
Algorithmica (2017) 77:487–514
DOI 10.1007/s00453-015-0078-7

Computing Approximate Nash Equilibria in Polymatrix
Games

Argyrios Deligkas1 · John Fearnley1 ·
Rahul Savani1 · Paul Spirakis1,2

Received: 16 September 2014 / Accepted: 5 October 2015 / Published online: 26 October 2015
© Springer Science+Business Media New York 2015

Abstract In an ε-Nash equilibrium, a player can gain at most ε by unilaterally
changing his behavior. For two-player (bimatrix) gameswith payoffs in [0, 1], the best-
known ε achievable in polynomial time is 0.3393 (Tsaknakis and Spirakis in Internet
Math 5(4):365–382, 2008). In general, for n-player games an ε-Nash equilibrium can
be computed in polynomial time for an ε that is an increasing function of n but does
not depend on the number of strategies of the players. For three-player and four-player
games the corresponding values of ε are 0.6022 and 0.7153, respectively. Polymatrix
games are a restriction of general n-player games where a player’s payoff is the sum
of payoffs from a number of bimatrix games. There exists a very small but constant ε
such that computing an ε-Nash equilibrium of a polymatrix game is PPAD-hard. Our
main result is that a (0.5 + δ)-Nash equilibrium of an n-player polymatrix game can
be computed in time polynomial in the input size and 1

δ
. Inspired by the algorithm of

Tsaknakis and Spirakis [28], our algorithm uses gradient descent style approach on
the maximum regret of the players. We also show that this algorithm can be applied
to efficiently find a (0.5 + δ)-Nash equilibrium in a two-player Bayesian game.

Keywords Approximate Nash equilibria · Gradient descent · Polymatrix games ·
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1 Introduction

Approximate Nash equilibria. Nash equilibria are the central solution concept in game
theory. Since it is known that computing an exact Nash equilibrium [6,11] is unlikely
to be achievable in polynomial time, a line of work has arisen that studies the com-
putational aspects of approximate Nash equilibria. The most widely studied notion is
of an ε-approximate Nash equilibrium (ε-Nash), which requires that all players have
an expected payoff that is within ε of a best response. This is an additive notion of
approximate equilibrium; the problem of computing approximate equilibria of bima-
trix games using a relative notion of approximation is known to be PPAD-hard even
for constant approximations [10].

So far, ε-Nash equilibria have mainly been studied in the context of two-player
bimatrix games. A line of work [3,12,13] has investigated the best ε that can be
guaranteed in polynomial time for bimatrix games. The current best result, due to
Tsaknakis and Spirakis [28], is a polynomial-time algorithm that finds a 0.3393-Nash
equilibrium of a bimatrix game with all payoffs in [0, 1].

In this paper, we study ε-Nash equilibria in the context of many-player games, a
topic that has received much less attention. A simple approximation algorithm for
many-player games can be obtained by generalising the algorithm of Daskalakis et
al. [13] from the two-player setting to the n-player setting, which provides a guar-
antee of ε = 1 − 1

n . This has since been improved independently by three sets of
authors [3,4,22]. They provide a method that converts a polynomial-time algorithm
for finding ε-Nash equilibria in (n−1)-player games into an algorithm that finds a 1

2−ε
-

Nash equilibrium in n-player games. Using the polynomial-time 0.3393 algorithm of
Tsaknakis and Spirakis [28] for 2-player games as the base case for this recursion,
this allows us to provide polynomial-time algorithms with approximation guarantees
of 0.6022 in 3-player games, and 0.7153 in 4-player games. These guarantees tend to
1 as n increases, and so far, no constant ε < 1 is known such that, for all n, an ε-Nash
equilibrium of an n-player game can be computed in polynomial time.

For n-player games, we have lower bounds for ε-Nash equilibria. More precisely,
Rubinstein has shown that when n is not a constant there exists a constant but very
small ε such that it is PPAD-hard to compute an ε-Nash equilibrium [27]. This is quite
different from the bimatrix game setting, where the existence of a quasi-polynomial
time approximation scheme rules out such a lower bound, unless all of PPAD can be
solved in quasi-polynomial time [26] can be solved in quasi-polynomial time [26].

Polymatrix games. In this paper, we focus on a particular class of many-player games
called polymatrix games. In a polymatrix game, the interaction between the players is
specified by an n vertex graph, where each vertex represents one of the players. Each
edge of the graph specifies a bimatrix game that will be played by the two respective
players, and thus a player with degree d will plays d bimatrix games simultaneously.
More precisely, each player picks a strategy, and then plays this strategy in all of the
bimatrix games that he is involved in. His payoff is then the sum of the payoffs that
he obtains in each of the games.

Polymatrix games are a class of succinctly represented n-player games: a polymatrix
game is specified by at most n2 bimatrix games, each of which can be written down
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in quadratic space with respect to the number of strategies. This is unlike general
n-player strategic form games, which require a representation that is exponential in
the number of players.

The problemof computing exactNash equilibria in polymatrix games can be tackled
in exponential time by Lemke’s algorithm [24]. For the special subclass of generalized
zero sum games on networks it was proved by Cai and Daskalakis [5] that this prob-
lem can be solved in polynomial time. On the other hand, there has been relatively
little work on approximation algorithms for polymatrix games. The approximation
algorithms for general games can be applied in this setting in an obvious way, but to
the best of our knowledge there have been no upper bounds that are specific to poly-
matrix games. On the other hand, the lower bound of Rubinstein mentioned above is
actually proved by constructing polymatrix games. Thus, there is a constant but very
small ε such that it is PPAD-hard to compute an ε-Nash equilibrium [27], and this
again indicates that approximating equilibria in polymatrix games is quite different to
approximating equilibria in bimatrix games.

Our contribution. Our main result is an algorithm that, for every δ in the range 0 <

δ ≤ 0.5, finds a (0.5+ δ)-Nash equilibrium of a polymatrix game in time polynomial
in the input size and 1

δ
. Note that our approximation guarantee does not depend on the

number of players,which is a property that was not previously known to be achievable
for polymatrix games, and still cannot be achieved for general strategic form games.

We prove this result by adapting the algorithm of Tsaknakis and Spirakis [28]
(henceforth referred to as the TS algorithm). They give a gradient descent algorithm
for finding a 0.3393-Nash equilibrium in a bimatrix game.We generalise their gradient
descent techniques to the polymatrix setting, and show that it always arrives at a
(0.5 + δ)-Nash equilibrium after a polynomial number of iterations.

In order to generalise the TS algorithm, we had to overcome several issues. Firstly,
the TS algorithm makes the regrets of the two players equal in every iteration, but
there is no obvious way to achieve this in the polymatrix setting. Instead, we show
how gradient descent can be applied to a strategy profile where the regrets are not
necessarily equal. Secondly, the output of the TS algorithm is either a point found by
gradient descent, or a point obtained bymodifying the result of gradient descent. In the
polymatrix game setting, it is not immediately obvious how such a modification can
be derived with a non-constant number of players (without an exponential blowup).
Thus we apply a different analysis, which proves that the point resulting from gradient
descent always has our approximation guarantee. It is an interesting open question
whether a better approximation guarantee can be achieved when there is a constant
number of players.

An interesting feature of our algorithm is that it can be applied even when players
have differing degrees. Originally, polymatrix games were defined only for complete
graphs [24]. Since previous work has only considered lower bounds for polyma-
trix games, it has been sufficient to restrict attention to regular graphs, as in work
Rubinstein [27]. However, since this paper is proving an upper bound, we must be
more careful. As it turns out, our algorithm will efficiently find a (0.5 + δ)-Nash
equilibrium for all δ > 0, no matter what graph structure the polymatrix game
has.
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Finally, we show that our algorithm can be applied to two-player Bayesian games.
In a two-player Bayesian game, each player is assigned a type according to a publicly
known probability distribution. Each player knows their own type, but does not know
the type of their opponent. Rosenthal and Howson showed that the problem of finding
an exact equilibrium in a two-player Bayesian game is equivalent to finding an exact
equilibrium in a polymatrix game [23].We show that this correspondence also holds for
approximate equilibria: finding an ε-Nash equilibrium in these games can be reduced
to the problem of finding an ε-Nash equilibrium in a polymatrix game, and therefore,
our algorithm can be used to efficiently find a (0.5 + δ)-Nash equilibrium of a two-
player Bayesian game.

Related work. An FPTAS for the problem of computing an ε-Nash equilibrium of a
bimatrix game does not exist unless every problem in PPAD can be solved in poly-
nomial time [6]. Arguably, the biggest open question in equilibrium computation is
whether there exists a PTAS for this problem. As we have mentioned, for any constant
ε > 0, there does exist a quasi-polynomial-time algorithm for computing an ε-Nash
equilibrium of a bimatrix game, or any game with a constant number of players [2,26],
with running time kO(log k) for a k × k bimatrix game. Consequently, in contrast to the
many-player case, it is not believed that there exists a constant ε such that the problem
of computing an ε-Nash equilibrium of a bimatrix game (or any game with a constant
number of players) is PPAD-hard, since it seems unlikely that all problems in PPAD
have quasi-polynomial-time algorithms. On the other hand, for multi-player games, as
mentioned above, there is a small constant ε such that it is PPAD-hard to compute an
ε-Nash equilibrium of an n-player gamewhen n is not constant. One positive result we
do have for multi-player games is that there is a PTAS for anonymous games (where
the identity of players does not matter) when the number of strategies is constant [14].

Polymatrix games have played a central role in the reductions that have been used
to show PPAD-hardness of games and other equilibrium problems [6,7,11,16,19].
Computing an exact Nash equilibrium in a polymatrix game is PPAD-hard even when
all the bimatrix games played are either zero-sum games or coordination games [5].
Polymatrix games have been used in other contexts too. For example, Govindan and
Wilson proposed a (non-polynomial-time) algorithm for computing Nash equilib-
ria of an n-player game, by approximating the game with a sequence of polymatrix
games [20]. Later, they presented a (non-polynomial) reduction that reduces n-player
games to polymatrix games while preserving approximate Nash equilibria [21]. Their
reduction introduces a central coordinator player, who interacts bilaterally with every
player.

ForBayesian two player games, Conitzer andSandholm [8] proved that determining
whether a given two-player game has a pure Bayesian Nash equilibrium (BNE) is NP-
complete. Austrin et al. [1] extended this hardness result to approximate pure BNE.
More specifically, they proved that given that a Bayesian game admits a pure BNE
it is NP-hard to compute a pure ε-BNE for ε = 0.004. Moreover, for the special
case where the distribution over the types of the players is uniform they provided a
quasi polynomial algorithm for computing an ε pure BNE, for any ε > 0. Finally,
Rubinstein [27] proved that there is a (very small) constant ε such that it is PPAD-hard
to compute any ε-BNE of a Bayesian two player game. Our main result is the first

123



Algorithmica (2017) 77:487–514 491

non-trivial upper bound on the approximation guarantee for this problem that can be
achieved in polynomial time.

2 Preliminaries

We start by fixing some notation. We use [k] to denote the set of integers {1, 2, . . . , k},
and when a universe [k] is clear, we will use S̄ = {i ∈ [k], i /∈ S} to denote the
complement of S ⊆ [k]. For a k-dimensional vector x , we use x−S to denote the
elements of x with indices S̄, and in the case where S = {i} has only one element, we
simply write x−i for x−S .

Polymatrix games. An n-player polymatrix game is defined by an undirected graph
(V, E) with n vertices, where every vertex corresponds to a player. The edges of
the graph specify which players interact with each other. For each i ∈ [n], we use
N (i) = { j : (i, j) ∈ E} to denote the neighbors of player i .

Each edge (i, j) ∈ E specifies that a bimatrix game will be played between players
i and j . Each player i ∈ [n] has a fixed number of pure strategiesmi , and the bimatrix
game on edge (i, j) ∈ E will therefore be specified by an mi ×m j matrix Ai j , which
gives the payoffs for player i , and an m j × mi matrix A ji , which gives the payoffs
for player j . We allow the individual payoffs in each matrix to be an arbitrary (even
negative) rational number. As we describe in the next subsection, we will rescale these
payoffs so that the overall payoff to each player lies in the range [0, 1].

2.1 Payoff Normalisation

Before we continue, we must first discuss how the payoffs in the game are rescaled.
It is common, when proving results about additive notions of approximate equilibria,
to rescale the payoffs of the game. This is necessary in order for different results to be
comparable. For example, all results about additive approximate equilibria in bimatrix
games assume that the payoff matrices have entries in the range [0, 1], and therefore
an ε-Nash equilibrium always has a consistent meaning. For the same reason, we
must rescale the payoffs in a polymatrix in order to give a consistent meaning to an
ε-approximation.

An initial, naive, approach would be to specify that each of the individual bimatrix
games has entries in the range [0, 1]. Thiswould be sufficient if wewere only interested
in polymatrix games played on either complete graphs or regular graphs. However, in
thismodel, if the players have differing degrees, then they also have differingmaximum
payoffs. This means that an additive approximate equilibriummust pay more attention
to high degree players, as they can have larger regrets.

One solution to this problem, which was adopted in the conference version of this
paper [15], is to rescale according to the degree. That is, given a polymatrix game
where each bimatrix game has payoffs in the range [0, 1], if a player has degree d,
then each of his payoff matrices is divided by d. This transformation ensures that every
player has regret in the range [0, 1], and therefore low degree players are not treated
unfairly by additive approximations.
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However, rescaling according to the degree assumes that each bimatrix game actu-
ally uses the full range of payoffs in [0, 1]. In particular, some bimatrix games may
have minimum payoff strictly greater than 0, or maximum payoff strictly less than 1.
This issue arises, in particular, in our application of two-player Bayesian games. Note
that, unlike the case of a single bimatrix game, we cannot fix this by rescaling individ-
ual bimatrix games in a polymatrix game, because we must preserve the relationship
between the payoffs in all of the bimatrix games that a player is involved in.

To address this, we will rescale the games so that, for each player, the minimum
possible payoff is 0, and the maximum possible payoff is 1. For each player i , we
denote by Ui the maximum payoff he can obtain, and by Li the minimum payoff he
can obtain. Formally:

Ui := max
p∈[mi ]

⎛
⎝ ∑

j∈N (i)

max
q∈[m j ]

(
Ai j (p, q)

)
⎞
⎠ ,

Li := min
p∈[mi ]

⎛
⎝ ∑

j∈N (i)

min
q∈[m j ]

(
Ai j (p, q)

)
⎞
⎠ .

Then, for all i and all j ∈ N (i) we will apply the following transformation, which we
call T (·), to all the entries z of payoff matrices Ai j :

Ti (z) = 1

Ui − Li
·
(
z − Li

d(i)

)
.

Observe that, since player i’s payoff is the sum of d(i) many bimatrix games, it must
be the case that after transforming the payoff matrices in this way, player i’s maximum
possible payoff is 1, and player i’s minimum possible payoff is 0. For the rest of this
paper, we will assume that the payoff matrices given by Ai j are rescaled in this way.

2.2 Approximate Nash Equilibria

Strategies. A mixed strategy for player i is a probability distribution over player i’s
pure strategies. Formally, for each positive integer k, we denote the (k−1)-dimensional
simplex by Δk := {x : x ∈ R

k, x ≥ 0,
∑k

i=1 xi = 1}, and therefore the set of
strategies for player i is Δmi . For each mixed strategy x ∈ Δm , the support of x is
defined as supp(x) := {i ∈ [m] : xi �= 0}, which is the set of strategies played with
positive probability by x .

A strategy profile specifies a mixed strategy for every player. We denote the set
of mixed strategy profiles as Δ := Δm1 × . . . × Δmn . Given a strategy profile x =
(x1, . . . , xn) ∈ Δ, the payoff of player i under x is the sum of the payoffs that he
obtains in each of the bimatrix games that he plays. Formally, we define:

ui (x) := xTi
∑
j∈N (i)

Ai j x j . (1)
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We denote by ui
(
x ′
i , x

)
the payoff for player i when he plays x ′

i and the other players
play according to the strategy profile x. In some cases the first argument will be xi − x ′

i
whichmay not correspond to a valid strategy for player i but we still apply the equation
as follows:

ui
(
xi − x ′

i , x
) := xTi

∑
j∈N (i)

Ai j x j − x ′T
i

∑
j∈N (i)

Ai j x j = ui (xi , x) − ui
(
x ′
i , x

)
.

Best responses. Let vi
(
x
)
be the vector of payoffs for each pure strategy of player i

when the rest of players play strategy profile x. Formally:

vi
(
x
) =

∑
j∈N (i)

Ai j x j .

For each vector x ∈ Rm , we define suppmax(x) to be the set of indices that achieve
the maximum of x , that is, we define suppmax(x) = {i ∈ [m] : xi ≥ x j ,∀ j ∈ [m]}.
Then the pure best responses of player i against a strategy profile x (where only x−i

is relevant) is given by:

Bri (x) = suppmax

⎛
⎝ ∑

j∈N (i)

Ai j x j

⎞
⎠ = suppmax(vi

(
x
)
). (2)

The corresponding best response payoff is given by:

u∗
i (x) = max

k

⎧⎨
⎩

( ∑
j∈N (i)

Ai j x j
)
k

⎫⎬
⎭ = max

k

{(
vi

(
x
))

k

}
. (3)

Equilibria. In order to define the exact and approximate equilibria of a polymatrix
game, we first define the regret that is suffered by each player under a given strategy
profile. The regret function fi : Δ → [0, 1] is defined, for each player i , as follows:

fi (x) := u∗
i (x) − ui (x). (4)

The maximum regret under a strategy profile x is given by the function f (x) where:

f (x) := max{ f1(x), . . . , fn(x)}. (5)

We say that x is an ε-approximate Nash equilibrium (ε-NE) if we have:

f (x) ≤ ε,

and x is an exact Nash equilibrium if we have f (x) = 0.
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3 The Gradient

Our goal is to apply gradient descent to the regret function f . In this section, we
formally define the gradient of f in Definition 1, and give a combinatorial version
of that definition in Lemma 3. In order to show that our gradient descent method
terminates after a polynomial number of iterations, we actually need to use a slightly
modified version, which we describe at the end of this section in Definition 5.

Given a point x ∈ Δ, a feasible direction from x is defined by any other point
x′ ∈ Δ. This defines a line between x and x′, and formally speaking, the direction of
this line is x′ − x. In order to define the gradient of this direction, we consider the
function f ((1 − ε) · x + ε · x′) − f (x) where ε lies in the range 0 ≤ ε ≤ 1. The
gradient of this direction is given in the following definition.

Definition 1 Given profiles x, x′ ∈ Δ and ε ∈ [0, 1], we define:

Df (x, x′, ε) := f ((1 − ε) · x + ε · x′) − f (x).

Then, we define the gradient of f at x in the direction x′ − x as:

Df (x, x′) = lim
ε→0

1

ε
Df (x, x′, ε). (6)

The gradient of f at any point x ∈ Δ along a feasible direction specified by another
point x′ ∈ Δ provides the rate of decrease, or increase, of the value of f along that
direction. At any point x we wish to find the direction such that f decreases with the
highest rate, that is, we want to find the point x′ that minimizes Df (x, x′), and move
along the direction x′ − x, or to find that x is a stationary point, i.e. Df (x, x′) ≥ 0
for all x′ ∈ Δ. Unfortunately, Eq. (6) cannot be used directly in an algorithm. Instead,
in Definition 3 we provide a combinatorial version of the gradient that allows us to
compute the steepest descent direction, with respect to the combinatorial gradient, via
a linear program.

The intuition for the combinatorial version comes from Eq. (6). Let us define x̄ :=
(1 − ε) · x + ε · x′. From the natural gradient defined in Definition 1, we get that:

Df (x, x′) = lim
ε→0

1

ε

(
f (x̄) − f (x)

)

= lim
ε→0

1

ε

(
max
i∈[n] fi (x̄) − f (x)

)

= max
i∈[n]

(
lim
ε→0

1

ε

(
fi (x̄) − f (x)

))
. (7)

In “Appendix 1” we study the limit limε→0
1
ε

(
fi (x̄)− f (x)

)
, and we prove that it is

equal to the following combinatorial version. Before we state the result we introduce
some useful notation. Given profiles x and x′ let us denote:

Dfi (x, x′) = max
k∈Bri (x)

{(
vi

(
x′))

k

} − ui
(
xi , x′) + ui

(
xi − x ′

i , x
)
. (8)
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The above expression arises from expanding fi (x̄) − f (x). The terms above are all
multiplied by ε in the expansion, whereas the remaining terms all tend to zero when
the limit is taken. The following lemma is proved in “Appendix 1”.

Lemma 2 Let x be strategy profile and i ∈ [n]. If fi (x) = f (x), then:

lim
ε→0

1

ε

(
fi (x̄) − f (x)

) = Dfi (x, x′) − f (x).

otherwise limε→0
1
ε

(
fi (x̄) − f (x)

) = −∞.

Combining Eq. (7) with Lemma 2 gives the following combinatorial version of the
gradient that we will use throughout the rest of the paper.

Definition 3 (Combinatorial gradient) The gradient of f at point x along direction
x′ − x is:

Df (x, x′) = max
i∈[n] Dfi (x, x′) − f (x).

In order to show that our gradient descent algorithm terminates after a polynomial
number of steps, we have to use a slight modification of the formula given in Defin-
ition 3. More precisely, in Dfi (x, x′), we need to take the maximum over the δ-best
responses, rather than the best responses.

We begin by providing the definition of the δ-best responses.

Definition 4 (δ-best response) Let x ∈ Δ, and let δ ∈ (0, 0.5]. The δ-best response
set Brδi (x) for player i ∈ [n] is defined as:

Brδi (x) :=
{
j ∈ [mi ] : (

vi
(
x
))

j ≥ u∗
i (x) − δ

}
.

We now define the function Df δ
i (x, x′).

Definition 5 Let x, x′ ∈ Δ, let ε ∈ [0, 1], and let δ ∈ (0, 0.5]. We define Df δ
i (x, x′)

as:

Df δ
i (x, x′) := max

k∈Brδi (x)
{(

vi
(
x′))

k

} − ui
(
xi , x′) − ui

(
x ′
i , x

) + ui (xi , x) . (9)

Furthermore, we define Df δ(x, x′) as:

Df δ(x, x′) = max
i∈[n] Df δ

i (x, x′) − f (x). (10)

Our algorithm works by performing gradient descent using the function Df δ as
the gradient. Obviously, this is a different function to Df , and so we are not actually
performing gradient descent on the gradient of f . It is important to note that all of our
proofs are in terms of Df δ , and so this does not affect the correctness of our algorithm.
We proved Lemma 2 in order to explain where our definition of the combinatorial
gradient comes from, but the correctness of our algorithm does not depend on the
correctness of Lemma 2.
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4 The Algorithm

In this section, we describe our algorithm for finding a (0.5+ δ)-Nash equilibrium in
a polymatrix game by gradient descent. In each iteration of the algorithm, we must
find the direction of steepest descent with respect to Df δ . We show that this task can
be achieved by solving a linear program, and we then use this LP to formally specify
our algorithm.

The direction of steepest descent. We show that the direction of steepest descent can
be found by solving a linear program. Our goal is, for a given strategy profile x, to
find another strategy profile x′ so as to minimize the gradient Df δ(x, x′). Recall that
Df δ is defined in Eq. (10) to be:

Df δ(x, x′) = max
i∈[n] Df δ

i (x, x′) − f (x).

Note that the term f (x) is a constant in this expression, because it is the same for all
directions x′. Thus, it is sufficient to formulate a linear program in order to find the
x′ that minimizes maxi∈[n] Df δ

i (x, x′). Using the definition of Df δ
i in Eq. (9), we can

do this as follows.

Definition 6 (Steepest descent linear program) Given a strategy profile x, the steepest
descent linear program is defined as follows. Find x′ ∈ Δ, l1, l2, . . . , ln , and w such
that:

minimize w

subject to
(
vi

(
x′))

k ≤ li ∀k ∈ Brδi (x), ∀i ∈ [n]
li − ui

(
xi , x′) − ui

(
x ′
i , x

) + ui (x) ≤ w ∀i ∈ [n]
x′ ∈ Δ.

The li variables deal with the maximum in the term maxk∈Brδi (x)
{(

vi
(
x′))

k

}
, while

the variable w is used to deal with the maximum over the functions Df δ
i . Since the

constraints of the linear program correspond precisely to the definition of Df δ , it is
clear that, when we minimize w, the resulting x′ specifies the direction of steepest
descent. For each profile x, we define Q(x) to be the direction x′ found by the steepest
descent LP for x.

Once we have found the direction of steepest descent, we then need to move in that
direction. More precisely, we fix a parameter ε = δ

δ+2 which is used to determine how
far we move in the steepest descent direction. We derive this value for ε in Lemma 24
in “Appendix 2”. The choice of this value for ε ensures that in every iteration of our
algorithm the value of f is decreasing and moreover, as we will show in Sect. 6, leads
to a polynomial bound on the running time of our algorithm.

The algorithm. We can now formally describe our algorithm. The algorithm takes a
parameter δ ∈ (0, 0.5], which will be used as a tradeoff between running time and the
quality of approximation.
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Algorithm 1

1. Choose an arbitrary strategy profile x ∈ Δ.

2. Solve the steepest descent linear program with input x to obtain x′ = Q(x).

3. Set x := x + ε(x′ − x), where ε = δ
δ+2 .

4. If f (x) ≤ 0.5 + δ then stop, otherwise go to step 2.

A single iteration of this algorithm corresponds to executing steps 2, 3, and 4. Since
this only involves solving a single linear program, it is clear that each iteration can be
completed in polynomial time.

The rest of this paper is dedicated to showing the following theorem, which is our
main result.

Theorem 7 Algorithm 1 finds a (0.5 + δ)-NE after at most O( 1
δ2

) iterations.

To prove Theorem 7, we will show two properties. Firstly, in Sect. 5, we show that
our gradient descent algorithm never gets stuck in a stationary point before it finds a
(0.5+ δ)-NE. To do so, we define the notion of a δ-stationary point, and we show that
every δ-stationary point is at least a (0.5+ δ)-NE, which then directly implies that the
gradient descent algorithm will not get stuck before it finds a (0.5 + δ)-NE.

Secondly, in Sect. 6, we prove the upper bound on the number of iterations. To
do this we show that, if an iteration of the algorithm starts at a point that is not a
δ-stationary point, then that iteration will make a large enough amount of progress.
This then allows us to show that the algorithm will find a (0.5 + δ)-NE after O( 1

δ2
)

many iterations, and therefore the overall running time of the algorithm is polynomial.

5 Stationary Points

Recall that Definition 6 gives a linear program for finding the direction x′ that
minimises Df δ(x, x′). Our steepest descent procedure is able to make progress when-
ever this gradient is negative, and so a stationary point is any point x for which
Df δ(x, x′) ≥ 0. In fact, our analysis requires us to consider δ-stationary points,
which we now define.

Definition 8 (δ-stationary point) Let x∗ be a mixed strategy profile, and let δ > 0.
We have that x∗ is a δ-stationary point if for all x′ ∈ Δ:

Df δ(x∗, x′) ≥ −δ.

We now show that every δ-stationary point of f (x) is a (0.5+ δ)-NE. Recall from
Definition 5 that:

Df δ(x, x′) = max
i∈[n] Df δ

i (x, x′) − f (x).
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Therefore, if x∗ is a δ-stationary point, we must have, for every direction x′:

f (x∗) ≤ max
i∈[n] Df δ

i (x∗, x′) + δ. (11)

Since f (x∗) is the maximum regret under the strategy profile x∗, in order to
show that x∗ is a (0.5 + δ)-NE, we only have to find some direction x′ such that
maxi∈[n] Df δ

i (x∗, x′) ≤ 0.5. We do this in the following lemma.

Lemma 9 For every point x, there exists a direction x′ such that:

max
i∈[n] Df δ

i (x, x′) ≤ 0.5.

Proof First, define x̄ to be a strategy profile in which each player i ∈ [n] plays a
best response against x. We will set x′ = x̄+x

2 . Then for each i ∈ [n], we have that
Df δ

i (x, x′), is less than or equal to:

max
k∈Brδi (x)

{(
vi

( x̄ + x
2

))
k

}
− ui

(
xi ,

x̄ + x
2

)
− ui

(
x̄i + xi

2
, x

)
+ ui (xi , x)

= 1

2
· max
k∈Brδi (x)

{(
vi

(
x̄ + x

))
k

} − 1

2
· ui (xi , x̄) − 1

2
· ui (x̄i , x)

≤ 1

2
·
(

max
k∈Brδi (x)

{(
vi

(
x̄
))

k

} + max
k∈Brδi (x)

{(
vi

(
x
))

k

} − ui (xi , x̄) − ui (x̄i , x)

)

= 1

2
·
(

max
k∈Brδi (x)

{(
vi

(
x̄
))

k

} − ui (xi , x̄)

)
because x̄i is a b.r. tox

≤ 1

2
· max
k∈Brδi (x)

{(
vi

(
x̄
))

k

}

≤ 1

2
.

Thus, the point x′ satisfies maxi∈[n] Df δ
i (x, x′) ≤ 0.5. �

We can sum up the results of the section in the following lemma.

Lemma 10 Every δ-stationary point x∗ is a (0.5 + δ)-Nash equilibrium.

6 The Time Complexity of the Algorithm

In this section, we show that Algorithm 1 terminates after a polynomial number of
iterations. Let x be a strategy profile that is considered by Algorithm 1, and let x′ =
Q(x) be the solution of the steepest descent LP for x. These two profiles will be fixed
throughout this section.

We begin by proving a technical lemma that will be crucial for showing our bound
on the number of iterations. To simplify our notation, throughout this section we
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define fnew := f (x + ε(x′ − x)) and f := f (x). Furthermore, we define D =
maxi∈[n] Df δ

i (x, x′). The following lemma, which is proved in “Appendix 2”, gives a
relationship between f and fnew.

Lemma 11 In every iteration of Algorithm 1 we have:

fnew − f ≤ ε(D − f ) + ε2(1 − D). (12)

In the next lemmawe prove that, if we are not in a δ-stationary point, then we have a
bound on the amount of progress made in each iteration. We use this in order to bound
the number of iterations needed before we reach a point x where f (x) ≤ 0.5 + δ.

Lemma 12 Fix ε = δ
δ+2 , where 0 < δ ≤ 0.5. Either x is a δ-stationary point or:

fnew ≤
(
1 −

(
δ

δ + 2

)2
)

f. (13)

Proof Recall that by Lemma 11 the gain in every iteration of the steepest descent is:

fnew − f ≤ ε(D − f ) + ε2(1 − D). (14)

We consider the following two cases:

(a) D − f > −δ. Then, by definition, we are in a δ-stationary point.
(b) D − f ≤ −δ. We have set ε = δ

δ+2 . If we solve for δ we get that δ = 2ε
1−ε

. Since
D − f ≤ −δ, we have that (D − f )(1 − ε) ≤ −2ε. Thus we have:

(D − f )(ε − 1) ≥ 2ε

0 ≥ (D − f )(1 − ε) + 2ε

0 ≥ (D − f ) + ε(2 − D + f )

−ε f − ε ≥ (D − f ) + ε(1 − D) (ε ≥ 0)

−ε2 f − ε2 ≥ ε(D − f ) + ε2(1 − D).

Thus, since ε2 ≥ 0 we get:

−ε2 f ≥ ε(D − f ) + ε2(1 − D)

≥ fnew − f According to (14).

Thus we have shown that:

fnew − f ≤ − ε2 f

fnew ≤(1 − ε2) f.
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Finally, using the fact that ε = δ
δ+2 , we get that

fnew ≤
(
1 −

(
δ

δ + 2

)2
)

f.

�
So, when the algorithm has not reached yet a δ-stationary point, there is a decrease
on the value of f that is at least as large as the bound specified in (13) in every
iteration of the gradient descent procedure. In the following lemma we prove that after
O( 1

δ2
) iterations of the steepest descent procedure the algorithm finds a point x where

f (x) ≤ 0.5 + δ.

Lemma 13 After O( 1
δ2

) iterations of the steepest descent procedure the algorithm
finds a point x where f (x) ≤ 0.5 + δ.

Proof Let x1, x2, . . . , xk be the sequence of strategy profiles that are considered by
Algorithm 1. Since the algorithm terminates as soon as it finds a (0.5 + δ)-NE, we
have f (xi ) > 0.5 + δ for every i < k. Therefore, for each i < k we we can apply
Lemma 10 to argue that xi is not a δ-stationary point, which then allows us to apply
Lemma 12 to obtain:

f (xi+1) ≤
(
1 −

(
δ

δ + 2

)2
)

f (xi ).

So, the amount of progress made by the algorithm in iteration i is:

f (xi ) − f (xi+1) ≥ f (xi ) −
(
1 −

(
δ

δ + 2

)2
)

f (xi )

=
(

δ

δ + 2

)2

f (xi )

≥
(

δ

δ + 2

)2

· 0.5.

Thus, each iteration of the algorithm decreases the regret by at least ( δ
δ+2 )

2 · 0.5. The
algorithm starts at a point x1 with f (x1) ≤ 1, and terminates when it reaches a point
xk with f (xk) ≤ 0.5+ δ. Thus the total amount of progress made over all iterations of
the algorithm can be at most 1 − (0.5 + δ). Therefore, the number of iterations used
by the algorithm can be at most:

1 − (0.5 + δ)(
δ

δ+2

)2 · 0.5
≤ 1 − 0.5(

δ
δ+2

)2 · 0.5

= (δ + 2)2

δ2
= δ2

δ2
+ 4δ

δ2
+ 4

δ2
.

Since δ < 1, we have that the algorithm terminates after at most O( 1
δ2

) iterations. �
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Lemma 13 implies that that after polynomially many iterations the algorithm finds
a point such that f (x) ≤ 0.5 + δ, and by definition such a point is a (0.5 + δ)-NE.
Thus we have completed the proof of Theorem 7.

7 Application: Two-Player Bayesian Games

In this section, we define two-player Bayesian games, and show how our algorithm
can be applied in order to efficiently find a (0.5 + δ)-Bayesian Nash equilibrium. A
two-player Bayesian game is played between a row player and a column player. Each
player has a set of possible types, and at the start of the game, each player is assigned
a type by drawing from a known joint probability distribution. Each player learns his
type, but not the type of his opponent. Our task is to find an approximate Bayesian
Nash equilibrium (BNE).

We show that this can be reduced to the problem of finding an ε-NE in a polymatrix
game, and therefore our algorithm can be used to efficiently find a (0.5 + δ)-BNE of
a two-player Bayesian game. This section is split into two parts. In the first part we
formally define two-player Bayesian games, and approximate Bayesian Nash equi-
libria. In the second part, we give the reduction from two-player Bayesian games to
polymatrix games.

7.1 Definitions

Payoff matrices. We will use k1 to denote the number of pure strategies of the row
player and k2 to denote the number of pure strategies of the column player. Further-
more, we will use m to denote the number of types of the row player, and n to denote
the number of types of the column player.

For each pair of types i ∈ [m] and j ∈ [n], there is a k1 × k2 bimatrix game
(R,C)i j := (Ri j ,Ci j ) that is played when the row player has type i and the column
player has type j . We assume that all payoffs in every matrix Ri j and every matrix
Ci j lie in the range [0, 1].

Types. The distribution over types is specified by a joint probability distribution: for
each pair of types i ∈ [m] and j ∈ [n], the probability that the row player is assigned
type i and the columnplayer is assigned type j is given by pi j . Obviously,we have that:

m∑
i=1

n∑
j=1

pi j = 1.

We also define some useful shorthands: for all i ∈ [m] we denote by pRi (pCj ) the
probability that row (column) player has type i ∈ [m] ( j ∈ [n]). Formally:

pRi =
n∑
j=1

pi j for all i ∈ [m],

pCj =
m∑
i=1

pi j for all j ∈ [n].
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Note that
∑m

i=1 p
R
i = ∑n

j=1 p
C
j = 1. Furthermore, we denote by pRi ( j) the con-

ditional probability that type j ∈ [n] will be chosen for column player given that
type i is chosen for row player. Similarly, we define pCj (i) for the column player.
Formally:

pRi ( j) = pi j
pRi

for all i ∈ [m],

pCj (i) = pi j
pCj

for all j ∈ [n].

We can see that for given type t = (i, j)we have that pi j = pRi · pRi ( j) = pCj · pCj (i).

Strategies In order to play a Bayesian game, each player must specify a strategy for
each of their types. Thus, a strategy profile is a pair (x, y), where x = (x1, x2, . . . , xm)

such that each xi ∈ Δk1 , and where y = (y1, y2, . . . , yn) such that each yi ∈ Δk2 .
This means that, when the row player gets type i ∈ [m] and the column player gets
type j ∈ [n], then the game (Ri j ,Ci j ) will be played, and the row player will use
strategy xi while the column player will use strategy y j .

Given a strategy profile (x, y), we can define the expected payoff to both players
(recall that the players are not told their opponent’s type).

Definition 14 (Expected payoff) Given a strategy profile (x, y) and a type t = (i, j),
the expected payoff for the row player is given by:

uR(xi , y) =
n∑
j=1

pRi ( j) · xTi Ri j y j ,

= xTi

n∑
j=1

pRi ( j) · Ri j y j .

Similarly, for the column player the expected payoff is:

uC (x, y j ) = yTj

m∑
i=1

pCj (i) · CT
i j xi .

Rescaling. Before we define approximate equilibria for two-player Bayesian games,
we first rescale the payoffs. Much like for polymatrix games, rescaling is needed to
ensure that an ε-approximate equilibrium has a consistent meaning. Our rescaling will
ensure that, for every possible pair of types, both player’s expected payoff uses the
entire range [0, 1].

For each type i of the row player, we use Ui
R to denote the maximum expected

payoff for the row player when he has type i , and we use Li
R to denote the minimum

expected payoff for the row player when he has type i . Formally, these are defined to
be:

123



Algorithmica (2017) 77:487–514 503

Ui
R = max

a∈[k1]

n∑
j=1

max
b∈[k2]

(
pRi ( j) · Ri j

)
a,b

,

Li
R = min

a∈[k1]

n∑
j=1

min
b∈[k2]

(
pRi ( j) · Ri j

)
a,b

.

Then we apply the transformation T i
R(·) to every element z of Ri j , for all types j of

the column player, where:

T i
R(z) := 1

Ui
R − Li

R

·
(
z − Li

R

n

)
. (15)

Similarly, we transform all payoff matrices for the column player using:

T j
C (z) := 1

U j
C − L j

C

·
(
z − L j

C

m

)
, (16)

where U j
C and L j

C are defined symmetrically. Note that, after this transformation has
been applied, both player’s expected payoffs lie in the range [0, 1]. Moreover, the full
range is used: there exists a strategy for the column player against which one of the
row player’s strategies has expected payoff 1, and there exists a strategy for the column
player against which one of the row player’s strategies has expected payoff 0. From
now on we will assume that the payoff matrices have been rescaled in this way.

We can nowdefine approximateBayesianNash equilibria for a two-playerBayesian
game.

Definition 15 (Approximate Bayes Nash Equilibrium (ε-BNE)) Let (x, y) be a
strategy profile. The profile (x, y) is an ε-BNE iff the following conditions hold:

uR(xi , y) ≥ uR(x ′
i , y) − ε for all x ′

i ∈ Δk1 for all i ∈ [m], (17)

uC (x, y j ) ≥ uC (x, y′
j ) − ε for all y′

j ∈ Δk2 for all j ∈ [n]. (18)

7.2 The Reduction

In this section we reduce in polynomial time the problem of computing an ε-BNE for
a two-player Bayesian game B to the problem of computing an ε-NE of a polymatrix
gameP(B).We describe the construction ofP(B) and prove that every ε-NE forP(B)

maps to an ε-BNE of B.

Construction. LetB be a two-player Bayesian gamewhere the row player hasm types
and k1 pure strategies and the column player has n types and k2 pure strategies. We
will construct a polymatrix game P(B) as follows.

The game has m + n players. We partition the set of players [m + n] into two sets:
the set K = {1, 2, . . . ,m} will represent the types of the row player in B, while the
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set L = {m + 1,m + 2, . . . ,m + n} will represent the types of the column player in
B. The underlying graph that shows the interactions between the players is a complete
bipartite graph G = (K ∪ L , E), where every player in K (respectively L) plays a
bimatrix game with every player in L (respectively K ). The bimatrix game played
between vertices vi ∈ K and v j ∈ L is defined to be (R∗

i j ,C
∗
i j ), where:

R∗
i j := pRi ( j) · Ri j , (19)

C∗
i j := pCj (i) · Ci j . (20)

for all i ∈ [m] and j ∈ [n].
Observe that, for each player i in the K , the matrices R∗

i j all have the same number
of rows, and for each player j ∈ L , the matrices C∗

i j all have the same number of
columns. Thus, P(B) is a valid polymatrix game. Moreover, we clearly have that
P(B) has the same size as the original game B. Note that, since we have assumed
that the Bayesian game has been rescaled, we have that for every player in P(B) the
minimum (maximum) payoff achievable under pure strategy profiles is 0 (1), so no
further scaling is needed in order to apply our algorithm.

We can now prove that every ε-NE of the polymatrix game is also an ε-BNE of the
original two-player Bayesian game, which is the main result of this section.

Theorem 16 Every ε-NE of P(B) is a ε-BNE for B.
Proof Let z = (x1, . . . , xm, y1, . . . , yn) be an ε-NE for P(B). This means that no
player can gain more than ε by unilaterally changing his strategy. We define the
strategy profile (x, y) for B where x = (x1, . . . , xm) and y = (y1, . . . , yn), and we
will show that (x, y) is an ε-BNE for B.

Let i ∈ K be a player. Since, z is an ε-NE of P(B), we have:

ui (xi , z) ≥ ui (x
′
i , z) − ε for all x ′

i ∈ Δk1 .

By construction, we can see that player i only interacts with the players from L . Hence
his payoff can be written as:

ui (xi , z) = xTi

n∑
j=1

R∗
i j y j = uR(xi , y).

and since we are in an ε-NE, we have:

uR(xi , y) ≥ uR(x ′
i , y) − ε for all x ′

i ∈ Δk1 . (21)

This is true for all i ∈ K , thus it is true for all i ∈ [m].
Similarly, every player j ∈ L interacts only with players form K , thus:

uC (x, y j ) = yTj

m∑
i=1

(C∗
i j )

T xi .
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Since we are in an ε-NE we have:

uC (x, y j ) ≥ uC (x, y′
j ) − ε for all y′

j ∈ Δk2 , (22)

and this is true for all j ∈ K , thus it is true for all j ∈ [n].
Combining now the fact that Eq. (21) is true for all i ∈ [n] and that Eq. (22) is true

for all j ∈ [m], it is easy to see that the strategy profile (x, y) is an ε-BNE for B. �

Applying Algorithm 1 to P(B) thus gives us the following.

Theorem 17 A (0.5+ δ)-Bayesian Nash equilibrium of a two-player Bayesian game
B can be found in time polynomial in the input size of B and 1/δ.

8 Conclusions and Open Questions

Wehave presented a polynomial-time algorithm that finds a (0.5+δ)-Nash equilibrium
of a polymatrix game for any δ > 0. Recently it was shown [18] that the performance
guarantee that Tsaknakis and Spirakis proved for their algorithm [28] is almost tight.
Though we do not have examples that show that the approximation guarantee is tight
for our algorithm, we do not see an obvious approach to prove a better guarantee.
The initial choice of strategy profile affects our algorithm, and it is conceivable that
one may be able to start the algorithm from an efficiently computable profile with
certain properties that allow a better approximation guarantee. One natural special
case is when there is a constant number of players, which may allow one to derive
new strategy profiles from a stationary point as done by Tsaknakis and Sprirakis [28].
It may also be possible to develop new techniques when the number of pure strategies
available to the players is constant, or when the structure of the graph is restricted in
some way. For example, in the games arising from two-player Bayesian games, the
graph is always bipartite.

This paper has considered ε-Nash equilibria, which are the most well-studied type
of approximate equilibria. However, ε-Nash equilibria have a drawback: since they
only require that the expected payoff is within ε of a pure best response, it is possible
that a player could be required to place probability on a strategy that is arbitrarily far
from being a best response. An alternative, stronger, notion is an ε-well supported
approximate Nash equilibrium (ε-WSNE). It requires that players only place proba-
bility on strategies that have payoff within ε of a pure best response. Every ε-WSNE
is an ε-Nash, but the converse is not true. For bimatrix games, the best-known additive
approximation that is achievable in polynomial time gives a

( 2
3 −0.0047

)
-WSNE [17].

It builds on the algorithm given byKontogiannis and Spirakis that achieves a 2
3 -WSNE

in polynomial time [25]. Recently a polynomial-time algorithm with a better approxi-
mation guarantee have been given for symmetric bimatrix games [9]. Note, it has been
shown that there is a PTAS for finding ε-WSNE of bimatrix games if and only if there
is a PTAS for ε-Nash [6,11]. For n-player games with n > 2 there has been very
little work on developing algorithms for finding ε-WSNE. This is a very interesting
direction, both in general and when n > 2 is a constant.
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Appendix 1: Proof of Lemma 3

Before we begin with the proof, we introduce the following notation. For a player
i ∈ [n], given a strategy profile x and a subset of i’s pure strategies S ⊆ [mi ], we use
Mi (x, S) for taking the maximum of the payoffs of i when the others play according
to x, and player i is restricted to pick elements from S:

Mi (x, S) := max
k∈S

(
vi

(
x
))

k .

In order to find the gradient, we have to calculate the variation of fi along the
direction x′ − x, by evaluating f (x̄) for points x̄ of the form

x̄ := x + ε(x′ − x) = (1 − ε) · x + ε · x′.

Recall from (4), that for x̄ ∈ Δ we have that fi (x̄) := u∗
i (x̄) − ui (x̄). In order to

rewrite u∗
i (x̄) we introduce notation Λi (x, x′, ε) as follows.

Definition 18 Given (x, x′, ε) and S = Bri (x) we define Λi (x, x′, ε) as:

Λi (x, x′, ε) := max

{
0,max

k∈S̄
{(vi

(
x̄
)
)k} − max

l∈S {(vi
(
x̄
)
)l}

}
. (23)

In the following technical lemma we provide an expression for u∗
i (x̄). In order

to rewrite u∗
i (x̄), we use the following simple observation. Consider a multiset of

numbers {a1, . . . , an}, and the index sets S ⊆ [n] and S̄ = [n] \ S. We have the
following identity:

max{a1, . . . , an} ≡ max
j∈S {a j } + max

{
0, max

k∈S̄
{ak} − max

j∈S {a j }
}

. (24)

In the following lemma, we use this identity with S = Bri (x) to rewrite u∗
i (x̄). We

use this particular expression for u∗
i (x̄)) because it helps us to compute the limit when

ε tends to zero. Moreover, the values Λi (x, x′, ε) will be used in order to derive the
value of ε that it is used in our algorithm.

Lemma 19 Given profiles x and x′ in Δ and a player i ∈ [n], let S = Bri (x). We
have:

u∗
i ((1 − ε) · x + ε · x′)) = (1 − ε) · Mi (x, S) + ε · Mi

(
x′, S

) + Λi (x, x′, ε). (25)
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Proof

u∗
i (x̄) = u∗

i ((1 − ε) · x + ε · x′))
= max

k∈[mi ]
{(

vi
(
x + ε(x′ − x)

))
k

}
By (3)

= max
k∈S

{(
vi

(
x + ε(x′ − x)

))
k

} + Λi (x, x′, ε) By (24) and (23)

= max
k∈S

{(
(1 − ε) · vi

(
x
) + ε · vi

(
x′))

k

} + Λi (x, x′, ε).

Since S = Bri (x), we know that for all k ∈ S we have that (vi
(
x
)
)k are equal, so we

have the following:

max
k∈S

{(
(1−ε) · vi

(
x
)+ ε · vi

(
x′))

k

} = max
k∈S

{(
(1−ε) · vi

(
x
))

k

}+ max
k∈S

{(
ε · vi

(
x′))

k

}

= (1 − ε) · Mi (x, S) + ε · Mi
(
x′, S

)
,

and we get the claimed result. �
We will use the expression (25) for u∗

i (x̄), along with the following reformulation
of ui (x̄):

ui (x̄) = ui (x + ε(x′ − x))

= ui
(
xi + ε(x ′

i − xi ), x + ε(x′ − x)
)

= ui (xi , x) + ε · ui
(
xi , x′ − x

) + ε · ui
(
x ′
i − xi , x

) + ε2 · ui
(
x ′
i − xi , x′−x

)

= ui (x) + ε · ui
(
xi , x′) − ε · ui (xi , x) + ε · ui

(
x ′
i , x

)

+ ε · ui (xi , x) − ε2 · ui (x′ − x)

= (1 − ε) · ui (x) + ε
(
ui

(
xi , x′) + ui

(
x ′
i , x

) − ui (x)
) + ε2 · ui (x′ − x).

(26)

We now use these reformulations to prove the following lemma.

Lemma 20 We have that fi (x̄) − f (x) is equal to:

ε
(
Dfi (x, x′) − f (x)

) + Λi (x, x′, ε) − ε2ui (x′ − x) − (1 − ε)max
j∈[n]

{
f j (x) − fi (x)

}
.

Proof Recall that S = Bri (x). For a given i ∈ [n], using Lemma 19 and the reformu-
lation for ui (x̄), we have:

fi (x̄) − f (x) = u∗
i (x̄) − ui (x̄) − f (x)

= (1 − ε) · Mi (x, S) + ε · Mi
(
x′, S

) + Λi (x, x′, ε)
− (1 − ε)ui (x) + ε

(−ui
(
xi , x′) − ui

(
x ′
i , x

) + ui (x)
)

− ε2ui (x′ − x) − f (x).
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Recall from (4) that fi (x) = Mi (x, S) − ui (x), so the formula above is equal to:

ε
(
Mi

(
x′, S

) − ui
(
xi , x′) − ui

(
x ′
i , x

) + ui (x)
) + Λi (x, x′, ε)

−ε2ui (x′ − x) + (1 − ε) fi (x) − f (x).

Now we can use (8) for Dfi (x, x′) so that the above formula becomes:

ε · Dfi (x, x′) + Λi (x, x′, ε) − ε2ui (x′ − x) + (1 − ε) fi (x) − f (x)

= ε · Dfi (x, x′) + Λi (x, x′, ε) − ε2ui (x′ − x)

+ (1 − ε) fi (x) − (1 − ε) f (x) − ε f (x)

= ε
(
Dfi (x, x′) − f (x)

) + Λi (x, x′, ε) − ε2ui (x′ − x) − (1 − ε)
(
f (x) − fi (x)

)
.

Recall now that f (x) = max j∈[n] f j (x). Thus the term f (x) − fi (x) can be written
as max j∈[n]

{
f j (x) − fi (x)

}
. So, the expression above is equivalent to:

ε
(
Dfi (x, x′) − f (x)

) + Λi (x, x′, ε) − ε2ui (x′ − x) − (1 − ε)max
j∈[n]

{
f j (x) − fi (x)

}
.

�

We will now use Lemma 20 to study the limit limε→0( fi (x̄) − f (x)
)
for all i ∈ [n].

Firstly, we deal with Λ(x, x′, ε). It is easy to see that limε→0
(
x + ε(x′ − x)

) = x.
Then, when S = Bri (x) we have that:

lim
ε→0

(
max
k∈S̄

{(vi
(
x̄
)
)k} − max

l∈S {(vi
(
x̄
)
)l}

)
< 0.

This is true from the definition of pure best response strategies. So, from Eq. (23) for
Λi (x, x′, ε) it is true that limε→0 Λi (x, x′, ε) = 0.

Furthermore, the term ε2 · ui (x′ − x) when is divided by ε equals to ε · ui (x′ − x),
thus limε→0

(
ε · ui (x′ − x)

) = 0.
Moreover, the term:

lim
ε→0

(
−1 − ε

ε
· max
j∈[n]

{
f j (x) − fi (x)

})

is either 0 when fi (x) = f (x), i.e player i has the maximum regret and
max j∈[n]

{
f j (x)− fi (x)

} = 0, or−∞ otherwise, because max j∈[n]
{
f j (x)− fi (x)

}
>

0.
To sum up, if fi (x) achieves the maximum regret at point x′, then the limit

limε→0
(
fi (x̄) − f (x)

) = Dfi (x, x′) − f (x), otherwise the limit equals −∞.
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Appendix 2: Proof of Lemma 11

Throughout this proof, x, x′, x̄, and ε will be fixed as they are defined in Sect. 6. In
order to prove this lemma, we must show a bound on:

f (x̄) − f (x) = max
i∈[n] fi (x̄) − f (x).

Before we start the analysis we need to redefine the term Λδ
i (x, x

′, ε) in order to
prove an analogous version of Lemma 19 when δ-best responses are used.

Definition 21 We define Λδ
i (x, x

′, ε) as:

Λδ
i (x, x

′, ε) := max

{
0, max

k∈Brδi (x)
{(vi

(
x̄
)
)k} − max

l∈Brδi (x)
{(vi

(
x̄
)
)l}

}
. (27)

We now use this definition to prove the following lemma.

Lemma 22 We have:

u∗
i ((1 − ε) · x + ε · x′)) ≤ (1 − ε) max

k∈Brδi (x)
(
vi

(
x
)
)k + ε max

k∈Brδi (x)
(vi

(
x′))

k

+ Λδ
i (x, x

′, ε). (28)

Proof We have:

u∗
i ((1 − ε) · x + ε · x′))
= max

k∈[mi ]
(
vi

(
(1 − ε) · x + ε · x′))

k

= max
k∈Brδi (x)

(
vi

(
(1 − ε) · x + ε · x′))

k + Λδ
i (x, x

′, ε) Using (24)

≤ (1 − ε) max
k∈Brδi (x)

(
vi

(
x
))

k + ε max
k∈Brδi (x)

(
vi

(
x′))

k + Λδ
i (x, x

′, ε).

�
We will use the reformulation from Eq. (26) for ui (x̄):

ui (x̄) = (1 − ε) · ui (x) + ε
(
ui

(
xi , x′) + ui

(
x ′
i , x

) − ui (x)
) + ε2 · ui (x′ − x).

(29)

The correctness of this was proved in “Appendix 1”. Now we use all the these refor-
mulations in order to prove the following lemma.

Lemma 23 We have that fi (x̄) − f (x) is less than or equal to:

ε
(
Df δ

i (x, x′)− f (x)
)+Λδ

i (x, x
′, ε)−ε2ui (x′ −x)−(1−ε)max

j∈[n]
{
f j − fi

}
. (30)
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Proof Recall that, by definition, we have that:

fi (x̄) = u∗
i (x̄) − ui (x̄).

Thus, we can apply Lemma 22 along with the reformulation given in Eq. (29) for ui (x̄)
to prove that fi (x̄) − f (x) is less than or equal to:

(1 − ε) max
k∈Brδi (x)

(
vi

(
x
)
)k + ε max

k∈Brδi (x)
(vi

(
x′))

k + Λδ
i (x, x

′, ε)

− (1 − ε)ui (x) + ε
(−ui

(
xi , x′) − ui

(
x ′
i , x

) + ui (x)
)

− ε2ui (x′ − x) − f (x).

We can now use the fact that maxk∈Brδi (x)
(
vi

(
x
))

k − ui (x) = fi (x) and the definition

of Df δ
i (x, x′) given in (9) to prove that the expression above is equivalent to:

ε · Df δ
i (x, x′) + Λδ

i (x, x
′, ε) − ε2ui (x′ − x) + (1 − ε) fi (x) − f (x)

= ε · Df δ
i (x, x′) + Λδ

i (x, x
′, ε) − ε2ui (x′ − x)

+ (1 − ε) fi (x) − (1 − ε) f (x) − ε f (x)

= ε
(
Df δ

i (x, x′) − f (x)
) + Λδ

i (x, x
′, ε) − ε2ui (x′ − x) − (1 − ε)

(
f (x) − fi (x)

)

= ε
(
Df δ

i (x, x′) − f (x)
) + Λδ

i (x, x
′, ε) − ε2ui (x′ − x)

− (1 − ε)max
j∈[n]

{
f j (x) − fi (x)

}
.

This completes the proof. �
Having shown Lemma 23, we will now study each term of (30) and provide bounds

for each of them. To begin with, it is easy to see that for all i ∈ [n] we have that
max j∈[n]

{
f j (x)− fi (x)

} ≥ 0, and since ε < 1, we have that (1−ε)max j∈[n]
{
f j (x)−

fi (x)
} ≥ 0. Thus, Eq. (30) is less than or equal to:

ε
(
Df δ

i (x, x′) − f (x)
) + Λδ

i (x, x
′, ε) − ε2ui (x′ − x). (31)

Next we consider the term Λδ
i (x, x

′, ε). In the following technical lemma we prove
that Λδ

i (x, x
′, ε) = 0 for all i ∈ [n].

Lemma 24 We have Λδ
i (x, x

′, ε) = 0 for all i ∈ [n].

Proof According to Eq. (27) for Λδ
i (x, x

′, ε), we have:

Λδ
i (x, x

′, ε) = max

{
0, max

k∈Brδi (x)
{(vi

(
x̄
)
)k} − max

l∈Brδi (x)
{(vi

(
x̄
)
)l}

}
.
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We can rewrite this expression as follows. First define:

Z(x, x′, ε, k) = (vi
(
x̄
)
)k − max

l∈Brδi (x)
{(vi

(
x̄
)
)l}.

Then we have:

Λδ
i (x, x

′, ε) = max

{
0, max

k∈Brδi (x)

{
Z(x, x′, ε, k)

}}
.

Our goal is to show that, for our chosen value of ε, we have Λδ
i (x, x

′, ε) = 0. For this

to be the case, we must have that Z(x, x′, ε, k) ≤ 0 for all k ∈ Brδi (x). In the rest of
this proof, we will show that this is indeed the case.

By definition, we have that:

(vi
(
x̄
)
)k = (

vi
(
x
) + ε(vi

(
x′) − vi

(
x
)
)
)
k . (32)

The term maxl∈Brδi (x){(vi
(
x̄
)
)l} can be written as follows:

max
l∈Brδi (x)

{(vi
(
(1 − ε)x + εx′))l} ≥ max

l∈Brδi (x)
{(vi

(
(1 − ε)x

)
)l}

= (1 − ε) · max
l∈Brδi (x)

{(vi
(
x
)
)l}

= max
l∈Brδi (x)

{(vi
(
x
)
)l} − ε · max

l∈Brδi (x)
{(vi

(
x
)
)l}. (33)

We now substitute these two bounds into the definition of Z(x, x′, ε, k). We have:

Z(x, x′, ε, k) ≤ vi
(
x
)
k − max

l∈Brδi (x)
{(vi

(
x
)
)l}

+ ε

(
vi

(
x′)

k − vi
(
x
)
k + max

l∈Brδi (x)
{(vi

(
x
)
)l}

)
. (34)

From the definition of δ-best responses (Definition 4), we know that for all k ∈ Brδi (x):

vi
(
x
)
k − max

l∈Brδi (x)
{(vi

(
x
)
)l} < −δ.

Furthermore, since we know that the maximum payoff for player i ∈ [n] is 1, we have
the following trivial bound for all k ∈ Brδi (x):

vi
(
x′)

k − vi
(
x
)
k + max

l∈Brδi (x)
{(vi

(
x
)
)l} ≤ 2.
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Substituting these two bounds into Eq. (34) gives, for all k ∈ Brδi (x):

Z(x, x′, ε, k) ≤ −δ + ε · 2.

Thus, for each k ∈ Brδi (x), we have that Z(x, x′, ε, k) ≤ 0 whenever:

−δ + ε · 2 ≤ 0,

and this is equivalent to:

ε ≤ δ

2
.

This inequality holds by the definition of ε, so we have Z(x, x′, ε, k) ≤ 0 for all

k ∈ Brδi (x), which then implies that Λδ
i (x, x

′, ε) ≤ 0. �
Next we consider the term ui (x′ − x) in Eq. (31). The following lemma provides a

simple lower bound for this term.

Lemma 25 For all i ∈ [n], we have D f δ
i (x, x′) − 1 ≤ ui (x′ − x).

Proof For ui (x′ − x) we have the following:

ui (x′ − x) = ui
(
x ′
i − xi , x′ − x

)

= ui
(
x ′
i , x

′ − x
) − ui

(
xi , x′ − x

)

= ui
(
x ′
i , x

′) − ui
(
x ′
i , x

) − ui
(
xi , x′) + ui (xi , x) . (35)

Recall from (9) that:

Df δ
i (x, x′) = max

k∈Brδi (x)
{(

vi
(
x′))

k

} − ui
(
xi , x′) − ui

(
x ′
i , x

) + ui (xi , x) .

We can see that (35) and (9) differ only in terms ui
(
x ′
i , x

′) andmaxk∈Brδi (x)
{(

vi
(
x′))

k

}

respectively. We know that maxk∈Brδi (x)
{(

vi
(
x′))

k

} ≤ 1. Then, we can see that

Df δ
i (x, x′) − 1 ≤ ui (x′ − x). �

Recall that D = maxi∈[n] Df δ
i (x, x′) and fnew = f (x̄) and f = f (x). We can now

apply the bounds from Lemma 24 and Lemma 25 to Eq. (31) to obtain:

fnew − f ≤ max
i∈[n]

{
ε
(
Df δ

i (x, x′) − f (x)
) − ε2

(
Df δ

i (x, x′) − 1
)}

≤ max
i∈[n]

{
ε
(
Df δ

i (x, x′) − f (x)
) − ε2

(D − 1
)}

= ε(D − f ) + ε2(1 − D).

This completes the proof of Lemma 11.
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