
Algorithmica (2017) 77:336–348
DOI 10.1007/s00453-015-0068-9

Compressed Subsequence Matching and Packed Tree
Coloring

Philip Bille1 · Patrick Hagge Cording1 ·
Inge Li Gørtz1

Received: 5 June 2014 / Accepted: 4 September 2015 / Published online: 30 September 2015
© Springer Science+Business Media New York 2015

Abstract We present a new algorithm for subsequence matching in grammar com-
pressed strings. Given a grammar of size n compressing a string of size N and a pattern
string of size m over an alphabet of size σ , our algorithm uses O(n + nσ

w
) space and

O(n+ nσ
w

+m log N logw · occ) or O(n+ nσ
w

logw +m log N · occ) time. Here w is
the word size and occ is the number of minimal occurrences of the pattern. Our algo-
rithm uses less space than previous algorithms and is also faster for occ = o( n

log N )

occurrences. The algorithm uses a new data structure that allows us to efficiently find
the next occurrence of a given character after a given position in a compressed string.
This data structure in turn is based on a new data structure for the tree color problem,
where the node colors are packed in bit strings.
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1 Introduction

Subsequence matching is a variant of string pattern matching where an occurrence of
the pattern in the text must contain all the characters of the pattern, but not necessarily
contiguously. A pattern string P is a subsequence of another string S (the text) if P can
be obtained by deleting characters in S. Just answering if P is a subsequence of S is
easily solved in linear time by scanning S from left to right looking for the characters
of P . In the subsequence matching problem the goal is to find and report the positions
of all minimal substrings of S that contain P as a subsequence. A substring is said to
be minimal if shortening it implies that P is no longer a subsequence of that substring.
More formally, if P is a subsequence of the substring S[i, j], then i, j is a minimal
occurrence if P is not a subsequence of S[i + 1, j] or S[i, j − 1].

If the text is large and sufficiently repetetive, it might be useful to compress it. In
this paper we consider the compressed subsequence matching problem where we are
given a grammar S of size n compressing a string S of size N and a pattern string
P of size m over an alphabet of size σ . We present a new algorithm for compressed
subsequence matching which is space efficient and is faster than the previously fastest
algorithm for a bounded number of occurrences. Our algorithm relies on a method
that is different from the ones used by previous algorithms.

Subsequence matching is useful when searching sequential log data for a sequence
of events that may be separated by other events. Say for instance that we are running
a webserver and we want to know how often a visitor has found her way to subpage C
through page A and then B. We then set P = ABC and apply a subsequence matching
algorithm to the contents of the log file.Many applicationswill automatically compress
log data to save space, and so the bottleneck of the procedure becomes decompression
of the data. In this case, processing the data without fully decompressing it, is crucial.
Subsequence matching was also considered in relation to knowledge discovery and
data mining [20].

Several algorithms have been presented for uncompressed strings [6,10,12,14,15,
20,27]. The fastest of these is due to Das et al. [15]. Since it is an online algorithm we
may apply it to the compressed versionwithout having to store the entire decompressed
string, and we get an algorithm with running time O( Nm

logm ) that uses O(n+m) space.
The other algorithms are based on a forward–backward scanning approach. This also
adopts to a O(nm · occ)-time and O(n)-space algorithm for SLPs. Our algorithm is
also based on the scanning approach. Cégielski et al. [11] introduced the first algorithm
designed for subsequencematching in a grammar-compressed string. Its runnning time
is O(nm2 logm + occ) time and it uses O(nm2) space. Using a different approach,
Tiskin improved the running time to O(nm1.5 + occ) [25] and later even further to
O(nm logm+occ) [26]. The space usage of his algorithms is O(nm). Themost recent
improvement is due to Yamamoto et al. [28] who present an algorithm based on the
ideas of Cegielski et al. that runs in O(nm + occ) time and O(nm) space. All results
are summarized in Table 1.

Our algorithm assumes that the input grammar is a Straight Line Program (SLP). An
SLP is an acyclic grammar in Chomsky normal form, i.e., each nonterminal production
rule expands to two other rules and generates one string only. Any grammar producing
a single string can be transformed to an SLPwith linear overhead so our results hold for
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Table 1 Time and space complexities of algorithms for compressed subsequence matching

Time complexity Space complexity Author(s)

O( Nm
logm ) O(n + m) Das et al. [15]

O(nm · occ) O(n) Folklore

O(nm2 logm + occ) O(nm2) Cégielski et al. [11]

O(nm1.5 + occ) O(nm) Tiskin [25]

O(nm logm + occ) O(nm) Tiskin [26]

O(nm + occ) O(nm) Yamamoto et al. [28]

O(n + nσ
w + m log N logw · occ) O(n + nσ

w ) This paper

O(n + nσ
w logw + m log N · occ)

For all complexities occ ≥ 1

grammar-compressed strings in general. Moreover, SLPs are widely studied because
they model many well-known compression schemes, such as LZ77 [29], LZ78 [30],
and Re-Pair [19] with little overhead [13,22]. The following theorem is the main result
of this work.

Theorem 1 Given an SLP S of size n compressing a string S of size N and a pattern
P of size m over an alphabet of size σ , compressed subsequence matching can be
solved in O(n + nσ

w
) words of space and time

(i) O(n + nσ
w

+ m log N logw · occ), or
(ii) O(n + nσ

w
logw + m log N · occ)

in the word RAM model with word size w ≥ log N, and where occ is the number of
minimal occurrences of P in S.

Our new algorithm uses less space (linear in n if σ ≤ w) and is also faster than the
previously fastest algorithm for few occurrences when σ ≤ m. Particularly, solution
(ii) is faster if the number of occurrences is bounded by o( n

log N ). Note that we can,
in O(n + m) expected time and using O(m) additional extra space, guarantee that
σ ≤ m always holds with hashing.

The algorithm is based on the idea of a simple algorithm for subsequence matching
in uncompressed stringswhich basically scans the string for occurrences of the pattern.
We speed up the scanning on compressed strings by introducing the first data structure
for SLPs that supports labelled successor queries. The answer to a labelled succesor
query ls(i, c) on a string is the index of the first character c occurring after position
i in the string. An essential part of this data structure is a new data structure for the
tree color problem. This problem is to preprocess a tree where each node is colored
by zero or more colors, such that given a node v and a color c, we may efficiently
answer a first colored ancestor query, i.e., compute the lowest ancestor of v with color
c. Additionally, this data structure also supports a new type of query we call the last
colored ancestor. Here the query is two nodes u and v and a color c, and the answer
is the highest node on the path from u to v with color c. These results may be of
independent interest.

123



Algorithmica (2017) 77:336–348 339

This paper is organized such that we start by describing our new result for the tree
color problem (after a section of preliminaries), then move on to the labelled successor
data structure, and finally describe the algorithm for subsequence matching.

2 Preliminaries

2.1 Bit Strings

We will use bit strings to represent sets. In a bit string B = b1b2 . . . bu representing
a set B of elements from a universe of size u, bi = 1 iff element i is in B. B = [0]u
denotes the empty set. The operators ∧, ∨, and ⊕ denote the bitwise AND, OR, and
exclusive OR (XOR) of two bit strings. The negation of a bit string B is B. A summary
Bs of k bit strings B1, B2, . . . , Bk of equal length is Bs = B1∨ B2∨ . . .∨ Bk . For a bit
string of length w we assume that the mask of any constant can be computed in O(1)
time. Given a bit string B = b1b2 . . . bw, b1 is the most significant bit. The index of
the least significant set bit can be found in O(1) time from log2((B+1)∧ B). Finding
the most significant set bit is more elaborate, but can also be done O(1) time [18]. An
n × m bit matrix may be transposed in O(w logw) time if n ≤ w and m ≤ w [24].

2.2 Trees

In this paper all trees are rooted, ordered, and have labels on the nodes. The number
of nodes in a tree T is t . We denote by T (v) the subtree rooted at v containing all
descendants of v. The size |T (v)| is the number of nodes in the subtree T (v) including
v. If u is a node in the subtree T (v) we write u ∈ T (v). If T is a binary tree we denote
the left and right child of a node v by le f t (v) and right (v).

A heavy path decomposition [23] decomposes T into disjoint paths. Nodes are
classified as either heavy or light and the decomposition is defined as follows. The
root is light. For each internal node v, its heavy child w is the node for which T (w)

is of maximum size among the subtrees rooted at children of v. The other children
of v are light. Edges are also classified as heavy or light. An edge going into a heavy
node is heavy and likewise for light nodes. The heavy path decomposition ensures the
property that 1

2 |T (v)| > |T (u)| for any light child u of v. This means that there are
O(log t) light edges on any path from the root to a leaf. The heavy path decomposition
can be computed in O(t) time and space.

Given a binary tree T rooted at a node r , t > 1, and a parameter 1 ≤ x ≤ t , we
may partition T into at most t/x clusters such that for a fixed constant c, the size of
any cluster is at most cx [3,5] (see also [1] for a full proof). Two clusters overlap in
at most one node, and a node is called a boundary node if it is part of more than one
cluster. Any cluster has at most two boundary nodes, and a boundary node is either
a leaf or the root in the subtree that is the cluster. The sum of nodes in all clusters is
O(t). The tree obtained by repeatedly contracting edges between two nodes if one of
them is not a boundary node is called the macro tree. In other words, the macro tree is
the tree consisting only of boundary nodes. A cluster partition can be found in O(t)
time.
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Fig. 1 An SLP compressing the string abaababaabaab, its corresponding DAG, and its derivation tree

The answer to a level ancestor query la(v, d) on T is the ancestor of v with depth d.
A linear space data structure that answers an la query in O(1) time can be computed
for T in O(t) time [16] (see also [2,7,8]).

2.3 Straight Line Programs

A Straight Line Program S is a context-free grammar in Chomsky normal form with
n production rules that produce a single string S of length N . We represent the SLP as
a rooted, ordered, and node-labelled directed acyclic graph (DAG) with outdegree 2
and we will refer to production rules as nodes in the DAG. A depth-first left-to-right
traversal starting from a node v in the DAG produces the string S(v) of length |S(v)|.
The tree that emerges from the traversal we call the derivation tree. An example is
shown in Fig. 1. We denote the left and right children of v for le f t (v) and right (v),
respectively. Furthermore, the height of the SLP is the length of the longest path going
from the root to a terminal node and is denoted by h.

We may access a character S[i] in O(h) time by storing |S(v)| for each node v

in the SLP, and simulate a top–down search of the derivation tree. Doing so yields a
unique path from the root of S to the terminal node labelled S[i]. There is also a linear
space data structure that supports random access in SLPs in O(log N ) time [9]. A key
technique used in this data structure is the extension of the heavy path decomposition
of trees to SLPs which we will also use in our data structure. For each node v ∈ S, we
select the child of v that derives the longest string to be a heavy node. The other child
is light. Heavy and light edges are defined as in the decomposition of trees. Whereas
applying this technique to a tree results in a decomposition into disjoint paths, it will
result in a decomposition into disjoint trees when applied to an SLP (see Fig. 2). We
denote this set of trees by the heavy forestH of the SLP. This decomposition ensures
that the number of light edges on any path from the root to a terminal node is O(log N ).
Hence, on any path from the root of the SLP to a terminal node, we visit at most log N
trees fromH. When accessing a character using the data structure of [9] we may also
report the entry and exit nodes for each tree visited on the unique root-to-terminal path
that emerges from the query.
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wv

S(v) S(w)

x y z x y z

Fig. 2 An example of the heavy path decomposition of SLPs. (Left) a node in S (here depicted as a tree)
with children v and w where the edge to w is selected as heavy because S(w) ≥ S(v). The nodes x , y, and
z are terminals in S. (Right) the heavy forest obtained by removing light edges from S. The trees are rooted
in terminals of S and can therefore be seen as growing upwards

3 Packed Tree Color Problems

In a colored tree, each node is colored by zero or more colors from the set {1, . . . , σ }.
A packed colored tree is a colored tree where the colors of each node v are given
as a bit string C(v) where C(v)[c] = 1 iff v is colored c. In this section we con-
sider the packed tree color problem which is to preprocess a packed colored tree T to
support first and last colored ancestor queries. The answer to a first colored ancestor
query firstcolor(v, c) is the lowest ancestor of v with color c, and the answer to a
last colored ancestor query lastcolor(u, v, c) is the highest node with color c on
the path from u to v, where we always assume that u is an ancestor of v. Through-
out this section we will use the following notation to distinguish results. If a data
structure requires p(t) time to build, uses s(t) space, and supports firstcolor and
lastcolor queries in q(t) time, then the the triple 〈p(t), s(t), q(t)〉 refers to the
solution.

Solutions to the tree color problem for trees that are not packed may be applied to
packed trees. All known solutions focus entirely on supporting firstcolor queries
[4,16,17,21]. A simple solution that supports firstcolor queries in O(1) time is to
store the answer for every color in every node. This yields a 〈O(tσ), O(tσ), O(1)〉
solution. The currently best known trade-off for the tree color problem is 〈O(t +
D), O(t + D), O(logw)〉 [21], where D = ∑

v∈T
∑σ

i=1 C(v)[i] is the accumulated
number of colors used.

Ourmotivation for revisiting this problem is twofold. First we have that D = O(tσ)

in our application and we are striving for a space bound that is in o(tσ). Second we
want to support lastcolor queries.

In this section we present three solutions to the packed tree coloring prob-
lem and combine them to a data structure with a new and desireable time-space
trade-off.
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3.1 A 〈O(tσ), O(tσ), O(1)〉 Solution

We store the result of a firstcolor(v, c) query for every node and color. For each
color, let the induced c-colored subtree be the tree obtained by deleting all nodes that
are not colored by color c except the root. Build a levelled ancestor data structure for
each induced colored subtree.

The result of a firstcolor query is precomputed. A lastcolor(u, v, c) query is
answered as follows. If firstcolor(v, c) = firstcolor(u, c) then there is not a node
with color c on the path from u to v. If firstcolor(v, c) 
= firstcolor(u, c) then
let v′ and u′ be the nodes corresponding to firstcolor(v, c) and firstcolor(u, c) in
the induced c-colored subtree. The answer to lastcolor(u, v, c) is then the answer
to la(v′, depth(u′) + 1) in the induced c-colored subtree.

The results of firstcolor queries can be found and stored using O(tσ) time
and space. The induced colored subtrees can be computed in O(tσ) time and use
O(D) = O(tσ) space.A firstcolorquery clearly takesO(1) time. For a lastcolor
query, we perform two firstcolor queries and one la query, each of which takes
constant time.

Lemma 1 The packed tree color problem can be solved using O(tσ) preprocessing
time and space, and O(1) query time.

3.2 A 〈O(t + tσ
w

), O(t + tσ
w

), O(log t)〉 Solution

We fix a heavy path decomposition of T . For each heavy path p = v1, v2, . . . , vk ,
where v1 is the highest node on the path, we build a balanced binary tree Tp having
the nodes of p as leaves ordered from left to right. For each node v in Tp we store
a summary B(v) of the colors of its children. For each heavy path p we also store a
summary P(vi ) of colors on the path prefix v1 . . . vi for every vi on p.

For answering a firstcolor(v, c) query, let p = v1, v2, . . . , vk be the heavy path
containing v and let vi = v for some 1 ≤ i ≤ k. If P(vi )[c] = 1 we find the lowest
ancestor x of vi in Tp for which B(le f t (x))[c] = 1 and vi /∈ Tp(le f t (x)). The answer
to the query is then the rightmost leaf in Tp(le f t (x)) with color c. If P(vi )[c] = 0we
repeat the procedure with vi = parent (v1), i.e., we jump to the previous heavy path,
until we find the first colored ancestor or we reach the root of T .

A lastcolor(u, v, c) query is handled in a similar way. We first find the highest
light node w on the path from u to v for which P(parent (w))[c] = 1. Let p be the
heavy path containing parent (w). Now there are three cases. If u is not on p, the
answer to the query is the leftmost leaf in Tp that has color c. If p contains u, the
answer is the leftmost leaf with color c to the right of u in Tp, if such a node exists. If
it does not exist, we repeat the first step for the second highest light node w′ between
u and v for which P(parent (w′))[c] = 1.

The heavy path decomposition of T can be found and stored in O(t) time and
space. Since the paths of the heavy path decomposition are disjoint, the total number
of leaves in the binary summary trees is t , so the total number of nodes in the trees is
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O(t). We store O(t) summary bit vectors of size O( σ
w

) using a total of O( tσ
w

) space.
We use O( tσ

w
) bitwise OR operations to create the summaries in a bottom up fashion.

In total, preprocessing time and space usage is O(t + tσ
w

).
For both queries we visit at most log t heavy paths. When the path with the answer

has been found we walk up the binary tree and then down again. Since the tree is
balanced and has at most t leaves, this takes O(log t) time. For lastcolor queries
we do this at most twice. The query time for firstcolor and lastcolor queries is
therefore O(log t) time.

Lemma 2 The packed tree color problem can be solved using O(t+ tσ
w

) preprocessing
time and space, and O(log t) query time.

3.3 A 〈O(t + tσ logw
w

+ t2
w

), O(t + tσ
w

+ t2
w

), O( t
w

)〉 Solution

Let v1, . . . , vt be the nodes of T in pre-order. We will represent T as a σ × t bit matrix
M . Let c be a color from the set of colors {1, . . . , σ }. In row c of M we store a bit
string where bit i is 1 iff vi has color c. For each node vi we also store a bit string
A(vi ) where bit j is 1 iff v j is an ancestor of vi .

We construct this data structure from a packed colored tree as follows. Assume that
the bit strings representing the node colorings form a t × σ matrix where row i is the
colorings of node vi . We transpose this matrix to get M . To do this we partition the
matrix into a t

w
× σ

w
matrix (assume w.l.o.g. that w divides t and σ ), transpose each

w × w submatrix as described in [24], and transpose the t
w

× σ
w
matrix to get M . To

compute the ancestor bit strings first set A(root (T )) = [0]t . For all other nodes vi ,
where v j is the parent of vi , set A(vi ) = A(v j ) ∨ 2 j .

We answer a firstcolor(v, c) as follows. Let R = M[c] ∧ A(v). Now R is a bit
string representing the set of ancestors of v with color c. Since the nodes have pre-
order indices, the answer to the query is vi , where i is the index of the least significant
set bit in R.

To answer a lastcolor(v, u, c) query we start by computing R the same way as
above. We then set the first i − 1 bits of R to 0, where i is the index of u. The answer
to the query is the most significant set bit of R.

The σ × t bit matrix M can be packed in words and therefore uses O( tσ
w

) space.

Similarly, the ancestor bit strings use O( t
2

w
) space. Transposing a w × w matrix takes

O(w logw) time, and since there are tσ
w2 submatrices of this size in the color bit matrix,

the total time spent for all submatrices is O(
tσ logw

w
). Transposing the t

w
× σ

w
matrix

takes O( tσ
w

) time. Computing the ancestor bit strings takes O( t
2

w
) time.

The size of R is O( t
w

), so finding the first non-zero word takes O( t
w

) time. Deter-
mining the least or most significant set bit of a word is done in O(1) time. Thus, the
query time for both a firstcolor and a lastcolor query is O( t

w
).

Lemma 3 The packed tree color problem can be solved using O(t + tσ logw
w

+ t2
w

)

preprocessing time, O(t + tσ
w

+ t2
w

) space, and O( t
w

) query time.
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3.4 Combining the Solutions

We now show how to combine the previously described solutions to get 〈O(t +
nσ
w

), O(t + nσ
w

), O(logw)〉 and 〈O(t + tσ logw
w

), O(t + tσ
w

), O(1)〉 trade-offs. This
is achieved by doing a cluster partioning of the tree.

First we convert T to a binary tree T ′. Then we partition T ′ into O( t
w

) clusters, i.e.,
each cluster has size O(w). For each clusterC , where one boundary node is a leaf in the
cluster and the other is the root of the cluster, we make a summary of the colors of the
nodes on the path from the root to the leaf. The summary is stored in themacro tree node
that corresponds to the leaf boundary node of C . Apply the 〈O(tσ), O(tσ), O(1)〉
solution to the macro tree, and apply either the 〈O(t + tσ

w
), O(t + tσ

w
), O(log t)〉

solution or the 〈O(t + tσ logw
w

+ t2
w

), O(t + tσ
w

+ t2
w

), O( t
w

)〉 solution to each cluster
using the original colors.

Here is how we answer a firstcolor(v, c) query. Let Cv be the cluster containing
v. First we ask for firstcolor(v, c) in Cv . If the answer is a node in Cv , we are done.
If it is undefined, we find the node r in the macro tree corresponding to the root of Cv .
We check if r has color c in themacro tree and otherwise ask forw = firstcolor(r, c)
in the macro tree. In the cluster Cw having w as a leaf boundary node we then check
if w has color c and otherwise ask for firstcolor(w, c) in Cw.

We answer a lastcolor(u, v, c) query as follows. Assume that u 
= v and let
Cu and Cv be the clusters containing u and v. If Cu = Cv then the answer is
lastcolor(u, v, c) in the cluster containing u and v. If Cu 
= Cv , let w be the
leaf boundary node of Cu where v ∈ T (w). We now proceed in three steps. First,
we ask for lastcolor(u, w, c) in Cu . If the query returns a node, this is also the
answer to the lastcolor(u, v, c) query. If the answer in the first step is undefined
we ask for z = lastcolor(w, root (Cv), c) in the macro tree to locate the highest
cluster with a node with color c between u and v. The answer to the query is then
lastcolor(root (Cz), z, c) on Cz . If the first two steps fail, the answer to a query is
lastcolor(root (Cv), v, c).

The cluster partition can be computed in linear time. To compute the cluster path
summaries we OR the color bit strings of the nodes on the path, hence we spend
O(� σ

w
) time per node. On a cluster of size w we thus spend O(max{w, σ }) time,

totalling O(max{t, tσ
w

}) time for the O( t
w

) clusters. Since the macro tree has O( t
w

)

nodes the preprocessing time and space to apply the 〈O(tσ), O(tσ), O(1)〉 solution
becomes O( tσ

w
). To answer a query we perform a constant number of firstcolor

and lastcolor queries on the macro tree and clusters. Therefore the total time to
perform queries on the macro tree is O(1) time. To get (i) we apply the 〈O(t +
tσ
w

), O(t + tσ
w

), O(log t)〉 solution to clusters. Since a cluster has size O(w) we use a
total of O(logw) time performing queries on clusters. To get (ii) we apply the 〈O(t +
tσ logw

w
+ t2

w
), O(t + tσ

w
+ t2

w
), O( t

w
)〉 solution to clusters. Again, since clusters have

size O(w) we use a total of O(1) time performing queries on clusters. Preprocessing
time and space for the cluster data structures follow because the sum of the sizes of
clusters is O(t).

Theorem 2 The packed tree color problem can be solved using O(t + tσ
w

) space,
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(i) O(t + tσ
w

) preprocessing time, and O(logw) query time, or
(ii) O(t + tσ

w
logw) preprocessing time, and O(1) query time.

4 Labelled Successor Data Structure for SLPs

The answer to a labelled successor ls(i, c) query on a string S is the index of the
first occurrence of the character c after position i in S. More formally, the answer to
ls(i, c) is an index j such that S[ j] = c, j > i , and S[k] 
= c for k = i+1, . . . , j −1.

In this section we present a data structure that supports ls(i, c) queries on an SLP.
This is the first data structure dedicated to solving this problem on SLPs. Alternatively,
wemay build the random access data structure of [9] and then answer an ls(i, c) query
by doing a random access query for position i followed by a linear scan to find the
first occurrence of c. This yields a query time of O(log N + j − i) while using O(n)

space for the data structure.
Our data structure combines the random access data structure of [9] with a new

way of navigating the SLP based on the characters of substrings. For the latter we will
utilize our result for the packed tree color problem described in the previous section.

The basic idea is to store a bit string for each node v ∈ S that summarizes which
characters are generated by S(v). We first seach for position i in S and let p be the
unique path in S defining S[i]. We then walk up p until reaching a node u where
right (u) generates a string that contains c and right (u) is not on p. Then we walk
down from right (u) using the summaries to locate the leftmost terminal descending
from right (u) that generates c. This algorithm requires O(n + nσ

w
) space and O(h)

time to find ls(i, c).
To speed things up we fix a heavy path decomposition of the SLP to get a heavy

forest and build the random access data structure of [9]. Now p is a sequence of entry
and exit points in the trees of the heavy forest. When we walk up p we enter a tree in
an exit node and have to walk away from the root to the first node whose right child
generates a string that contains c before reaching the entry node. This is equivalent
to a lastcolor query. When we walk down to find ls(i, c) we enter a tree and have
to walk towards the root to find either the first ancestor whose left child generates a
string that contains c or the highest ancestor whose right child generates c. This is
equivalent to a firstcolor and a lastcolor query, respectively.

In the remainder of this section we give the details of the data structure. An example
of the data structure and a query is given in Fig. 3.

Theorem 3 There is a data structure supporting labelled successor (and predecessor)
queries on a string of size N over an alphabet of size σ compressed by an SLP of size
n in the word RAM model with word size w ≥ log N using O(n + nσ

w
) space and

(i) O(n + nσ
w

) preprocessing time, and O(log N logw) query time, or
(ii) O(n + nσ

w
logw) preprocessing time, and O(log N ) query time.

Proof We first apply the construction of [9], and let H be the heavy forest obtained
from the heavy path decomposition of S. For each node v in S with children le f t (v)

and right (v) we store two bit strings L(v) and R(v) summarizing the charac-
ters in S(le f t (v)) and S(right (v)). Specifically, L(v) summarizes the characters in
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a b

X1 X2

X4 X3

X6 X5

X7

a b a a b a b a a b a a b

X1 X2

X1 X1 X2 X1 X2

X1

X1 X2

X1 X1 X2

X3

X4 X3 X3 X3

X5 X4 X4 X3

X6 X5

X7

Fig. 3 An example of the data structure for the SLP shown in Fig. 1. The heavy edges are marked in both
the SLP and its parse tree. The resulting heavy forest contains the path from X1 to X7 (X1 is the root) and X2
(a tree with one node). For the non-terminals we have that L(Xi ) = 00 for i = 3 . . . 7, and R(X3) = 01,
R(X4) = 10, R(X5) = 11, R(X6) = 11, R(X7) = 11. Suppose we want to answer the query ls(2,b).
After a randomaccess query for position 2 the entry and exit points of the heavy trees are (X7, X3), (X2, X2).
The algorithm then performs the queries lastcolor(X2, X2,b) and lastcolor(X3, X7,b). The result
of the latter query is X5 because X5 is the highest node on the path from X7 to X3 in the heavy forest that
has the color b. This means that the subgraph rooted in right (X5) generates a b. firstcolor queries are
then performed to identify the occurrence of the first b in S(right (X5))

S(le f t (v)) if the edge from v to le f t (v) is light. If the edge is heavy then L(v) = [0]σ .
R(v) is defined analogously. These summaries are used for determining where to exit
a heavy tree when searching for some character. When following a heavy edge, say
from v to le f t (v), we do not exit a tree, so therefore L(v) is set to [0]σ . For each tree
inH we build two data structures for the packed tree color problem. One where the L
bit strings serve as colors and one where the R bit strings serve as colors.

We answer an ls(i, c) query as follows. First we access the character S[i] using
the random access data structure. We now have the entry and exit points of the heavy
trees inH on the unique path p describing S[i]. Let T1, . . . , Tk ∈ H be a sequence of
trees on p in the order they are visited when starting from the root and ending in the
terminal generating S[i], and let (v1, u1), . . . , (vk, uk) be the entry and exit nodes for
each tree in the sequence. Using the packed tree color data structure for the R colors,
we repeat lastcolor(ul , vl , c) for l = k down to some j until lastcolor(u j , v j , c)
is not undefined. Let w = right (lastcolor(u j , v j , c)). We now search for the first
occurrence of c in S(w). Let Ts be the tree in H that contains the node w, then
the search proceeds in three steps. First, we ask for v = firstcolor(w, c) in Ts
in the data structure for L colors and restart the search from le f t (v). If the query
firstcolor(w, c) is undefined we continue to the next step. In the second step we
check if root (Ts) generates c. If it does, we now have a unique set of entry and exit
nodes in the trees of H that constitutes a path to a terminal that generates the first
c after position i . The answer to the ls(i, c) query is the index of this c which we
retrieve using the random access data structure. Finally, if root (Ts) does not generate
c we ask for v = lastcolor(w, root (Ts), c) in Ts in the data structure for R colors,
and restart the search from right (v).

The data structure uses O(n + nσ
w

) space because the random access data structure
uses linear space and the bit strings L and R use O( nσ

w
) space. The random access

data structure, including the heavy path decomposition, takes O(n) time to compute
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and the L and R values are computed using O( nσ
w

) OR operations in a bottom up
fashion. Therefore, this part of the data structure is computed in O(n + nσ

w
) time.

To get Theorem 3(i) we use the packed tree color data structure of Theorem 2(i)
for the trees in H and likewise for (ii). Since the trees are disjoint, the preprocessing
time and space becomes as in the Theorem 3.

For the query, we first do one random access query that takes O(log N ) time, then
we perform at most log N lastcolor queries walking up the SLP and at most 2 log N
firstcolor and lastcolor queries locating the labelled successor. Finally, retrieving
the index also takes O(log N ) time using the random access data structure. ��

5 Subsequence Matching

Wewill nowuse the labelled successor data structure to obtain a subsequencematching
algorithm for SLPs. Our algorithm is based on the folklore algorithm for subsequence
matching which works as follows (see also [15,20]). First we find the minimal prefix
S[1 . . . j] that contains P as a subsequence. This is done by reading S left to right
while searching for the characters of P one at a time. We then find the minimal suffix
S[i . . . j] of the prefix S[1 . . . j] that contains P . Similarly, this is done by scanning
the prefix right to left. Now S[i . . . j] is the first minimal occurrence of P . To find the
next minimal occurrence we repeat this process for the suffix S[i + 1 . . . N ]. It can be
shown that this algorithm finds all minimal occurrences of P in O(Nm) time.

By using our labelled successor data structure described in the previous section
we speed up the procedure of finding some specific character of P . Assume we have
matched P[1 . . . k] to S[1 . . . j] such that P[k] = S[ j]. Instead of doing a linear scan
of S[ j + 1 . . . N ] to find P[k + 1] we ask for the next occurrence of P[k + 1] using
ls( j, P[k + 1]).

For each occurrence of P we perform O(m) labelled successor (and labelled pre-
decessor) queries, and we also have to construct the data structures to support these.
By applying the results of Theorem 3 we get Theorem 1.
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27. Troníček, Z.: Episode matching. In: Amir, A. (ed.) Combinatorial Pattern Matching. Lecture Notes in
Computer Science, vol. 2089, pp. 143–146. Springer, Berlin, Heidelberg (2001)

28. Yamamoto, T., Bannai, H., Inenaga, S., Takeda,M.: Faster subsequence and dont-care patternmatching
on compressed texts. In: Giancarlo, R., Manzini, G. (eds.) Combinatorial Pattern Matching. Lecture
Notes in Computer Science, vol. 6661, pp. 309–322. Springer, Berlin, Heidelberg (2011)

29. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory
23(3), 337–343 (1977)

30. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inf.
Theory 24(5), 530–536 (1978)

123


	Compressed Subsequence Matching and Packed Tree Coloring
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Bit Strings
	2.2 Trees
	2.3 Straight Line Programs

	3 Packed Tree Color Problems
	3.1 A langleO(tσ), O(tσ), O(1) rangle Solution
	3.2 A langleO(t+tσw),O(t+tσw),O(logt) rangle Solution
	3.3 A langleO(t+tσlogww+t2w),O(t+tσw+t2w),O(tw) rangle Solution
	3.4 Combining the Solutions

	4 Labelled Successor Data Structure for SLPs
	5 Subsequence Matching
	References




