
Algorithmica (2017) 77:440–458
DOI 10.1007/s00453-015-0079-6

Improved Subquadratic 3SUM

Ari Freund1

Received: 13 December 2014 / Accepted: 5 October 2015 / Published online: 19 October 2015
© Springer Science+Business Media New York 2015

Abstract In the 3SUM problem we are given three lists A, B, C, of n real numbers,
and are asked to find (a, b, c) ∈ A × B × C such that a + b = c. The longstand-
ing 3SUM conjecture—that 3SUM could not be solved in subquadratic time—was
recently refuted by Grønlund and Pettie. They presented O

(
n2(log log n)α/(log n)β

)

algorithms for 3SUM and for the related problems Convolution3SUM and ZeroTrian-
gle, where α and β are constants that depend on the problem andwhether the algorithm
is deterministic or randomized (and for ZeroTriangle the main factor is n3 rather than
n2). We simplify Grønlund and Pettie’s algorithms and obtain better bounds, namely,
α = β = 1, deterministically. For 3SUM our bound is better than both the determin-
istic and the randomized bounds of Grønlund and Pettie. For the other problems our
bounds are better than their deterministic bounds, andmatch their randomized bounds.

Keywords 3SUM · Convolution3SUM · ZeroTriangle

1 Introduction

The 3SUM problem is: given three lists of n real numbers A, B, C, find (a, b, c) ∈
A×B×C such that a+b = c. [We assume real numbers can be read, written, added,
subtracted, and compared in O(1) time.] The problem is often presented in different
flavors—e.g., a + b + c should be 0 or some given target number; or that the input
consists of a single list from which three numbers summing to 0 should be drawn.
These flavors are equivalent to each other in the sense that they are reducible to one
another in linear time.

B Ari Freund
3sumalgo@gmail.com

1 Haifa, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-015-0079-6&domain=pdf

Algorithmica (2017) 77:440–458 441

While 3SUM is something of an “interview question” it has gained a degree of
prominence in the theory of algorithms as a very simple problem that admits a quadratic
time algorithm but for which no subquadratic algorithmwas known until recently. This
suited the problem for the role of a yardstick against which other problems could be
measured. The term 3SUM hard has been coined to describe a problem that 3SUM
could be efficiently reduced to, so that if the 3SUM hard problem could be solved in
subquadratic time then so could 3SUM. The literature is replete with 3SUM hardness.
Gajentaan and Overmars [7] compiled a long list of computational geometry problems
that are 3SUM hard, and others (e.g., [3,10]) have shown this for numerous problems
in other areas. Grønlund and Pettie [8] provide many references, as well as a nice
summary of the state of the art on 3SUM and related problems.

Over the years, upper and lower bounds have been shown for different computa-
tional models and variants of the problem [1,2,6], but for the problem as defined here
(real numbers, RAM) no progress has been made until recently. The breakthrough
came in a paper of Grønlund and Pettie [8], which presented an o(n2) algorithm,
thereby refuting the 3SUM conjecture that 3SUM could not be solved in subquadratic
time. The weaker conjecture—that 3SUM cannot be solved in O(n2−ε) time remains
impregnable.

In addition to 3SUM,Grønlund and Pettie [8] also deal with some related problems.
The following list summarizes their results, as they pertain to this paper.

3SUM: Grønlund and Pettie describe a deterministic algorithm with

O

(
n2

(
log log n
log n

)2/3)
running time and a randomized algorithmwithO

(
n2 (log log n)2

log n

)

running time.
Integer3SUM: The problem is the same as 3SUMbut the numbers are integers in some
range {−U, . . . ,U }. Grønlund and Pettie provide no results specific to this problem
beyond their results for 3SUM (which carry over immediately).
Convolution3SUM: This problem was defined by Pǎtraşcu [10] as follows: given
a vector A ∈ R

n , find i and j such that ai + a j = ai+ j . Grønlund and Pet-
tie describe a deterministic O

(
n2(log log n)2/ log n

)
algorithm and a randomized

O(n2 log log n/ log n) algorithm.
ZeroTriangle: The problem is: given an edge weighted graph, find a trian-
gle whose edge weights sum to 0. Grønlund and Pettie give a deterministic
O

(
n3(log log n)2/ log n

)
algorithm and a randomized O(n3 log log n/ log n) algo-

rithm, where n is the number of vertices. They also obtain O
(
m1.5(log logm)1/2/

(logm)1/4
)
and O

(
m1.5(log logm/ logm)1/4

)
deterministic and randomized, respec-

tively, upper bounds, where m is the number of edges.

Grønlund and Pettie also derive upper bounds on the decision tree complexity
(i.e., number of comparisons) of these problems (as well as k-LDT, which is the
weighted version of k-SUM). In this paper we do not address this issue.

123

442 Algorithmica (2017) 77:440–458

1.1 Our Contribution

We develop a 3SUM algorithm that is somewhat simpler than Grønlund and Pet-
tie’s. We use the same ideas and techniques, but in a more straightforward manner.
We are able to eliminate one of Grønlund and Pettie’s conceptual building blocks,
as well as some of their reliance on previous work (Lemmata 2.1–2.3 in Ref. [8]).
While the simplification is modest, it also leads to a better running time. We achieve
an aesthetically pleasing deterministic bound of O

(
n2 log log nlog n

)
, which is superior to

both O

(
n2

(
log log n
log n

)2/3)
and O

(
n2 (log log n)2

log n

)
—the deterministic and randomized

bounds obtained by Grønlund and Pettie [8]. For the other problems we provide deter-
ministic bounds that match the randomized bounds obtained by Grønlund and Pettie,
thus obviating them.1 For 3SUM and Convolution3SUM our bound is O

(
n2 log log nlog n

)
,

and for ZeroTriangle we get O
(
n3 log log nlog n

)
and O

(
m1.5

(
log logm
logm

)1/4)
.

Briefly, the core of our 3SUM solution can be summarized as follows. The main
technical problem we solve is to partition the sumset A + B into g × g subarrays
(for a carefully chosen value of g), and sort each sub-array. When |A| = |B| = n
and g = O(log n), we show how to do this in O

(
(n/g)2g log g

)
time, which then

lets us solve 3SUM in O(n2(log g)/g) time using the Grønlund-Pettie approach. The
differences between the Grønlund-Pettie sorting algorithm and ours are rather subtle.
Grønlund and Pettie pick special locations in the g × g “box,” then select so-called
contours passing through those locations, and sort the elements in the areas between
pairs of contours. The problem with their approach is that the sizes of these areas are
unknown a priori, but must be O(log n), which is easy to guarantee in expectation by
picking special locations randomly. Our algorithm fixes s = Θ(g/ log g) and picks
contours and special locations in a different order to guarantee that the area between
two contours has size precisely s. The key observation is that if all the elements in a
g×g box are distinct, an element’s contour encodes its rank, and it is therefore possible
to discard all contours that are not for elements with ranks s, 2s, 3s, . . . inside the box.
In this way our algorithm never considers more than g2/s contours per box.

1.2 Organization of this Paper

As mentioned above, our algorithms build on Grønlund and Pettie’s and are thus very
similar to them. Consequently, much of the material herein is repetitious of Grønlund
and Pettie [8]. We provide it for the sake of completion, to furnish context, to flesh out
details that were glossed over by Grønlund and Pettie, and to give another perspective
on their work. In each sectionwe point out where our algorithm departs fromGrønlund
and Pettie’s.

1 Although randomized algorithms are often significantly simpler than their deterministic counterparts, this
is not the case here. Grønlund and Pettie’s randomized algorithms are in fact more complicated than our
(and their) deterministic ones, and thus offer no advantage.

123

Algorithmica (2017) 77:440–458 443

In Sect. 2 we discuss the 2SUM problem on sorted input, together with its standard
linear time algorithm and the standard quadratic 3SUM algorithm derived from it.
This algorithm forms the basis for our improved subquadratic algorithm, described
in Sect. 3. In Sect. 4 we discuss Convolution3SUM, and in Sect. 5 we present our
algorithm for ZeroTriangle.

2 Linear Time 2SUM on Sorted Input; Quadratic 3SUM

The 2SUMproblem on sorted input is: given two sorted lists of numbersA and B, both
of length n, and given a target number c, find a ∈ A and b ∈ B such that a + b = c.
Following is the standard linear time solution.

Algorithm 1

Input: (1) Sorted (nondecreasing) lists of real numbers A = a1, a2, . . . , an , B =
b1, b2, . . . , bn . (2) Target number c.

Output: Pair (ai , b j) ∈ A × B such that ai + b j = c, or nil if none exists.

1. lo ← 1
2. hi ← n
3. while lo ≤ n and hi > 0
4. if alo + bhi = c
5. then return (alo, bhi)
6. else
7. if alo + bhi < c
8. then lo ← lo + 1
9. else hi ← hi − 1
10. return nil

The running time of the algorithm is clearly O(n), and its correctness follows from
the easily proven invariant that ai cannot be part of the solution for all i < lo, and b j

cannot be part of the solution for all j > hi.
Algorithm 1 can be used to solve 3SUM in quadratic time: sort A and B; then, for

each c ∈ C, run Algorithm 1 on the sorted A and B with target c.

3 Improved 3SUM

Buildingon the quadratic algorithm from theprevious section,we achieve subquadratic
time by partitioning the data into small blocks, from which are derived even smaller
chunks. These are then preprocessed so that the algorithm proper can be speeded up.
The chunks are sufficiently small that their preprocessing can be done more efficiently
by enumerating all possible outcomes than by computing the outcomes for each chunk
separately.

Algorithm 2

Input: Lists A, B, C of n real numbers each.
Output: Triplet (a, b, c) ∈ A × B × C such that a + b = c, or nil if none exists.

123

444 Algorithmica (2017) 77:440–458

1. SortA (in non-decreasing order) into an array. Partition the array into n/g blocks
of size g. The value of g will be determined later. Let Ap denote the pth such
block (consisting of entries g(p − 1) + 1 through gp of A).

2. Similarly sort and partition B into blocks of size g. Let Bq denote the qth block.
3. Preprocess the blocks in a manner described later.
4. for each c ∈ C
5. lo ← 1
6. hi ← n/g
7. while lo ≤ n/g and hi > 0
8. Search, in a manner described later, for a pair (a, b) ∈ Alo × Bhi

such that a + b = c
9. if such an (a, b) was found
10. then return (a, b, c)
11. else
12. if max{Alo} + min{Bhi} < c
13. then lo ← lo + 1
14. else hi ← hi − 1.
15. return nil

Similar to Algorithm 1, correctness (for each c ∈ C) follows from the invariant that
no member of any block Ap, p < lo can participate in the solution, and neither can
any member of any block Bq , q > hi.

For each iteration of the outer loop, the inner loop iterates<2n/g times, so the time
complexity of Algorithm 2, excluding the work done in Lines 3 and 8, is O(n2/g).
[The time spent sorting the arrays is negligible, as g will be chosen to be O(log n), so
O(n log n) = o(n2/g).]

3.1 Searching Within a Pair of Blocks (Line 8)

Roughly speaking, the preprocessing step (Line 3)will have sorted {a+b | a ∈ Alo, b ∈
Bhi} into an array of size g2. Line 8 performs a binary search for c in this array.
Thus the total running time of the algorithm, excluding the preprocessing work, is
O(n2 log g/g). We say “roughly speaking” because the preprocessing step does not
actually create a sorted array for each block pair. Rather, it creates amore complex data
structure that is functionally equivalent in that it supports random access in constant
time. We now describe this data structure.

In what follows we shall denote by A an arbitrary block from the partition of A
(i.e., A = Ap for some unspecified p), and will denote by ai the i th member of A.
(Recall that A has been sorted in Line 1 so A is ordered.) We will similarly denote B
and b j with respect to B.

Fix A and B. Define rankingA,B as the sequence of index pairs (i, j), where i and
j are in {1, . . . , g}, sorted in increasing order of ai +b j [so (i, j) comes before (i ′, j ′)
iff ai + b j < ai ′ + b j ′]. See Fig. 1 for an example. We assume that all values ai + b j

are distinct. Section 3.4 lifts this restriction.
The preprocessing step partitions rankingA,B into g2/s chunks of size s (to be

determined later) and stores each chunk in an array. However, it does not do so by

123

Algorithmica (2017) 77:440–458 445

A3 = 0, 3, 14, 15, 20, 21 A8 = 0, 1, 4, 5, 12, 13

B9 = 0, 2, 6, 10, 18, 19 B5 = 0, 2, 8, 10, 14, 15

:smuS21tsriF:smuS21tsriF

0 3 14 15 20
A3

0

2

6

10

18

B9

0 3 14 15

2 5 16 17

6 9

10 13

0 1 4 5 12
A8

0

2

8

10

14

B5

0 1 4 5

2 3 6 7

8 9

10 11

rankingA3,B9
= (1, 1), (1, 2), (2, 1), (2, 2),

(1, 3), (2, 3), (1, 4), (2, 4),

(3, 1), (4, 1), (3, 2), (4, 2), . . .

rankingA8,B5
= (1, 1), (2, 1), (1, 2), (2, 2),

(3, 1), (4, 1), (3, 2), (4, 2),

(1, 3), (2, 3), (1, 4), (2, 4), . . .

Fig. 1 An example of the rankings of two block pairs (A3, B9) and (A8, B5) (For simplicity—to keep
the numbers small—we ignore the fact that the numbers in A8 and B9 must be greater than those in
(respectively) A3 and B5 (since the blocks come from the sorted listsA and B). The example can be made
real by simply adding a sufficiently large constant to each of the numbers in A8 and B9.). In this example
the block size is g = 6. The grids depict some of the sums ai + b j : the horizontal axes are annotated with
the ai s, increasing left to right; the vertical axes are annotated with the b j s, increasing bottom up; the grid
entries are the corresponding sums. The first (lowest) twelve sums are shown for each block pair. Note
that elements 5–8 of rankingA3,B9 are identical to elements 9–12 of rankingA8,B5 , and similarly, elements
9–12 of rankingA3,B9 are identical to elements 5–8 of rankingA8,B5 . This will come into play in Fig. 2

actually computing rankingA,B and then breaking it into chunks—that would consume
too much time. Instead, it manages to compute all of the chunks without explicitly
constructing the ranking. In addition, it constructs a forwarding array FA,B of g2/s
pointers to the chunks, in order. The preprocessing step computes the chunks and the
forwarding array for each pair of blocks (A, B), and stores pointers to the forwarding
arrays in a two-dimensional lookup table L indexedby the correspondingblock indices.
See Fig. 2.

Thus, to find the kth element in rankingAlo,Bhi the algorithmdereferences the pointer
at L[lo, hi] to find the forwarding array FAlo,Bhi . It then dereferences the pointer at
FAlo,Bhi [�k/s�] to find the corresponding chunk array CAT (where T denotes the
information defining the chunk). Finally, it reads CAT [((k − 1)mods) + 1].2 This
entry is an index pair (i, j), which the algorithm can then use to compute ai + b j

by looking up the i th and j th entries in the blocks Alo and Bhi, respectively. Thus
each binary-search comparison takes constant time, as desired. In the sequel, when
referring to a particular chunk array under consideration we will often denote it simply
CA (unindexed).

The whole point of the above triple indirection is this: while each rankingA,B
has its own forwarding array, the chunk arrays are typically shared among multiple
rankings. In other words, if two chunks belonging to two different rankings consist of

2 Throughout this paper we follow the convention that array indexing starts at 1 (as opposed to 0, which is
the convention followed by a number of popular programming languages).

123

446 Algorithmica (2017) 77:440–458

=[011 n/g]
1

10

3 8

5

9

L

FA3,B9

1 9 [= g2/s]

FA8,B5

1 9

CAT

1 4 [= s]
(1, 1) (1, 2) (2, 1) (2, 2)

CAT

1 4
(1, 3) (2, 3) (1, 4) (2, 4)

CAT

1 4
(3, 1) (4, 1) (3, 2) (4, 2)

Fig. 2 The data structure used to perform lookups in service of the binary searches. In this contrived
example n = 60, g = 6, and s = 4. The entry L[p, q] corresponding to block pair (Ap, Bq) is the entry at
column p (from the left), row q (from the bottom). The blocks A3, B9, A8, B5 are the same as in Fig. 1.
The second chunk of rankingA3,B9 is identical to the third chunk of rankingA8,B5 . Both are therefore
realized by the same chunk array CAT ′ . Similarly, the third chunk of rankingA3,B9 and the second chunk
of rankingA8,B5 are both realized by the same chunk array CAT ′′

the same sequence of index pairs, then both of these chunks will be realized by the
same chunk array, which will be computed only once, and will be pointed to from
both corresponding forwarding arrays. Figure 2 depicts this for the example described
in Fig. 1. This sharing of chunk arrays is key to achieving subquadratic time for the
preprocessing step.

For easy reference while reading the remainder of this section we now recap the
notation just introduced.

Summary of new notation introduced so far.

– Ap and Bq are the pth and qth blocks in the partitions of A and B, respectively.
– Unindexed A and B denote arbitrarily chosen blocks from the respective partitions.
– g is the block size.
– ai is the i th member of A; b j is the j th member of B.
– rankingA,B is the sequence of index pairs (i, j) ordered by ai + b j . We assume
all values ai + b j are distinct.

– FA,B is the forwarding array for a given A and B.
– s is the chunk size.
– L denotes the lookup table: L[p, q] points to FAp,Bq .
– CA denotes a chunk array under consideration.

123

Algorithmica (2017) 77:440–458 447

3.2 Preprocessing (Line 3)

The first step is to allocate memory for L and the forwarding arrays, and to point
L’s entries to the forwarding arrays. Since there are (n/g)2 block pairs, and each
forwarding array is of size g2/s, the total space and time complexity of this step is
O(n2/s). This bound also covers the cost of pointing the forwarding array entries to
the chunk arrays (but does not cover the cost of computing the contents of the chunk
arrays).

The next step is to compute the chunks. Our (initial) approach is exhaustive enu-
meration. The parameters associated with a particular chunk are: the blocks A and B;
the position 1 ≤ e ≤ g2/s of the chunk within FA,B ; the set S of index pairs that
appear in the chunk; and the permutation π defining the order of these index pairs
within the chunk. Thus we have the following algorithm:

For all A and B, for all 1 ≤ e ≤ g2/s, for every S ⊂ {1, . . . , g}2 of size s, for
every π , check (somehow) whether S ordered by π agrees with the eth chunk
of rankingA,B . If it does, create an array CA, store S’s members there in order,
and make FA,B[e] point to CA.

Of course this algorithm is prohibitively expensive, and does not share chunk arrays.
To take advantage of chunk array sharing we reverse the nesting order of the loops:

Algorithm 3
1. for all (S, π, e):
2. Store S’s members, in the order defined by π , in a newly created chunk

array CA.
3. Find (somehow) all pairs (A, B) such that (S, π, e) agreeswith rankingA,B .
4. for each such (A, B):
5. Make FA,B[e] point to CA.
This algorithm is still quite wasteful, as nearly all choices of (S, π, e) can never agree
with any rankingA,B , regardless of the contents of A and B. Luckily, it is possible to
avoid this excessive enumeration. Additionally, it is possible to parallelize (in a sense)
the determination of which pairs (A, B) agree with a given (S, π, e). The combination
of these two optimizations allows us to achieve subquadratic preprocessing time.

3.2.1 Avoiding Excessive Enumeration

Fix A and B. Imagine g2 squares formed by a g × g grid. Associate with each square
(i, j) the number ai +b j , which we we shall refer to as the square’s value. To visualize
the square arrangement we use a chessboard-like naming scheme: square (i, j) is the
square in the i th column from the left and the j th row from the bottom.3 See Fig. 3 for
an example. We identify the index pair naming a square with the square being named;
we shall use the terms square and index pair interchangeably.

3 Cautionary remark to readers familiar with Grønlund and Pettie [8]: they use the standard matrix indexing
scheme, in which square (i, j) is in the i th row from the top and the j th column from the left. Also, they
associate A with the vertical axis and B with the horizontal one.

123

448 Algorithmica (2017) 77:440–458

Fig. 3 Squares arranged in a
g × g grid (for g = 5). The solid
black square is square (5, 3) and
its value is a5 + b3. The gray
squares trace an rd-path that
falls off the bottom edge. This
path might be a contour, in
which case its anchor must be
one of the squares (1, 4), (2, 4),
or (3, 2), since these are the only
squares from which the path
moves right

i

j

1 2 3 4 5
A

1

2

3

4

5

B

Suppose we are given a square (k, l), and wish to partition the squares into those
with values greater than its value ak + bl , and those with values less than or equal to
it. The motivation for this will become clear shortly. We trace the path taken by the
following algorithm (which is essentially the linear-time 2SUM algorithm on sorted
input, except that it does not stop when it finds a solution).

Start at the top left square and keep moving in accordance with the following
rule: if the value of the current square is greater than the value of (k, l), move
one square down; otherwise move one square right. Keep moving in this manner
until you fall off the right edge or the bottom edge of the grid.

Clearly the algorithm makes at most 2g − 1 moves. We define the path taken by the
algorithm as the sequence of right/down steps it takes rather than the sequence of
squares it visits—the difference being that if the algorithm reaches the bottom right
corner, the sequence of squares does not reveal whether it fell off the right edge or the
bottom edge. The directions in which the algorithm moves are just as important as the
squares it visits.

Definition 1 An rd-path is a sequence of at most 2g − 1 instructions over instruction
set {right, down} such that if x is the last instruction in the sequence, then x appears
in the sequence precisely g times. An rd-path induces a sequence of squares in the
obvious manner (by starting at the top left square and following the instructions). We
say that the path visits these squares in the order defined by the sequence. We say that
the pathmoves right (resp. down) from square (i, j) if there is some r such that square
(i, j) is the r th square visited by the path, and the r th instruction is right (resp. down).

The sequence of moves made by the above algorithm defines an rd-path. Following
Grønlund and Pettie [8] we define the notion of contour.

Definition 2 The contour associated with square (k, l), denoted contourA,B
k,l , is the rd-

path defined by the above algorithm’s movements on input (k, l). We say that square
(k, l) anchors contourA,B

k,l .

Note that by our assumption that all square values are distinct, and by the fact that A
and B are sorted, every contour necessarily visits its anchor. See Fig. 3 for an example
of an rd-path that might be a contour.

123

Algorithmica (2017) 77:440–458 449

Definition 3 Square (i, j) is said to be below contourA,B
k,l if there exists j ′ ≥ j such

that contourA,B
k,l moves right from (i, j ′); otherwise the square is said to be above

contourA,B
k,l .

We remark that the term above was chosen as the opposite of below, but the true
defining property of squares above the contour is that they are in fact to the right of
the contour. Also note that every square, including squares visited by the contour, is
defined to be either above or below the contour.

The significance ofDefinition 3 is brought to light by the following easy observation
(which follows from the fact that A and B are sorted). It shows that the algorithm
partitions the squares as desired.

Observation 1 If (i, j) is a square below contourA,B
k,l then its value is less than or

equal to the value of square (k, l). If it is above contourA,B
k,l then its value is greater

than the value of square (k, l).

Note that by our assumption that all square values are distinct, equality occurs only at
the anchor (k, l).

Why do we care about partitioning the squares around the value of some square
(k, l)? Because it allows us to figure out the position of index pair (k, l) in rankingA,B .
That position is r , where r is the number of squares below contourA,B

k,l . Given the
contour, computing r in O(g) time is easy: just sum the indices j of the squares (i, j)
from which the contour moves right. Observe that for all 1 ≤ r ≤ g2 there exists a
unique square x such that there are precisely r squares below the contour anchored by
x (x is simply the r th element in rankingA,B).

We are now in position to curtail the enumeration in Algorithm 3. For a given
combination of A, B, e, and S, a necessary and sufficient condition for S to be the set
of index pairs in chunk e of rankingA,B is the following:

Let (k, l) and (k′, l ′) be such that there are precisely (e − 1)s and es squares
below contourA,B

k,l and contourA,B
k′,l ′ , respectively (i.e., these index pairs are the

last elements in chunks e − 1 and e, respectively). Then S consists precisely of
those squares that are above contourA,B

k,l and below contourA,B
k′,l ′ . (The case e = 1

is special, since then (k, l) does not exist. In that case the condition is that S
consists precisely of those squares that are below contourA,B

k′,l ′ .)

The contours mentioned in this condition depend of course on the choice of A and B.
However, given the contours, the condition is purely structural—it does not depend
in any way on A and B. Because we do not have an A and B in the outer loop of
Algorithm 3, we enumerate all possible pairs of contours. Algorithm 4 below refines
Algorithm 3 by implementing this idea, but we need one last definition before pre-
senting it.

Definition 4 An rd-path P ′ is said to dominate another rd-path P if every square
above P ′ is also above P .

Algorithm 4
1. for every pair of rd-paths P and P ′ such that P ′ dominates P:

123

450 Algorithmica (2017) 77:440–458

2. Let e be such that the number of squares below P is (e−1)s and the number
of squares below P ′ is es. If there is no such e, skip directly to the next
iteration.

3. Let S be the set of squares that are above P and below P ′.
4. for all pairs of squares (k, l) and (k′, l ′) such that P and P ′ move right

from (k, l) and (k′, l ′) respectively (these are the only possible anchors):
5. for every permutation π of S that places (k′, l ′) last:
6. Store S ordered by π in a newly created chunk array CA.
7. Find (somehow) all pairs (A, B) such that (S, π, P, P ′, (k, l),

(k′, l ′)) agrees with rankingA,B , and for each such pair make
FA,B[e] point to CA.

It is an easy matter to determine in O(g) time whether P ′ dominates P , and in
another O(g+ s) time to find S. In fact, it is not difficult to tighten the enumeration so
that for each e only the rd-paths with es squares below them are enumerated, and for
each such P ′, only the rd-paths which are dominated by P ′ and which have (e − 1)s
squares below them are enumerated.

It is also possible to conserve space in cases such as those depicted in Fig. 2,
where, for example, the second chunk of rankingA3,B9 is identical to the third chunk
of rankingA8,B5 . The figure shows both chunks being stored in the same chunk array,
but Algorithm 4 actually places each in a different chunk array (because the corre-
sponding rd-path pairs are different). To ensure complete sharing we can rearrange the
enumeration so that primarily the valid sets S are generated, and secondarily, for each
such set, all pairs of rd-paths consistentwith it are enumerated. The details of doing this
efficiently (e.g., generating only valid sets) are somewhat tedious but straightforward.

3.2.2 Finding All Pairs of Blocks that Agree with a Given Chunk

For a particular choice of A and B, we need to test three conditions:

1. That P is contourA,B
k,l .

2. That P ′ is contourA,B
k′,l ′ .

3. That S ordered by π is an increasing sequence in terms of the square values.

Let |P| denote the length of P . The first condition can be broken down into |P| −
1 constituent conditions, one per square visited by P except for the anchor (k, l),
as follows. If P moves right from square (i, j) then the corresponding condition is
ai + b j < ak + bl , and if it moves down, the condition is ak + bl < ai + b j . These
two conditions can be written equivalently as b j − bl < ak − ai and bl − b j <

ai − ak . Grønlund and Pettie [8] call this Fredman’s trick, the significance of which
will become apparent shortly. Let us combine these |P| − 1 inequalities into a single
vector inequality uB < uA, where uA and uB are |P| − 1 dimensional vectors such
that in uB the r th component is the left hand side of the r th inequality above, and
in uA it is the right hand side.4 Here, “<” represents pointwise less-than. A similar
construction with respect to P ′ transforms the second condition into a single vector
inequality as well.

4 Note that the vector components are actual numbers that we can compute, since we now have A and B.

123

Algorithmica (2017) 77:440–458 451

The third condition is treated in the same spirit. We break it down to s − 1 inequal-
ities, which we then combine into a single vector inequality. Let (ir , jr) be the r th
index pair in S ordered by π . For all 1 ≤ r < s, the corresponding condition is
air + b jr < air+1 + b jr+1 , or equivalently, b jr − b jr+1 < air+1 − air .

Finally, we write all three conditions as a single vector inequality vB < vA, where
each of vA and vB is the concatenation of the corresponding three vectors. The two
vectors in the inequality are of dimension |P| + |P ′| + s − 3 < 4g + s.

We have thus shown how to translate the three conditions into a single vector
inequality for a given pair (A, B). Our goal can be restated as that of finding all pairs
(A, B) such that vB < vA. Naively, we could enumerate all n2 pairs (A, B), generate
the corresponding inequality for each, and test it. This of course would gain us nothing.
Instead, we note that by virtue of Fredman’s trick, each vA depends only on A, and
each vB depends only on B, so there are only 2n/g vectors to construct overall. Once
they are constructed, our task becomes to find all pairs (vA, vB) among them that
satisfy vB < vA. This is known as the Dominance Merge problem [11, pp. 365–373],
or the Bichromatic Dominance Reporting problem [8]:

Given N vectors in R
d , each of which is either red or blue, find all pairs of

vectors (u, v) such that u is blue an v is red, and u < v.

Tofind thedominance pairs (vB , vA) satisfyingvB < vAwe feed all of thevAs (red)
and all of the vBs (blue) to the following recursive algorithm described by Preparata
and Shamos [11]. The algorithm allows the vectors to have dimension greater than d
but only cares about dominance in the first d dimensions, which we denote by “<d”.

Algorithm 5

Input: (1) Dimension d. (2) List of N vectors in R
d ′
, for some d ′ ≥ d, where each

vector is either red or blue, and the list contains at least one vector of each color.
Output: All pairs (u, v) of vectors in the list such that u is blue and v is red, and

u <d v.

1. if d = 0
2. then emit all pairs of (blue, red) vectors.
3. Consider the dth components of the vectors. Use an O(N) algorithm to find their

median x , and arrange the vectors in a list starting with the vectors whose dth
component is less than x , followed by those whose dth component is equal to x ,
red ones before blue ones, followed by the vectors whose dth component is greater
than x .

4. Split this list in the middle (up to ±1 if N is odd) into halves H1 followed by H2.
5. if H1 contains at least one vector of each color
6. then make a recursive call on (d, H1).
7. if H2 contains at least one vector of each color
8. then make a recursive call on (d, H2).
9. Collect the blue vectors in H1 and the red vectors in H2 into a list E .
10. if E contains at least one vector of each color
11. then make a recursive call on (d − 1, E).

The correctness of this algorithm is straightforward. (Placing the red vectors before
the blue ones in the equal-to-x region ensures that the dominance pairs emitted by the

123

452 Algorithmica (2017) 77:440–458

third recursive call—which detects dominance in the first d − 1 dimensions—possess
the desired dominance relation in the dth dimension as well.)

Emitting the dominance pairs takes O(|D|) time, where D is the set of dominance
pairs emitted by the algorithm. (Of course, the output of the algorithm is made by
means of pointers to vectors, not copies). The “standard” bound given by Preparata
and Shamos [11] is O(|D| + N logd N), but for a certain range of d there is a tighter
bound (on the same algorithm) obtained by Chan [4]:5 O

(|D| + cdε N
1+ε

)
for any

ε > 0, where cε = 2ε/(2ε − 1). We will use Chan’s bound with ε = 1/2, which
implies cε < 4 = 22, so the bound will be O

(|D| + 22d N 1.5
)
. In our application the

number of input vectors is N = 2n/g ≤ n, and the dimension is d < 4g + s, so the
bound for a single invocation of Algorithm 5 is O

(|D| + 28g+2sn1.5
)
.

The enumeration size is bounded by: [24g pairs (P, P ′)] × [g2 choices of cor-
responding anchors] × [s! ≤ 2s log s permutations] = O

(
g224g+s log s

)
, so the total

running time of the preprocessing step is O
(
D̃ + g2212g+2s+s log sn1.5

)
where D̃ is

the total number of dominance pairs emitted across all invocations of the dominance
algorithm. These pairs are in 1:1 correspondence with the forwarding array entries,
so the contribution of this term is already covered by our bound for setting up the
forwarding arrays. Thus the total time charged to the chunk computation phase is
O

(
g2212g+2s+s log sn1.5

)
. The additional work of computing

(
P, P ′, (k, l), (k′, l ′), π

)

and setting up the input vectors is negligible relative to the cost of invoking the dom-
inance algorithm.

3.3 The Overall Running Time

Wehave covered the different parts of the algorithmby three bounds:O(n2 log g/g) for
the binary searches; O(n2/s) for setting up the lookup table and the forwarding arrays;
and O

(
g2212g+2s+s log sn1.5

)
for computing the chunk arrays. The first two bounds

decreasewhen g and s increase, while the third increases. From the first two boundswe
see that there is no advantage tomaking the relation between g and s anything other that
s = Θ(g/ log g). From the third bound we see that pushing g or s log s asymptotically
above O(log n)will inflate the bound to an unacceptable nω(1), whereas choosing both
to be Θ(log n) will yield a polynomial expression whose degree is controllable by the
choice of the constant within the Θ notation. Serendipitously, this will also allow us
to take full advantage of the first two bounds by making s = Θ(g/ log g). To nail the
constants let us choose s = g/ log g, yielding s ≤ s log s ≤ g, so the third bound
becomesO

(
g2215gn1.5

)
.We further put g = 1

31 log n, which turns the first two bounds

into O
(
n2 log log nlog n

)
, and the third into a negligible O

(
n2− 1

62 log2n
)
.

Theorem 1 The total running time of the Algorithm 2 with the binary searches and

preprocessing implemented as described above is O
(
n2 log log nlog n

)
.

5 For additional recent results on restricted ranges of d see Impagliazzo et al. [9, Sec. 3] and Chan [5,
Appx. A].

123

Algorithmica (2017) 77:440–458 453

3.4 Lifting the Value Distinctness Restriction

AsGrønlund andPettie show, it is easy to achieve distinctness by replacing the numbers
with triplets involving both the numbers and the indices, with a suitable definition of
order between triplets. This however does not explain how doing so actually ensures
that the algorithm remains correct, since the algorithm is defined in terms of numbers,
not triplets. We believe it is worthwhile to spend some time understanding this, as it
is not some trifling technicality, but rather more fundamental.

A close examination of the algorithm reveals that the assumption that all square
values are distinct was actually made just to simplify the language describing the
preprocessing. Reviewing the development of the preprocessing algorithm, we see
that its correctness rests on the following three properties of rankingA,B .

1. The ordering respects the value order of the index pairs. In other words, if ai +
b j < ai ′ + b j ′ then (i, j) appears earlier in rankingA,B than (i ′, j ′). This is the
fundamental property that allows binary search to work.

2. The ordering is monotone in the horizontal and vertical grid directions, i.e., if
i < i ′ then (i, j) appears earlier in rankingA,B than (i ′, j), and if j < j ′ then
(i, j) appears earlier than (i, j ′). This enables the partitioning by contours.

3. Givendistinct (i, j) and (i ′, j ′), there is an easymethodof comparison to determine
which appears earlier in rankingA,B , and this comparison can be “decomposed”
into an A part and a B part à-la Fredman’s trick. This enables the efficient use of
the dominance algorithm.

Ordering by value while making the assumption that all values are distinct served
us well in securing these properties, and at the same time simplified the language.
Any arguments we made (explicitly or implicitly) concerning values of squares were
actually arguments in disguise about the squares’ positions in rankingA,B .

Since the assumption does not hold true in general we need to define the ordering
more carefully in order to ensure that the above requirements are met. For example,
we can define that (i, j) appears earlier than (i ′, j ′) iff either ai + b j < ai ′ + b j ′ ,
or ai + b j = ai ′ + b j ′ and i < i ′, or ai + b j = ai ′ + b j ′ and i = i ′ and j < j ′.
This ordering has the desired properties. The only part of the algorithm that actually
compares square positions is the dominance algorithm, which does these comparisons
implicitly in the form ai − ai ′ > b j ′ − b j . We need to pass to it the index information
so that it can break ties properly in cases of value equality. (The dominance algorithm
also performs comparisons between components belonging to two identically colored
vectors. Ties in such comparisons can be broken arbitrarily, as it will have no effect
on the outcome of the dominance algorithm.)

A more abstract way to achieve the same goal is to identify the ai s and b j s with
elements drawn froma totally ordered universe equippedwith suitably defined addition
and subtraction, such that different squares always havedifferent values, and to redefine
the algorithm in terms of these elements. For example, Grønlund and Pettie map each
ai onto (ai , i, 0) and each b j onto (b j , 0, j), with the usual vector pointwise addition
and subtraction, and with lexicographic order. Thus ai + b j maps to (ai + b j , i, j), so
different squares have different values. It is easy to see that the above three properties
attach. Other mappings are also possible.

123

454 Algorithmica (2017) 77:440–458

3.5 Comparison with Grønlund and Pettie

The algorithm we described is identical to Grønlund and Pettie’s, down to the level
of chunks (which they call boxes). The difference is in the definition of the eth chunk
(for a given choice of A and B). Whereas we define it simply as elements e(s−1)+1
through es in rankingA,B , they use a more oblique definition. They need to select
a set P of squares that has certain properties, and they then partition rankingA,B
around the squares in P to obtain the chunks. Because of the freedom inherent in the
definition of P they either select it by random sampling, and then prove that it has
the desired properties with high probability, or define it deterministically in terms of
fixed square positions in the grid, and show that the conditions on P are always met.
In both cases the chunk sizes are not fixed. In contrast, our construction essentially
defines P in terms of rankingA,B in a simple and uniform manner, yielding equal
sized chunks by definition. Grønlund and Pettie’s roundabout use of P forces them
to use a smaller value of g, resulting in O

(
n2(log log n/ log n)2/3

)
deterministic and

O
(
n2(log log n)2/ log n

)
randomized bounds.

4 Improved Convolution3SUM

As Grønlund and Pettie [8] mention in passing, Convolution3SUM can be easily
reduced to 3SUM. For the sake of completeness, here is one way to do it: replace each
ai with the pair (ai , i) and use pointwise addition and lexicographic ordering. (Here
we use the single-list variant of 3SUM.) In light of this linear time reduction it is imme-

diately seen that Convolution3SUM can be solved deterministically in O
(
n2 log log nlog n

)

time.
In order to improve the bound for Convolution3SUM beyond that of 3SUM,

Grønlund and Pettie proceed to sketch a specialized algorithm that achieves
O

(
n2(log log n)2/ log n

)
deterministic time and O

(
n2 log log n/ log n

)
randomized

time. The algorithm uses binary searches within sorted arrays containing elements
from the diagonals of suitably defined blocks. The sorting is done in a preprocessing
stage by enumerating permutations, much as in 3SUM. We remark that by further
breaking each diagonal array into smaller, shared, chunks, and enumerating those

instead, it is possible to bring the deterministic algorithm down to O
(
n2 log log nlog n

)

time. We omit the details for brevity. The main idea is the same as the one we use on
ZeroTriangle in the next section.

5 Improved ZeroTriangle

Let the vertices be named 1, 2, . . . , n, and let W be the graph’s weighted incidence
matrix, that is, wi, j is the weight of the edge (i, j), or ∞ if there is no edge there. In
terms of W, a simple search strategy for a zero triangle is: find a row i and column j
such that wi, j �= ∞ and there is a position k such that wi,k + wk, j = −wi, j . To avoid
infinities let us replace ∞ with a constant I that is greater than twice the maximum
absolute value of any actual edge weight.

123

Algorithmica (2017) 77:440–458 455

We find it convenient to generalize the problem and allow the rows to come from
one matrix, the columns from another, and the target values from a third. The problem
becomes:

Given matrices An×n , Bn×n , Cn×n , find (i, j, k) such that ci, j is valid (i.e., �=
−I), and ai,k + bk, j = ci, j . (We use the standard matrix notation, where
[lowercase letter]i, j denotes the corresponding matrix’s element at row i , col-
umn j .)

In the generalized problem we can actually impose any validity condition on ci, j (or
no condition) as long as checking it can be done sufficiently fast, so as not to impair
our bound on the algorithm’s running time.

To expedite the searches we partition the input into blocks. Let g be the block
size (to be determined later). Denote by Ai,t the t th horizontal block of row i of
A, defined as the sequence of g entries ai,(t−1)g+1, ai,(t−1)g+2, . . . , ai,tg . Similarly,
denote by Bj,t the t th vertical block of column j of B, defined as the sequence
of g entries b(t−1)g+1, j , b(t−1)g+2, j , . . . , btg, j . Given a pair (Ai,t , Bj,t), define the
sumset Ai,t + Bj,t as the sequence of the g sums of corresponding block elements:
Ai,t + Bj,t �

{
ai,(t−1)g+k + b(t−1)g+k, j

}g
k=1.

We can now formulate the algorithm in the language of blocks.

Algorithm 6
1. Preprocess the input (in a manner described later) into a data structure that will

facilitate the binary searches in Line 4 below.
2. for all i and j such that ci, j is valid:
3. for t = 1, 2, . . . , n/g:
4. Binary search for ci, j in the sumset Ai,t + Bj,t .

Note that of the n4/g2 pairs of (horizontal block, vertical block), the algorithm only
ever considers n3/g pairs, namely, those pairs where both blocks have the same second
index t . The algorithm’s running time, excluding Line 1, is clearly O(n3 log g/g).

Because the algorithm is based on binary searches within sumsets, we need to sort
the sumsets—at least implicitly. Consider a pair (Ai,t , Bj,t). define rankingi, j,t as the
set of indices k ∈ {1, 2, . . . , g} sorted by value ai,(t−1)g+k +b(t−1)g+k, j , breaking ties
by k (or, more abstractly, by mapping ai,l to (ai,l , l) and bl, j to (bl, j , l)with pointwise
addition and subtraction, and lexicographic order).

Example 1 Suppose g = 4, Ai,t = −5, 12,−20, 19, and Bj,t = −5,−1, 35,−29.
Then Ai,t + Bj,t = −10, 11, 15,−10, and rankingi, j,t = 1, 4, 2, 3.

As in 3SUM, we break each ranking into chunks. Denote by i1, i2, . . . , ig the
index sequence rankingi, j,t . Then the eth chunk of rankingi, j,t is the subsequence
i(e−1)s+1, i(e−1)s+2, . . . , ies , where s is the chunk size (to be determined later).

The data structure constructed in Line 1 consists of a 3-dimensional n × n × n/g
lookup table L where entry L[i, j, t] corresponds to sumset Ai,t + Bj,t , and contains a
pointer to the corresponding forwarding array Fi, j,t . Forwarding array Fi, j,t consists
of g/s pointers to chunk arrays. The chunk array pointed to by Fi, j,t [e] contains the
eth chunk of rankingi, j,t . Thus to look up the kth smallest sum in Ai,t + Bj,t we go
to L[i, j, t] and dereference it to find Fi, j,t . We then dereference Fi, j,t [�k/s�] and get

123

456 Algorithmica (2017) 77:440–458

some chunk array CA. We read CA[((k − 1)mods) + 1] and get some index l. Finally,
we extract ai,(t−1)g+l and b(t−1)g+l, j from the input matrices and add them. Thus each
lookup required by the binary searches is done in O(1) time, as desired.

To construct the data structure we first allocate L and all forwarding arrays, and
make L’s entries point to the corresponding forwarding arrays. We then need to con-
struct the chunk arrays and point the forwarding arrays to them. The key observation is
the following.Given (i, j, t) and chunk number e, there is a unique quartet (R, S, T, π)

such that (R, S, T) is a partition of the index set {1, . . . , g}, |R| = (e − 1)s,
|T | = (g/s − e)s, π is a permutation of S such that S ordered by π is chunk e
of rankingi, j,t , all members of R appear in rankingi, j,t before the first member of S,
and all members of T appear after the last member of S. Our chunk array algorithm
is:

Algorithm 7
1. for each S ⊆ {1, . . . , g} of size s, and each permutations π of S:
2. Allocate chunk array CAS,π and fill it with S ordered by π .
3. for each partition (R, T) of {1, . . . , g} \ S with |R| = (e − 1)s for some

e ∈ {1, . . . , g/s}:
4. Find (as explained later) all (i, j, t) such that S ordered by π

agrees with chunk e of rankingi, j,t , all members of R precede (in
rankingi, j,t) the first member of S, and all members of T succeed
its last member.

5. For each such (i, j, t) point Fi, j,t to chunk array CAS,π .

To find all (i, j, t) such that rankingi, j,t agrees with a given (R, S, T, π, e) we
use the dominance algorithm (Sect. 3.2.2, Algorithm 5) by encoding three sets of
conditions, as follows. Fix (i, j, t). Let R′, S′, and T ′ be the sets obtained, respectively,
from R, S, T by adding t (g − 1) to each of their members. Let k1, . . . , k(e−1)s denote
the members of R′ (in any order), let k(e−1)s+1, . . . , kes denote the members of S′ in
order, and let kes+1, . . . , kg denote the members of T ′ (in any order). The three sets
of conditions are:

1. ai,kl + bkl , j < ai,k(e−1)s+1 + bk(e−1)s+1, j for 1 ≤ l ≤ (e − 1)s;
2. ai,kl + bkl , j < ai,kl+1 + bkl+1, j for (e − 1)s + 1 ≤ l < es;
3. ai,kes + bkes , j < ai,kl + bkl , j for es + 1 ≤ l ≤ g.

In total we have g − 1 inequalities. We employ Fredman’s trick to get only as on the
left hand sides of the inequalities and only bs on the right hand sides. We then convert
the g−1 inequalities into a single vector inequality ui,t < v j,t , where ui,t corresponds
to the left hand sides and v j,t corresponds to the right hand sides.

For each t we generate the above defined vectors ui,t , i = 1, . . . , n, and v j,t ,
j = 1, . . . , n, and run the dominance algorithm on these 2n vectors of dimension
g − 1. We then read off the desired (i, j)s from the dominance pairs emitted by the
algorithm.

We can bound the time complexity of the preprocessing step as follows.Wefirst note
that the cost of enumerating the combinations and constructing the input vectors for the
dominance algorithms is dominated by the cost of the actual algorithm invocations.
Next we bound the cost of the algorithm invocations. There are less than 3g valid

123

Algorithmica (2017) 77:440–458 457

partitions (R, S, T), and there are s! permutations. For each such such combination
we run the dominance algorithm n/g times on N = 2n vectors of dimension d = g−1.
So the total cost of all invocations of the algorithm, excluding the output size (|D|)
terms, is O

(
3gs!(ng)22(g−1)(2n)1.5

) = O
(
24g+s log sn2.5

)
. Putting g = 1

11 log n and

s = g/ log g gives O(n3− 1
22). To this we must add O(D̃), where D̃ is the total number

of dominance pairs emitted by the algorithm across all invocations. The dominance
pairs are in 1:1 correspondence with the chunks, which implies that D̃ = n3/s, so

O(D̃) = O
(
n3 log log nlog n

)
. It also implies that O(D̃) covers the cost of pointing the

forwarding arrays to the chunk arrays. Since this bound dominates our bound for
the dominance algorithm invocations, the overall bound on the preprocessing time is

O
(
n3 log log nlog n

)
.

Finally, substituting g = O(log n) in our bound on the running time of Algorithm 6

excluding the preprocessing gives O
(
n3 log log nlog n

)
as well.

Theorem 2 Our algorithm solves ZeroTriangle deterministically in O(n3 log log nlog n)

time.

Grønlund and Pettie [8] also obtain an edge-oriented deterministic bound
of O

(
m1.5(log logm)1/2/(logm)1/4

)
and a randomized one of O

(
m1.5(log logm/

logm)1/4
)
, wherem is the number of edges. These bounds are better for sparse graphs.

Their edge-oriented deterministic algorithm reduces the problem to a relatively dense
subgraph, and then runs their vertex-oriented algorithm on it (see the proof of Theo-
rem 1.4 in their paper). By plugging in our version of the vertex-oriented algorithm
instead, we can match deterministically their randomized bound.

Theorem 3 Plugging our algorithm into Grønlund and Pettie’s deterministic edge-
oriented algorithm yields a deterministic algorithm solving ZeroTriangle in O

(
m1.5

(log logm/ logm)1/4
)
.

5.1 Comparison with Grønlund and Pettie

Grønlund and Pettie [8] define the problem a little more broadly—instead of searching
for a single (i, j, k) they ask to find a k for every (i, j), and in fact, do not ask for k
such that aik + bkj = ci j but rather for k that minimizes the difference aik + bkj − ci j
subject to aik + bkj ≥ ci j . They call this problem target-min-plus. It is easy to adapt
the binary searches to find a minimizing, rather than equalizing, k, and the algorithm
searches for each ci j anyway, so this problem can be solved at no additional cost.

Theoutline of our algorithm is the sameasGrønlund andPettie’s [8], except that they
organize the work a little differently—they break it into n/g rounds of preprocessing
and searching. However, as with their Convolution3SUM algorithms, Grønlund and
Pettie neglect to partition the sorted boxes into chunks, and therefore end up with
fairly complex constructions involving either random sampling within a multilevel
partitioning, or a deterministic enumeration of permutations, leading to the bounds
we have mentioned.

123

458 Algorithmica (2017) 77:440–458

Acknowledgements The author is grateful to the anonymous reviewers (especially “Reviewer #1”) for
helpful suggestions on improving the presentation.

References

1. Ailon, N., Chazelle, B.: Lower bounds for linear degeneracy testing. J. ACM 52(2), 157–171 (2005)
2. Baran, I., Demaine, E.D., Pǎtraşcu, M.: Subquadratic algorithms for 3SUM. Algorithmica 50(4), 584–

596 (2008)
3. Butman, A., Clifford, P., Clifford, R., Jalsenius, M., Lewenstein, N., Porat, B., Porat, E., Sach, B.:

Pattern matching under polynomial transformation. SIAM J. Comput. 42(2), 611–633 (2013)
4. Chan, T.M.: All-pairs shortest paths with real weights in O(n3/ log n) time. Algorithmica 50(2), 236–

243 (2008)
5. Chan, T.M.: Speeding up the four Russians algorithm by about one more logarithmic factor. In: Pro-

ceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 212–217. Society
for Industrial and Applied Mathematics, Philadelphia (2015)

6. Erickson, J.: Lower bounds for linear satisfiability problems. Chic. J. Theor. Comput. Sci. 8, 388–395
(1997)

7. Gajentaan, A., Overmars, M.H.: On a class of O(n2) problems in computational geometry. Comput.
Geom. 5(3), 165–185 (1995)

8. Grønlund, A., Pettie, S.: Threesomes, degenerates, and love triangles. In: Proceedings of the 55th IEEE
Symposium on Foundations of Computer Science. ArXiv preprint arXiv:1404.0799 (2014)

9. Impagliazzo, R., Lovett, S., Paturi, R., Schneider, S.: 0–1 Integer linear programming with a linear
number of constraints. ArXiv preprint arXiv:1401.5512 (2014)

10. Pǎtraşcu, M.: Towards polynomial lower bounds for dynamic problems. In: Proceedings of the
Forty-Second ACM Symposium on Theory of Computing, pp. 603–610. Association for Comput-
ing Machinery, New York (2010)

11. Preparata, F.P., Shamos, M.I.: Computational Geometry, an Introduction. Springer, New York (1985)

123

http://arxiv.org/abs/1404.0799
http://arxiv.org/abs/1401.5512

	Improved Subquadratic 3SUM
	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Organization of this Paper

	2 Linear Time 2SUM on Sorted Input; Quadratic 3SUM
	3 Improved 3SUM
	3.1 Searching Within a Pair of Blocks (Line 8)
	3.2 Preprocessing (Line 3)
	3.2.1 Avoiding Excessive Enumeration
	3.2.2 Finding All Pairs of Blocks that Agree with a Given Chunk

	3.3 The Overall Running Time
	3.4 Lifting the Value Distinctness Restriction
	3.5 Comparison with Grønlund and Pettie

	4 Improved Convolution3SUM
	5 Improved ZeroTriangle
	5.1 Comparison with Grønlund and Pettie

	Acknowledgements
	References

