−O(Iμ)

We first show how Theorem 1.1 follows from Theorem 3.1:

Proof of Theorem 1.1 Let f, μ be as in Theorem 1.1, and let ICμ( f, 1/10) = Iμ. By
Theorem 3.1, there exists a protocol π ′ computing f with error probability 1/2 −
2−O(Iμ) using O(Iμ) bits of communication. Applying the discrepancy lower bound
for communication complexity we obtain

O(Iμ) ≥ Dμ

1/2−2−O(Iμ)( f ) ≥ log(2 · 2−O(Iμ)/Discμ( f )) (1)

which after rearranging gives Iμ ≥ �(log(1/Discμ( f ))), as desired. ��
We turn to prove Theorem 3.1. The main step is the following sampling lemma.

Lemma 3.2 Letμ be any distribution over a universe U and let I ≥ 0 be a parameter
that is known to both A and B. Further, let νA and νB be two distributions over U
such thatD (μ||νA) ≤ I andD (μ||νB) ≤ I . The players are each given a pair of real
functions (pA, qA), (pB, qB), pA, qA, pB, qB : U → [0, 1] such that for all x ∈ U ,
μ(x) = pA(x) · pB(x), νA(x) = pA(x) · qA(x), and νB(x) = pB(x) · qB(x). Then
there is a (two round) sampling protocol �1 = �1(pA, pB, qA, qB , I ) which has the
following properties:
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1. at the end of the protocol, the players either declare that the protocol “fails”, or
output xA ∈ U and xB ∈ U , respectively (“success”).

2. let S be the event that the players output “success”. Then S ⇒ xA = xB, and
0.9 · 2−50(I+1) ≤ Pr[S] ≤ 2−50(I+1).

3. if μ1 is the distribution of xA conditioned on S, then |μ − μ1| < 2/9.

Furthermore,�1 can be “compressed” to a protocol�2 such thatCC(�2) = 211I +
1, whereas |�1 − �2| ≤ 2−59I (by an abuse of notation, here we identify �i with the
random variable representing its output).

Wewill use the following technical fact about the divergence of distributions, which
to best of our knowledge first appeared in the substate theorem of [13].

Claim 3.3 ([13], Claim 5.1 in [5]) Suppose thatD (μ||ν) ≤ I . Let ε be any parameter.
Then μ

{

x : 2(I+1)/ε · ν(x) < μ(x)
}

< ε.

For completeness, we repeat the proof in “Appendix 2”.

Proof of Lemma 3.2 Throughout the execution of �1, Alice and Bob interpret their
shared random tape as a source of points (xi , αi , βi ) uniformly distributed in U ×
[0, 250(I+1)]× [0, 250(I+1)]. Alice and Bob consider the first T = |U | · 2100(I+1) · 60I
such points. Their goal will be to discover the first index τ such that ατ ≤ pA(xτ )

and βτ ≤ pB(xτ ) (where they wish to find it using a minimal amount of communi-
cation, even if they are most likely to fail). First, we note that the probability that an
index t satisfies αt ≤ pA(xt ) and βt ≤ pB(xt ) is exactly 1/|U |250(I+1)250(I+1) =
1/|U |2100(I+1). Hence the probability that τ > T (i.e. that xτ is not among the T
points considered) is bounded by

(

1 − 1/|U |2100(I+1)
)T

< e−T/|U |2100(I+1) = e−60I < 2−60I (2)

Denote by A the following set of indices A := {i ≤ T : αi ≤ pA(xi ) and βi ≤
250(I+1) · qA(xi )}, the set of potential candidates for τ from A’s viewpoint. Similarly,
denote B := {i ≤ T : αi ≤ 250(I+1) · qB(xi ) and βi ≤ pB(xi )}.

The protocol �1 is very simple. Alice takes her bet on the first element a ∈ A and
sends it to Bob. Bob outputs a only if (it just so happens that) βτ ≤ pB(a).

We turn to analyze �1. Denote the set of “Good” elements by

G de f= {x : 250(I+1) · νA(x) ≥ μ(x) and 250(I+1) · νB(x) ≥ μ(x)}}.

Then by Claim 3.3, μ(G) ≥ 48/50 = 24/25. The following claim asserts that if it
succeeds, the output of �1 has the “correct” distribution on elements in G. ��
Proposition 3.4 Assume A is nonempty. Then for any xi ∈ U , the probability that
�1 outputs xi is at most μ(xi ) · 2−50(I+1). If xi ∈ G, then this probability is exactly
μ(xi ) · 2−50(I+1).
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Proof Note that ifA is nonempty, then for any xi ∈ U , the probability that xi is the first
element in A (i.e, a = xi ) is pA(xi )qA(xi ) = νA(xi ). By construction, the probability
that βi ≤ pB(a) is min{pB(xi )/(250(I+1)qA(xi )), 1}, and thus

Pr[�1 outputs xi ] ≤ pA(xi )qA(xi ) · pB(xi )

250(I+1)qA(xi )
= μ(xi ) · 2−50(I+1).

On the other hand, if xi ∈ G, then we know that pB(xi )/qA(xi ) = μ(xi )/νA(xi ) ≤
250(I+1), and so the probability that βi ≤ pB(a) is exactly pB(xi )/(250(I+1)qA(xi )).
Since Pr[�1 outputs xi ] = Pr[a = xi ]Pr[βi ≤ pB(a)] (assuming A is nonempty),
we conclude that:

xi ∈ G �⇒Pr[�1 outputs xi ] = pA(xi )qA(xi ) · pB(xi )

250(I+1)qA(xi )
= μ(xi ) · 2−50(I+1).

��
We are now ready to estimate the success probability of the protocol.

Proposition 3.5 Let S denote the event that A �= 0 and a ∈ B (i.e, that the protocol
succeeds). Then

0.9 · 2−50(I+1) ≤ Pr[S] ≤ 2−50(I+1).

Proof Using Proposition 3.4, we have that

Pr[S] ≤ P[a ∈ B | A �= ∅] =
∑

i∈U
Pr[a = xi ]Pr[βi ≤ pB(a)] ≤

≤
∑

i∈U
μ(xi ) · 2−50(I+1) = 2−50(I+1) (3)

For the lower bound, we have

Pr[S] ≥ Pr[βi ≤ pB(a) | A �= ∅] · Pr[A �= ∅]
≥ (1 − 2−60I )

(
∑

i∈U
Pr[a = xi ]Pr[βi ≤ pB(a)]

)

≥ (1 − 2−60I )

(
∑

i∈G
Pr[a = xi ]Pr[βi ≤ pB(a)]

)

= (1 − 2−60I )

(

2−50(I+1)
∑

i∈G
μ(xi )

)

= (1 − 2−60I )

(

2−50(I+1)μ(G)

)

≥ 24

25
(1 − 2−60I )2−50(I+1) ≥ 0.9 · 2−50(I+1) (4)

where the equality follows again from Claim 3.4. This proves the second claim of
Lemma 3.2. ��
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Information-cost sampling protocol Π2

1. Alice computes the set A. Bob computes the set B.

2. If A = ∅, the protocol fails. Otherwise, Alice finds the first element a ∈ A and sets
xA = a. She then computes d = 211I random hash values h1(a), . . . , hd(a), where the
hash functions are evaluated using public randomness.

3. Alice sends the values {hj(a)}1≤j≤d to Bob.

4. Bob finds the first index τ such that there is a b ∈ B for which hj(b) = hj(a) for j = 1..d
(if such an τ exists). Bob outputs xB = xτ . If there is no such index, the protocol fails.

5. Bob outputs xB (“success”).

6. Alice outputs xA.

Fig. 1 The sampling protocol �2 from Lemma 3.2

The following claim asserts that if S occurs, then the distribution of a is indeed
close to μ.

Claim 4 Let μ1 be the distribution of a|S. Then |μ1 − μ| ≤ 2/9.

Proof The claim follows directly from Proposition 3.5. We defer the proof to the
“Appendix 3”.

We turn to the “Furthermore” part of of Lemma 3.2. The protocol �1 satisfies the
premises of the lemma, except it has a high communication cost. This is due to the fact
that Alice explicitly sends a to Bob. To reduce the communication, Alice will instead
send O(I ) random hash values of a, and Bob will add corresponding consistency
constraints to his set of candidates. The final protocol �2 is given in Figure 1.

Let E denote the event that in step 3. of the protocol, Bob finds an element xi �= a
(that is, the probability that the protocol outputs “success” but xA �= xB). We upper
bound the probability of E . Given a ∈ A and xi ∈ B such that a �= xi , the probability
(over possible choices of the hash functions) that h j (a) = h j (xi ) for j = 1..d
is 2−d ≤ 2−211I . For any t , P[t ∈ B] ≤ 1

|U |
∑

xi∈U pB(xi )qB(xi ) · 250(I+1) =
1

|U |
∑

xi∈U νB(xi ) · 250(I+1) = 250(I+1)/|U |. Thus, by a union bound we have

P[E] ≤ P[∃xi ∈ B s.t xi �= a ∧ h j (a) = h j (xi ) ∀ j = 1, . . . , d]
≤ T · 250(I+1) · 2−d/|U | = 2150(I+1) · 60I · 2−211I � 2−60I . (5)

By a slight abuse of notation, let �2 be the distribution of �2’s output. Similarly,
denote by �1 the distribution of the output of protocol �1. Note that if E does not
occur, then the outcome of the execution of �2 is identical to the outcome of �1.
Since P[E] ≤ 2−60I , we have

|�2 − �1| = Pr[E] · |[�2|E] − [�1|E]| ≤ 2 · 2−60I � 2−59I

which finishes the proof of the lemma. ��
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Remark 3.6 The communication cost of the sampling protocol �2 can be reduced
from O(Iμ) to O(1) (more precisely, to only two bits) in the following way: Instead of
having Alice compute the hash values privately and send them to Bob in step 2 and 3 of
the protocol, the players can use their shared randomness to sample d = O(Iμ) random
hash values h1(b1), . . . , hd(bd) (where the bi ’s are random independent strings in U),
and Alice will only send Bob a single bit indicating whether those hash values match
the hashing of her string a (i.e, hi (bi ) = hi (a) for all i ∈ [d]). In step 4 Bob will act
as before, albeit comparing the hashes of his candidate b to the random hashes hi (bi ),
and output success (“1”) if the hashes match. Note that this modification incurs an
additional loss of 2−d = 2−O(Iμ) in the success probability of the protocol (as this is
the probability that hi (bi ) = hi (a) for all i ∈ [d]), but since the success probability
we are shooting for is already of the order 2−O(Iμ), we can afford this loss. This
modification was discovered in [17].

With Lemma 3.2 in hand, we are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let π be a protocol that realizes the value Iμ := ICμ( f, 1/10).
In other words, π has an error rate of at most 1/10 and information cost of at most Iμ
with respect to μ. Denote by πxy the random variable that represents that transcript
π given the inputs (x, y), and by πx (resp. πy) the protocol conditioned on only the
input x (resp. y). We denote by πXY the transcripts where (X,Y ) are also a pair of
random variables. By Claim 3.3, we know that

Iμ = I (X;πXY |Y ) + I (Y ;πXY |X) = E(x,y)∼μ[D (

πxy ||πx
) + D

(

πxy ||πy
)]. (6)

Let us now run the sampling algorithm �1 from Lemma 3.2, with the distribution
μ taken to be πxy , the distributions νA and νB taken to be πx and πy respectively, and
I taken to be 20Iμ.

At each node v of the protocol tree that is owned by player X let p0(v) and p1(v) =
1− p0(v) denote the probabilities that the next bit sent by X is 0 and 1, respectively. For
nodes owned by player Y , let q0(v) and q1(v) = 1−q0(v) denote the probabilities that
the next bit sent byY is 0 and 1, respectively, as estimated by player X given the input x .
For each leaf  let pX () be the product of all the values of pb(v) from the nodes that are
ownedby X along the path from the root to ; letqX ()be the product of all the values of
qb(v) from the nodes that are owned by Y along the path from the root to . The values
pY () and qY () are defined similarly. For each wehaveP[πxy = ] = pX ()·pY (),
P[πx = ] = pX () · qX (), and P[πy = ] = pY () · qY (). Thus we can apply
Lemma 3.2 so as to obtain the following protocol π ′ for computing f :

• If �1 fails, we return a random unbiased coin flip.
• If �1 succeeds, we return the final bit of the transcript sample T . Denote this bit
by Tout .

To prove the correctness of the protocol, let Z denote the event that both
D

(

πxy ||πx
) ≤ 20Iμ and D

(

πxy ||πy
) ≤ 20Iμ. By (6) and Markov inequality,

Pr[Z] ≥ 19/20 (where the probability is taken with respect to μ). Denote by δ the
probability that �1 succeeds. By the assertions of Lemma 3.2, δ ≥ 0.9 · 2−50(I+1).
Furthermore, if �1 succeeds, then we have |T − πxy | ≤ 2/9, which in particular
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implies that P[Tout = πout ] ≥ 7/9. Finally, P[πout = f (x, y)] ≥ 9/10, since π has
error at most 1/10 with respect to μ. Now, let W denote the indicator variable whose
value is 1 iff π ′(x, y) = f (x, y). Putting together the above,

E[W | Z] = (1 − δ) · 1
2

+ δ ·
(
7

9
− 1

10

)

>
1

2
+ δ · 1

6
>

1

2
+ 1

8
· 2−50(I+1). (7)

On the other hand, note that by Lemma 3.2 the probability that �1 succeeds is
at most 2−50(I+1) (no matter how large D

(

πxy ||πx
)

and D
(

πxy ||πy
)

are!), and so
E[W | ¬Z] ≥ (1 − 2−50(I+1))/2.
Hence we conclude that

E[W] = E[W | Z] · P[Z] + E[W | ¬Z] · P[¬Z] ≥
(
1

2
+ 1

8
· 2−50(I+1)

)

· 19
20

+
(

1 − 2−50(I+1)
)

· 1
2

· 1

20
≥ 1

2
+ 1

12
· 2−50(I+1) >

1

2
+ 1

12
· 2−1000(Iμ+1).

Finally, Lemma 3.2 asserts that |�1 − �2| < 2−59I . Thus if we replace �1 by
�2 in the execution of protocol π ′, the success probability decreases by at most
2−59I � 1

12 · 2−50(I+1). Furthermore, the amount of communication used by π ′ is
now

211I = 4220Iμ = O(Iμ).

Hence we conclude that with this modification, π ′ has the following properties:

• CC(π ′) = 4220 · Iμ;
• P(x,y)∼μ[π ′(x, y) = f (x, y)] ≥ 1/2 + 2−1000(Iμ+1)−4;

which completes the proof. ��

Remark 3.7 Using similar techniques, Braverman [5] showed previously that any
function f whose information complexity is I has communication cost at most
2O(I ) 1, thus implying that IC( f ) ≥ �(log(CC( f ))). We note that this result can
be easily derived (up to constant factors) from Theorem 3.1. Indeed, applying the
“compressed” protocol 2O(I ) log(1/ε) independent times and taking a majority vote
guarantees an error of at most ε (by a standard Chernoff bound2), with communication
O(I ) · 2O(I ) = 2O(I ). Thus, our result is strictly stronger than the former one.

Acknowledgments We thank Ankit Garg and several anonymous reviewers for their useful comments and
helpful discussions.

1 More precisely, it shows that for any distribution μ, Dμ
ε+δ( f ) = 2O(1+ICμ( f,ε)/δ2).

2 See N.Alon and J. Spencer, “The Probabilistic Method” (Third Edition) ,Corollary A.1.14, p.312.
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Appendix 1: Communication Complexity

Let X ,Y denote the set of possible inputs to the two players, who we name A and B.
We view a private coins protocol for computing a function f : X × Y → ZK as a
rooted tree with the following structure:

• Each non-leaf node is owned by A or by B.
• Each non-leaf node owned by a particular player has a set of children that are
owned by the other player. Each of these children is labeled by a binary string, in
such a way that this coding is prefix free: no child has a label that is a prefix of
another child.

• Every node is associated with a function mapping X to distributions on children
of the node and a function mapping Y to distributions on children of the node.

• The leaves of the protocol are labeled by output values.

A public coin protocol is a distribution on private coins protocols, run by first
using shared randomness to sample an index r and then running the corresponding
private coin protocol πr . Every private coin protocol is thus a public coin protocol.
The protocol is called deterministic if all distributions labeling the nodes have support
size 1.

Definition 3.8 The communication cost (or communication complexity) of a public
coin protocol π , denoted CC(π), is the maximum number of bits that can be trans-
mitted in any run of the protocol.

Definition 3.9 The number of rounds of a public coin protocol is the maximum depth
of the protocol tree πr over all choices of the public randomness.

Appendix 2: Proof of Claim 3.3 (cf. [5])

Proof Recall that D (μ||ν) = ∑

x∈U μ(x) log μ(x)
ν(x) . Denote by N = {x : μ(x) <

ν(x)}—the terms that contribute a negative amount to D (μ||ν). First we observe that
for all 0 < x < 1, x log x > −1, and thus

∑

x∈N
μ(x) log

μ(x)

ν(x)
=

∑

x∈N
ν(x) · μ(x)

ν(x)
log

μ(x)

ν(x)
≥

∑

x∈N
ν(x) · (−1) > −1.

Denote by L = {

x : 2(I+1)/ε · ν(x) < μ(x)
}

; we need to show that μ(L) < ε. For

each x ∈ L we have log μ(x)
ν(x) > (I + 1)/ε. Thus

I ≥ D (μ||ν) ≥
∑

x∈L
μ(x) log

μ(x)

ν(x)
+

∑

x∈N
μ(x) log

μ(x)

ν(x)
> μ(L) · (I + 1)/ε − 1,

implying μ(L) < ε. ��
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Appendix 3: Proof of Claim 4

Proof For any xi ∈ U ,

μ1(xi ) = Pr(a = xi | S) ≤ μ(xi )2−50(I+1)

Pr[S] ≤ μ(xi )

0.9
= (1 + 1/9)μ(xi ) (8)

where the last inequality follows from Proposition 3.5. Hence, |μ1 − μ| =

2

(
∑

xi :μ1(xi )≥μ(xi )

μ1(xi ) − μ(xi )

)

≤ 2

(
∑

xi :μ1(xi )≥μ(xi )

(1 + 1/9)μ(xi ) − μ(xi )

)

≤ 2

9

This proves Claim (3) of the lemma. ��

Appendix 4: Proof of Lemma 1.4: The Discrepancy of the Greater-Than
Function

Weconsider theGreater-Than function on n-bit strings.We start by defining the “hard”
distribution μ. A pair (x, y) is sampled as follows:

1. Sample an index k ∈ {1, . . . , n} uniformly at random.
2. Sample z1, . . . , zk−1, w, xk+1, . . . , xn , yk+1, . . . , yn—uniformly random bits.
3. Let x = z1, . . . , zk−1, w, xk+1, . . . , xn , y = z1, . . . , zk−1, w, yk+1, . . . , yn .

Denote this distribution by μn . Let GTn(x, y) = 1 iff x > y. We will prove the
following Lemma:

Lemma 3.10 The discrepancy of GTn with respect to μn satisfies

Discμn (GTn) <
20√
n
.

In fact, to facilitate an inductive proof, we will show a slightly stronger statement:

Lemma 3.11 Let R = S × T be a rectangle in {0, 1}n × {0, 1}n. Let s := |S|/2n and
t := |T |/2n be the uniform size of S and T respectively. Then

Discμn (GTn, R) <
20

√
st√
n

.

Note that Lemma 3.11 immediately implies Lemma 3.10.

Proof We prove Lemma 3.11 by induction on n. The statement is trivially true for
n = 1. Assume the statement is true for n − 1. Our goal is to prove it for n. Let
R = S × T be any rectangle in {0, 1}n × {0, 1}n . By a slight abuse of notation we
write:

123



Algorithmica (2016) 76:846–864 861

Discμn (GTn, R) = Pr
μn

[ f (x, y) = 1 ∧ (x, y) ∈ R] − Pr
μn

[ f (x, y) = 0 ∧ (x, y) ∈ R],

and prove an upper bound on this quantity (without | · |). The matching upper bound
on −Discμn (GTn, R) follows by an identical argument.

Let s := |S|/2n and t := |T |/2n . Denote by S0 the set of strings in S that begin
with a 0, and S1 := S \ S0. Similarly, define T0 and T1. Further, let p := |S0|/|S| and
q := |T0|/|T |.

Note that restricted to S0 × T0, μn is the same distribution as μn−1, scaled by a
factor of n−1

2n . Moreover, s0 := |S0|/2n−1 = ps2n/2n−1 = 2ps. Similarly, s1 :=
|S1|/2n−1 = 2(1− p)s, t0 := |T0|/2n−1 = 2qt , t1 := |T1|/2n−1 = 2(1−q)t . Putting
these pieces together, and applying the inductive hypothesis we get:

Discμn (GTn, S × T ) = Discμn (GTn, S0 × T0) + Discμn (GTn, S1 × T1)

+Discμn (GTn, S1 × T0) + Discμn (GTn, S0 × T1)

= n − 1

2n
· Discμn−1(GTn−1, S0 × T0) + n − 1

2n
·Discμn−1(GTn−1, S1 × T1)

+2

n
(1 − p)sqt − 2

n
ps(1 − q)t

<
n − 1

2n
· 20

√
s0t0√

n − 1
+ n − 1

2n
· 20

√
s1t1√

n − 1
+ 2

n
(q − p)st

= 1√
n

(√

n − 1

n
·
(

20
√
pq · √

st+20
√

(1− p)(1−q) · √
st

)

+ 2√
n
(q − p)st

)

. (9)

If q − p < 0, we continue (9) as follows:

RHS ≤ 1√
n

(√

n − 1

n
·
(

20
√
pq · √

st + 20
√

(1 − p)(1 − q) · √
st

)
)

≤ 20
√
st√
n

·
(√

pq + √

(1 − p)(1 − q)
)

≤ 20
√
st√
n

,

where the last inequality follows from simple calculations.
On the other hand, in the more difficult case when q − p ≥ 0, we use the fact the

st ≤ 1 to continue (9) as follows:

RHS≤ 1√
n

(√

n−1

n
·
(

20
√
pq ·√st+20

√

(1− p)(1−q) · √
st

)

+ 2√
n
(q− p)

√
st

)

= 20
√
st√
n

(√

n − 1

n
·
(√

pq + √

(1 − p)(1 − q)
)

+ 1

10
√
n
(q − p)

)

(10)
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Next, we use the readily verifiable facts that
√

n−1
n < 1 − 1

2n and that
√
pq +√

(1 − p)(1 − q) ≤ 1 − (q − p)2/4, to continue (10) as follows:

RHS ≤ 20
√
st√
n

((

1 − 1

2n

)

·
(

1 − (q − p)2/4
)

+ 1

10
√
n
(q − p)

)

≤ 20
√
st√
n

((

1 − 1

4n
− (q − p)2/8

)

+ 1

10
√
n
(q − p)

)

= 20
√
st√
n

(

1 −
(
1/(2n) + (q − p)2/4

2

)

+ 1

10
√
n
(q − p)

)

≤ 20
√
st√
n

⎛

⎝1 −
√

1

2n
· (q − p)2

4
+ 1

10
√
n
(q − p)

⎞

⎠

= 20
√
st√
n

(

1 − 1√
8
√
n
(q − p) + 1

10
√
n
(q − p)

)

≤ 20
√
st√
n

, (11)

where the third-to-last inequality follows from the fact that for all 0 ≤ a, b ≤ 1,
(1 − a)(1 − b) ≤ 1 − a/2 − b/2, and the second-to-last one in an application of the
AM-GM inequality. ��

Appendix 5: Sampling Protocol from Lemma 3.2

See Figure2.

Information-cost sampling protocol Π1

1. Alice computes the set A. Bob computes the set B.

2. If A = ∅, the protocol fails, otherwise Alice finds the first element a ∈ A, and sends a to
Bob.

3. Bob checks if a ∈ B. If not, the protocol fails.

4. Alice and Bob output a (“success”).

Fig. 2 The sampling protocol �1 from Lemma 3.2
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