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Abstract Given a collection of phylogenetic trees on the same leaf label-set, the
Maximum Agreement Forest problem (Maf) asks for a largest common subforest
of these trees. The Maf problem on two binary phylogenetic trees has been studied
extensively. In this paper, we are focused on the Maf problem on multiple (i.e., two
or more) binary phylogenetic trees and present two polynomial-time approximation
algorithms, one for the Maf problem on multiple rooted trees, and the other for the
Maf problem on multiple unrooted trees. The ratio of our algorithm for the Maf
problem on multiple rooted trees is 3, which is an improvement over the previous best
ratio 8 for the problem. Our approximation algorithm of ratio 4 for theMaf problem
on multiple unrooted trees is the first constant ratio approximation algorithm for the
problem.
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1 Introduction

Phylogenetic (evolutionary) trees have been widely used in the study of evolutionary
biology to represent the tree-like evolution of a collection of species. Given the same
set of species, different data sets and different building methods may result in the
construction of different trees. In order to facilitate the comparison of these different
phylogenetic trees, several distance metrics have been proposed, such as Robinson
and Foulds [17] distance, the Nearest Neighbor Interchange (NNI) distance [15], the
Tree-Bisection and Reconnection (TBR) distance and the Subtree-Prune and Regraft
(SPR) distance [7,23]. In particular, SPRandTBRdistances have been commonly used
in phylogenetic inference [12], and SPR operations have been applied to investigate
lateral genetic transfer [3,26] and MCMC search [27].

A graph theoretical model, the maximum agreement forest (maf) of two phyloge-
netic trees, has been formulated for the TBR distance and for the SPR distance [14]
for phylogenetic trees. Define the order of a forest to be the number of connected
components in the forest.1 Allen and Steel [2] proved that the TBR distance between
two unrooted binary phylogenetic trees is equal to the order of theirmafminus 1, and
Bordewich and Semple [6] proved that the rSPR distance between two rooted binary
phylogenetic trees is equal to the order of their rooted version ofmafminus 1. In terms
of computational complexity, it is known that the Maximum Agreement Forest
problem (Maf), i.e., constructing an maf, is NP-hard and MAX SNP-hard for two
unrooted binary phylogenetic trees [14], as well as for two rooted binary phylogenetic
trees [6].

Approximation algorithms have been studied for theMaf problem, mainly on two
trees. For the Maf problem on two rooted binary phylogenetic trees, Hein et al. [14]
proposed an approximation algorithm and claimed that the ratio of the algorithmwas 3.
LaterRodrigues et al. [18] found a subtle error in [14], showed that the algorithm in [14]
has ratio at least 4, and presented a new approximation algorithm which they claimed
had ratio 3. Bonet et al. [4] provided a counterexample and showed that both the
algorithms in [14] and [18] compute a 5-approximation of the rSPR distance between
two rooted binary trees. The approximation ratio was improved to 3 by Bordewich
et al. [5], but at the expense of an increased running time of O(n5). A second 3-
approximation algorithmpresented in [19] achieves a running time of O(n2).Whidden
and Zeh [24] presented the third 3-approximation algorithm, whose running time is
linear. Recently, Shi et al. [21] presented a approximation algorithm of ratio 2.5,
which is the best known approximation algorithm for theMaf problem on two rooted

1 Some definitions in the study of maximum agreement forests have been somewhat confusing and mis-
leading. If size denotes the number of edges in a forest, then the size of a forest is equal to the number
of vertices minus its order. Thus, when the number of vertices is fixed, a forest of large size implies a
small order. The terminology of “maximum agreement forest” means an agreement forest of the maximum
size. However, as it has been studied in the literature, the maximum agreement forest problem is indeed a
minimization problem, with the objective of minimizing the order of an agreement forest.
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binary trees. For theMaf problem on two unrooted binary phylogenetic trees, the best
approximation algorithm is due to Whidden and Zeh [24], which runs in linear-time
and has a ratio 3.

There are also a couple of approximation algorithms for the Maf problem on two
general (i.e., binary andnon-binary) phylogenetic trees.Rodrigues et al. [19] developed
an approximation algorithm of ratio d +1 for theMaf problem on two rooted general
trees, where d is the maximum number of children a vertex in the input trees may have.
Chen et al. [9] developed an approximation algorithm of ratio 3 recently, which is the
first constant-ratio approximation algorithm for the Maf problem on two unrooted
general trees.

TheMaf problemonmultiple phylogenetic trees has not been studied as extensively
as that on two trees. To our best knowledge, there is currently no known approximation
algorithm for the Maf problem on multiple unrooted binary phylogenetic trees. The
only approximation algorithm for the problem on multiple phylogenetic trees is an
8-approximation algorithm developed by Chataigner [8], which is for the problem on
two or more rooted binary trees.

We remark that it makes perfect sense to investigate the Maf problem on more
than two phylogenetic trees: we may construct two or more different phylogenetic
trees for the same collection of species according to different data sets and different
building methods. An maf of order k for a set of phylogenetic trees means that for
any two phylogenetic trees Ti and Tj in the given set, the TBR distance (if the trees
are unrooted) or the rSPR distance (if the trees are rooted) between Ti and Tj is not
larger than k − 1. Moreover, the order of an maf of a collection of rooted trees is a
lower bound on their hybridization number as it is a lower bound on the order of a
maximumacyclic agreement forest of the trees, which is equal to theminimumnumber
of hybridization nodes (nodes with multiple incoming edges) over all hybridization
networks displaying the given collection of trees [28].On the other hand, it seemsmuch
more difficult to construct anmaf for more than two trees than that for two trees. For
example, while there have been several polynomial-time approximation algorithms
of ratio 3 for the Maf problem on two rooted binary phylogenetic trees [5,19,24],
the best polynomial-time approximation algorithm [8] for the Maf problem on more
than two rooted binary phylogenetic trees has a ratio 8. Also, to our best knowledge,
there are currently no known polynomial-time approximation algorithms for theMaf
problem on multiple unrooted binary phylogenetic trees.

In the current paper, we are focused on polynomial-time approximation algorithms
for the Maf problem on multiple (i.e., two or more) binary phylogenetic trees, for
both the version of rooted trees and the version of unrooted trees. We propose a very
general framework for approximation algorithms for theMaf problem, which is valid
for both rooted trees and unrooted trees. Our major contribution is the introduction of
the concept of “edge-removal meta-steps” (or simply “meta-steps”) and of the metric
that evaluates the quality of the meta-steps. Roughly speaking, each meta-step is a
sequence of consecutive edge removal operations, and the metric measures the ratio
of the number of “essential edges” over the number of “correct edges” removed by
the meta-step. A subtle issue is how to define and identify essential edges and correct
edges in the entire set of edges removed by a meta-step. Our framework consists of
meta-steps. We formally prove that as long as the meta-steps meet certain given con-
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ditions in terms of their metric, the corresponding algorithm based on our framework
is an approximation algorithm with a specific approximation ratio. We then work on
the careful development of the meta-steps, for rooted trees and then for unrooted trees,
focusing on achieving meta-steps that are good in terms of the proposed metric. This
development results in a polynomial-time 3-approximation algorithm for the Maf
problem on multiple rooted binary phylogenetic trees, which is an improvement over
the previous best 8-approximation algorithm for the problem, andwhose ratio matches
the best known approximation ratio for the problemon two rooted binary trees.We also
present a polynomial-time 4-approximation algorithm for theMaf problem on multi-
ple unrooted binary phylogenetic trees, giving the first constant-ratio approximation
algorithm for the problem.

2 Problem Formulations

We assume that readers are familiar with the general terminology of graph theory
[11]. Our definitions for the study in maximum agreement forests are consistent with
those used in the literature [6,13,14,24]. A single-vertex tree is a tree that consists of
a single vertex, and a single-edge tree is a tree that consists of a single edge. A tree is
binary if either it is a single-vertex tree or each of its vertices has degree either 1 or 3.
The degree-1 vertices are leaves and the degree-3 vertices are non-leaves of the tree.
For a subset E ′ of edges in a graph G, we will denote by G \ E ′ the graph G with the
edges in E ′ removed (so G \ E ′ and G have the same vertex set).

The problem in our discussion has two versions, one is on unrooted trees and the
other is on rooted trees. We first give the terminologies on the unrooted version, then
remark on the differences for the rooted version. Let X be a fixed label-set.

2.1 X-Trees and X-Forests: The Unrooted Version

A binary tree is unrooted if no root is specified in the tree—in this case no ancestor–
descendant relation is defined in the tree. For a label-set X , an unrooted binary
phylogenetic X-tree, or simply an unrooted X -tree, is an unrooted binary tree whose
leaves are labeled bijectively by the label-set X (and all non-leaves are unlabeled).
An unrooted X -tree will also be called an (unrooted) leaf-labeled tree when there is
no need to specify the label-set X . An unrooted X -forest F is a collection of disjoint
leaf-labeled trees whose label-sets are disjoint such that the union of the label-sets is
equal to X .

A subtree T ′ of an unrooted X -tree may contain unlabeled vertices of degree<3. In
this case we apply the forced contraction operation on T ′, which, repeatedly, replaces
eachdegree-2 vertexv and its incident edgeswith an edge connecting the twoneighbors
of v, and removes all unlabeled vertices of degree smaller than 2. An X -forest F is
irreducible if forced contraction is not applicable to F . When we want to emphasize
that forced contraction has been applied on a graph G, we add a subscript “fc” and
write it as (G)fc, which is irreducible. After forced contraction, an unlabeled vertex in
an unrooted X -forest is always of degree 3.
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Two leaf-labeled forests F1 and F2 are isomorphic if there is a graph isomorphism
between F1 and F2 in which each leaf of F1 is mapped to a leaf of F2 with the
same label. We will simply say that a leaf-labeled forest F ′ is a subgraph of another
leaf-labeled forest F if (F ′)fc is isomorphic to (F ′′)fc for some subgraph F ′′ of F .

2.2 X-Trees and X-Forests: The Rooted Version

A binary tree is rooted if a particular leaf is designated as the root (so it is both a
root and a leaf), which specifies a well-defined ancestor–descendant relation in the
tree. A rooted X -tree is a rooted binary tree whose leaves are labeled bijectively by
the label-set X . The root of an X -tree will always be labeled by a special label ρ in
X . A subtree T ′ of a rooted X -tree T is a connected subgraph of T that contains at
least one leaf in T . In order to preserve the ancestor–descendant relation in the rooted
tree T , we should define the root of the subtree T ′. If T ′ contains the leaf labeled ρ,
then, certainly, ρ is the root of the subtree T ′; otherwise, the vertex in T ′ that is in T
the least common ancestor of all the labeled leaves in T ′ is defined to be the root of
T ′. A rooted X -forest F is a subgraph of a rooted X -tree T that contains all leaves
of T . Thus, the X -forest F is a collection of disjoint (rooted) subtrees of the rooted
X -tree T with disjoint leaf label-sets whose union is equal to X . In particular, one of
the subtrees in a rooted X -forest F must have the leaf labeled ρ as its root.

We again have the forced contraction operation applied on a subtree T ′ of a rooted
X -tree.However, if the root r of the subtreeT ′ is of degree 2, then the forced contraction
operationwill not be applied on r , in order to preserve the ancestor–descendant relation
in T ′. Therefore, after forced contraction, the root of a subtree T ′ of a rooted X -forest
is either an unlabeled vertex of degree 2, or the vertex labeled ρ of degree 1, or a
labeled vertex of degree 0. Every unlabeled vertex in the subtree T ′ that is not the root
of T ′ has degree 3.

2.3 Agreement Forests

The following terminologies are used for both rooted and unrooted versions. The
order of an X -forest F , denoted Ord(F), is the number of connected components of
F that contain at least one leaf of F , or equivalently, Ord(F) is equal to the number
of connected components of (F)fc.

An agreement forest for a collection {F1, F2, . . . , Fm} of X -forests is an X -forest
that is a subgraph of Fi , for all 1 ≤ i ≤ m. Note that since the concept of “subgraph”
in X -forests is defined based on the forced contracted versions of the X -forests, forced
contraction on any related X -forest will not affect the construction of an agreement
forest for a given collection of X -forests. This fact has been well observed and used
in the research on theMaf problems, see, for example, [2,4–6,13,14].

A maximum agreement forest (abbr. maf) for the collection {F1, F2, . . . , Fm} of
X -forests is an agreement forest for {F1, F2, . . . , Fm} of the minimum order over all
agreement forests for {F1, F2, . . . , Fm}.

The problems we are focused on in this paper are formally described as follows.
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The Rooted Maximum Agreement Forest problem (rooted Maf)
Input: A set {F1, . . . , Fm} of rooted X -forests
Output: anmaf, i.e., an agreement forest of the minimum order for {F1, . . . , Fm}
The Unrooted Maximum Agreement Forest problem (unrooted Maf)
Input: A set {F1, . . . , Fm} of unrooted X -forests
Output: anmaf, i.e., an agreement forest of the minimum order for {F1, . . . , Fm}

When each of the X -forests F1, . . ., Fm is an X -tree, the above problems become the
standardMaximum Agreement Forest problems on multiple binary phylogenetic
trees, for the rooted version and for the unrooted version, respectively.

3 Approximating MAF: A General Framework

We now present a general framework for approximation algorithms for theMaf prob-
lems. The discussion is valid for both rooted and unrooted versions of the problem.

In this section, we will assume that the forced contraction operation is not applied
unless we explicitly require it. Therefore, a subgraph F ′ of an X -forest F may contain
vertices of degree <3 that are non-leaves in the original X -forest F . We will call the
vertices in F ′ “labeled vertices” and “unlabeled vertices” to refer to the leaves and
non-leaves in the X -forest F , respectively. We will relax our definition and call such a
forest F ′ an X -forest if there is a one-to-one mapping between the label-set X and the
labeled vertices of F ′. A connected component of F ′ is an l-component if it contains at
least one labeled vertex. The order Ord(F ′) of F ′ is the number of l-components of F ′.

For any edge set E ′ in an X -forest F , we haveOrd(F\E ′) ≤ Ord(F)+|E ′|. An edge
subset E ′ of an X -forest F is an essential edge-subset (abbr. ee-set) if Ord(F \ E ′) =
Ord(F) + |E ′|. Note that every subset of an ee-set for F is an ee-set: if a subset E ′′ of
an ee-set E ′ for F is not an ee-set for F , then the forest F \ E ′′ has its order smaller
than Ord(F)+|E ′′| so the order of the forest F \ E ′ = (F \ E ′′)\ (E ′ \ E ′′) is smaller
than Ord(F) + |E ′′| + |E ′ \ E ′′| = Ord(F) + |E ′|, contradicting the fact that E ′ is
an ee-set for F . On the other hand, the union of ee-sets for F may not be an ee-set:
for example, in an unrooted tree with a single non-leaf and three labeled leaves, every
edge makes an ee-set but the union of the three edges is not an ee-set. Nevertheless,
we have the following result.

Lemma 1 Let F be an X-forest and let E1 be an edge subset in F. Then for every
ee-set E ′

1 ⊆ E1 for F and for every ee-set E2 for F \ E1, E ′
1 ∪ E2 is an ee-set for F.

Proof Let E ′′
1 be a largest ee-set for F that is a subset of E1 and contains E ′

1. Thus,
Ord(F \ E1) = Ord(F) + |E ′′

1 |. We first show that E ′′
1 ∪ E2 is an ee-set for F . Let

F1 = F \ (E ′′
1 ∪ E2).

Claim F1 and F1 \ (E1 \ E ′′
1 ) have the same order.

To prove the claim, assume the contrary that the order of F1 \ (E1 \ E ′′
1 ) is larger

than that of F1. Then removing the edges of E1 \ E ′′
1 from F1 would split some

l-component of F1 into at least two l-components. Since each l-component of F1
= F \ (E ′′

1 ∪ E2) is a subgraph of an l-component of F \ E ′′
1 , removing the edges

of E1 \ E ′′
1 from F \ E ′′

1 would also split some l-component of F \ E ′′
1 into at least
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two l-components (note that all these l-components are trees). This implies that the
order of (F \ E ′′

1 ) \ (E1 \ E ′′
1 ) = F \ E1 is larger than the order of F \ E ′′

1 . But
this contradicts the assumption that E ′′

1 is an ee-set for F and that Ord(F \ E1)

= Ord(F) + |E ′′
1 |. This contradiction proves the claim that F1 and F1 \ (E1 \ E ′′

1 )

have the same order.
Since E2 is an ee-set for F \ E1, the order of (F \ E1) \ E2 = (F \ (E ′′

1 ∪ E2)) \
(E1 \ E ′′

1 ) = F1 \ (E1 \ E ′′
1 ) is equal to Ord(F \ E1)+ |E2| = Ord(F)+ |E ′′

1 | + |E2|.
By the above claim, the order of F1 = F \ (E ′′

1 ∪ E2) is also Ord(F)+ |E ′′
1 | + |E2| =

Ord(F) + |E ′′
1 ∪ E2|, which derives that E ′′

1 ∪ E2 is an ee-set for F .
Since every subset of an ee-set for F is also an ee-set, and since E ′

1 ∪ E2 is a subset
of the ee-set E ′′

1 ∪ E2 for F , we conclude that E ′
1 ∪ E2 is an ee-set for F . ��

It is easy to see that for any X -subforest F ′ of an X -forest F , there is an ee-set E ′
of Ord(F ′) − Ord(F) edges in F such that (F ′)fc = (F \ E ′)fc.

Up to forced contraction, every irreducible agreement forest F ′ for an instance
{F1, . . . , Fm} of Maf corresponds to a unique subgraph F ′

i of Fi , for each i . Thus,
without any confusion, we can simply say that an edge e in Fi is in or is not in the
agreement forest F ′, as long as the edge e is in or is not in the corresponding unique
subforest F ′

i of Fi , respectively.
Our approximation algorithms for Maf consist of a sequence of “meta-steps”. An

edge-removal meta-step (or simply ameta-step) in an algorithm forMaf is a collection
of consecutive computational steps in the algorithm that on an instance {F1, . . . , Fm}
ofMaf removes certain edges in the forests in {F1, . . . , Fm} (and then applies forced
contraction). Our approximation algorithms have the following general framework
(for both rooted and unrooted versions).

The performance of the algorithm Apx-MAF heavily depends on the quality of the
meta-steps we employ in step 2 of the algorithm. For this, we introduce the following
concept that measures the quality of a meta-step, where r ≥ 1 is an arbitrary real
number.

Definition-R A meta-step σ , which removes a set Eσ of edges in the forests in
I = {F1, . . . , Fm}, keeps a ratio r , where r ≥ 1, if Eσ contains a subset Eσ

1 of edges in
F1 such that no edge in Eσ \ Eσ

1 is in any agreement forest for {F1 \ Eσ
1 , F2, . . . , Fm},

and for each agreement forest F ′ for I, there is an ee-set Eσ
1,F ′ for F1, Eσ

1,F ′ ⊆ Eσ
1 ,

|Eσ
1,F ′ | ≥ |Eσ

1 |/r , and no edge in Eσ
1,F ′ is in F ′.

Remark 1 The meta-step σ above may also remove other edges in the forest F1 that
are not in the subset Eσ

1 , as long as these edges are not in any agreement forest for
{F1 \ Eσ

1 , F2, . . . , Fm}.
Remark 2 By definition, adding to the meta-step σ more edge removals that remove
edges not in any agreement forest for {F1 \ Eσ

1 , F2, . . . , Fm} does not change the ratio
of the meta-step σ . In particular, if the meta-step σ removes only edges not in any
agreement forest for {F1, F2, . . . , Fm}, then we can let Eσ

1 = ∅, and the meta-step σ

keeps a ratio 1.

Remark 3 Definition-R looks rather complicated, for which we give some intuitive
explanations. Our algorithm operates on an instance {F1, F2, . . . , Fm} by deleting
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edges in F1, F2, . . ., Fm to eventually make F1, F2, . . ., Fm identical, which thus gives
an agreement forest for the original {F1, F2, . . . , Fm}. Therefore, allowing the edge
set Eσ removed by the meta-step σ to contain edges not only in F1 but also in F2, . . .,
Fm seems necessary. However, we require that the edge set Eσ contain an “important”
subset Eσ

1 in F1 such that removing Eσ is not worse than removing Eσ
1 (this is the

condition that no edge in Eσ \Eσ
1 is in any agreement forest for {F1\Eσ

1 , F2, . . . , Fm}).
Moreover, for each agreement forest F ′ for {F1, F2, . . . , Fm}, we require that there be
a “correct” subset Eσ

1,F ′ of Eσ
1 (this is given by the conditions that Eσ

1,F ′ is an ee-set
for F1 and that no edge in Eσ

1,F ′ is in F ′) such that removing Eσ
1 is not worse than r

times removing Eσ
1,F ′ (this is given by the condition Eσ

1,F ′ ⊆ Eσ
1 , |Eσ

1,F ′ | ≥ |Eσ
1 |/r ).

Combining these observations, we get the condition that for any agreement forest
F ′ for {F1, F2, . . . , Fm}, removing Eσ is not worse than r times removing a correct
edge subset Eσ

1,F ′ . From this, the reason why we call σ a meta-step keeping a ratio r
becomes obvious.

The optimal value for an instance I of theMaf problem is the order of anmaf for
I.

Theorem 1 Let r ≥ 1 be a real number. Suppose that each meta-step in step 2 of the
algorithm Apx-MAF keeps a ratio not larger than r and that the algorithm Apx-MAF
halts on an instance I0 of Maf, then the output of the algorithm Apx-MAF is an
agreement forest for I0 whose order is at most r times the optimal value for I0.

Proof Let I0 = {F (0)
1 , . . . , F (0)

m }. First note that each execution of step 3 of the
algorithmApx-MAF can also be regarded as ameta-step. To find the ratio of this meta-
step, suppose that step 3 is applied on an instance {F ′′

1 , . . . , F ′′
m}, which is obtained by

the i-th execution of step 2 on an instance {F ′
1, . . . , F

′
m}, where i is any integer between

1 and m − 1. Because of the i-th execution of step 2, F ′′
1 and F ′′

i+1 are X -subforests
of F ′

1 and F ′
i+1, respectively, and F ′′

j = F ′
j for j 
= 1, i + 1. By induction, it is easy

to see that F ′
1 = F ′

2 = · · · = F ′
i . Therefore, F

′′
1 is also an X -subforest of F ′′

j for
j = 2, . . . , i . In particular, for each j , 2 ≤ j ≤ i , any edge in F ′′

j but not in F ′′
1 cannot

be in any agreement forest for {F ′′
1 , . . . , F ′′

m}. Therefore, the meta-step made by step
3 on {F ′′

1 , . . . , F ′′
m} removes no edge in any agreement forest for {F ′′

1 , . . . , F ′′
m}. By

Remark 2, this meta-step keeps a ratio 1, which is bounded by r . Moreover, by the
condition given in the theorem, each meta-step in step 2 of the algorithm keeps a ratio
bounded by r .

Therefore, the algorithm Apx-MAF applies a sequence of meta-steps σ1, σ2, . . .,
σt , where t is a finite number because we assume that the algorithm halts on I0. By the
above discussion, each meta-step σi keeps a ratio bounded by r . By Definition-R, for
each i , 1 ≤ i ≤ t , the meta-step σi removes a set Eσi of edges in the forests in Ii−1 =
{F (i−1)

1 , . . . , F (i−1)
m } and produces an instance Ii = {F (i)

1 , . . . , F (i)
m }, where the set

Eσi contains a subset Eσi
1 of edges in F (i−1)

1 such that no edge in Eσi \ Eσi
1 is in any

agreement forest for {F (i−1)
1 \ Eσi

1 , F (i−1)
2 , . . . , F (i−1)

m }, and that for each agreement

forest F ′ for Ii−1, there is an ee-set E
σi
1,F ′ for F

(i−1)
1 , Eσi

1,F ′ ⊆ Eσi
1 , |Eσi

1,F ′ | ≥ |Eσi
1 |/r ,

and no edge in Eσi
1,F ′ is in F ′. Since themeta-stepσi only removes edges in the forests in
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Ii−1, for each j , F (i)
j is an X -subforest of F (i−1)

j . In particular, F (t)
j is an X -subforest

of F (0)
j . Since at the end of the algorithm, we have F (t)

1 = F (t)
2 = · · · = F (t)

m , the

output F (t)
1 of the algorithm Apx-MAF is an X -subforest of F (0)

j for all j , 1 ≤ j ≤ m.

This proves that the output F (t)
1 of the algorithm Apx-MAF is an agreement forest for

the input I0 of the algorithm.
Now consider the order of the X -forest F (t)

1 . Fix an maf F0 for I0. Induc-
tively, for a given i ≥ 0, suppose that we have an agreement forest Fi for Ii =
{F (i)

1 , F (i)
2 , . . . , F (i)

m }withOrd(Fi ) ≤ Ord(F0)+ r−1
r

∑i
h=1 |Eσh

1 | (this certainly holds
true for the case i = 0). Because the meta-step σi+1 keeps a ratio bounded by r , for
the agreement forest Fi for Ii , there is an ee-set Eσi+1

1,Fi
for F (i)

1 , Eσi+1
1,Fi

⊆ Eσi+1
1 ,

|Eσi+1
1,Fi

| ≥ |Eσi+1
1 |/r , and no edge in Eσi+1

1,Fi
is in Fi . Thus, E

σi+1
1 contains at least

|Eσi+1
1 |/r edges not in Fi (recall that Fi can be treated as a subgraph of F

(i)
1 ), so Eσi+1

1
contains at most r−1

r |Eσi+1
1 | edges in Fi . Therefore, the order of Fi \ Eσi+1

1 is bounded
by Ord(Fi )+ r−1

r |Eσi+1
1 |. Let Fi+1 = Fi \Eσi+1

1 . Then Fi+1 is an agreement forest for

{F (i)
1 \Eσi+1

1 , F (i)
2 , . . . , F (i)

m }. By the properties of Eσi+1
1 , no edge in Eσi+1 \Eσi+1

1 is in

Fi+1. Thus, Fi+1 is also an agreement forest for Ii+1 = {F (i+1)
1 , F (i+1)

2 , . . . , F (i+1)
m },

which is obtained from Ii = {F (i)
1 , F (i)

2 , . . . , F (i)
m } with the edges in Eσi+1 removed

by the meta-step σi+1.
Thus, Fi+1 = Fi \ Eσi+1

1 makes the induction go through: Fi+1 is an agreement

forest for Ii+1 = {F (i+1)
1 , F (i+1)

2 , . . . , F (i+1)
m }, and the order of Fi+1, by the inductive

hypothesis, satisfies

Ord (Fi+1) ≤ Ord (Fi ) + r − 1

r

∣
∣Eσi+1

1

∣
∣ ≤ Ord(F0) + r − 1

r

i+1∑

h=1

∣
∣Eσh

1

∣
∣ .

This gives an agreement forest Ft for It = {F (t)
1 , F (t)

2 , . . . , F (t)
m } whose order

satisfies Ord(Ft ) ≤ Ord(F0) + r−1
r

∑t
h=1 |Eσh

1 |. Since Ft is an X -subforest of the

X -forest F (t)
1 , we also have

Ord
(
F (t)
1

)
≤ Ord (Ft ) ≤ Ord (F0) + r − 1

r

t∑

h=1

∣
∣Eσh

1

∣
∣ . (1)

To complete the proof, we need to compare Ord(F (t)
1 ) with the optimal value

Ord(F0). For this, we introduce one more notation. For each i ≥ 1, let Eσi
1+ be the

set of edges in F (i−1)
1 that are removed by the meta-step σi . Thus, E

σi
1,Fi−1

⊆ Eσi
1 ⊆

Eσi
1+ ⊆ Eσi , and F (i)

1 = F (i−1)
1 \ Eσi

1+, where Eσi
1,Fi−1

is an ee-set for F (i−1)
1 .

It is easy to see that for i 
= j , the sets Eσi
1 and E

σ j
1 are disjoint: suppose i < j , then

Eσi
1 ⊆ Eσi

1+ while the edges in Eσi
1+ are removed from F (i−1)

1 by σi , so they cannot be

in F (h)
1 for any h ≥ i . On the other hand, the edges in E

σ j
1 are in F ( j−1)

1 .
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Inductively, suppose that for an integer i ≥ 0 we have proved that the set Ei =
⋃i

h=1 E
σh
1,Fh−1

is an ee-set for F (0)
1 , and that no edge in Ei is in F0 (this is true for

i = 1 by the definition of the set Eσ1
1,F0

). Now consider the set Eσi+1
1,Fi

in F (i)
1 . By its

properties, no edge in Eσi+1
1,Fi

is in Fi . Since Fi = F0\(
⋃i

h=1 E
σh
1 ), and Eσi+1

1,Fi
is disjoint

with Eσh
1 for all 1 ≤ h ≤ i (note Eσi+1

1,Fi
⊆ Eσi+1

1 ), we derive that no edge in Eσi+1
1,Fi

is

in F0. Thus, no edge in the edge set Ei+1 = ⋃i+1
h=1 E

σh
1,Fh−1

is in F0. Moreover, since

Ei is an ee-set for F
(0)
1 , F (i)

1 = F (0)
1 \ (

⋃i
h=1 E

σh
1+), Ei ⊆ ⋃i

h=1 E
σh
1+, and Eσi+1

1,Fi
is an

ee-set for F (i)
1 , by Lemma1, Ei ∪ Eσi+1

1,Fi
= Ei+1 is an ee-set for F

(0)
1 . So the induction

goes through. In particular, we derive that Et = ⋃t
h=1 E

σh
1,Fh−1

is an ee-set for F (0)
1 ,

and that no edge in Et is in F0. Since Et is an ee-set for F
(0)
1 , we have

Ord
(
F (0)
1 \ Et

)
= Ord

(
F (0)
1

)
+ |Et | = Ord

(
F (0)
1

)
+

t∑

h=1

∣
∣
∣Eσh

1,Fh−1

∣
∣
∣

≥ Ord
(
F (0)
1

)
+

t∑

h=1

∣
∣Eσh

1

∣
∣ /r.

The last equality is from the disjointness of the sets Eσh
1,Fh−1

, which follows directly

from the disjointness of the sets Eσh
1 . Since no edge in Et is in F0, F0 is an X -subforest

of F (0)
1 \ Et , so,

Ord(F0) ≥ Ord
(
F (0)
1 \ Et

)
≥

t∑

h=1

∣
∣Eσh

1

∣
∣ /r. (2)

Combining (1) and (2), we get Ord(F (t)
1 ) ≤ r · Ord(F0). Since F (t)

1 is the output of
the algorithm Apx-MAF and F0 is an maf for I0, this inequality proves the theorem.

��
Let r ≥ 1be a real number.Analgorithm for theMafproblem is an r -approximation

algorithm if on any instance I ofMaf, the algorithm produces an agreement forest FI
for I such that the order of FI is at most r times the optimal value for I. By Theorem1,
if the meta-steps in step 2 can be constructed and keep ratios bounded by r , and if
they guarantee that the algorithm halts on every instance of the Maf problem, then
the algorithm Apx-MAF will be an r -approximation algorithm for theMaf problem.
In the next two sections, we present such meta-steps for the rooted version and for
the unrooted version of theMaf problem, respectively, which thus lead to the desired
approximation algorithms for these problems.

4 Meta-steps for Rooted X-Forests

We develop meta-steps for rooted Maf in this section. Thus, all leaf-labeled forests
considered in this section are rooted. Because of the bijection between the leaves in

123



Algorithmica (2016) 76:867–889 877

Fig. 1 Approximation algorithm for the Maf problem

an X -forest F and the elements in the label-set X , sometimes we will use, without
confusion, an element in X to refer to the corresponding leaf in F , or vice versa.

As described in the algorithmApx-MAF (see Fig. 1), for each execution of step 2 of
the algorithm,we are given a fixed integer i > 1 and an instanceI = {F1, F2, . . . , Fm}
of the rootedMaf problem, which is a collection of rooted X -forests, with F1 = F2 =
· · · = Fi−1, and, as long as F1 
= Fi , meta-steps are applied on F1 and Fi .2 In the
following, we show how these meta-steps are constructed based on different structures
of F1 and Fi so that they can keep a ratio bounded by 3. Suppose, without loss of
generality, that both F1 and Fi are irreducible.

Two leaves of a rooted leaf-labeled forest are siblings if they have a common parent.
Note that by definition, the root ρ, which is also a leaf, has no sibling.

Suppose that there are two elements a and b in the label-set X that are sibling leaves
in both F1 and Fi . Because our objective is to make F1 = Fi , and the local structure
consisting of a, b and their parent will not distinguish F1 and Fi , we can treat the local
structure as an un-decomposable unit. To implement this, we can simply replace, in
both F1 and Fi , the subtree rooted at the parent of a and b by a single leaf with a new
label ab. We will call such an operation as “shrinking a and b into a single leaf,” and
denote it by σ1. In the further processing of F1 and Fi , we will simply treat ab as a
leaf in the forests F1 and Fi .

The operation σ1 changes the label-set for F1 and Fi from X to X ′ = X \ {a, b} ∪
{ab}, which introduces certain subtle issues when we consider agreement forests for
{F1, F2, . . . , Fm}. In particular, the leaves a and bmight not be siblings in some forests
Fj with j 
= 1, i , so it might be impossible to shrink a and b in these X -forests.
Moreover, because the operation σ1 may be applied recursively, the labels a and b
may already be composed labels. Therefore, in the general form for our discussion of
the meta-steps in step 2 of the algorithm Apx-MAF, the leaf-labeled forests F1 and
Fi are X ′-forests for some label-set X ′, while Fj , with j 
= 1, i , are X -forests. Each
leaf in F1 (resp. Fi ) corresponds to a subtree of the original X -forest F1 (resp. Fi ) and
its label in X ′ is given by a collection of the elements in X structured in the form to
uniquely describe the subtree. To indicate these differences, we will use F ′

1 and F ′
i ,

2 The indices used here are slightly different from that used in the algorithm Apx-MAF: in the algorithm
Apx-MAF, step 2 operates on F1 and Fi+1 for 1 ≤ i ≤ m − 1, which simplifies the notations in the proof
of Theorem1; while in this section, we let step 2 of the algorithm operate on F1 and Fi for 2 ≤ i ≤ m to
simplify the descriptions of our meta-steps.
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instead of F1 and Fi , in our description of the meta-steps in step 2 of the algorithm
Apx-MAF. In particular, with the new label-set X ′, from the X ′-forests F ′

1 and F ′
i we

can easily reconstruct the corresponding X -forests F1 and Fi : F ′
1 and F ′

i are just F1
and Fi with certain subtrees shrunk into single leaves. Thus, if F ′

1, F
′
i , F1, and Fi are

all irreducible, then

(1) an edge in F ′
1 (resp. F

′
i ) is an edge in F1 (resp. Fi );

(2) a non-leaf vertex in F ′
1 (resp. F

′
i ) is a non-leaf vertex in F1 (resp. Fi );

(3) an ee-set in F ′
1 (resp. F

′
i ) is an ee-set in F1 (resp. Fi );

(4) F ′
1 = F ′

i as X
′-forests if and only if F1 = Fi as X -forests; and

(5) edge-removal meta-steps on F ′
1 and F ′

i are also edge-removal meta-steps on F1
and Fi .

In the following discussions on cases 1–3, we assume that the irreducible X ′-forest
F ′
i has two leaves a and b that are siblings. Let τa and τb be the subtrees in both F1

and Fi that correspond to the leaves a and b in F ′
1 and F ′

i , respectively. Let e
′
a and

e′
b be the two edges in F ′

i that are incident to a and b, respectively. Thus, e′
a and e′

b
are also edges in Fi that are not in τa ∪ τb but are incident to the roots of τa and τb,
respectively.

Our first meta-step σ1 now can be described as follows.
Case 1 The elements a and b are also siblings in F ′

1.
Meta-step σ1: In both F ′

1 and F ′
i , shrink a and b into a single leaf labeled ab.

Meta-step σ1 is a special meta-step that removes no edges in a given instance
{F1, F2, . . . , Fm}. Instead, it groups certain structures in F ′

1 and F ′
i (thus in F1 and Fi )

into un-decomposable units. Using the notation in Definition-R, we have Eσ1 = ∅.
Thus, we can let Eσ1

1 = ∅, and for all agreement forests F ′ for {F1, F2, . . . , Fm}, let
Eσ1
1,F ′ = ∅. By Definition-R, we have

Lemma 2 Meta-step σ1 keeps a ratio 1 on a given instance {F1, F2, . . . , Fm}.
Case 2 The elements a and b are in different connected components in F ′

1.
Meta-step σ2: In case 2, if at least one of a and b is a single-vertex tree in F ′

1, then
remove the edge(s) in F ′

i that are incident to the corresponding leaves (a or b or both)
that are single-vertex trees in F ′

1; otherwise, remove in both F ′
1 and F ′

i the edges
incident to a and b.

Lemma 3 Meta-step σ2 keeps a ratio 2 on a given instance {F1, F2, . . . , Fm}.
Proof Weconsider the first subcase. Suppose that a is a single-vertex tree in F ′

1, then τa
is a connected component of F1. Therefore, no agreement forest for {F1, F2, . . . , Fm}
can have a connected component that contains both leaves in τa and leaves not
in τa . This means that the edge e′

a in Fi cannot be in any agreement forest for
{F1, F2, . . . , Fm}. The same argument also holds true for the leaf b. Therefore, if
at least one of a and b is a single-vertex tree in F ′

1, then the edge set Eσ2 removed
by σ2 in F ′

1 and F ′
i (thus in F1 and Fi ) is entirely in Fi , and contains no edge in any

agreement forest for {F1, F2, . . . , Fm}. Thus, for this subcase, we can let Eσ2
1 = ∅ and

for every agreement forest F ′ for {F1, F2, . . . , Fm} let Eσ2
1,F ′ = ∅. It is easy to verify

that these sets Eσ2 , Eσ2
1 and Eσ2

1,F ′ satisfy Definition-R with a ratio r = 1. Thus, in
this subcase, the meta-step σ2 keeps a ratio 1, which is <2.
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Fig. 2 The path connecting the labels a and b in F ′
1

Now consider the subcase where neither of a and b is a single-vertex tree in F ′
1. Let

ea and eb be the edges incident to a and b in F ′
1 (thus in F1), respectively. We have

Eσ2 = {ea, eb, e′
a, e

′
b}. Let Eσ2

1 = {ea, eb} andwe show that Eσ2
1 satisfies all conditions

in Definition-R tomake themeta-step σ2 to keep a ratio 2. Obviously, E
σ2
1 ⊆ F1. In the

forest F1 \ Eσ2
1 , τa and τb are by themselves two connected components. Therefore,

no agreement forest for {F1 \ Eσ2
1 , F2, . . . , Fm} can contain an edge in Eσ2 \ Eσ2

1 =
{e′

a, e
′
b}. Now let F ′ be an arbitrary agreement forest for {F1, F2, . . . , Fm}. If both

e′
a and e′

b in Fi were in F ′, then some leaf in τa and some leaf in τb would be in
the same connected component in F ′. However, this is impossible because τa and τb
belong to different connected components in F1. Therefore, for the agreement forest
F ′ for {F1, F2, . . . , Fm}, at least one of e′

a and e′
b is not in F ′. As a consequence, at

least one of the edges ea and eb in F1 is not in F ′. Let Eσ2
1,F ′ be the set of edges in

Eσ2
1 = {ea, eb} that are not in F ′, then |Eσ2

1,F ′ | ≥ 1 = |Eσ2
1 |/2. Finally, since a and b

belong to different connected components and are not single-vertex trees in F ′
1, it is

easy to verify that Eσ2
1,F ′ is an ee-set for F ′

1, thus is also an ee-set for F1. This shows
that in this subcase, meta-step σ2 keeps a ratio 2. ��
Case 3 The elements a and b are in the same connected component but are not siblings
in F ′

1.
Let P = {a, c1, c2, . . . , cr , b} be the unique path in F ′

1 that connects a and b, in
which ch is the least common ancestor of a and b in F ′

1, 1 ≤ h ≤ r . Since a and b are
not siblings in F ′

1, r ≥ 2. Let cq be any non-leaf vertex on the path P with cq 
= ch ,
and let eq be the edge incident to cq but not on the path P (note that F ′

1 is binary and
irreducible). Let ea and eb be the edges incident to a and b in F ′

1, respectively. See
Fig. 2 for an illustration.
Meta-step σ3: In case 3, remove the edges ea , eb, eq in F ′

1 (thus in F1), and remove
the edges e′

a and e′
b in F ′

i (thus in Fi ) (see Fig. 2).

Lemma 4 Meta-step σ3 keeps a ratio 3 on a given instance {F1, F2, . . . , Fm}.
Proof First note that the path P is also a path in the X -forest F1, with the two ends
a and b replaced by the roots of the two subtrees τa and τb. Thus, all edges removed
by σ3 are also edges in F1 and Fi . Again we use the notations in Definition-R. Thus,
Eσ3 = {ea, eb, eq , e′

a, e
′
b}. We let Eσ3

1 = {ea, eb, eq} and show that Eσ3
1 satisfies all

conditions in Definition-R and makes the meta-step σ3 to keep a ratio 3.
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Both τa and τb by themselves become connected components in the X -forest F1 \
Eσ3
1 . Thus, a connected component of an agreement forest for {F1 \ Eσ3

1 , F2, . . . , Fm}
either contains leaves only in τa , or contains leaves only in τb, or contains no leaves
in τa ∪ τb. Therefore, no edge in Eσ3 \ Eσ3

1 = {e′
a, e

′
b} can be in any agreement forest

for {F1 \ Eσ3
1 , F2, . . . , Fm}.

Let F ′ be any agreement forest for {F1, F2, . . . , Fm}. We have three possible cases:

(1) The edge e′
a of Fi is not in F ′. Then, a connected component of F ′ either contains

only leaves in τa or contains no leaves in τa . In this case, we can pick {ea} as the
set Eσ3

1,F ′ , which satisfies: Eσ3
1,F ′ ⊆ Eσ3

1 , |Eσ3
1,F ′ | = 1 ≥ |Eσ3

1 |/3, and the edge ea
in Eσ3

1,F ′ is not in F ′. Moreover, since F ′
1 is irreducible and a is not a single-vertex

tree in F ′
1, the set E

σ3
1,F ′ is an ee-set for F ′

1, thus also an ee-set for F1. Thus, for the
agreement forest F ′ not containing e′

a , the set E
σ3
1,F ′ = {ea} satisfies all conditions

in Definition-R to make the meta-step σ3 to keep a ratio 3.
(2) The edge e′

b is not in F ′. Then similarly we let Eσ3
1,F ′ = {eb}, and can verify that

for the agreement forest F ′ not containing e′
b, the set Eσ3

1,F ′ = {eb} satisfies all
conditions in Definition-R to make the meta-step σ3 to keep a ratio 3.

(3) Both edges e′
a and e′

b are in F ′. Since a and b are siblings in F ′
i , the roots of

the subtrees τa and τb in Fi must have a common parent p in F ′. Since F ′ is a
subgraph of F1 that must preserve the ancestor-descendent relations in F1, the
vertex ch in F1 must correspond to the vertex p in F ′. As a consequence, no edge
in F1 that is incident to a vertex c j on the path P with c j 
= ch but not on the path
P can be in F ′ (see Fig. 2 for references). In particular, the edge eq is not in F ′.
So in this case, we let Eσ3

1,F ′ = {eq}, and can verify easily that for the agreement
forest F ′ containing both e′

a and e
′
b, the set E

σ3
1,F ′ = {eq} satisfies all conditions in

Definition-R to make the meta-step σ3 to keep a ratio 3. Note that the fact Eσ3
1,F ′

is an ee-set for F1 follows from the irreducibilities of the X ′-forest F ′
1 and the

X -forest F1.

This verifies that the set Eσ3
1 satisfies all conditions in Definition-R to make the

meta-step σ3 to keep a ratio 3. Thus, the meta-step σ3 keeps a ratio 3. ��
Cases 1–3 cover all cases in which a and b are sibling leaves in F ′

i . If the X
′-forest

F ′
i has no sibling leaves, then it must be in one of the following two cases: (1) F ′

i
contains no edges; and (2) all connected components of F ′

i are single-vertex trees,
except one that is a single-edge tree, and the single-edge tree has a root labeled ρ and
a leaf labeled a ∈ X ′, a 
= ρ.

Case 4 F ′
i contains no edges.

Meta-step σ4: In case 4, remove all edges in F ′
1.

Lemma 5 Meta-step σ4 keeps a ratio 1 on a given instance {F1, F2, . . . , Fm}.
Proof In case 4, it is obvious that no edges in F ′

1, which are also edges in F1, can be
in any agreement forest for {F1, F2, . . . , Fm}. By Remark2, the meta-step σ4 keeps a
ratio 1. ��

Now we come to our last case.
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Case 5 F ′
i has a single edge, which makes a single-edge tree rooted at ρ with a leaf a,

a 
= ρ.
Meta-step σ5: In case 5, remove all edges in F ′

1 except those that are on the path
between ρ and a. If F ′

1 becomes a collection of single-vertex trees, then also remove
the edge [ρ, a] in F ′

i .

Lemma 6 Meta-step σ5 keeps a ratio 1 on a given instance {F1, F2, . . . , Fm}.
Proof Let ρ, a, b1, . . ., bh be the leaves in F ′

i , where each bi is a single-vertex tree
in F ′

i . Let τa and τbi , 1 ≤ i ≤ h, be the subtrees in Fi that correspond to the leaves
a and bi in F ′

i , respectively. Then, for each subtree τbi , a connected component of an
agreement forest F ′ for {F1, F2, . . . , Fm} either contains only leaves in τbi or contains
no leaves in τbi . Therefore, if there is an edge ebi incident to bi in F ′

1, which is also
the edge between the root of τbi and its parent in F1, then the edge ebi cannot be
in F ′. This observation plus the forced contraction operation shows that the edges
that are not on the path between ρ and a in F ′

1 cannot be in any agreement forest for
{F1, F2, . . . , Fm}. Thus, all edges in F ′

1 (thus also in F1) that are removed by the meta-
step σ5 are not in any agreement forest for {F1, F2, . . . , Fm}. Finally, if F ′

1 becomes a
collection of single-vertex trees after σ5 removes edges in F ′

1 (this is the case when ρ

and a are not in the same connected component in F ′
1), then no agreement forest for

{F1, F2, . . . , Fm} can have a connected component containing both ρ and a leaf in τa .
Therefore, in this case, the edge [ρ, a] in F ′

i (thus in Fi ) cannot be in any agreement
forest for {F1, F2, . . . , Fm}. In summary, no edge in the edge set Eσ5 removed by the
meta-step σ5 can be in an agreement forest for {F1, F2, . . . , Fm}. By Remark2, the
meta-step σ5 keeps a ratio 1. ��

Now we are ready for our main theorem in this section. Suppose |X | = n. Each
X -forest has a size (i.e., the number of vertices plus the number of edges) O(n).
Therefore, the size of an instance {F1, F2, . . . , Fm} of the rooted Maf problem is
n0 = O(nm).

Theorem 2 If step 2 of the algorithm Apx-MAF uses the meta-steps σ1–σ5, then the
algorithm Apx-MAF is a 3-approximation algorithm for the rootedMaf problem that
runs in time O(n0 log n0) on an instance of size n0.

Proof By Lemmas2–6, each of the meta-steps σ1–σ5 keeps a ratio bounded by 3. By
Theorem1, if the algorithm Apx-MAF uses these meta-steps in step 2, and halts on
an instance I of rootedMaf, then the algorithm produces an agreement forest for the
instance I whose order is bounded by three times the optimal value for I. Therefore,
to show that the algorithm Apx-MAF is a 3-approximation algorithm for the rooted
Maf problem, it suffices to show that on any instance I of size n0, the algorithm
Apx-MAF runs in time O(n0 log n0).

Let the instance I be {F1, F2, . . . , Fm}. Thus, n0 = O(nm). Now fix an i , and
consider the processing of F1 and Fi in step 2 of the algorithm Apx-MAF. By the
algorithm, a meta-step in step 2 is applied on F1 and Fi only when F1 
= Fi . Under
the condition F1 
= Fi , it is easy to verify that each of the meta-steps σ2–σ5 removes
at least one edge in F1 ∪ Fi . Therefore, the total number of times these meta-steps
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can be applied is bounded by O(n). Moreover, each application of the meta-step σ1
shrinks three vertices into a single vertex, in each of F1 and Fi (recall that we are
operating on F ′

1 and F ′
i ). Therefore, the meta-step σ1 can be applied at most O(n)

times. Summarizing all these, we conclude that if the algorithm Apx-MAF uses the
meta-steps σ1–σ5 in step 2, then the total number of times the meta-steps are applied
for processing F1 and Fi for each i in the execution of step 2 is O(n).

It is easy to see that each meta-step can be implemented to run in time O(n), which
then directly gives a simple O(n20)-time implementation of the algorithm Apx-MAF.
In the following, we explain how the running time of the algorithm can be further
improved to O(n0 log n0).

Each of the meta-steps σ4 and σ5 is applied at most once in step 2 for processing F1
and Fi . Each of the meta-steps σ1–σ3 is called on two sibling leaves in the forest Fi .
Therefore, step 2 of the algorithm can be implemented by a depth-first search on the
forest Fi , which continuously presents siblings in Fi for possible applications of the
meta-steps σ1–σ3, until the meta-steps σ4 and σ5 become applicable. This depth-first
search process, without counting the complexity of the calls to the meta-steps, runs in
time O(n).

Themeta-steps σ1–σ3 also require efficient determination onwhether two leaves are
in the same connected component in F1. Note that the connected component structure
of F1 is dynamically changing, in particular when the meta-step σ3 removes the edge
eq that can be connected to a non-trivial subtree (see Fig. 2). For this, we can organize
the leaves in F1 in depth-first search order so that all leaves in a subtree appear in a
consecutive segment. Such a sequence then can be stored in a 2-3 tree that supports
logarithmic-time insertion, deletion, splice, and split [1]. Based on this data structure,
the connected component structure of F1 can be dynamically updated in time O(log n)

for each application of the meta-steps σ1–σ3.
With the above implementations, we conclude that each of the meta-steps σ1–σ3

takes time O(log n), thus, for a given i , the running time of step 2 of the algorithm is
O(n log n). Also note that step 3 of the algorithm Apx-MAF is actually “virtual”, for
which we can, without doing any real computation, simply record that F1 = Fj for
all 1 ≤ j ≤ i . As a consequence, the total running time of the algorithm Apx-MAF
is bounded by O(n log n · m) = O(n0 log n0), where n0 = O(nm) is the size of the
input instance I. ��

If the original input of our algorithm is a collection of X -trees, then the algorithm
Apx-MAFwill return an agreement forest for the trees. Thus, the algorithmApx-MAF
is a 3-approximation algorithm for the standard Maximum Agreement Forest
problem on multiple rooted binary phylogenetic trees.

5 Meta-steps for Unrooted X-Forests

For the unrooted Maf problem, the meta-steps used in step 2 of the algorithm Apx-
MAF and their analysis proceed in amanner similar to those for rootedMaf. However,
since an unrooted X -tree enforces no ancestor–descendant relation in the tree, sub-
forests in the X -tree have no requirement of preserving such a relation. This fact
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induces certain subtle differences. As a starting point, note that in an irreducible
unrooted X -forest, every non-leaf has degree 3.

Again, for each execution of step 2 of the algorithmApx-MAF, we are given a fixed
integer i > 1 and an instance I = {F1, F2, . . . , Fm} of the unrooted Maf problem,
which is a collection of unrooted X -forests, with F1 = F2 = · · · = Fi−1, and, as long
as F1 
= Fi , meta-steps are applied on F1 and Fi . We present the meta-steps and show
that these meta-steps keep a ratio bounded by 4. Suppose, without loss of generality,
that both F1 and Fi are irreducible.

Two leaves a and b of an unrooted X -forest F are edge-siblings if they are the two
leaves of a single-edge tree in F , and are vertex-siblings if they are adjacent to the
same non-leaf vertex p in F (in this case, the vertex p is called the “parent” of a and
b). The leaves a and b are siblings if they are either vertex-siblings or edge-siblings.

Again for two leaves a and b that are vertex-siblings in both F1 and Fi , we can
replace the subtree consisting of a, b, and their parent with a single leaf labeled ab.
Similarly, for two leaves a and b that are edge-siblings in both F1 and Fi , we can
replace the single-edge tree [a, b] with a single-vertex tree labeled ab. We will call
the above operations on vertex-siblings and edge-siblings as “shrinking the siblings a
and b into a single leaf ab.” Again because of this, we will use two X ′-forests F ′

1 and
F ′
i for some label-set X ′, instead of the X -forests F1 and Fi , in the description of our

meta-steps in step 2 of the algorithm Apx-MAF, where each element in the label-set
X ′ is a collection of elements in the label-set X structured to represent a subtree of F1
and Fi . In other words, the X ′-forests F ′

1 and F ′
i are just the X -forests F1 and Fi with

certain subtrees shrunk into single leaves. In particular, edges and non-leaf vertices of
F ′
1 and F ′

i , respectively, are also edges and non-leaf vertices of F1 and Fi .
In the discussions on cases 1–3 below, we assume that the irreducible X ′-forest F ′

i
has two leaves a and b that are siblings (either edge-siblings or vertex-siblings). Let
τa and τb be the subtrees in both F1 and Fi that correspond to the leaves a and b in
F ′
1 and F ′

i , respectively. Let e
′
a and e′

b be the edges in F ′
i that are incident to a and b,

respectively (if a and b are edge-siblings, then e′
a = e′

b). Note that e
′
a and e′

b are the
edges in Fi that are not in τa ∪τb but are incident to the roots of τa and τb, respectively.
Case 1 The elements a and b are also siblings in F ′

1.
Meta-step ω1: In case 1, shrink a and b into a single leaf ab in both F ′

1 and F ′
i . If ab

is a single-vertex tree in exactly one of F ′
1 and F ′

i , then remove the edge incident to
ab in the other.

Lemma 7 Meta-step ω1 keeps a ratio 1 on a given instance {F1, F2, . . . , Fm}.
Proof If a and b are either edge-siblings in both F ′

1 and F ′
i , or vertex-siblings in both

F ′
1 and F ′

i , then after shrinking a and b into ab, the vertex ab either is a single-vertex
tree in both F ′

1 and F ′
i , or is a single-vertex tree in neither of F ′

1 and F ′
i . Therefore,

in this case, the meta-step ω1 removes no edges in F ′
1 and F ′

i , thus also removes no
edges in F1 and Fi . As we discussed for the meta-step σ1 in Lemma2, in this case,
the meta-step ω1 keeps a ratio 1.

Now suppose that a and b are edge-siblings in exactly one of F ′
1 and F ′

i . Without
loss of generality, suppose that a and b are edge-siblings in F ′

1 but are vertex-siblings
in F ′

i . Let e
′
0 be the edge incident to the parent of a and b in F ′

i such that e′
0 
= e′

a
and e′

0 
= e′
b. Because of the single-edge tree [a, b] in F ′

1, no connected component
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of an agreement forest F ′ for {F1, F2, . . . , Fm} can contain both leaves in τa ∪ τb and
leaves not in τa ∪ τb. Therefore, the edge e′

0 in F ′
i cannot be in F ′ and can be removed.

After removing e′
0 from F ′

i and by applying a forced contraction, a and b become
edge-siblings in F ′

i , thus we can shrink a and b in both F ′
1 and F ′

i . Note that this is
equivalent to the meta-step ω1 that first shrinks the edge-siblings a and b in F ′

1 and
the vertex-siblings a and b in F ′

i , then removes the edge incident to ab in F ′
i (which

is just e′
0). As a fact, in this case, the meta-step ω1 only removes an edge (i.e., e′

0) that
is not in any agreement forest for {F1, F2, . . . , Fm}. By Remark2, in this case, the
meta-step ω1 also keeps a ratio 1. ��
Case 2 The elements a and b are in different connected components in F ′

1.
Meta-step ω2: In case 2, if at least one of a and b is a single-vertex tree in F ′

1, then
remove the edge(s) in F ′

i that are incident to the corresponding leaves (a or b or both)
that are single-vertex trees in F ′

1; otherwise, remove in both F ′
1 and F ′

i the edges
incident to a and b.

Lemma 8 Meta-step ω2 keeps a ratio 2 on a given instance {F1, F2, . . . , Fm}.
Proof The proof for this lemma is similar to that for Lemma3. If an element in {a, b}
is a single-vertex tree in F ′

1, then the edge incident to that element in F ′
i cannot be

in any agreement forest for {F1, . . . , Fm}. Thus, by Remark2, in this subcase, the
meta-step ω2 keeps a ratio 1.

Now assume that neither of a and b is a single-vertex tree in F ′
1. Let ea and eb be

the two edges in F ′
1 that are incident to a and b, respectively. Note that even though

it is possible that e′
a = e′

b, we must have ea 
= eb because a and b are in different
connected components in F ′

1.
Using the notations in Definition-R, Eω2 = {ea, eb, e′

a, e
′
b}. Let Eω2

1 = {ea, eb}.
The proof that the set Eω2

1 satisfies all conditions in Definition-R tomake themeta-step
ω2 to keep a ratio 2 goes exactly the same as that for the corresponding subcase in
the proof for Lemma3, no matter whether e′

a = e′
b,. Therefore, we conclude that the

meta-step ω2 keeps a ratio 2. ��
Case 3 The elements a and b are in the same connected component in F ′

1, but are not
siblings.

This case is the one that is most different from its corresponding case for the rooted
version. Let P = {a, c1, c2, . . . , cr , b} be the unique path in the unrooted X ′-forest
F ′
1 that connects a and b, where r ≥ 2 because we assume that a and b are neither

edge-siblings nor vertex-siblings. Let ea and eb be the edges in F ′
1 that are incident to

a and b, respectively. Moreover, let e1 be the edge in F ′
1 that is incident to c1 but not

on the path P , and let er be the edge in F ′
1 that is incident to cr but not on the path P .

See Fig. 3 for an illustration. Note that since F ′
1 is irreducible, ea , eb, e1, and er are

four well-defined distinct edges in F ′
1 (thus also in F1). Moreover, the path P is also a

path in F1 in which the two ends a and b are replaced by the roots of the two subtrees
τa and τb of F1, respectively.
Meta-step ω3: In case 3, remove the edges ea , eb, e1, er in F ′

1, and the edges e
′
a , e

′
b in

F ′
i .

Lemma 9 Meta-step ω3 keeps a ratio 4 on a given instance {F1, F2, . . . , Fm}.
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Fig. 3 The path connecting the elements a and b in F ′
1

Proof Using the notations in Definition-R, we have (note that it is possible that e′
a =

e′
b) E

ω3 = {ea, eb, e1, er , e′
a, e

′
b}. Let Eω3

1 = {ea, eb, e1, er }. We show that the set
Eω3
1 satisfies all conditions in Definition-R and makes the meta-step ω3 to keep a ratio

4. First note that |Eω3
1 | = 4 no matter whether e′

a = e′
b.

In the X ′-forest F ′
1 \ Eω3

1 , both a and b become single-vertex trees. Thus, both
subtrees τa and τb by themselves become connected components in the X -forest F1 \
Eω3
1 . As a consequence, a connected component of an agreement forest for {F1 \

Eω3
1 , F2, . . . , Fm} either contains leaves only in τa , or contains leaves only in τb, or

contains no leaves in τa ∪ τb. Therefore, no edge in Eω3 \ Eω3
1 = {e′

a, e
′
b} can be in

any agreement forest for {F1 \ Eω3
1 , F2, . . . , Fm}. Note that this holds true no matter

whether e′
a = e′

b.
Let F ′ be any agreement forest for {F1, F2, . . . , Fm}. We have three possible cases:

(1) The edge e′
a is not in F ′. In this case, no connected component in F ′ can contain

both leaves in τa and leaves not in τa . So we can pick {ea} as the set Eω3
1,F ′ , which

satisfies: Eω3
1,F ′ ⊆ Eω3

1 , |Eω3
1,F ′ | = 1 ≥ |Eω3

1 |/4, and the edge ea in Eω3
1,F ′ is not

in F ′. Moreover, since F ′
1 is irreducible, the set E

ω3
1,F ′ is an ee-set for F ′

1, thus is
also an ee-set for F1. Thus, for the agreement forest F ′ for {F1, F2, . . . , Fm} that
does not contain e′

a , the set E
ω3
1,F ′ = {ea} satisfies all conditions in Definition-R

to make the meta-step ω3 to keep a ratio 4.
(2) The edge e′

b is not in F ′. Then similarly we can let Eω3
1,F ′ = {eb}, and verify that

for the agreement forest F ′ for {F1, F2, . . . , Fm} that does not contain e′
b, the set

Eω3
1,F ′ = {eb} satisfies all conditions in Definition-R to make the meta-step ω3 to

keep a ratio 4.
If e′

a = e′
b and the edge is not in F ′, then we can apply either (1) or (2) above to

have a set Eω3
1,F ′ that satisfies all conditions in Definition-R to make the meta-step

ω3 to keep a ratio 4.
(3) The agreement forest F ′ contains both edges e′

a and e′
b, which includes the case

where F ′ contains e′
a = e′

b. In this case, because a and b are siblings in F ′
i , in the

X -forest Fi there must be a leaf la in the subtree τa and a leaf lb in the subtree
τb, where la, lb ∈ X , such that la and lb are in the same connected component in
Fi . Observe that because a and b are siblings in F ′

i , the path between the roots
of the two subtrees τa and τb in Fi can contain at most one non-leaf vertex in Fi .
Since F ′ is a subgraph of Fi , the path between la and lb in F ′ contains at most one
non-leaf vertex that is not in τa ∪ τb. Since both vertices c1 and cr in F1 are on the
path between la and lb and are not in τa ∪ τb, at most one of c1 and cr can become
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a non-leaf vertex in F ′. As a consequence, at most one of the two edges e1 and er
in F ′

1 can be in F ′ (see Fig. 3 for references). Note that e1 and er are also edges in
F1. Thus, if we let E

ω3
1,F ′ be the set of edges in {e1, er } that are not in F ′, then the

set Eω3
1,F ′ satisfies: E

ω3
1,F ′ ⊆ Eω3

1 , |Eω3
1,F ′ | ≥ 1 = |Eω3

1 |/4, and the edges in Eω3
1,F ′

are not in F ′. Moreover, it is not difficult to verify that {e1, er } is an ee-set for F ′
1

(thus an ee-set for F1). Since a subset of an ee-set is also an ee-set, the set Eω3
1,F ′

is also an ee-set for F1. Thus, in this case, the set Eω3
1,F ′ defined as this satisfies

all conditions in Definition-R to make the meta-step ω3 to keep a ratio 4.

This verifies that the set Eω3
1 satisfies all conditions in Definition-R to make the

meta-step ω3 to keep a ratio 4. Thus, the meta-step ω3 keeps a ratio 4. ��
Cases 1–3 cover all cases in which the X ′-forest F ′

i contains siblings. If F
′
i contains

no siblings, then F ′
i contains no edges. This case is handled by the followingmeta-step.

Case 4 F ′
i contains no edges.

Meta-step ω4: In case 4, remove all edges in F ′
1.

It is rather easy to see that the meta-step ω4 removes no edge in any agreement
forest for {F1, F2, . . . , Fm}. By Remark2, we have

Lemma 10 Meta-step ω4 keeps a ratio 1 on a given instance {F1, F2, . . . , Fm}.
Now we are ready for our main theorem in this section.

Theorem 3 If step 2 of the algorithm Apx-MAF uses the meta-steps ω1–ω4, then the
algorithm Apx-MAF is a 4-approximation algorithm for the unrooted Maf problem
with running time O(n0 log n0), where n0 is the size of the input instance.

Proof By Lemmas7–10, each of the meta-steps ω1–ω4 keeps a ratio bounded by 4.
Thus, by Theorem1, in order to prove that Apx-MAF is a 4-approximation algorithm
for the unrootedMaf problem, it suffices to prove that the algorithm, when using the
meta-steps ω1–ω4 in its step 2, runs in time O(n0 log n0) on an instance of size n0 of
the unrooted Maf problem.

Suppose that the given instance of the unrootedMaf problem is {F1, F2, . . . , Fm},
where each Fh is an unrooted X -forest, and |X | = n. Thus, n0 = O(nm). According
to the algorithm Apx-MAF, meta-steps in the i-th execution of step 2 are applied on
F ′
1 and F ′

i (thus on F1 and Fi ) only when F ′
1 
= F ′

i . When F ′
1 
= F ′

i , each of the
meta-steps ω2–ω4 removes at least one edge in F ′

1 ∪ F ′
i (thus in F1 ∪ Fi ). Therefore,

the total number of times these meta-steps are applied is bounded by O(n). Moreover,
similar to our discussion in Theorem2, each application of the meta-step ω1 reduces
the number of vertices in F ′

1 and F ′
i by at least 2. Therefore, the meta-step ω1 can be

applied at most O(n) times.
In summary, each execution of step 2 of the algorithm Apx-MAF, when using the

meta-steps ω1–ω4, applies at most O(n) meta-steps. Using data structures similar to
those we used in Theorem2, each of the meta-steps ω1–ω4 can be implemented to
run in time O(log n). This then leads to an O(n0 log n0)-time implementation of the
algorithm Apx-MAF for the unrootedMaf problem, where n0 is the size of the input
instance. ��
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If the original input of the algorithm is a collection of unrooted X -trees, then
the algorithm Apx-MAF will return an agreement forest for the trees. In this case,
the algorithm Apx-MAF is a 4-approximation algorithm for the standard Maximum
Agreement Forest problem on multiple unrooted binary phylogenetic trees.

6 Conclusion and Future Research

In this paper, we presented two polynomial-time approximation algorithms for the
Maf problem on multiple binary phylogenetic trees: one for rooted trees with a ratio
3 and the other for unrooted trees with a ratio 4. The 3-approximation algorithm for
rooted trees is an improvement over the previous best approximation algorithm for the
problemdue toChataigner [8], which has a ratio 8,3 and the 4-approximation algorithm
for unrooted trees is, to our best knowledge, the first constant ratio approximation
algorithm for the problem.

As suggested byWhidden et al. [25] in their recent publication in SIAM J. Comput.,
“The most important open problem is extending our approach to computingMAFs and
MAAFs for multifurcating trees and for more than two trees.” Our result is a response
to this call and makes an important step towards this direction. We believe that our
general framework, the algorithm Apx-MAF, will have further applications in the
study of approximation algorithms for the Maf problem. Indeed, by Theorem1, any
further improvement on the ratio of the meta-steps will directly lead to improvements
in the corresponding approximation algorithms. Moreover, by combining our general
framework and related techniques presented in the current paper with the techniques
developed recently byChen et al. [9] formultifurcating trees (i.e., general trees, instead
of only binary trees), we believe that we should also be able to develop approximation
algorithms for theMaf problem on multiple multifurcating trees.

Further improvements on the approximation ratio of polynomial-time approxi-
mation algorithms for the Maf problem, either for two binary or multifurcating
phylogenetic trees, or more general for multiple binary or multifurcating phyloge-
netic trees, are certainly desired. In particular, the best approximation algorithm for
theMaf problem on two unrooted binary X -trees has a ratio 3 [24], while our approx-
imation algorithm for the problem on multiple unrooted binary X -trees has a ratio 4
(Theorem3). The disparity appears because our meta-step ω3 has a ratio 4 (Lemma9),
while in handling the same situation for two unrooted binary X -trees, the algorithm
proposed in [24] is able to limit the number of removed edges by 3, instead of 4 (see
Theorem 6 in [24]). Unfortunately, the operation described in [24] cannot be easily
translated into an efficient meta-step. In fact, a direct translation of the operation given
in [24] will result in a meta-step that does not guarantee any positive ratio. This is also
the main reason why our algorithm has an extra log n factor in its time complexity.
It will be interesting to see how this gap can be closed, either by strengthening the
definition of the meta-step metric or by developing new algorithmic techniques.

3 During the preparation of the final version of this manuscript, the authors were informed by an anonymous
referee that Mukhopadhyay and Bhabak had announced an O(kn5)-time approximation algorithm of ratio
3 for theMaf problem on k rooted binary phylogenetic trees [16].
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Approximation algorithms for theMaf problem, in particular approximation algo-
rithms for the SPR distance have been used in a branch-and-bound fashion to quickly
compute exact SPR distance for two phylogenetic trees [26,27]. Our methods and
formulations presented in the current paper may be used in the same fashion for the
multiple tree problem.

Accompanied by the research in approximation algorithms for the Maf problem,
there is also an active line of research on parameterized algorithms for the problem
[2,9,10,13,20,22,24,25]. In particular, work has been done on parameterized algo-
rithms for the Maf problem on multiple binary trees [10,20]. The parameterized
algorithms in [10,20] and the approximation algorithms presented in the current paper
share a common idea of using sibling pairs in one tree to identify edges in the other
trees that may potentially cause inconsistence. The parameterized algorithms, which
are based on a branch-and-search process, then branch on removing each of these
potentially inconsistent edges, while the approximation algorithms simply remove
all these potentially inconsistent edges. However, it seems that the analysis for the
parameterized algorithms based on this idea is much easier: the algorithms only need
to ensure that at least one branch in the branch-and-search process traces an opti-
mal solution. On the other hand, after removing all potentially inconsistent edges, it
becomes much more difficult to characterize the optimal solutions in the resulting
instance. Thus, among the removed edges, we have to identify “irrelevant edges”, and
find a more accurate way to compute the ratio of the number of “essential edges” over
the number of “correct edges”. In particular, simply counting the number of removed
edges and the number of “correctly” removed edges might give a very loose estima-
tion on the resulting approximation ratio of the algorithms. This difference has forced
us to build a very different model to enable more precise analysis on approximation
algorithms for theMaf problem on multiple trees.
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