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Abstract Drawing a random variate from a given binomial distribution B(n, p) is
an important subroutine in many large-scale simulations. The naive algorithm takes
O(n) time w.h.p. in the WordRAMmodel, which is too slow in many settings, though
to its credit, it does not suffer from precision loss. The problem of sampling from a
binomial distribution in sublinear time has been extensively studied and implemented
in such packages as R [22] and the GNU Scientific Library [11], however, all previous
sublinear-time algorithms involve precision loss, which introduces artifacts such as
discontinuities into the sampling. In this paper, we present the first algorithm, to the
best of our knowledge, that samples binomial distributions in sublinear time with no
precision loss. We assume that each bit of p can be obtained in O(1) time.

Keywords Binomial distribution · Exact sampling · Sublinear sampling

1 Introduction

Let B(n, p) be the binomial distribution of n trials and success rate p. Drawing a
random variate b from B(n, p) means that

Pr[b = k] = pk(1 − p)n−k
(
n

k

)
for all k ∈ {0, 1, . . . , n}. (1)
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The naive algorithm to accomplish such a sampling is to realize n Bernoulli trials
of success rate p and count how many of them have a positive outcome in O(n)

steps w.h.p. and O(n|p|) in the worst case, where |p| is the number of bits in the
representation of p. In other words, realizing n Bernoulli trials can be used as an
alternative for binomial sampling.

Many applications rely on efficient implementations of binomial sampling. Exam-
ples include the efficient generation of random graphs from G(n, p) [3,4,20], logistic
regression [10], generating virtual data sets in GLM analysis [1], generating random
data or parameters [21] and speeding up Monte-Carlo simulation systems [25].

1.1 Previous Work

Several sublinear-time algorithms have been described [8,15,18], although all of these
trade precision for speed. Algorithms Binv [15] and Bg [7,15] both run in expected
O(np) time. The former requires calculating (1 − p)n ; the latter requires calculat-
ing the ratio of two logarithms. Algorithm Balias [15,19] requires calculating

(n
k

)
for all k in {0, 1, . . . , n} and constructing an alias table [19] based on the calculated
values. The alias table can be constructed in O(n) time and then each variate gener-
ation can be computed in O(1) time on a machine with �(n) word size. Algorithm
Btpe [15] divides the binomial distribution into parts and approximates each part by an
upper-bounding function. To pick a variate at random, the algorithm samples a variate
following the distribution composed of the upper bound functions and accepts it with
a probability equal to the ratio of the binomial distribution and upper bound function.
The procedure is repeated if the test fails. This method is known as the accept/reject
rule, used e.g. in [8,15,18,25].Btpe runs in sublinear time and is used by default in the
statistical software R and GNU Scientific Library [11,22]. Because the distribution is
divided piecewise and the piece is selected by an approximation to the true probability,
Btpe does not exactly compute the binomial distribution. See [2,8,13,14,23] for more
O(1)-time algorithms in real computation model.

These algorithms run in sublinear time only if the precision of the calculations is
truncated.When full precision is used, in calculating ratios, logarithms, or exponential
functions, the time grows to linear or more. It is not clear how to modify them to be
both accurate to full precision and sublinear. When these algorithms are implemented
on a WordRAM, with, say, �(log n)-bit words, they accumulate inaccuracies that
are caused by round-off error incurred in arithmetic operations. Thus, for example,
common implementations of Btpe [15], in the GNU Scientific Library [11] and the
statistical software R [22], perform such roundoff. Figure 2 shows that the distribution
generated by Btpe has discontinuities. In particular, it substantially overestimates the
probability of the tail of the distribution. In Fig. 2, the overestimation is by a factor
of 2.59, or 0.74% of the total samples. Thus, the occurrence of a rare event in Btpe
cannot be trusted. The problems seen in Btpe are typical of any algorithm that fails
to account for bounded precision, although the details will vary from algorithm to
algorithm and implementation to implementation.

The discontinuity in the tail distribution ofBtpe demonstrates the importance of an
exact sampling algorithm. We call an algorithm that samples variate b with the exact
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probability specified by Eq. 1 an exact sampling algorithm. Recently, efficient exact
sampling algorithms for some distributions have been developed, e.g. for normal and
geometric distributions [5,16].

1.2 Our Results

In this paper, we present what is, to the best of our knowledge, the first sublinear-time
algorithm for drawing an exact sample from a binomial distribution in theWordRAM
model, assuming the words have �(log n) bits. In particular, we show that:

Theorem 1 Given a positive integer n, one can sample a random variate from the
binomial distribution B(n, 1/2) in O(1) time with probability 1 − 1/n�(1) and in
expectation after O(n1/2+ε)-time preprocessing for any constant ε > 0, assuming
that �(log n) bits can be operated on in O(1) time. The preprocessing can be reused
for any n′ = O(n).

Theorem 2 Given an algorithm that can draw a sample from B(n′, 1/2) inO( f (n))

time with probability 1 − 1/n�(1) and in expectation for any n′ ≤ n, then drawing a
sample from B(n, p) for any real p can be done inO( f (n) log n) time with probability
1− 1/n�(1) and in expectation, assuming each bit of p can be obtained inO(1) time.

Since the publication of the conference version of this result [9], a new algorithm
for generating B(n, 1/2)without preprocessingwas devised [6]. Their runtime isO(1)
on average and polylog w.h.p. in the WordRAM model.1 Our runtime is O(1) w.h.p.
but needs O(n1/2+ε) preprocessing for any constant ε > 0.

In Sect. 4, we observe that it is possible to use their expected constant time algo-
rithm to get a high-probability constant time sampling scheme at the cost of some
preprocessing, by combining their algorithm with some of our ideas. We achieve the
bounds stated in Theorem 3.

Theorem 3 Given a positive integer n, one can sample a random variate from the
binomial distribution B(n, 1/2) in O(1) time with probability 1 − 1/n�(1) and in
expectation after O(nε)-time preprocessing for any constant ε > 0, assuming that
�(log n) bits can be operated on in O(1) time. The preprocessing can be reused for
any n′ = O(n).

Somepapers [9,17] have assumed that it takesO(1) time to generate a single random
bit, rather than log n random bits. In [17], an �(log n) lower bound for sampling from
B(n, 1/2)was demonstrated under the random bit assumption. This bound is matched
here by noting in the random bit model, log n random bits can be generated inO(log n)

time, followed by the binomial sampling step, which takes constant time.

1 The exponent of the polylog is not specified in their paper, and depends on such factors as the runtime to
compute the digits of

√
2π , but we note here that it is more than 1.
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1.3 Organization

In Sect. 2, preliminary definitions and building blocks are introduced. In Sect. 3,
we devise an algorithm to generate random variates from the binomial distribution
B(n, 1/2) with some preprocessing followed by showing the preprocessing can be
reused for B(n′, 1/2) for n′ = O(n). In Sect. 4, we present how to reduce the pre-
processing from O(n1/2+ε) to O(nε) by combining our algorithm with that of [6].
Then, in Sect. 5, we present a set of experiments to compare the algorithm used in the
GNU Scientific Library with the proposed one.

2 Preliminaries

In this section, we prove Theorem 2 and revisit a data structure we will use in our
algorithm. We analyze algorithms under theWordRAMmodel, in which it takesO(1)
time to perform an arithmetic operation on two operands ofw bits and also to generate
a binary random integer of w bits, where w is assumed to be �(log n).

We begin by reducing the computation of B(n, p) to that of B(n, 1/2). To see how,
consider reducing B(1, p) to B(1, 1/2), that is, determining a single Bernoulli trial T
with success rate p = (0.a1a2 · · · )2, using a fair coin as follows. Start by comparing
a fairly-generated random bit u with a1. If u < a1, T returns a positive outcome; if
u > a1, T returns a negative outcome; otherwise u = a1, in which case proceed to the
next bit and repeat the procedure. Then,O(1) comparisons are needed in expectation.

Proof of Theorem 2 A binomial variate b can be sampled from B(n, p) by checking
how many of n Bernoulli trials have a positive outcome. We can mimic the single
Bernoulli trial procedure by replacing a comparison with p by a sequence of com-
parisons with a fair coin. The variate b is initialized to 0. Suppose we sample b1
from B(n, 1/2). That means that b1 trials had value 0 at the first sampled bit and the
remaining n − b1 trials had value 1. If a1 = 1, then b = b + b1, because all b1 trials
are less than p no matter what the remaining sampled bits are. Having determined
the outcome of b1 Bernoulli trials, set n = n − b1. If a1 = 0, then n = b1, because
n − b1 trials are greater than p. We repeat this procedure until n = 0, which takes
O(log n) rounds w.h.p. and in expectation because the probability that a trial remains
undetermined after c log n rounds is 1/nc for constant c > 0 and by union bound n
will be reduced to 0 in O(log n) rounds with probability 1 − 1/n�(1). ��

Then, we revisit a data structure called alias table, also known as the alias-urn
method in Devroye’s book [8], which is a building block of the computation of
B(n, 1/2) introduced in Sect. 3.

2.1 Alias Table

Using an alias table, one can sample a random variate from a discrete distribution
D = {(i, pi ) : i ∈ [n]} in O(1) time after O(n)-time preprocessing in the RealRAM
model. Here we revisit the proof for the RealRAM model [19]. Then, in Sect. 3, we
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will describe how to make the alias table work for the binomial distribution B(n, 1/2)
in the WordRAM model.

The idea of an alias table is to refine the distribution D so that each event becomes
one or more events, but so that the new distribution can be sampled through a uniform
distribution. Let

D′ =
⎧⎨
⎩(i, pik) :

∑
k∈[n]

pik = pi , pik ≥ 0 for i ∈ [n]
⎫⎬
⎭

be a refinement of D such that for every j there are at most two non-zero pkj ’s and∑
k pk j = 1/n. Thus, one can construct a uniform distribution by setting

D̂ =
⎧⎨
⎩( j, q j ) : q j =

∑
k∈[n]

pkj = 1

n
for j ∈ [n]

⎫⎬
⎭ ,

where for each j the probability q j equals the average 1/n and at most two pkj are
non-zero, denoted by pα( j) j and pβ( j) j . See Fig. 1 for an example.

Then, drawing a sample from D can be achieved by the following two steps. First,
sample a random integer j from [n] uniformly at random, which represents the selec-
tion of q j in D̂. Second, select a random real number r from the range [0, 1/n). Note
that pα( j) j + pβ( j) j = 1/n. If r < pα( j) j , then say α( j) is drawn fromD; otherwise,
say β( j) is drawn. To sum up, a sample can be drawn by a random selection followed
by a comparison, which takes O(1) time in the RealRAM model.

Such a distribution D̂ always exists and can be found by the following greedy
process in O(n) time. Since 1/n is the average of n pi ’s, there exists a pi ≥ 1/n.
If pi = 1/n, set pin = 1/n, pkn = 0 for k 	= i , and proceed greedily with the
remainder. Otherwise, pi > 1/n and thus a p j < 1/n exists. Set p jn = p j , pin =
1/n − p j , pkn = 0 for k 	= i, k 	= j and replace pi with pi − (1/n − p j ). Proceed
greedily.

The greedy process is completed after n steps. Note that the selection of pi and p j

takes O(1) time by maintaining two lists, one containing all pi ≥ 1/n and the other
containing the rest.

Fig. 1 The alias table of an
instance D =
{(1, 1/6), (2, 1/2), (3, 1/3)}
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3 Exact Binomial Sampling

We now present how to sample a random variate from the binomial distribution
B(n, 1/2) inO(1) timewith probability 1−1/n�(1) and in expectation. Themain idea
of our algorithm is to build an alias table for �(log n)-bit approximations of the prob-
abilities Pr[b = k] (= (n

k

)
/2n in this section) and to perform a much slower algorithm

for the residual probabilities, which are polynomially small. The binomial distribution
only hasO(

√
n log n) probabilities whose �(log n)-bit approximation is non-zero, so

we can build a small alias table for those few non-zero �(log n)-bit approximations.
Here we assume that the �(log n)-bit approximations of Pr[b = k] for k ∈ [0, n]

can be obtained and defer the discussion for obtaining these bits. To sample a variate
from the binomial distribution B(n, 1/2) in O(1) time w.h.p. and in expectation, we
employ an alias table. Below we describe the structure, properties and construction of
the alias table.

3.1 Alias Table

S(n, c). By S(n, c) for any constant c > 0 we denote such an alias table that can
be applied to sample a random variate from B(n, 1/2) in O(1) time with probability
1 − O(1/nc) and in expectation.

To adapt the alias table in Sect. 2 to the WordRAM model, we need to handle
the precision issues. That is, the average 1/n and the probabilities pi ’s might use
many bits in their representations. In particular, we need �(n) bits to represent the
probabilities in the binomial distribution B(n, 1/2) because Pr[b = k] varies from
1/2n to �(1/

√
n).

To resolve the precision issue for the average 1/n, we round n up to the nearest
power of two by adding fewer than n dummy zero probabilities. Then 1/n becomes
a power of two and requires O(log n) bits to represent. To resolve the precision issue
for the probabilities Pr[b = k], we construct an alias table on their �(log n)-bit
approximations.

To sample exactly by an alias table only for�(log n)-bit approximations,wedecom-
pose each Pr[b = k] into a high probability part hk and low probability part �k ,
where Pr[b = k] = hk + �k , and then build an alias table on the n + 1 probabilities
h0, h1, . . . , hn, and a failure event with probability

�∗ =
∑

0≤k≤n

�k .

Suppose each hk is a multiple of 2−s for some value s, then �∗ is also a multiple
of 2−s , which reduces the precision to represent these probabilities from n down to
s. Then, drawing a sample from the alias table yields an event �∗ or some event hk .
If a sample yields event hk , then return a variate k; otherwise, it is necessary to draw
an event from the distribution L = {(k, �k/�∗)}, which requires computing the �k for
k ∈ [0, n]. Given the full precision (n bits) of Pr[b = k], one can calculate the full
precision of Pr[b = k + 1] by multiplying Pr[b = k] with (n − k) and dividing it by
(k+1). Note that (n−k) and (k+1) haveO(log n) bits and an arithmetic operation of
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that length takesO(1) time in ourmodel. Therefore, themultiplication and the division
takes O(n) time by long multiplication/division. In total, computing these �k’s takes
O(n2) time. Then, drawing a sample fromL takesO(n2) time by comparing the prefix
sums of the �k’s with a random number. This step is time-consuming but rare.

Set s = �(log n) and thus �k = 1/n�(1). Then, �∗ = 1/n�(1), a polynomially small
value. In addition, onlyO(

√
n log n) hk’s are non-zero for such an s because B(n, 1/2)

is highly concentrated in the region k ∈ [n/2 ± �(
√
n log n)] with probability 1 −

1/n�(1). As a result, we have the following lemma.

Lemma 4 Sampling a random variate from B(n, 1/2) takesO(1) time with probabil-
ity 1−1/n�(1) and in expectation afterO(n1/2+ε)-time preprocessing for any constant
ε > 0, assuming that the �(log n)-bit approximations of Pr[b = k] for k ∈ [0, n] are
given.

Then, we show how to compute the �(log n)-bit approximations of Pr[b = k]. The
goal is to have a preprocessing step that runs in time and space O(n1/2+ε) for any
constant ε > 0. Let hs be the s-bit approximation of the probability Pr[b = k] such
that

hs + �s =
(
n

k

)
2−n, �s = O(2−s) > 0 and hs is a multiple of 2−s .

To guarantee that a random variate can be generated from the binomial distribution
B(n, 1/2) in O(1) time with probability 1 − 1/n�(1), we construct S(n, c) for any
constant c > 0, s = c log n. We obtain these s bits of Pr[b = k] for each k ∈ [0, n]
by two kinds of reduction.

3.2 Reducing the Calculation of Pr[b = k] to Pr[b = n/2]

To simplify the notation, here we assume n is even. For odd n’s, replacing n/2 with
�n/2� suffices.

Lemma 5 Given an algorithm that can obtain the s-bit approximation of the prob-
ability Pr[b = n/2] for any constant c > 0, s = c log n, in T (n) time, then one
can compute the c′ log n-bit approximation of probabilities Pr[b = n/2 − k] for any
constant c′ > 0, k ∈ [−σ, σ ] in T (n) + O(σ ) time.

Proof Due to the symmetry of the binomial distribution, we only discuss the case for
k ∈ [1, σ ]. Suppose one has hs for Pr[b = n/2], by definition

Pr[b = n/2] − hs = �s > 0 and �s = O(2−s).
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Let �a�s be the s-bit approximation of a < 1. Consider that

Pr[b = n/2 − 1] = Pr[b = n/2](n/2)/(n/2 + 1)

= (hs + �s)δ1 (δt = (n/2 + 1 − t)/(n/2 + t) < 1 for t ≥ 1)

= �hsδ1�s + (hsδ1 − �hsδ1�s) + �sδ1

= �hsδ1�s + O(1/2s)

Hence, the s-bit approximation of Pr[b = n/2− 1] can be obtained inO(1) time (i.e.
�hsδ1�s) because the operands of the multiplication and division have �(log n) bits.
Iteratively, one has

Pr[b = n/2 − k] = ���hsδ1�sδ2�s · · · δk�s + O(k/2s)

= ���hsδ1�sδ2�s · · · δk�s + O(1/2s−log n) (k = O(n))

Since T (n) suffices to compute hs for any constant c > 0, s = c log n, we are done
by picking c = c′ + 1. ��

3.3 Reducing the Calculation of Pr[b = m]2m to Pr[b = m/2]m
We extend the notation Pr[b = k] to Pr[b = k]m where Pr[b = k]m is defined to
be

(m
k

)
/2m . Given the following identities, we have Lemma 6. Note that to make the

recursion work, we also require the probability Pr[b = m]2m+1. This can be calculated
by multiplying Pr[b = m]2m with (2m + 1)/2m.

Pr[b = m]2m =
m∑

k=0

Pr[b = k]m Pr[b = m − k]m (2)

= 1/m�(1) +
∑

k∈[m/2±�(
√
m logm)]

Pr[b = k]m Pr[b = m − k]m (3)

Lemma 6 Given an algorithm that can compute the s-bit approximation of the prob-
ability Pr[b = m/2]m in T (m) time for any constant c > 0, s = c log n, then the s′-bit
approximation of the probability Pr[b = m]2m can be computed in T (m)+O(m) time
for any constant c′ > 0, s′ = c′ log n by Eq. (2). Furthermore, the s′-bit approximation
of the probability Pr[b = m]2m can be approximated in T (m) + O(m1/2+ε) time for
any constant ε > 0 by bounding the precision loss by 1/m�(1) by Eq. (3).

Proof By Lemma 5, all the terms on the right hand sides of Eqs. (2) and (3) can be
obtained inO(m) time and inO(m1/2+ε) time, respectively. We are done by summing
up the products. ��

There is a tradeoff in the recursive computation for Pr[b = n/2]n . For m ≥ nδ for
some constant δ ∈ (0, 1), one can use the approximation to obtain a speedup; however,
form < nδ , to retain sufficient precision, one needs to use the exact computation. Thus,
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let T (m) be the computation time for the s-bit approximation of Pr[b = m/2]m for
s = c log n. We have the following recursion relation:

T (m) =
{O(m1/2+ε) + T (m/2) if m ≥ nδ,

O(m) + T (m/2) if m < nδ.

Solving the relation by choosing δ = 1/2,we have T (n) = O(n1/2+ε) for any constant
ε > 0, as noted in Lemma 7.

Lemma 7 The s-bit approximations of the probabilities Pr[b = k]n for all k ∈ [0, n]
can be computed in O(n1/2+ε) time for any constant ε, c > 0 and where s = c log n.

Combining Lemma 7 and Lemma 4, one can generate a random variate from the
binomial distribution B(n, 1/2) in O(1) time with probability 1 − 1/n�(1) and in
expectation.

In Theorem 2, one needs to sample variates from B(n′, 1/2), for some n′ ≤ n, in
order to sample a variate from B(n, p). If one prepares S(n′, c), for each n′ ≤ n, to
make the theorem work, then the preprocessing requirement is O(n3/2+ε) rather than
the claimed O(n1/2+ε). Here we introduce a reduction to resolve this issue.

3.4 Replacing S(n′, c) for all n′ ≤ n with some S(ni , c(ni ))

The goal is to preprocess S(ni , c(ni )) for a few ni so that, for any n′ ≤ n, S(n′, c) can
be replaced by those that have been preprocessed. For example, to sample a random
variate from S(n′, c), for n′ = n1 + n2, one can alternatively sample random variates
from S(n1, c(n1)) and S(n2, c(n2)) and compute the sumof the variates, which follows
the distribution B(n′, 1/2).

The probability that the alternative sampling procedure fails to generate a random
variate is then, by the union bound,

1/nc(n1)1 + 1/nc(n2)2 .

To make the failure probability bounded by O(1/nc), as claimed, we set c(ni ) to be
large enough so that nc(ni )i ≥ nc, for i ∈ {1, 2}. To simplify the discussion, we set
c(ni ) = 4c if ni ≥ n1/4 or set c(ni ) = ∞ otherwise. By c(ni ) = ∞ we denote that
the underlying alias table contains the c log n-bit approximations, for some constant
c > 0 of all the probabilities Pr [b = k] for k ∈ [0, ni ]. The failure rate of sampling
a random variate from S(ni ,∞) is thus bounded by O(1/nc). As in the proofs of the
space- and time-complexity of S(n, c), one can show that the space usage of S(ni ,∞)

and its construction time are both O(ni log n) = O(n1/4+ε) for ni < n1/4.
We now show how to select the small set of ni as follows so that for any n′ ≤ n,

S(n′, c) can be replaced by a few S(ni , c(ni )).
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3.4.1 Simple Selection

Given S(ni , c(ni )), for all ni ∈ R1, such that R1 contains all the powers of two no
more than n, one can replace S(n′, c), for any n′ ≤ n, with O(log n) preprocessed
S(ni , c(ni )) because every n′ ≤ n can be represented by log n bits. The preprocessing
of these S(ni , c(ni )) requiresO(n1/2+ε) space and runtime. Though the preprocessing
requirement now matches the claimedO(n1/2+ε), the runtime for sampling a random
variate from B(n′, 1/2), for any n′ ≤ n, increases toO(log n), because it is now imple-
mented by sampling O(log n) random variates. We consider an alternative selection
as follows.

3.4.2 Refined Selection

Given S(ni , c(ni )), for all ni ∈ R2, such that R2 contains all the square numbers no
more than n, one can replace S(n′, c) for any n′ ≤ n byO(1) preprocessed S(ni , c(ni ))
because every natural number is a sum of four square numbers [24]. In this way,
sampling a randomvariate from B(n′, 1/2) for any n′ ≤ n is implemented by sampling
O(1) random variates. Thus, the runtime is O(1) with probability 1 − O(1/nc) as
claimed. However, the preprocessing increases to

∑
ni∈R2,ni<n1/4

O
(
n1/4+ε

)
+

∑
ni∈R2,ni≥n1/4

O
(
n1/2+ε
i

)
= O

(
n1+ε

)
.

To reduce the preprocessing, one can prepare S (ni , c(ni )) for ni ∈ Rk ∪R′
k , where

k is a square number,

Rk = {r ≤ k | r ∈ R2} and R′
k = {kr | r ∈ R2, r ≤ n/k}.

Then, the preprocessing reduces to O
(
(k + n/

√
k)

√
log n

)
or O(n2/3+ε), if we

choose k = n2/3. In this way, each n′ is decomposed into 8 square numbers inRk∪R′
k .

Thus, the runtime still matches the claimed one. One can further reduce the preprocess-
ing to O(n1/2+ε) by means of a decomposition into more groups of square numbers
rather than only 2 groups. In the case of t + 1 = O(1) groups, the preprocessing
reduces to

O
(
(k1 + k2/

√
k1 + · · · + n/

√
kt )

√
log n

)
= O

(
n2

t/(2t+1−1)
√
log n

)
,

which is O(n1/2+ε) for sufficiently large constant t .
In the above reduction, we need to decompose an integer n′ ≤ n into O(1) square

numbers. We present how to do the decomposition in O(1) time with O(nε) pre-
processing, for any constant ε > 0.
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3.5 Decomposition into Square Numbers

We achieve this by table lookup. The table used to answer the decomposition of n′ ≤ n
into four square numbers can be precomputed inO(n2) time by enumerating all sums
of 4 square numbers. One can apply the idea used in the refined selection again. To
decompose n′ ≤ n into 8 square numbers, one first represents n′ = n′

1+kn′
2 where k is

a square number, n′
1 ≤ k and n′

2 ≤ n/k. It replaces the large table with two small ones
that can answer the decomposition of n′ ≤ k (resp. ≤ n/k) into four square numbers.
Choosing k to be

√
n, the preprocessing for the table drops to O(n), which can be

further reduced to O(nε) for a small constant ε > 0 by means of a decomposition
into more square numbers. If n′ is decomposed into 4t square numbers, the total
preprocessing of the t tables is O(tn1/t ) = O(nε).

4 Polylogarithmic Preprocessing

Recall the algorithm of Bringmann et al. [6], which can sample B(n, 1/2) in expected
constant time.Here,we observe that this bound can be improved to constant timew.h.p.
with a small amount of preprocessing. We first show that although one sample may
take polylog time w.h.p., a batch of samples can be computed in amortized constant
time w.h.p., if the batch is large enough.

Lemma 8 Given an algorithm whose runtime is tc with probabilityO(e−t ) for t > 0,
constant c ≥ 1, then running the algorithm k times takes O(k) time with probability
1−1/e�(k1/(c+1)) and in expectation. Specifically, the runtime isO(k) with probability
1 − 1/n�(1) and in expectation if k = �(logc+1 n).

Proof The average runtime can be bounded by O(∑∞
t=1 t

ce−t
) = O(1). By the

central limit theorem, when k goes to infinity, the amortized runtime converges to the
averageO(1) almost surely. Here we show how small the k can be to make the runtime
bounded by O(k) with probability 1 − 1/n�(1).

Let X1, X2, . . . , Xk be the runtime of the k runs. Let I [E] be an indicator variable
denoting whether the event E is true. Then, the total runtime of the k executions is

k∑
i=1

Xi ≤
∞∑
t=0

(
(t + 1)c − tc

) k∑
i=1

I [Xi ≥ tc].

We analyze the right-hand side by splitting the summation into two parts, as follows.

k∑
i=1

Xi ≤
∑

t≤δ ln k

(
(t + 1)c − tc

) k∑
i=1

I [Xi ≥ tc]

+
∑

t>δ ln k

(
(t + 1)c − tc

) k∑
i=1

I [Xi ≥ tc]
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for some δ ∈ (0, 1). We now separately bound the contribution of each right-hand
summation. Intuitively, the first summation is for the jobs that finish quickly, and thus
contribute little to the running time, and the second summation is for the few jobs that
take a long time.

Consider that the following equality

Pr

{
k∑

i=1

I
[
Xi ≥ tc

] − Pr
[
Xi ≥ tc

] = �(k/et )

}
= 1/e�(k/et ) (4)

holds for every t due to Chernoff bound. Thus, by the union bound the first summation
is bounded by O(k) with probability 1 − 1/e�(k1−δ), which is exponentially small in
k, as desired.

For the second summation, we consider the probability of events E1 and E2,

– E1 denotes that Xi ≤ kδ for all i ≤ k,
– E2 denotes that

∑k
i=1 I [Xi ≥ (δ ln k)c] = O(k1−δ).

The failure probabilities of these two events are small. Precisely, we have

Pr
[
Ē1

] = 1/e�(kδ/c) (by the union bound)

and

Pr
[
Ē2

] = 1/e�(k1−δ) (by Equality (4)).

By the union bound, we know that Pr
[
Ē1 ∨ Ē2

]
is exponentially small in k. In other

words, the second summation is bounded by O(kδk1−δ) = O(k) as desired, given
E1 ∧ E2.

We complete the proof by choosing (k, δ) to be (logc+1 n, c/(c+ 1)). This bounds
the total runtime of the k executions by O(k) with polynomially small probability
1 − 1/n�(1). ��

Therefore, we conclude:

Observation 9 B(n, 1/2) can be sampled inO(1) time with probability 1− 1/n�(1)

and in expectation, after preprocessing that takes polylogarithmic time w.h.p.

Proof We change the expected runtime bound to the desired high-probability runtime
by double buffering. In Lemma 8, we showed that r = logc+1 n samples can be
computed by the algorithm in [6] in d logc+1 n time w.h.p. for some constant d. The
preprocessing step is to fill a buffer with r samples.

For each sample removed, the algorithm performs d steps of the refill algorithm,
placing the newly computed samples in the second buffer. When the first buffer is
empty, the second will be full w.h.p., and the buffers are swapped. Thus, a sample can
be returned after d = O(1) steps, w.h.p.. ��
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Notice that this preprocessing is specific to a particular n, and therefore it is not
quite comparable to the preprocessingdescribed inTheorem1, since that preprocessing
applies to all n′ ≤ n. In order to achieve a similar universal preprocessing for all n′
up to n, one can apply the decomposition into sums of square numbers described in
Sect. 3. Note that in this case, we can decompose n′ into sums ofO(1) square numbers,
and thus achieve a preprocessing of O(nε), for any fixed ε > 0.

5 Empirical Evaluation

We conducted experiments to compare the quality of generated variates and to com-
pare the computation time used for generating variates among the algorithms with
and without loss of precision. We compared our proposed algorithm (Theorem 1)
with Btpe [15], which is the algorithm for binomial sampling in both R [22] and
GNU Scientific Library (GSL) [11]. The implementation in GSL was used for the
experiments.

We generated 108 random variates from B(230, 1/2) and plotted a histogram of
outputs. Btpe demonstrated a discontinuity and an overestimate in the tail probability,
as shown in Fig. 2. In contrast, the histogram produced by our algorithm is smooth
through the region of interest.

Our algorithm takes constant time with high probability, requiring the access of a
data structure of sizeO(n1/2+ε). In contrast, Btpe takes approximately constant time
with few memory accesses. As shown in Fig. 3, the computation time of generating
108 variates by our algorithm is about 6 times faster than that byBtpe and drops to 1.2
times faster as n increases due to more cache misses. The bottom two lines in Fig. 3
indicate the runtime of just the queries, or the queries plus the preprocessing time.
Even if the preprocessing time is included, our algorithm slightly outperforms Btpe
in the range of interest. Given that the preprocessing can be universally used for all
n and p, it makes sense to compare the query time only, which is 3 to 6 times faster
than Btpe for n ≤ 109. Thus, we are competitive in speed and we do not suffer from
round-off anomalies.

Fig. 2 The histograph of results
for Btpe in discontinuous
B(230, 1/2). The histograph is
smoothed by window averaging,
with a window of size 20. Btpe
oversamples the tail probability
by a factor of 2.59, that increases
the sum of frequencies by
0.74%
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Fig. 3 Compare the
computation time used for
generating 108 variates from
B(n, 1/2) by different
algorithms. Each data point is an
average of 10 experiments.
Consider that the preprocessed
data structure can be reusable,
we compare the running time
including/excluding the
preprocessing time with that of
Btpe 0
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We implemented our algorithm with parameter s = 2 log2 n in C++ with GNU
Scientific Library [11] andGNUMultiple PrecisionArithmetic Library [12], compiled
it with g++4.63 with optimization flag -O3. The machine we used is equipped with
a Celeron G530 2.4GHz CPU and 2GB of 1066MHz RAM. The operating system is
Ubuntu 12.04 Desktop. The computation time is measured by the wall time, i.e. the
elapsed time.
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