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Abstract We present a certifying algorithm that tests graphs for 3-edge-connectivity;
the algorithm works in linear time. If the input graph is not 3-edge-connected, the
algorithm returns a 2-edge-cut. If it is 3-edge-connected, it returns a construction
sequence that constructs the input graph from the graph with two vertices and three
parallel edges using only operations that (obviously) preserve 3-edge-connectivity.
Additionally, we show how to compute and certify the 3-edge-connected components
and a cactus representation of the 2-cuts in linear time. For 3-vertex-connectivity, we
show how to compute the 3-vertex-connected components of a 2-connected graph.

Keywords Certifying algorithm · Edge connectivity · Construction sequence

1 Introduction

Advanced graph algorithms answer complex yes-no questions such as “Is this graph
planar?” or “Is this graph k-vertex-connected?”. These algorithms are not only nontriv-
ial to implement, it is also difficult to test their implementations extensively, as usually
only small test sets are available. It is hence possible that bugs persist unrecognized
for a long time. An example is the implementation of the linear time planarity test of
Hopcroft and Tarjan [10] in LEDA [18]. A bug in the implementation was discovered
only after two years of intensive use.

Certifying algorithms [16] approach this problem by computing an additional cer-
tificate that proves the correctness of the answer. This may, e.g., be either a 2-coloring
or an odd cycle for testing bipartiteness, or either a planar embedding or a Kuratowski
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subgraph for testing planarity. Certifying algorithms are designed such that check-
ing the correctness of the certificate is substantially simpler than solving the original
problem. Ideally, checking the correctness is so simple that the implementation of the
checking routine allows for a formal verification [1,22].

Our main result is a linear time certifying algorithm for 3-edge-connectivity based
on a result of Mader [15]. He showed that every 3-edge-connected graph can be
obtained from K 3

2 , the graph consisting of two vertices and three parallel edges, by
a sequence of three simple operations that each introduce one edge and, trivially,
preserve 3-edge-connectivity. We show how to compute such a sequence in linear time
for 3-edge-connected graphs. If the input graph is not 3-edge-connected, a 2-edge-cut
is computed. The previous algorithms [8,19,28–30] for deciding 3-edge-connectivity
are not certifying; they deliver a 2-edge-cut for graphs that are not 3-edge-connected
but no certificate in the yes-case.

Our algorithm is path-based [7]. It uses the concept of a chain decomposi-
tion of a graph introduced in [25] and used for certifying 1- and 2-vertex and
2-edge-connectivity in [27] and for certifying 3-vertex connectivity in [26]. A chain
decomposition is a special ear decomposition [14]. We use chain decompositions to
certify 3-edge-connectivity in linear time. Thus, chain decompositions form a com-
mon framework for certifying k-vertex- and k-edge-connectivity for k ≤ 3 in linear
time. We use many techniques from [26], but in a simpler form. Hence our paper may
also be used as a gentle introduction to the 3-vertex-connectivity algorithm in [26].

We state Mader’s result in Sect. 3 and introduce chain decompositions in Sect. 4.
In Sect. 5 we show that chain decompositions can be used as a basis for Mader’s
construction. This immediately leads to an O((m+n) log(m+n)) certifying algorithm
(Sect. 6). The linear time algorithm is then presented in Sects. 7 and 8. In Sect. 9 we
discuss the verification of Mader construction sequences.

The mincuts in a graph can be represented succinctly by a cactus representation
[5,6,20]; see Sect. 10. The 3-edge-connected components of a graph are the maximal
subsets of the vertex set such that any two vertices in the subset are connected by three
edge-disjoint paths. These paths are not necessarily contained in the subset.

Our algorithm can be used to turn any algorithm for computing 3-edge-connected
components into a certifying algorithm for computing 3-edge-connected components
and the cactus representation of 2-cuts (Sect. 10). An extension of our algorithm
computes the 3-edge-connected components and the cactus representation directly
(Sect. 11). A similar technique can be used to extend the 3-vertex-connectivity algo-
rithm in [26] to an algorithm for computing 3-vertex-connected components.

2 Related Work

Deciding 3-edge-connectivity is a well researched problem, with applications in
diverse fields such as bioinformatics [4] and quantum chemistry [3]. Consequently,
there aremany different linear time solutions known [8,19,20,28–30]. None of them is
certifying. All but the first algorithm also compute the 3-edge-connected components.
The cactus representation of a 2-edge-connected, but not 3-edge-connected graph G,
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can be obtained from G by repeatedly contracting the 3-edge-connected components
to single vertices [20].

The paper [16] is a recent survey on certifying algorithms. For a linear time certi-
fying algorithm for 3-vertex-connectivity, see [26] (implemented in [21]). For general
k, there is a randomized certifying algorithm for k-vertex connectivity in [13] with
expected running time O(kn2.5 + nk3.5). There is a non-certifying algorithm [12] for
deciding k-edge-connectivity in time O(m log3 n) with high probability.

In [8], a linear time algorithm is described that transforms a graphG into a graphG ′
such thatG is 3-edge-connected if andonly ifG ′ is 3-vertex-connected.Combinedwith
this transformation, the certifying 3-vertex-connectivity algorithm from [26] certifies
3-edge-connectivity in linear time. However, that algorithm is much more complex
than the algorithm given here. Moreover, we were unable to find an elegant method
for transforming the certificate obtained for the 3-vertex-connectivity of G ′ into a
certificate for 3-edge-connectivity of G.

3 Preliminaries

We consider finite undirected graphs G with n = |V (G)| vertices, m = |E(G)|
edges, no self-loops, and minimum degree three, and use standard graph-theoretic
terminology from [2], unless stated otherwise. We use u v to denote an edge with
endpoints u and v.

A set of edges that leaves a disconnected graph upon deletion is called edge cut. For
k ≥ 1, let a graph G be k-edge-connected if n ≥ 2 and there is no edge cut X ⊆ E(G)

with |X | < k. Let v →G w denote a path P between two vertices v and w in G
and let s(P) = v and t (P) = w be the source and target vertex of P , respectively
(as G is undirected, the direction of P is given by s(P) and t (P)). Every vertex in
P\{s(P), t (P)} is called an inner vertex of P and every vertex in P is said to lie on
P .

Let T be an undirected tree rooted at vertex r . For two vertices x and y in T , x is
an ancestor of y and y is a descendant of x if x ∈ V (r →T y), where V (r →T y)
denotes the vertex set of the path from r to y in T . If additionally x �= y, x is a proper
ancestor and y is a proper descendant. We write x ≤ y (x < y) if x is an ancestor
(proper ancestor) of y. The parent p(v) of a vertex v is its immediate proper ancestor.
The parent function is undefined for r . Let Km

2 be the graph on 2 vertices that contains
exactly m parallel edges.

Let subdividing an edge u v of a graph G be the operation that replaces u v with
a path uzv, where z was not previously in G. All 3-edge-connected graphs can be
constructed using a small set of operations starting from a K 3

2 .

Theorem 1 (Mader [15]) Every 3-edge-connected graph (and no other graph) can
be constructed from a K 3

2 using the following three operations:

• Adding an edge (possibly parallel or a loop).
• Subdividing an edge x y and connecting the new vertex to any existing vertex.
• Subdividing two distinct edges w x, y z and connecting the two new vertices.
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Fig. 1 Two ways of constructing the 3-edge-connected graph shown in the rightmost column. The upper
row shows the construction according to Theorem 1. The lower row shows the construction according to
Corollary 1. Branch (non-branch) vertices are depicted as filled (non-filled) circles. The black edges exist
already, while dotted gray vertices and edges do not exist yet

A subdivision G ′ of a graph G is a graph obtained by subdividing edges of G zero
or more times. The branch vertices of a subdivision are the vertices with degree at least
three (we call the other vertices non-branch-vertices) and the links of a subdivision are
the maximal paths whose inner vertices have degree two. If G has no vertex of degree
two, the links of G ′ are in one-to-one correspondence to the edges of G. Theorem 1
readily generalizes to subdivisions of 3-edge-connected graphs.

Corollary 1 Every subdivision of a 3-edge-connected graph (and no other graph)
can be constructed from a subdivision of a K 3

2 using the following three operations:

• Adding a path connecting two branch vertices.
• Adding a path connecting a branch vertex and a non-branch vertex.
• Adding a path connecting two non-branch vertices lying on distinct links.

In all three cases, the inner vertices of the path added are new vertices.

Each path that is added to a graph H in the process of Corollary 1 is called a
Mader-path (with respect to H ). Note that an ear is always a Mader-path unless both
endpoints lie on the same link.

Figure 1 shows two constructions of a 3-edge-connected graph, one according to
Theorem 1 and one according to Corollary 1. In this paper, we show how to find the
Mader construction sequence according to Corollary 1 for a 3-edge-connected graph
in linear time. Such a construction is readily turned into one according to Theorem 1.

4 Chain Decompositions

We use a very simple decomposition of graphs into cycles and paths. The decomposi-
tionwas previously used for linear-time tests of 2-vertex- and 2-edge-connectivity [27]
and 3-vertex-connectivity [26]. In this paper we show that it can also be used to find
a Mader’s construction for a 3-edge-connected graph. We define the decomposition
algorithmically; a similar procedure that serves for the computation of low-points can
be found in [24].

Let G be a connected graph without self-loops and let T be a depth-first search tree
of G. Let r be the root of T . We orient tree-edges towards the root and back-edges
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Fig. 2 The left side of the figure shows a DFS tree with a chain decomposition; tree-edges are solid and
back-edges are dashed. C1 is (1 6, 6 5, 5 4, 4 3, 3 2,2 1), C2 is (1 7,7 6), C3 is (2 4), C4 is (3 7), and C5 is
(4 5). C3 and C5 are nested children of C1 and C4 is an interlacing child of C2. Also, s(C4) s-belongs to
C1

away from the root, i.e., v < u for an oriented tree-edge u v and x < y for an oriented
back-edge x y.

We decompose G into a set C = {C1, . . . ,C|C |} of cycles and paths, called chains,
by applying the following procedure for each vertex v in the order in which they were
discovered during the DFS: First, we declare v visited (initially, no vertex is visited),
if not already visited before. Then, for every back-edge v w, we traverse the path
w →T r until a vertex x is encountered that was visited before; x is a descendant of
v. The traversed subgraph v w ∪ (w →T x) forms a new chain C with s(C) = v and
t (C) = x . All inner vertices of C are declared visited. Observe that s(C) and t (C) are
already visited when the construction of the chain starts.

Figure 2 illustrates these definitions. Since every back-edge defines one chain, there
are preciselym−n+1 chains.We number the chains in the order of their construction.

We call C a chain decomposition. It can be computed in time O(n + m). For
2-edge-connected graphs the term decomposition is justified by Lemma 1.

Lemma 1 [27] Let C be a chain decomposition of a graph G. Then G is 2-edge-
connected if and only if G is connected and the chains in C partition E(G).

Since the condition of Lemma 1 is easily checked during the chain decomposition,
we assume from now on that G is 2-edge-connected. Then C partitions E(G) and the
first chain C1 is a cycle containing r (since there is a back-edge incident to r ). We say
that r strongly belongs (s-belongs) to the first chain and any vertex v �= r s-belongs
to the chain containing the edge v p(v). We use s-belongs instead of belongs since a
vertex can belong to many chains when chains are viewed as sets of vertices.

We can now define a parent-tree on chains. The first chain C1 is the root. For any
chain C �= C1, let the parent p(C) of C be the chain to which t (C) s-belongs. We
write C ≤ D (C < D) for chains C and D if C is an ancestor (proper ancestor) of D
in the parent-tree on chains.

The following lemma summarizes important properties of chain decompositions.

Lemma 2 Let {C1, . . . ,Cm−n+1} be a chain decomposition of a 2-edge-connected
graph G and let r be the root of the DFS-tree. Then

(1) For every chain Ci , s(Ci ) ≤ t (Ci ).
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(2) Every chain Ci , i ≥ 2, has a parent chain p(Ci ). We have s(p(Ci )) ≤ s(Ci ) and
p(Ci ) = C j for some j < i .

(3) For i ≥ 2: If t (Ci ) �= r , t (p(Ci )) < t (Ci ). If t (Ci ) = r , t (p(Ci )) = t (Ci ).
(4) If u ≤ v, u s-belongs to C, and v s-belongs to D then C ≤ D.
(5) If u ≤ t (D) and u s-belongs to C, then C ≤ D.
(6) For i ≥ 2: s(Ci ) s-belongs to a chain C j with j < i .

Proof (1)–(3) follow from the discussion preceding the Lemma and the construction
of the chains. We turn to (4). Consider two vertices u and v with u ≤ v and let u
s-belong toC and let v s-belong to D. ThenC ≤ D, as the following simple induction
on the length of the tree path from u to v shows. If u = v, C = D by the definition of
s-belongs. So assume u is a proper ancestor of v. Since v s-belongs to D, by definition
v �= t (D) and v p(v) is contained in D. Let D′ be the chain to which p(v) s-belongs.
By induction hypothesis, C ≤ D′. Also, either D = D′ (if p(v) s-belongs to D)
or D′ = p(D) (if p(v) = t (D)) and hence p(v) s-belongs to p(D). In either case
C ≤ D.

Claim (5) is an easy consequence of (4). If t (D) = r , C = C1, and the claim
follows. If t (D) �= r , t (D) s-belongs to p(D). Thus, C ≤ p(D) by (4).

The final claim is certainly true for each Ci with s(Ci ) = r . So assume s(Ci ) > r
and let y = p(s(Ci )). Since G is 2-edge-connected, there is a back-edge u v with
u ≤ y and s(Ci ) ≤ v. It induces a chain Ck with k < i and hence s(Ci )y is contained
in a chain C j with j ≤ k. 
�

5 Chains as Mader-Paths

We show that, assuming that the input graph is 3-edge-connected, there are two chains
that form a subdivision of a K 3

2 , and that the other chains of the chain decomposition
can be added one by one such that each chain is aMader-path with respect to the union
of the previously added chains.Wewill also show that chains can be added parent-first,
i.e., when a chain is added, its parent was already added. In this way the current graph
Gc consisting of the already added chains is always parent-closed. We will later show
how to compute this ordering efficiently. We will first give an O((n +m) log(n +m))

algorithm and then a linear time algorithm.
Using the chain decomposition, we can identify a K 3

2 subdivision in the graph as
follows. We may assume that the first two back-edges explored from r in the DFS
have their other endpoint in the same subtree T ′ rooted at some child of r . The first
chain C1 forms a cycle. The vertices in C1\r are then contained in T ′. By assumption,
the second chain is constructed by another back-edge that connects r with a vertex in
T ′. If there is no such back-edge, the tree edge connecting r and the root of T ′ and
the back edge from r into T ′ form a 2-edge cut. Let x = t (C2). Then C1 ∪ C2 forms
a K 3

2 subdivision with branch vertices r and x . The next lemma derives properties of
parent-closed unions of chains.

Lemma 3 Let Gc be a parent-closed union of chains that contains C1 and C2. Then

(1) For any vertex v �= r of Gc, the edge v p(v) is contained in Gc, i.e., the set of
vertices of Gc is a parent-closed subset of the DFS-tree.

123



Algorithmica (2017) 77:309–335 315

(2) s(C) and t (C) are branch vertices of Gc for every chain C contained in Gc.
(3) Let C be a chain that is not in Gc but a child of some chain in Gc. Then C is

an ear with respect to Gc and the path t (C) →T s(C) is contained in Gc. C is
a Mader-path (i.e., the endpoints of C are not inner vertices of the same link of
Gc) with respect to Gc if and only if there is a branch vertex on t (C) →T s(C).

Proof (1): Let v �= r be any vertex ofGc. LetC be a chain inGc containing the vertex
v. If C also contains v p(v) we are done. Otherwise, v = t (C) or v = s(C). In the
first case, v s-belongs to p(C), in the second case v s-belongs to some C ′ ≤ C by
Lemma 2(4). Hence, by parent-closedness, v p(v) is an edge of Gc.

(2): Let C be any chain in Gc. Since C1 and C2 form a K 3
2 , r and x = t (C2) are

branch vertices. If s(C) �= r , the edge s(C) p(s(C)) is in Gc by (1), the back-edge
s(C) v inducing C is in Gc, and the path v →T s(C) is in Gc by (1). Thus s(C) has
degree at least three. If t (C) /∈ {r, x}, let ̂C be the chain to which t (C) s-belongs, i.e.
̂C is the parent of C . As Gc is parent-closed ̂C is contained in Gc. By the definition
of s-belongs, t (C) has degree two on the chain ̂C . Further, it has degree one on the
chain C . Since chains are edge-disjoint, it has degree at least three in Gc.

(3) We first observe that t (C) and s(C) belong to Gc. For t (C), this holds since
t (C) s-belongs to p(C) and p(C) is part of Gc by assumption. For s(C), this follows
from s(C) ≤ t (C) and (1). No inner vertex u of C belongs to Gc, because otherwise
the edge u p(u) would belong to Gc by (1), which implies that C would belong to Gc,
as Gc is a union of chains. Thus C is an ear with respect to Gc, i.e., it is disjoint from
Gc except for its endpoints. Moreover, the path t (C) →T s(C) belongs to Gc by (1).

If there is no branch vertex on t (C) →T s(C), the vertices t (C) and s(C) are inner
vertices of the same link of Gc and hence C is not a Mader-path with respect to Gc.
If there is a branch vertex on t (C) →T s(C), the vertices t (C) and s(C) are inner
vertices of two distinct links of Gc and hence C is a Mader-path with respect to Gc. 
�

We can now prove that chains can always be added in parent-first order. For a link
L , each edge in L that is incident to an end vertex of L is called an extremal edge of
L .

Theorem 2 Let G be a graph and let Gc be a parent-closed union of chains such that
no child of a chain C ∈ Gc is a Mader-path with respect to Gc and there is at least
one such chain. Then the extremal edges of every link of length at least two in Gc are
a 2-cut in G.

Proof Assume otherwise. Then there is a parent-closed union Gc of chains such that
no child of a chain in Gc is a Mader-path with respect to Gc and there is at least one
such chain outside of Gc, but for every link in Gc the extremal edges are not a cut in
G.

Consider any link L of Gc. Since the extremal edges of L do not form a 2-cut,
there is a path in G −Gc connecting an inner vertex on L with a vertex that is either a
branch vertex of Gc or a vertex on a link of Gc different from L . Let P be such a path
of minimum length. By minimality, no inner vertex of P belongs to Gc. Note that P
is a Mader-path with respect to Gc. We will show that at least one edge of P belongs
to a chain C with p(C) ∈ Gc and that C can be added, contradicting our choice of
Gc.
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Let a and b be the endpoints of P , and let z be the lowest common ancestor of
all points in P . Since a DFS generates only tree- and back-edges, z lies on P . Since
z ≤ a and the vertex set of Gc is a parent-closed subset of the DFS-tree, z belongs
to Gc. Thus z cannot be an inner vertex of P and hence is equal to a or b. Assume
w.l.o.g. that z = a. All vertices of P are descendants of a. We view P as oriented
from a to b.

Since b is a vertex of Gc, the path b →T a is part of Gc by Lemma 2 and hence no
inner vertex of P lies on this path. Let a v be the first edge on P . The vertex v must
be a descendant of b as otherwise the path v →P b would contain a cross-edge, i.e.
an edge between different subtrees. Hence a v is a back-edge. Let D be the chain that
starts with the edge a v. D does not belong to Gc, as no edge of P belongs to Gc.

We claim that t (D) is a proper descendant of b or D is a Mader-path with respect
to Gc. Since v is a descendant of b and t (D) is an ancestor of v, t (D) is either a
proper descendant of b, equal to b, or a proper ancestor of b. We consider each case
separately.

If t (D) were a proper ancestor of b the edge b p(b) would belong to D and hence
D would be part of Gc, contradicting our choice of P . If t (D) is equal to b then D is a
Mader-path with respect to Gc. This leaves the case that t (D) is a proper descendant
of b.

Let y x be the last edge on the path t (D) →T b that is not in Gc and let D∗ be
the chain containing y x . Then D∗ ≤ D by Lemma 2(5) (applied with C = D∗ and
u = y) and hence s(D∗) ≤ s(D) ≤ a by part (4) of the same lemma. Also t (D∗) = x .
Since x = t (D∗) ∈ Gc, p(D∗) ∈ Gc.

As a and b are not inner vertices of the same link, the path x = t (D∗) →T b →T

a →T s(D∗) contains a branch vertex. Thus D∗ is a Mader-path by Lemma 3. 
�
Corollary 2 If G is 3-edge-connected, chains can be greedily added in parent-first
order.

Proof If we reach a point where not all chains are added, but we can not proceed in a
greedy fashion, by Theorem 2 we find a cut in G. 
�

6 A First Algorithm

Corollary 2 gives rise to an O((n + m) log(n + m)) algorithm, the Greedy-Chain-
Addition Algorithm. In addition to G, we maintain the following data structures:

• The current graph Gc. Each link is maintained as a doubly linked list of vertices.
Observe that all inner vertices of a link lie on the same tree path and hence are
numbered in decreasing order. The vertices in G are labeled inactive, branch, or
non-branch. The vertices in G\Gc are called inactive. Every non-branch vertex
stores a pointer to the link on which it lies and a list of all chains incident to it and
having the other endpoint as an inner vertex of the same link.

• A listL of addable chains. A chain is addable if it is a Mader-path with respect to
the current graph.

• For each chain its list of children.
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We initialize Gc to C1 ∪ C2. It has three links, t (C2) →T r , r →C1 t (C2), and
r →C2 t (C2). We then iterate over the children ofC1 andC2. For each child, we check
in constant time whether its endpoints are inner vertices of the same link. If so, we
associate the chain with the link by inserting it into the lists of both endpoints. If not,
we add the chain to the list of addable chains. The initialization process takes time
O(n + m).

As long as the list of addable chains is non-empty, we add a chain, say C . Let u
and v be the endpoints of C . We perform the following actions:

• If u is a non-branch vertex, we make it a branch vertex. This splits the link con-
taining it and entails some processing of the chains having both endpoints on this
link.

• If v is a non-branch vertex, we make it a branch vertex. This splits the link con-
taining it, and entails some processing of the chains having both endpoints on this
link.

• We add C as a new link to Gc.
• We process the children of C .

We next give the details for each action.
If u is a non-branch vertex, it becomes a branch vertex. Let L be the link of Gc

containing u; L is split into links L1 and L2 and the set S of chains having both
endpoints on L is split into sets S1, S2 and Sadd, where Si is the set of chains having
both endpoints on Li , i = 1, 2, and Sadd is the set of chains that become addable
(because they are incident to u or have one endpoint each in L1 and L2). We show that
we can perform the split of L in time O(1 + |Sadd| + min(|L1| + |S1|, |L2| + |S2|)).
We walk from both ends of L towards u in lockstep fashion. In each step we either
move to the next vertex or consider one chain. Once we reach u we stop. Observe that
this strategy guarantees the time bound claimed above.

When we consider a chain, we check whether we can move it to the set of addable
chains. If so, we do it and delete the chain from the lists of both endpoints. Once, we
have reached u, we split the list representing the link into two. The longer part of the
list retains its identity, for the shorter part we create a new list header and redirect all
pointers of its elements.

Adding C to Gc is easy. We establish a list for the new link and let all inner vertices
of C point to it. The inner vertices become active non-branch vertices.

Processing the children of C is also easy. For each child, we check whether both
endpoints are inner vertices ofC . If so, we insert the child into the list of its endpoints.
If not, we add the child to the list of addable chains.

If L becomes empty, we stop. If all chains have been added, we have constructed
a Mader sequence. If not all chains have been processed, there must be a link having
at least one inner vertex. The first and the last edge of this link form a 2-edge-cut.

It remains to argue that the algorithm runs in time O((n + m) log(n + m)). We
only need to argue about the splitting process. We distribute the cost O(1 + |Sadd| +
min(|L1|+ |S1|, |L2|+ |S2|)) as follows: O(1) is charged to the vertex that becomes a
branch vertex. All such charges add up to O(n). O(|Sadd|) is charged to the chains that
become addable. All such charges add up to O(m). O(min(|L1| + |S1|, |L2| + |S2|))
is charged to the vertices and chains that define the minimum. We account for these
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charges with the following token scheme inspired by the analysis of the corresponding
recurrence relation in [17].

Consider a link L with k chains having both endpoints on L . We maintain the
invariant that each vertex and chain owns at least log(|L| + k) tokens. When a link is
newly created we give log(n + m) tokens to each vertex of the link and to each chain
having both endpoints on the link. In total we create O((n + m) log(n + m)) tokens.
Assume now that we split a link L with k chains into links L1 and L2 with k1 and k2
chains respectively. Then min(|L1|+ k1, |L2|+ k2) ≤ (|L|+ k)/2 and hence we may
take one token away from each vertex and chain of the sublink that is charged without
violating the token invariant.

Theorem 3 The Greedy-Chain-Addition algorithm runs in time O((n + m) log(n +
m)).

7 A Classification of Chains

When we add a chain in the Greedy-Chain-Addition algorithm, we also process its
children. Children that do not have both endpoints as inner vertices of the chain can
be added to the list of addable chains immediately. However, children that have both
endpoints as inner vertices of the chain cannot be added immediately and need to be
observed further until they become addable. We now make this distinction explicit by
classifying chains into two types, interlacing and nested.

We classify the chains {C3, . . .Cm−n+1} into two types. Let C be a chain with
parent ̂C = p(C). We distinguish two cases1 for C .

• If s(C) is an ancestor of t (̂C) and a descendant of s(̂C), C is interlacing. We have
s(̂C) ≤ s(C) ≤ t (̂C) ≤ t (C).

• If s(C) is a proper descendant of t (̂C), C is nested. We have s(̂C) ≤ t (̂C) <

s(C) ≤ t (C) and t (C) →T s(C) is contained in ̂C .

These cases are exhaustive as the following argument shows. Let s(̂C) v be the first
edge on ̂C . By Lemma 2, s(̂C) ≤ s(C) ≤ v. We split the path v →T s(̂C) into
t (̂C) →T s(̂C) and (v →T t (̂C))\t (̂C). Depending on which of these paths s(C) lies
on, C is interlacing or nested.

The following simple observations are useful. For any chain C �= C1, t (C) s-
belongs to ̂C . If C is nested, s(C) and t (C) s-belong to ̂C . If C is interlacing, s(C)

s-belongs to a chain which is a proper ancestor of ̂C or ̂C = C1. The next lemma
confirms that interlacing chains can be added once their parent belongs to Gc.

Lemma 4 Let Gc be a parent-closed union of chains that contains C1 and C2, let C
be any chain contained in Gc, and let D be an interlacing child of C not contained in
Gc. Then D is a Mader-path with respect to Gc.

Proof We have already shown in Lemma 3 that D is an ear with respect to Gc, that the
path t (D) →T s(D) is part ofGc, and that s(C) and t (C) are branching vertices ofGc.

1 In [26], three types of chains are distinguished. What we call nested is called Type 1 there and what we
call interlacing is split into Types 2 and 3 there. We do not need this finer distinction.
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Algorithm 1 Certifying linear-time algorithm for 3-edge connectivity.
procedure Connectivity(G=(V,E))

Let {C1,C2, . . . ,Cm−n+1} be a chain decomposition of G as described in Sect. 4;
Initialize Gc to C1 ∪ C2;
for i from 1 to m − n + 1 do  Phase i: add all chains whose source s-belongs to Ci

Group the chains C for which s(C) s-belongs to Ci into segments;
Part I of Phase i : Add all segments to Gc whose minimal chain is interlacing;
Part II of Phase i : Either find an insertion order S1, . . . , Sk of the segments having a nested

minimal chain or exhibit a 2-edge-cut and stop;
for j from 1 to k do

Add the chains contained in S j parent-first;
end for

end for
end procedure

Since D is interlacing, we have s(C) ≤ s(D) ≤ t (C) ≤ t (D). Thus t (D) →T s(D)

contains a branching vertex and hence D is a Mader-path by Lemma 3(3). 
�

8 A Linear Time Algorithm

According to Lemma 4, interlacing chains whose parent belongs to the current graph
are always Mader-paths and can be added. Nested chains have both endpoints on
their parent chain and can only be added once the tree-path connecting its endpoints
contains a branching point. Consider a chain nested in chainCi .Which chains can help
its addition by creating branching points on Ci? First, interlacing chains having their
source on some C j with j ≤ i , and second, chains nested in Ci and their interlacing
offspring having their source onCi . Chains having their source on someC j with j > i
cannot help because they have no endpoint on Ci . This observation shows that chains
can be added in phases. In the i-th phase, we try to add all chains having their source
vertex on Ci .

The overall structure of the linear-time algorithm is given inAlgorithm 1. An imple-
mentation in Python is available at https://github.com/adrianN/edge-connectivity. The
algorithmoperates in phases andmaintains a current graphGc. LetC1,C2,…,Cm−n+1
be the chains of the chain decomposition in the order of creation. We initialize Gc to
C1 ∪ C2. In phase i , i ∈ [1,m − n + 1], we consider the i-th chain Ci and either add
all chains C to Gc for which the source vertex s(C) s-belongs to Ci to Gc or exhibit
a 2-edge-cut. As already mentioned, chains are added parent-first and hence Gc is
always parent-closed. We maintain the following invariant:

Invariant: After phase i , Gc consists of all chains for which the source vertex s-
belongs to one of the chains C1 to Ci .

Lemma 5 For all i , the current chain Ci is part of the current graph Gc at the
beginning of phase i or the algorithm has exhibited a 2-edge-cut before phase i .

Proof The initial current graph consists of chains C1 and C2 and hence the claim
is true for the first and the second phase. Consider i > 2. The source vertex s(Ci )

s-belongs to a chain C j with j < i (Lemma 2(6)) and hence Ci is added in phase j . 
�
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The next lemma gives information about the chains for which the source vertex
s-belongs to Ci . None of them belongs to Gc at the beginning of phase i (except for
chain C2 that belongs to Gc at the beginning of phase 1) and they form subtrees of
the chain tree. Only the roots of these subtrees can be nested. All other chains are
interlacing.

Lemma 6 Assume that the algorithm reaches phase i without exhibiting a 2-edge-cut.
Let C �= C2 be a chain for which s(C) s-belongs to Ci . Then C is not part of Gc at
the beginning of phase i . Let D be any ancestor of C that is not in Gc. Then:

(1) s(D) s-belongs to Ci .
(2) If D is nested, it is a child of Ci .
(3) If p(D) is not part of the current graph, D is interlacing.

Proof We use induction on i . Consider the i-th phase and letC �= C2 be chains whose
source vertex s(C) s-belongs to Ci . We first prove that C is not in Gc. This is obvious,
since in the j-th phase we add exactly the chains whose source vertex s-belongs to
C j .

(1): Let D be any ancestor of C which is not part of Gc. By Lemma 2, we have
s(D) ≤ s(C) and hence s(D) belongs to C j for some j ≤ i . If j < i , D would have
been added in phase j , a contradiction to the assumption that D does not belong to
Gc at the beginning of phase i .

(2): s(D) s-belongs to Ci by (1). If D is nested, s(D) and t (D) s-belong to the
same chain. Thus D is a child of Ci .

(3): If p(D) is not part of the current graph, p(D) �= Ci by Lemma 5 and hence D
is not a child of Ci . Hence by (2), D is interlacing. 
�

We can now define the segments with respect to Ci by means of an equivalence
relation. Consider the set S of chains whose source vertex s-belongs to Ci . For a
chain C ∈ S , let C∗ be the minimal ancestor of C that does not belong to Gc. Two
chains C and D in S belong to the same segment if and only if C∗ = D∗. In Fig. 2
on page 5, if we start with Gc = C1 ∪ C2, we form three segments in the first phase,
namely {C4}, {C3}, and {C5}. The first segment can be added according to Lemma 4.
Then C3 can be added and then C5.

Consider any C ∈ S . By part (1) of the preceding lemma either p(C) ∈ S or
p(C) is part of Gc. Moreover, C and p(C) belong to the same segment in the first
case. Thus segments correspond to subtrees in the chain tree. In any segment only the
minimal chain can be nested by Lemma 6. If it is nested, it is a child of Ci (parts (2)
and (3) of the preceding lemma). Since only the root of a segment may be a nested
chain, once it is added to the current graph all other chains in the segment can be added
in parent-first order by Lemma 4. All that remains is to find the proper ordering of
the segments faster than in the previous section. We do so in Lemma 10. If no proper
ordering exists, we exhibit a 2-edge-cut.

Lemma 7 All chains in a segment S can be added in parent-first order if its minimal
chain can be added.

Proof By Lemma 6 all but the minimal chain in a segment are interlacing. Thus the
claim follows from Lemma 4. 
�
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We come to part I of phase i , the addition of all segments whose minimal chain is
interlacing. As a byproduct, we will also determine all segments with nested minimal
chain. We iterate over all chains C whose source s(C) s-belongs to Ci . For each such
chain, we traverse the path C , p(C), p(p(C)), …until we reach a chain that belongs
to Gc or is already marked (initially, all chains are unmarked). We now distinguish
cases. If the last chain on the path is nested we mark all chains on the path with the
nested chain. If we hit a marked chain we copy the marker to all chains in the path.
Otherwise, i.e., all chains are interlacing and unmarked, we add all chains in the path
to Gc in parent-first order, as these segments can be added according to Corollary 7.

It remains to compute a proper ordering of the segments in which the minimal chain
is nested or to exhibit a 2-edge-cut. We do so in part II of phase i . For simplicity, we
will say ‘segment’ instead of ‘segment with nested minimal chain’ from now on.

For a segment S let the attachment points of S be all vertices in S that are in Gc.
Note that the attachment points must necessarily be endpoints of chains in S and hence
adding the chains of S makes the attachment points branch vertices. Nested children
C of Ci can be added if there are branch vertices on t (C) →T s(C), therefore adding
a segment can make it possible to add further segments.

Lemma 8 Let C be a nested child of Ci and let S be the segment containing C. The
attachment points of S consist of s(C), t (C), and the vertices s(D) of the other chains
in the segment. All such points lie on the path t (C) →T s(C) and hence on Ci .

Proof Let D be any chain in S different from C . By Lemma 6, C is the minimal chain
in S. Since S is a subtree of the chain tree, we have C < D and hence by Lemma 2
t (C) ≤ t (D). Since none of the chains in S is part of Gc, parent-closedness implies
that no vertex on the path (t (D) →T t (C))\t (C) belongs to Gc. In particular, either
t (D) = t (C) or t (D) is not a vertex of Gc and hence not an attachment point of S.
It remains to show s(C) ≤ s(D) ≤ t (C). Since C ≤ D, we have s(C) ≤ s(D) by
Lemma 2. Since s(D) ≤ t (D) and t (C) ≤ t (D) we have either s(D) ≤ t (C) ≤ t (D)

or t (C) < s(D) ≤ t (D). In the former case, we are done. In the latter case, s(D) is
not a vertex of Gc by the preceding paragraph, a contradiction, since s(D) s-belongs
to Ci by Lemma 6. 
�

For a set of segments S1, . . . , Sk , let the overlap graph be the graph on the segments
and a special vertex R for the branch vertices on Ci . In the overlap graph, there is an
edge between R and a vertex Si , if there are attachment points a1 ≤ a2 of Si such that
there is a branch vertex on the tree path a2 →T a1. Further, between two vertices Si
and S j there is an edge if there are attachment points a1, a2 in Si and b1, b2 in S j ,
such that a1 ≤ b1 ≤ a2 ≤ b2 or b1 ≤ a1 ≤ b2 ≤ a2. We say that Si and S j overlap.

Lemma 9 Let C be a connected component of the overlap graph H and let S be any
segment with respect to Ci whose minimal chain C is nested. Then S ∈ C if and only
if

(i) R ∈ C and there is a branch vertex on t (C) →T s(C) or
(ii) there are attachments a1 and a2 of S and attachments b1 and b2 of segments in

C with a1 ≤ b1 ≤ a2 ≤ b2 or b1 ≤ a1 ≤ b2 ≤ a2.
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Proof Wefirst show S ∈ C if (i) or (ii) holds. For (i) the claim follows directly from the
definition of the overlap graph. For (ii), assume S /∈ C for the sake of a contradiction.
Then either R /∈ C or there is no branch vertex in t (C) →T s(C) by (i). Further, no
segment in C overlaps with S and hence any segment in C has its attachments points
either strictly between a1 and a2 or outside the path a2 →T a1. Moreover, both classes
of segments are non-empty. However, segments in the two classes do not overlap and
R cannot be connected to the segments in the former class. Thus C is not connected,
a contradiction.

If neither (i) nor (ii) hold, there can be no segment in C overlapping S and either
S is not connected to R or no segment in C is connected to R. 
�
Lemma 10 Assume the algorithm reaches phase i . If the overlap graph H induced
by the segments with respect to Ci is connected, we can add all segments of Ci . If H
is not connected, we can exhibit a 2-edge-cut for any component of H that does not
contain R.

Proof Assume first that H is connected. Let R, S1, . . . , Sk be the vertices of H in a
preorder, e.g. the order they are explored by a DFS, starting at R, the vertex corre-
sponding to the branch vertices on Ci . An easy inductive argument shows that we can
add all segments in this order. Namely, let k ≥ 1 and let C be the minimal chain of
Sk . All attachment points of Sk lie on the path t (C) →T s(C) by Lemma 8, and there
is either an edge between R and Sk or an edge between S j and Sk for some j < k.
In the former case, there is a branch vertex on t (C) →T s(C) at the beginning of the
phase, in the latter case there is one after adding S j . Thus the minimal chain of Sk can
be added and then all other chains by Lemma 7.

On the other hand, suppose H is not connected. LetC be any connected component
of H that does not contain R, and let CR be the connected component that contains R.
Let x and y be the minimal and maximal attachment points of the segments in C , and
let Gc be the current graph after adding all chains in CR . We first show that there is
no branch vertex of Gc on the path y →T x . Assume otherwise and let w be any such
branch vertex. Observe first that there must be a chain C ∈ C with s(C) ≤ w ≤ t (C).
Otherwise, every chain in C has all its attachment points at proper ancestors of w

or at proper descendants of w and hence C is not connected. Let S be the segment
containing C . By Lemma 8, we may assume that C is the minimal chain of S. Since
S /∈ CR , R S is not an edge of H and hence no branch vertex exists on the path
t (C) →T s(C) at the beginning of part II of the phase. Hence w is an attachment
point of a segment in CR . In particular CR contains at least one segment. We claim
that CR must also have an attachment point outside t (C) →T s(C). This holds since
all initial branch vertices are outside the path and since CR is connected. Thus S ∈ CR

by Lemma 9, a contradiction.
We show next that the tree-edge x p(x) and the edge z y from y’s predecessor z

on Ci to y form a 2-edge-cut; z y may be a tree-edge or a back-edge. The following
argument is similar to the argument in Theorem 2, but more refined.

Assume otherwise. Then, as in the proof of Theorem 2, there is a path P = a → b
such that a ≤ u for all u ∈ P , and either a lies on y →T x and b does not, or
vice versa, and no inner vertex of P is in Gc. Moreover, the first edge a v of P is a
back-edge and v is a descendant of b. Note that unlike in the proof of Theorem 2, a
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1 2 3 4 1 2 3 40

Fig. 3 Intervals for the solid segment with respect to the dashed chain. It has the attachment points 1, 2, 4.
Filled vertices are branching points

and b need not lie on different links, as we want to show that x p(x) and z y form a
cut and these might be different from the last edges on the link containing x and y.

Let D be the chain that starts with the edge a v. D does not belong toGc, as no edge
of P belongs to Gc. In particular, a does not s-belong to C j for j < i (as otherwise,
D would already be added). Since a ≤ b and one of a and b lies on y →T x (which
is a subpath of Ci ), a s-belongs to Ci . By the argument from the proof of Theorem 2,
t (D) is a descendant of b.

Let D∗ be the chain that contains the last edge of P . If t (D) = b, D = D∗.
Otherwise, t (D) is a proper descendant of b. Let u b be the last edge on the path
t (D) →T b. We claim that u b is also the last edge of P . This holds since the last edge
of P must come from a descendant of b (as ancestors of b belong to Gc) and since it
cannot come from a child different from y as otherwise P would have to contains a
cross-edge. Thus D∗ ≤ D by Lemma 2(5) and hence s(D∗) ≤ s(D) ≤ a by part (4)
of the same lemma.

D and D∗ belong to the same segment with respect to Ci , say S, and a and b are
vertices in S ∩ Gc. This can be seen easily. Since a s-belongs to Ci , D belongs to
some segment with respect toCi and since D∗ ≤ D, D∗ belongs to the same segment.
Since t (D∗) = b and b is a vertex of Gc, D∗ is the minimal chain in S. Thus D∗ is
nested and hence b s-belongs to Ci . Hence a and b are attachment points of S.

Thus S overlaps with C and hence S ∈ C by Lemma 9. Therefore x and y are not
the extremal attachment points, that is the minimal (or maximal) vertices in S ∩ Gc,
of C , a contradiction. 
�

It remains to show that we can find an order as required in Lemma 10, or a 2-edge-
cut, in linear time. We reduce the problem of finding an order on the segments to a
problem on intervals. W.l.o.g. assume that the vertices of Ci are numbered consecu-
tively from 1 to |Ci |. Consider any segment S, and let a0 ≤ a1 ≤ . . . ≤ ak be the
set of attachment points of S, i.e., the set of vertices that S has in common with Ci .
By Lemma 8, a0 and ak are the endpoints of the minimal chain in S and each ai ,
0 < i < k, is equal to s(D) for some other chain in S. We associate the intervals

{[a0, a�]|1 ≤ � ≤ k} ∪ {[a�, ak]|1 ≤ � < k},

with S and for every branch vertex v on Ci we define an interval [0, v]. See Fig. 3 for
an example.

We say two intervals [a, a′], [b, b′] overlap if a ≤ b ≤ a′ ≤ b′. Note that over-
lapping is different from intersecting; an interval does not overlap intervals in which
it is properly contained or which it properly contains. This relation naturally induces
a graph H ′ on the intervals. Contracting all intervals that are associated to the same
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segment into one vertex makes H ′ isomorphic to the overlap graph as required for
Lemma 10. Hence we can use H ′ to find the order on the segments. Note that the
interval set {[a0, a�]|1 ≤ � ≤ k} for each segment does not suffice without employing
a clever tie-breaking rule: If there are two segments with attachments a < b < c and
a < b′ < c, respectively, such that b′ �= b, no interval of the first segment overlaps
with one of the second.

A naive approach that constructs H ′, contracts intervals, and runs a DFS will fail,
since the overlap graph can have a quadratic number of edges. However, using a
method developed by Olariu and Zomaya [23], we can compute a spanning forest of
H ′ in time linear in the number of intervals. The presentation in [23] is for the PRAM
and thus needlessly complicated for our purposes. A simpler explanation can be found
in the Appendix.

The number of intervals created for a chain Ci is bounded by

|NestedChildren(Ci )| + 2|Interlacing(Ci )| + |Vbranch(Ci )|,

where NestedChildren(Ci ) are the nested children of Ci , Interlacing(Ci ) are the inter-
lacing chains that start on Ci , and Vbranch(Ci ) is the set of branch vertices on Ci . Note
that we generate the interval [s(C), t (C)] for each nested child C , and the intervals
[s(C), s(D)] and [s(D), t (C)] for each interlacing chain D belonging to a segment
with nested minimal chain C . Thus the total time spend the ordering procedure is
O(m). From the above discussion, we get:

Theorem 4 For a 3-edge-connected graph, a Mader construction sequence can be
found in time O(n + m).

9 Verifying the Mader Sequence

The certificate is either a 2-edge-cut, or a sequence of Mader-paths. For a 2-edge-cut,
we simply remove the two edges and verify that G is no longer connected.

For checking the Mader sequence, we doubly-link each edge in a Mader-path to
the corresponding edge in G. Let G ′ be a copy of G. We remove the Mader-paths, in
reverse order of the sequence, suppressing vertices of degree two as they occur. This
can create multiple edges and loops. Let G ′

i be the multi-graph before we remove the
i-th path Pi . We need to verify the following:

• G must have minimum degree three.
• The union of Mader-paths must be isomorphic to G and the Mader-paths must
partition the edges of G. This is easy to check using the links between the edges
of the paths and the edges of G.

• The paths we remove must be ears. More precisely, at step i , Pi must have been
reduced to a single edge in G ′

i , as inner vertices of Pi must have been suppressed
if Pi is an ear for G ′

i .• The Pi must not subdivide the same link twice. That is, after deleting the edge
corresponding to Pi , it must not be the case that both endpoints are still adjacent
(or equal, i.e. Pi is a loop) but have degree two.
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• When only two paths are left, the graph must be a K 3
2 .

10 The Cactus Representation of 2-Cuts

We review the cactus representation of 2-cuts in a 2-connected but not 3-connected
graph and show how to certify it.

A cactus is a graph in which every edge is contained in exactly one cycle. Dinits,
Karzanov, and Lomonsov [5] showed that the set of mincuts of any graph has a cactus
representation, i.e., for any graph G there is a cactus C and a mapping φ : V (G) →
V (C) such that the mincuts of G are exactly the preimages of the mincuts of C , i.e.,
for every mincut2 A ⊆ V (C), φ−1(A) is a mincut of G, and all mincuts of G can be
obtained in this way. The pair (C, φ) is called a cactus representation of G. Fleiner
and Frank [6] provide a simplified proof for the existence of a cactus representation.
We will call the elements of V (G) vertices, the elements of V (C) nodes, and the
preimages of nodes of C blobs.

In general, a cactus representation needs to include nodes with empty preimages.
This happens for example for the K4; its cactus is a star with double edges where the
central node has an empty preimage and the remaining nodes correspond to the vertices
of the K4. For graphs whose mincuts have size two, nodes with empty preimages are
not needed, and a cactus representation can be obtained by contracting the 3-edge-
connected components into a single node.

Lemma 11 ([20, Section 2.3.5]) Let G be a 2-edge-connected graph that is not 3-
edge-connected. Contracting each 3-edge-connected components of G into a node
yields a cactus representation (C, φ) of G with the following properties:

i) The edges of C are in one-to-one correspondence to the edges of G that are
contained in a 2-cut.

ii) For every node c ∈ V (c), φ−1(c) is a 3-edge-connected component of G.

10.1 Verifying a Cactus Representation

Let G be a graph and let (C, φ) be an alleged cactus-representation of its 2-cuts in the
sense of Lemma 11. We show how to verify a cactus representation in linear time. We
need to check two things. First, we need to ensure that C is indeed a cactus graph, that
is, every edge ofC is contained in exactly one cycle, that φ is a surjective mapping and
hence there are no empty blobs, and that every edge of G either connects two vertices
in the same blob or is also present in C . Second, we need to verify that the blobs of
C are 3-edge-connected components of G. For this purpose, the cactus representation
is augmented by a Mader construction sequence for each blob B. The verification
procedure from Sect. 9 can then be applied.

2 For this theorem, a cut is specified by a set of vertices, and the edges in the cut are the edges with exactly
one endpoint in the vertex set.
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We first verify that C is a cactus. We compute a chain decomposition of C and
verify that every chain is a cycle. We label all edges in the i-th cycle by i . We have
now verified that C is a cactus.

Surjectivity of φ is easy to check. We then iterate over the edges u v of G. If its
endpoints belong to the same blob, we associate the edge with the blob. If its endpoints
do not belong to the same blob, we add the pair φ(u) φ(v) to a list. Having processed
all edges, we check whether the constructed list and the edge list of C are identical by
first sorting both lists using radix sort and then comparing them for identity.

We finally have to check that the blobs of C correspond to 3-edge-connected com-
ponents ofG. Our goal is to use the certifying algorithm for 3-edge-connectivity on the
substructures of G that represent 3-edge-connected components. Let B be any blob.
We already collected the edges having both endpoints in B. We also have to account
for the paths using edges outside B. We do so by creating an edge u v for a every
path in G leaving B at vertex u and returning to B at vertex v. It is straightforward
to compute these edges; we look at all edges having exactly one endpoint in the blob.
Each such edge corresponds to an edge in C . For each such edge, we know to which
cycle it belongs. The outgoing edges pair up so that the two edges of each pair belong
to the same cycle.

Themaximality of each blob B is given by the fact that every edge ofC is contained
in a 2-edge-cut of C and hence contained in a 2-edge-cut of G.

Every algorithm for computing the 3-edge-connected components of a graph, e.g.
[19,20,28–30], can be turned into a certifying algorithm for computing the cactus rep-
resentation of 2-cuts. We obtain the cactus C and the mapping φ by contraction of the
3-edge-connected components (Lemma 11). Then one applies our certifying algorithm
for 3-edge-connectivity to each 3-edge-connected component. The drawback of this
approach is that it requires two algorithms that check 3-connectivity. In the next section
we will show how to extend our algorithm so that it computes the 3-edge-connected
components and the cactus representation of 2-cuts of a graph directly.

11 Computing a Cactus Representation

We discuss how to extend the algorithm to construct a cactus representation. We begin
by examining the structure of the 2-cuts of G more closely to extend our algorithm
such that it finds all 2-cuts of the graph and encodes them efficiently.

We will first show that the two edges of every 2-edge-cut of G are contained in a
common chain. This restriction allows us to focus on the 2-edge-cuts that are contained
in the currently processed chain Ci only. In the subsequent section, we show how to
maintain a cactus for every phase i of the algorithm that represents all 2-edge-cuts of
the graph of the branch vertices and links of C1 ∪ . . . ∪ Ci in linear space. The final
cactus will therefore represent all 2-edge-cuts in G.

There is one technical detail regarding the computation of overlap graphs: For the
computation of a Mader-sequence in Sect. 8, we stopped the algorithm when the first
2-edge-cut occurred, as then a Mader-sequence does not exist anymore. Here, we
simply continue the algorithm with processing the next chain Ci+1. This does not
harm the search for cuts in subsequent chains, as the fact that 2-edge-cuts are only
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contained in common chains guarantees that every 2-edge-cut that contains an edge e
in Ci has its second edge also in Ci .

For simplicity, we assume that G is 2-edge-connected and has minimum degree
three from now on. Then all 3-edge-connected components contain at least two ver-
tices.

11.1 2-Edge-Cuts are Contained in Chains and an Efficient Representation of
All Cuts in a Chain

In phase i of the algorithm, using Lemma 10, we can find a 2-edge-cut for each
connected component of the overlap graph H that does not contain R (R is the special
vertex in H that represents the branch vertices on Ci ). Lemma 13 shows that the set
of edges contained in these cuts is equal to the set of edges contained in any cut on
Ci . Lemma 12 states easy facts about 2-edge-cuts, in particular, that the edges of any
2-edge-cut are contained in a common chain. The proofs can be found in many 3-
connectivity papers, e.g. [19,28–30]. As in the previous sections, all DFS-tree-edges
are oriented towards the root, while back-edges are oriented away from the root.

Lemma 12 Let T be a DFS-tree of a 2-edge-connected graph G. Every 2-edge-cut
(u v, x y) of G satisfies the following:

(1) At least one of u v and x y is a tree-edge, say x y.
(2) G −u v − x y has exactly two components. Moreover, the edges u v and x y have

exactly one endpoint in each component.
(3) The vertices u, v, x, and y are contained in the same leaf-to-root path of T .
(4) If u v and x y are tree-edges and w.l.o.g. u ≤ y, the vertices in y →T u and

{x, v} are in different components of G − u v − x y.
(5) If u v is a back-edge, then x y ∈ (v →T u) and, additionally, the vertices in

v →T x and y →T u are in different components of G − u v − x y.

Moreover, let C be a chain decomposition of G. For every 2-edge-cut {u v, x y} of G,
u v and x y are contained in a common chain C ∈ C .

Lemma 13 Let E be the set of edges that are contained in the 2-edge cuts induced by
the connected components of the overlap graph H at the beginning of part II of phase
i . Then any 2-edge-cut {x y, u v} on Ci is a subset of E .

Proof Assume for the sake of contradiction that there is an edge u v in the 2-edge-cut
that is not in E . We distinguish the following cases.

First assume that both u v and x y are tree-edges and w.l.o.g. v < u ≤ y < x .
Since G has minimal degree three, every vertex on Ci has an incident edge that is not
on Ci . Hence it is either a branch vertex, or belongs to some segment with respect
to Ci (incident back-edges start chains in segments w.r.t. Ci , incident tree edges are
the last edges of chains in segments w.r.t. Ci ). As s(Ci ) ≤ v is a branch vertex, by
Lemma 12(4) the path y →T u can not contain a branch vertex. In particular, u is not
a branch vertex.

Let Su be any segment having u as attachment vertex. All segments in the connected
component of Su in H must have their attachment vertices on y →T u and the

123



328 Algorithmica (2017) 77:309–335

connected component does not contain R. Hence this connected component induces
a cut containing u v.

Now assume that one of u v and x y is a back-edge. If u v is the back-edge, then
u = s(Ci ) and we have u < y < x < v by Lemma 12. The path v →T x cannot
contain a branch vertex. Let Sv be any segment that has v as attachment vertex. All
segments in the connected component of Sv must have their attachment vertices on
v →T x and the connected component does not contain R. Hence u v is contained in
a cut induced by this connected component.

If on the other hand u v is the tree-edge we have y < v < u < x basically the same
argument applies when we replace Sv by a segment Su containing u. 
�

We next show how to compute a space efficient representation of all 2-cuts on the
chain Ci . Using this technique we can store all 2-cuts in G in linear space. In the next
section we will then use this to construct the cactus-representation of all 2-cuts in G.

Number the edges in Ci as e1, e2, . . ., ek . Here e1 is a back edge and e2 to ek are
tree edges. We start with a simple observation. Let h < i < j . If (eh, ei ) and (ei , e j )
are 2-edge-cuts, then (ei , e j ) is a 2-edge-cut.

Using this observation, we want to group the edges of 2-edge-cuts of Ci such that
(i) every two edges in a group form a 2-edge-cut and (ii) no two edges of different
groups form a 2-edge-cut. The existence of such a grouping has already been observed
in [19,28,30].We show how to find it using the data structures we have on hand during
the execution of our algorithm.

Consider the overlap graph H in phase i of our algorithm. We need some notation.
Let I be the set of intervals on Ci that contains for every component of H (except the
component representing the branch vertices on Ci ) with extremal attachment vertices
a and b the interval [a, b]. Since the connected components of H are maximal sets
of overlapping intervals, I is a laminar family, i.e. every two intervals in I are either
disjoint or properly contained in each other. In particular, no two intervals in I share an
endpoint. The layers of this laminar family encode which edges form pairwise 2-cuts
in G, see Fig. 4. We define an equivalence relation to capture this intuition.

For an interval [a, b], a < b, let �([a, b]) and r([a, b]) be the edges of Ci directly
before and after a and b, respectively. We call {�([a, b]), r([a, b])} the interval-cut of
[a, b]. For a subset S ⊆ I of intervals, let ES be the union of edges that are contained
in interval-cuts of intervals in S. According to Lemma 13, every 2-edge-cut in Ci

consists of edges in EI .
We now group the edges of EI using the observation above. Let two intervals

I1 ∈ I and I2 ∈ I contact if r(I1) = �(I2) or �(I1) = r(I2). Clearly, the transitive
closure ≡ of the contact relation is an equivalence relation. Every block B of ≡ is a

1 1 2 2 23 3 3

Fig. 4 The intervals induced by the connected components of the overlap graph H form a laminar family.
The levels of this family encode which edges form pairwise 2-cuts. Two edges in the figure are labeled with
the same number if they form a cut. Filled vertices are branch vertices
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set of pairwise disjoint intervals which are contacting consecutively. This allows us to
compute the blocks of ≡ efficiently. We can compute them in time |I | and store them
in space |I | by using a greedy algorithm that iteratively extracts the inclusion-wise
maximal intervals in I that are contacting consecutively.

Lemma 14 [19,28,30] Two edges e and e′ in Ci form a 2-edge-cut if and only if e
and e′ are both contained in EB for some block B of ≡.

11.2 An Incremental Cactus Construction

In this section we show how to construct a cactus representation incrementally along
our algorithm for constructing a Mader sequence. At the beginning of each phase i ,
we will have a cactus for the graph Gi whose vertices are the branch vertices that exist
at this time and whose edges are the links between these branch vertices.

We assume that G is 2-edge-connected but not 3-edge connected and that G has
minimum degree three. This ensures that in phase i every vertex on the current chain
Ci belongs to some segment or is a branch vertex.

Wewill maintain a cactus representation (C, φ), i.e., for every node v ofC , the blob
B = φ−1(v) is the vertex-set of a 3-edge-connected component in Gi . We begin with
a single blob that consists of the two branch vertices of the initial K 3

2 , which clearly
are connected by three edge-disjoint paths.

Consider phase i , in which we add all chains whose source s-belongs to Ci . At the
beginning of the phase, the endpoints of Ci and some branch vertices on Ci already
exist in Gi . We have a cactus representation of the current graph. The endpoints of Ci

are branch vertices and belong to the same blob B, since 2-edge-cuts are contained in
chains.

We add all segments that do not induce cut edges and tentatively assign all vertices
of Ci to B. If the algorithm determines that Ci does not contain any 2-edge-cut, the
assignment becomes permanent, the phase is over and we proceed to phase i +1. Oth-
erwise we calculate the efficient representation of 2-edge-cuts on Ci from Sect. 11.1.

Let e1 be the first edge on Ci in a 2-edge-cut, let A be a block of the contact equiva-
lence relation described in the last section containing e1 and let EA = {e1, e2, . . . , e�}
such that e j comes before e j+1 in Ci for all j . Then every two edges in EA form a
2-edge-cut. We add a cycle with � − 1 empty blobs B2, . . . , B� to B in C . The � new
edges correspond to the � edges in EA.

For every pair e j = (a, b), e j+1 = (c, d) in EA we remove the vertices between
these edges from B. Since the edges in Ci are linearly ordered, removing the vertices
in a subpath takes constant time. We place the end vertices b and c of the path between
e j and e j+1 in the blob Bj , add the segments that induced this cut and recurse on the
path between b and c. That is, we add all vertices on the path from b to c to Bj , check
for cut edges on this path, and, should some exist, add more blobs to the cactus. The
construction takes constant time per blob. Figure 5 shows an example.

Graphs that contain nodes of degree two can be handled in the same way, if we
add a cycle to each degree two node u. This cycle creates a segment w.r.t. the chain to
which u s-belongs and hence the algorithm correctly identifies the two incident edges
as cut edges.
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Ci: 0 1
a

2
b

3
c

4
d

5
e

6
f

7
g

8
h

0, 8

6, 71, 4, 5

2, 3

ha

b

d

f

Fig. 5 The segments attached to chain Ci and the corresponding part of the cactus. We first tentatively
assign vertices 1–7 to the blob containing the endpoints {0, 8} of Ci . The top level cuts are the pairs in the
block {a, f, h}. So we create a cycle with three edges and attach it to the blob containing 0 and 8. We move
vertices 1–5 to the blob between a and f , vertices 6–7 to the blob between f and h, and keep vertices 0
and 8 in the parent blob. We then recurse into the first blob. The second level cuts are the pairs in the block
{b, d}. So we create a cycle with two edges and move vertices 2 and 3 to the new blob

Lemma 15 The above incremental procedure constructs a cactus representation of
the 2-edge-cuts in G in linear time.

Proof Each vertex in G s-belongs to some chain. In the phase in which that chain is
treated, all its vertices are added to a blob. Whenever we move a vertex to different
blob, we remove it from its previous blob. Therefore each vertex of G is contained in
exactly one blob.

Whenever we add edges to the cactus, we do so by adding a cycle that shares exactly
one node with the existing cactus. Hence every edge in the cactus lies on exactly one
cycle.

Let {e1, e2} be a 2-edge-cut in G. The two edges must lie on a common cycle in
the cactus, since the edges in the cactus are in one-to-one correspondence with edges
of G and cutting a cycle in only one place cannot disconnect a graph. As the cycles of
the cactus touch in at most one vertex, e1 and e2 are a cut in the cactus as well.

Conversely let e′
1, e

′
2 be a cut in the cactus and let e1, e2 be the corresponding edges

in G. Then e′
1, e

′
2 must lie on some common cycle which, upon their removal, is split

into two nonempty parts H1, and H2. Assume that G − e1 − e2 is still connected, then
there must be a path from a vertex in the preimage of H1 to a vertex in the preimage of
H2 inG−e1−e2. This path must contain at least one edge u v that does not participate
in any 2-edge-cut, as otherwise it would be a path in the cactus as well. Moreover, u
and v must lie in different blobs Bu and Bv of the cactus.

The one that was created last, say Bu , must be different from the initial blob.
Consider the time when Bu was created in the incremental construction of the cactus.
We introduced a cycle to some preexisting blob B∗ on which all edges were cut edges,
in particular the two cut edges incident to Bu . However, the edge u v still connects Bu

to the rest of graph, since Bv also exists at this time, a contradiction. 
�
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By applying the techniques of this section, the certifying algorithm for 3-vertex-
connectivity [26] (which is also based on chain decompositions) can be used to
compute the 3-vertex-connected components of a graph. This has been conjectured
in [25, p. 18] and yields a linear-time certifying algorithm to construct a SPQR-tree
of a graph; we refer to [9,11] for details about 3-vertex-connected components and
SPQR-trees. The full construction can be found in the “Appendix 2”.

12 Conclusion

Wepresented a certifying linear time algorithm for 3-edge-connectivity based on chain
decompositions of graphs. It is simple enough for use in a classroom setting and can
serve as a gentle introduction to the certifying 3-vertex-connectivity algorithm of [26].
We also provide an implementation in Python, available at https://github.com/adrianN/
edge-connectivity.

We also show how to extend the algorithm to construct and certify a cactus represen-
tation of all 2-edge-cuts in the graph. From this representation the 3-edge-connected
components can be readily read off. The same techniques are used to find the 3-vertex-
connected components using the algorithm from [26], and thus present a certifying
construction of SPQR-trees.

Mader’s construction sequence is general enough to construct k-edge-connected
graphs for any k ≥ 3, and can thus be used in certifying algorithms for larger k. So far,
though, it is unclear how to compute these more complicated construction sequences.
We hope that the chain decomposition framework can be adapted to work in these
cases too.

Appendix 1: Computing a Spanning Subgraph of an Overlap Graph

We first assume that all endpoints are pairwise distinct. We will later show how to
remove this assumption by perturbation.

For every interval I = [a, b] define its set of left and right neighbors:

L(I ) = {I ′ = [a′, b′]; a′ < a < b′ < b},
R(I ) = {I ′ = [a′, b′]; a < a′ < b < b′}.

If the set of left neighbors is nonempty, let the interval I ′ ∈ L(I ) with the rightmost
right endpoint be the immediate left neighbor of I . Similarly, if the set of right neigh-
bors is nonempty, the immediate right neighbor of I is the interval in R(I ) with the
leftmost left endpoint.

Lemma 16 The graph G ′ formed by connecting each interval to its immediate left
and right neighbor (if any) forms a spanning subgraph of the overlap graph G and
has exactly the same connected components.

Proof Clearly, every edge ofG ′ is also an edge ofG and hence connected components
of G ′ are subsets of connected components of G.
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Algorithm 2 Finding a spanning forest of a overlap graph
procedure SP(I = {[a0, a′

0], . . . , [a�, a
′
�
]})

stack = [ ]
sort I lexicographically in descending order
for [l, r ] in I do

while stack not empty and r > top(stack) right endpoint do
pop(stack)

end while
if stack not empty and r ≥ top(stack) left endpoint then

connect [l, r ], top(stack)
end if
push(stack, [l, r ])

end for
stack = [ ]
sort I lexicographically in ascending order where the key for [l, r ] is [r, l]
for [l, r ] in I do

while stack not empty and l<top(stack) left endpoint do
pop(stack)

end while
if stack not empty and l ≤ top(stack) right endpoint then

connect [l, r ], top(stack)
end if
push(stack, [l, r ])

end for
end procedure

For the other direction, assume I and I ′ are overlapping intervals that are not
connected in G ′. Then a < a′ < b < b′, where I = [a, b] =: I0 and I ′ = [a′, b′]. Let
I0, I1, I2, . . . be such that I� = [a�, b�] is the immediate right neighbor of I�−1 for
all � ≥ 1. Consider the last I� in this sequence such that a� < a′ < b� < b′; clearly,
such an interval exists, as I0 is such an interval. Then I ′ is a right neighbor of I�, but
not the immediate right neighbor of I�, as otherwise I and I ′ would be connected in
G ′. Hence, the immediate right neighbor I�+1 =: U =: [c, d] of I� exists, is different
from I ′, and must contain I ′. Thus

a < c < a′ < b < b′ < d.

Starting from I ′ and going to immediate left neighbors, we obtain in the same fashion
an interval U ′ = [c′, d ′] with

c′ < a < a′ < b < d ′ < b′.

We conclude that U ′ and U overlap, but are not connected in G ′.
Consider now a particular choice for the overlapping intervals I and I ′. We choose

them such that the left endpoint of I is as small as possible. However, the left endpoint
of U ′ is to the left of the left endpoint of I , and we have derived a contradiction. 
�

It is easy to determine all immediate right neighbors by a linear time sweep over
all intervals. We sort the intervals in decreasing order of left endpoint and then sweep
over the intervals starting with the interval with rightmost left endpoint. We maintain
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a stack S of intervals, initially empty. If I1 = [a1, b1], . . . , Ik = [ak, bk] are the
intervals on the stack with I1 being on the top of the stack, then a1 < a2 < . . . < ak
and b1 < b2 < . . . < bk , I1 is the last interval processed, and I�+1 is the immediate
right neighbor of I� if I� has right neighbors. If I� does not have right neighbors,
a�+1 > b�. Let I = [a, b] be the next interval to be processed. Its immediate right
neighbor is the topmost interval I� on the stack with b� > b (if any). Hence we pop
intervals I� from the stack while b > b� and then connect I to the topmost interval if
b > a�, and push I . The determination of immediate left neighbors is symmetric.

It remains to deal with intervals with equal endpoints.We do so by perturbation. It is
easy to see that the following rules preserve the reachability by overlaps and eliminate
equal endpoints. E.g., in (4), the two intervals are forced to overlap, so reaching one
of the two intervals gives a path to the other; the same reasoning motivates (2) and (3).

1. if a left and a right endpoint are at the same coordinate, then the left endpoint is
smaller than the right endpoint.

2. if two left endpoints are equal, the one belonging to the shorter interval is smaller.
3. if two right endpoints are equal, the one belonging to the shorter interval is larger.
4. if two intervals are equal, one is slightly shifted to the right.

In otherwords, the endpoints of an interval Ii = [a, b] are replaced by ((a,−1, b−a, i)
and (b, 1, b− a, i)) and comparisons are lexicographic. The perturbation need not be
made explicitly, it can be incorporated into the sorting order and the conditions under
which edges are added, as described in Algorithm 2.

Appendix 2: Computing all 3-Vertex-Connected Components

A pair of vertices {x, y} is a separation pair of G if G− x − y is disconnected. Similar
to the edge-connectivity case, it suffices to compute all vertices that are contained in
separation pairs of G in order to compute all 3-vertex-connected components of G.
We assume that G is 2-vertex-connected and has minimum degree 3.

For a rooted tree T of G and a vertex x ∈ G, let T (x) be the subtree of T rooted at
x . The following lemmas show that separation pairs can only occur in chains. Weaker
variants of Lemma 17 can be found in [11,31,32].

Lemma 17 Let T be a DFS-tree of a 2-connected graph G and C be a chain decom-
position of G. For every separation pair {x, y} of G, x and y are contained in a
common chain C ∈ C .

Proof The following simple observation will be useful. Let r be the root of T and let
x �= r be any vertex. Then for every t ∈ T (x) − x , there is a path P from t to a vertex
s ∈ G − T (x) such that P consists only of vertices in T (x) − x ∪ s.

We first prove that x and y are comparable in T , i.e., contained in a leaf-to-root
path of T . Assume they are not. Then G − x − y consists of at most three connected
components: one connected component containing the least common ancestor of x
and y in T , and the at most two connected components that contain the proper descen-
dants of x and y, respectively. According to the observation above, these components
coincide, contradicting that {x, y} is a separation pair.
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Let x ′ be the child of x in T that lies on the path y →T x . Clearly, if x ′ = y,
the chain containing the edge xy is a common chain containing x and y. Otherwise,
x ′ �= y. If x = r , then there is a back-edge r t such that t ∈ T (y), according to the fact
that G − r is connected by T − r and due to the observation above. This back-edge
r t implies that the first chain C that traverses a vertex of T (y) starts at r and, hence,
contains x and y.

In the remaining case, x ′ �= y and x �= r . Let st be a back-edge that connects an
ancestor s of x with a descendant t of x ′ (possibly x ′ itself) such that s is minimal;
this edge st exists, since G is 2-vertex-connected. According to [27], C1 is the only
cycle in C and it follows that s < x . If t ∈ T (y), the first chain C in C that contains
such a back-edge contains x and y and, hence, satisfies the claim. Otherwise, t is a
vertex in T (x ′) − T (y). Due to the back-edge st , G − x − T (y) is contained in one
connected component of G − x − y. According to the observation above (applied on
y), {x, y} can form a separation pair only if y has a child y′ such that all back-edges
that end in T (y′) start either in T (y) or at x . Since G is 2-connected, there must be a
back-edge from x to T (y′). The first chain C in C containing such a back-edge gives
the claim, as it contains x and y. 
�

Similar to edge-connectivity, the connected components of the overlap graph for
Ci represent all vertices in separation pairs that are contained in Ci . The connected
components of the overlap graph can be computed efficiently [26, Lemma 51]. After
finding all these vertices for Ci , a simple modification allows the algorithm in [26,
p. 508] to continue, ignoring all previously found separation pairs: For every separation
pair {x, y}, x < y, that has been found when processing Ci , there is a vertex v strictly
between x and y inCi . Furthermore, by doing a preprocessing [26, Property B, p. 508]
one can assume that t (Ci ) →T s(Ci ) also has an inner vertex w. We eliminate every
separation pair {x, y} after processing Ci by simply adding the new back-edge vw to
G. As the new chain containing vw is just an edge, this does not harm future processing
steps.

According to Lemma 17, this gives all vertices in the graph that are contained in
separation pairs. The 3-vertex-connected components can then be computed in linear
time by iteratively splitting separation pairs and gluing together certain remaining
structures, as shown in [9,11].
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